Altmel

Features

ATmegal6A

8-bit Microcontroller with 16K Bytes In-System
Programmable Flash

DATASHEET

e High-performance, Low-power Atmel AVR 8-bit Microcontroller
e Advanced RISC Architecture

131 Powerful Instructions — Most Single-clock Cycle Execution
32 x 8 General Purpose Working Registers

Fully Static Operation

Up to 16MIPS Throughput at 16MHz

On-chip 2-cycle Multiplier

e High Endurance Non-volatile Memory segments

16KBytes of In-System Self-programmable Flash program memory
512Bytes EEPROM
1KByte Internal SRAM
Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
Data retention: 20 years at 85°C/100 years at 25°C'")
Optional Boot Code Section with Independent Lock Bits
e In-System Programming by On-chip Boot Program
e True Read-While-Write Operation
Programming Lock for Software Security

e JTAG (IEEE std. 1149.1 Compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard

Extensive On-chip Debug Support

Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG
Interface

e Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and
Capture Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC

e 38 Single-ended Channels

e 7 Differential Channels in TQFP Package Only

e 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface
Programmable Serial USART
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
e /O and Packages
— 32 Programmable 1/O Lines
— 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
e Operating Voltages
- 27-55V
e Speed Grades
— 0-16MHz
e Power Consumption @ 1MHz, 3V, and 25°C
— Active: 0.6mA
— Idle Mode: 0.2mA
— Power-down Mode: < 1yA

Atmel ATmega16A [DATASHEET] 2

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

1. Pin Configurations

Figure 1-1. Pinout ATmegal6A

PDIP
_/
(XCK/TO) PBO] 1 40 [J PAO (ADCO)
(T1) PB1 O 2 39 [0 PA1 (ADCY)
(INT2/AINO) PB2 | 3 38 [0 PA2 (ADC2)
(OCO/AIN1) PB3] 4 37 [0 PA3 (ADC3)
(8S) PB4 | 5 36 [PA4 (ADC4)
(MOSI) PB5 [6 35 [PA5 (ADCS)
(MISO) PB6] 7 34 [0 PA6 (ADCS)
(SCK) PB7] 8 33 [0 PA7 (ADC7)
RESET] 9 32 [0 AREF
vee O 10 31 [0 GND
GND] 11 30 3 AvCC
XTAL2] 12 29 B PC7 (TOSC2)
XTAL1 (] 13 28 [PC6 (TOSC1)
(RXD) PDO (| 14 27 [0 PC5 (TDI)
(TXD) PD1 (] 15 26 [1 PC4 (TDO)
(INTO) PD2 (| 16 25 [1 PC3 (TMS)
(INT1) PD3 | 17 24 [PC2 (TCK)
(OC1B) PD4 | 18 23 [1 PC1 (SDA)
(0c1A) PD5] 19 22 [0 PCO (SCL)
(ICP1) PD6 [20 21 [1 PD7 (0C2)
TQFP/QFN/MLF
SN
Sz 8 . __
_c2_2 3533
B22cR 2222
toaN-o00 0o «-an
RS
LTIt
® 44,42, 40, 38,36, 34
(MOSI) PB5 [1 33 [J PA4 (ADC4)
(MISO)PB6]2 M~~~ ~"~"~~=~~" 1 32 [PA5 (ADC5)
(scK) pB7 |3 ! ' 31 [PA6 (ADC6)
RESET {4 | 30 [J PA7 (ADC7)
vee |5, . 29 [AREF
GND |6 | | 28 [GND
XTAL2] 7 1 I 27 [3 AvcC
XTAL1] 8 ! I 26 [J PC7 (TOSC2)
(RXD) PDO {9 ! ! 25 |1 PCB (TOSCY)
(TxD) PD1 {10 4 ., 24 [0 PC5 (TDI)
(INTO) PD2 { 11 23 [3J PC4 (TDO)
121314751617181 %0272,
oo oyg
B3838583835088
Bottom pad should o< N A7)
be soldgred to ground. Z g g 3 8 3 @gg
ATmega16A [DATASHEET 3
Atmel gatoAl)

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

2. Overview

The ATmega16A is a low-power CMOS 8-bit microcontroller based on the Atmel AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega16A achieves throughputs
approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing

speed.

2.1 Block Diag

Figure 2-1.

Atmel

ram

Block Diagram

PAO - PA7 PCO - PC7
vee A A A A A A 4 4 A A A A A A A 4
r PORTA DRIVERS/BUFFERS PORTC DRIVERS/BUFFERS
GND PORTA DIGITAL INTERFACE PORTC DIGITAL INTERFACE
Avce)
,< MUX & ADC wi
ADC INTERFACE
AREF]
x TIMERS/
PROGRAM STACK COUNTERS OSCILLATOR
COUNTER POINTER
I I
PROGRAM | INTERNAL
FLASH SRAM OSCILLATOR
l i XTALL i
g |
INSTRUCTION GENERAL WATCHDOG
REGISTER | | ls PURPOSE TIMER OSCILLATOR —
REGISTERS i
‘t J, XTAL2
e X
INSTRUCTION MCU CTRL. [
DECODER N Y &TIMING RESET
l & z
CONTROL INTERRUPT INTERNAL
LINES ONIT CALIBRATED
OSCILLATOR
STATUS
AVR CPU REGISTER EEPROM
PROGRAMMING
cRaM! SsPI USART
¥ COMP.
- INTERFACE
PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE
PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS
¥y vV vV vV v v v Y vy v vy vV.v. v vy
PBO - PB7 PDO - PD7
ATmega16A [DATASHEET] 4

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The Atmel AVR core combines a rich instruction set with 32 general purpose working registers. All the 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be
accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient
while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega16A provides the following features: 16Kbytes of In-System Programmable Flash Program
memory with Read-While-Write capabilities; 512bytes EEPROM; 1Kbyte SRAM; 32 general purpose /O lines,
32 general purpose working registers; a JTAG interface for Boundary-scan; On-chip Debugging support and
programming; three flexible Timer/Counters with compare modes; Internal and External Interrupts; a serial
programmable USART; a byte oriented Two-wire Serial Interface, an 8-channel; 10-bit ADC with optional
differential input stage with programmable gain (TQFP package only); a programmable Watchdog Timer with
Internal Oscillator; an SPI serial port; and six software selectable power saving modes. The Idle mode stops the
CPU while allowing the USART; Two-wire interface; A/D Converter; SRAM; Timer/Counters; SPI port; and
interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save
mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the
device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous
Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator
Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-
power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue
to run.

The device is manufactured using Atmels high density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional
nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program
can use any interface to download the application program in the Application Flash memory. Software in the
Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-
While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega16A is a powerful microcontroller that provides a highly-flexible and cost-
effective solution to many embedded control applications.

The ATmega16A is supported with a full suite of program and system development tools including: C compilers,
macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Atmel ATmega16A [DATASHEET] 5

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

2.2 Pin Descriptions

2.2.1 VCC
Digital supply voltage.

2.2.2 GND
Ground.

2.2.3 Port A (PA7:PAOQ)
Port A serves as the analog inputs to the A/D Converter.
Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide
internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics
with both high sink and source capability. When pins PAO to PA7 are used as inputs and are externally pulled
low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

2.2.4 Port B (PB7:PBO)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega16A as listed on page 57.

2.25 Port C (PC7:PCO0)
Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port C output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-
stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled,
the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.
Port C also serves the functions of the JTAG interface and other special features of the ATmega16A as listed on
page 59.

2.2.6 Port D (PD7:PDO0)
Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega16A as listed on page 62.

2.2.7 RESET
Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the
clock is not running. The minimum pulse length is given in Table 27-2 on page 282. Shorter pulses are not
guaranteed to generate a reset.

2.2.8 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

ATmega16A [DATASHEET 6
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

2.2.9 XTAL2
Output from the inverting Oscillator amplifier.
2.2.10 AvCC
AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V¢, even
if the ADC is not used. If the ADC is used, it should be connected to V. through a low-pass filter.
2211 AREF
AREEF is the analog reference pin for the A/D Converter.
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.
4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over
20 years at 85°C or 100 years at 25°C.
5. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of the device.
These code examples assume that the part specific header file is included before compilation. Be aware that not
all C Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler
dependent. Please confirm with the C Compiler documentation for more details.
ATmega16A [DATASHEET 7
Atmel gaiohl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

6.1

AVR CPU

Overview

This section discusses the Atmel AVR core architecture in general. The main function of the CPU core is to
ensure correct program execution. The CPU must therefore be able to access memories, perform calculations,
control peripherals, and handle interrupts.

Figure 6-1. Block Diagram of the AVR MCU Architecture

: Data Bus 8-bit
Program Status
Flash a3l >
Program Counter and Control
Memory <
i Interrupt
: ' > 632 X 8| (< Unit
nstruction eneral
Register Purpose g SPI|
< Registrers [« Unit
Instruction Watchdo
Decoder o <] Timer 9
o =
£ ‘@
i % g v mpe
o 5 nalog
Control Lines 3 2 Comparator
<
= k3]
o (3
i3 =
= e
e £ (> 1/0 Module1
N Data lesle> 110 Module 2
SRAM
[« /0 Module n
EEPROM <>}
/O Lines [«

\/

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate
memories and buses for program and data. Instructions in the program memory are executed with a single level
pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory.
This concept enables instructions to be executed in every clock cycle. The program memory is In-System
Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two
operands are output from the Register File, the operation is executed, and the result is stored back in the
Register File — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing
— enabling efficient address calculations. One of the these address pointers can also be used as an address
pointer for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-
register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register.
Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is
updated to reflect information about the result of the operation.

ATmega16A [DATASHEET] 8

A t I I . e L Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that
writes into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The
Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the
total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before
subroutines or interrupts are executed). The Stack Pointer SP is read/write accessible in the 1/0 space. The
data SRAM can easily be accessed through the five different addressing modes supported in the AVR
architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit
in the Status Register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts
have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher
the priority.

The 1/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/0O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the
Register File, $20 - $5F.

6.2 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and
an immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and
bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both

signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.

6.3 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction.
This information can be used for altering program flow in order to perform conditional operations. Note that the
Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more
compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

6.3.1 SREG — AVR Status Register

Bit 7 6 5 4 3 2 1 0
| I T H S Y N z c | SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
ATmega16A [DATASHEET 9
Atmel galon |]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 7-I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable
control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of
the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by
hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.
The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the
instruction set reference.

« Bit 6 —T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the
operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bitin T
can be copied into a bit in a register in the Register File by the BLD instruction.

e Bit 5 - H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD
arithmetic. See the “Instruction Set Description” for detailed information.

» Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V.
See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set
Description” for detailed information.

« Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description”
for detailed information.

e Bit 0—-C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.

6.4 General Purpose Register File
The Register File is optimized for the Enhanced RISC instruction set. In order to achieve the required
performance and flexibility, the following input/output schemes are supported by the Register File:
e One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
e Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input
Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.
/ItmeL ATmega16A [DATASHEET] 10

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 6-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO $00
R1 $01
R2 $02
R13 $0D
General R14 $OE
Purpose R15 $OF
Working R16 $10
Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are
single cycle instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them directly into the
first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this
memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers
can be set to index any register in the file.

6.4.1 The X-register, Y-register and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are
defined as described in Figure 6-3.
Figure 6-3. The X-, Y-, and Z-registers
15 XH XL 0
X - register I 7 0 I 7 0 I
R27 ($1B) R26 ($1A)
15 YH YL 0
Y - register I 7 0 I 7 0 I
R29 ($1D) R28 ($1C)
15 ZH zL 0
Z - register I 7 0 I 7 0 I
R31 ($1F) R30 ($1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic
increment, and automatic decrement (see the Instruction Set Reference for details).
6.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower
memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to
ATmega16A [DATASHEET 11
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will
decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack
Pointer must be set to point above start of the SRAM, see Figure 7-2 on page 17.

See Table 6-1 for Stack Pointer details.

Table 6-1. Stack Pointer instructions
Instruction | Stack pointer Description
PUSH Decremented by 1 | Data is pushed onto the stack
CALL Return address is pushed onto the stack with a subroutine call or
ICALL Decremented by 2 | interrupt
RCALL
POP Incremented by 1 Data is popped from the stack
RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of bits actually used
is implementation dependent. Note that the data space in some implementations of the AVR architecture is so
small that only SPL is needed. In this case, the SPH Register will not be present.

6.5.1 SPH and SPL — Stack Pointer High and Low Register
Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write RIW RW RW RIW RW RIW RIW RIW
RIW RIW RIW RIW RW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0
6.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by
the CPU clock clkqpy, directly generated from the selected clock source for the chip. No internal clock division is
used.
Figure 6-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz
with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.
ATmega16A [DATASHEET 12
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 6-4. The Parallel Instruction Fetches and Instruction Executions

Tl T2 T3 T4

S S W S W R U S W

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

Figure 6-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 6-5. Single Cycle ALU Operation

T1 T2 T3 T4

ok o N/

CPU
Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

6.7 Reset and Interrupt Handling

The Atmel AVR provides several different interrupt sources. These interrupts and the separate reset vector each
have a separate program vector in the program memory space. All interrupts are assigned individual enable bits
which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when
Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section
“Memory Programming” on page 251 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 44. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and
next is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot
Flash section by setting the IVSEL bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on
page 44 for more information. The Reset Vector can also be moved to the start of the boot Flash section by
programming the BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on

page 237.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user
software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the
current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is
executed.

Atmel ATmega16A [DATASHEET] 13

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by
writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is
enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global
Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the global
interrupt enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not
necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the
interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will
be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following
example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ;
store SREG value

cli ; disable interrupts during
timed sequence

sbi EECR, EEMWE ;
start EEPROM write

sbi EECR, EEWE

out SREG, rl6 ;

restore SREG value (1-bit)

C Code Example

char cSREG;

CSREG = SREG; /*
store SREG value */

/* disable interrupts during timed sequence */
_CLIO;

EECR]|= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any
pending interrupts, as shown in this example

Atmel ATmega16A [DATASHEET] 14

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example

sei

sleep

; note: will enter
; Interrupt(s)

set global interrupt enable
enter sleep, waiting for interrupt
leep before any pending

N wr

C Code Example

_SE1(Q); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s)
*/

6.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four
clock cycles the program vector address for the actual interrupt handling routine is executed. During this four
clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt
routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in
sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in
addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program

Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in
SREG is set.

Atmel ATmega16A [DATASHEET] 15

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

7.1

7.2

7.3

AVR Memories

Overview

This section describes the different memories in the ATmega16A. The AVR architecture has two main memory
spaces, the Data Memory and the Program Memory space. In addition, the ATmega16A features an EEPROM
Memory for data storage. All three memory spaces are linear and regular.

In-System Reprogrammable Flash Program Memory

The ATmega16A contains 16Kbytes On-chip In-System Reprogrammable Flash memory for program storage.
Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K x 16. For software security, the
Flash Program memory space is divided into two sections, Boot Program section and Application Program
section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega16A Program Counter
(PC) is 13 bits wide, thus addressing the 8K program memory locations. The operation of Boot Program section
and associated Boot Lock bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 237. “Memory Programming” on page 251 contains a detailed
description on Flash data serial downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load
Program Memory Instruction Description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 12.

Figure 7-1. Program Memory Map

$0000

Application Flash Section

B ———

Boot Flash Section
$1FFF

SRAM Data Memory
Figure 7-2 shows how the ATmega16A SRAM Memory is organized.

Atmel ATmega16A [DATASHEET] 16

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The lower 1120 Data Memory locations address the Register File, the 1/O Memory, and the internal data SRAM.
The first 96 locations address the Register File and I/O Memory, and the next 1024 locations address the
internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect,
Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature
the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-
register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 1024 bytes of internal data SRAM in the
ATmega16A are all accessible through all these addressing modes. The Register File is described in “General
Purpose Register File” on page 10.

Figure 7-2. Data Memory Map

Register File Data Address Space
RO | $0000
R1 $0001
R2 $0002
R29 $001D
R30 $001E
rR3z 1 $001F
I/O Registers
$00 $0020
$01 $0021
$02 $0022
$3D $005D
$3E $005E
X S $005F
Internal SRAM

$0060

$0061

$045E

$045F

7.3.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clksp cycles as described in Figure 7-3.
ATmega16A [DATASHEET] 17
Atmel gaionl

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 7-3. On-chip Data SRAM Access Cycles

Tl T2 T3

ok N/ N/

CcPU , | |
Address | Compute Address | X__ Address Valid |
| | |
| | T JR—
Data i T | o
| | | =
| | |
WR I 1/ N\ =
| | | —
| | }
Data - f | — 15
| | T I
1 1 [&
RD ! L/ :\
T T J—
| | |
Memory Access Instruction Next Instruction

7.4 EEPROM Data Memory

The ATmega16A contains 512bytes of data EEPROM memory. It is organized as a separate data space, in
which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase
cycles. The access between the EEPROM and the CPU is described in the following, specifying the EEPROM
Address Registers, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG, and Parallel data downloading to the EEPROM, see page 262, page
267,and page 254, respectively.

74.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in Table 7-1. A self-timing function, however, lets the user
software detect when the next byte can be written. If the user code contains instructions that write the EEPROM,
some precautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on Power-
up/down. This causes the device for some period of time to run at a voltage lower than specified as minimum for
the clock frequency used. See “Preventing EEPROM Corruption” on page 19 for details on how to avoid
problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to the
description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed.
When the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

7.4.2 EEPROM Write During Power-down Sleep Mode

When entering Power-down Sleep mode while an EEPROM write operation is active, the EEPROM write
operation will continue, and will complete before the Write Access time has passed. However, when the write
operation is completed, the Oscillator continues running, and as a consequence, the device does not enter
Power-down entirely. It is therefore recommended to verify that the EEPROM write operation is completed
before entering Power-down.

Atmel ATmega16A [DATASHEET] 18

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

7.4.3 Preventing EEPROM Corruption

During periods of low V. the EEPROM data can be corrupted because the supply voltage is too low for the
CPU and the EEPROM to operate properly. These issues are the same as for board level systems using
EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can
execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match
the needed detection level, an external low V¢ Reset Protection circuit can be used. If a reset occurs while
a write operation is in progress, the write operation will be completed provided that the power supply voltage
is sufficient.

7.5 1/O0 Memory
The 1/0 space definition of the ATmega16A is shown in “Register Summary” on page 319.

All ATmega16A I/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the IN and
OUT instructions, transferring data between the 32 general purpose working registers and the 1/0 space. 1/0
Registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In
these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
Instruction Set section for more details. When using the 1/O specific commands IN and OUT, the I/O addresses
$00 - $3F must be used. When addressing I/0 Registers as data space using LD and ST instructions, $20 must
be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /0O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will
operate on all bits in the 1/0 Register, writing a one back into any flag read as set, thus clearing the flag. The CBI
and SBI instructions work with registers $00 to $1F only.

The 1/0 and Peripherals Control Registers are explained in later sections.

Atmel ATmega16A [DATASHEET] 19

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

7.6 Register Description
7.6.1 EEARH and EEARL — The EEPROM Address Register
Bit 15 14 13 12 11 10 9 8
— — - - - - - EEARS8 EEARH
EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEARL1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R RIW
RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X
* Bits 15:9 — Res: Reserved Bits
These bits are reserved bits in the ATmega16A and will always read as zero.
* Bits 8:0 - EEAR8:0: EEPROM Address
The EEPROM Address Registers - EEARH and EEARL — specify the EEPROM address in the 512bytes
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 511. The initial value of EEAR
is undefined. A proper value must be written before the EEPROM may be accessed.
7.6.2 EEDR — The EEPROM Data Register
Bit 7 6 5 4 3 2 1 0
| wmse | | | LsB | EEDR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bits 7:0 — EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the
address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out
from the EEPROM at the address given by EEAR.
7.6.3 EECR — The EEPROM Control Register
Bit 7 6 5 4 3 2 1 0
| | | | - EERIE EEMWE EEWE EERE | EEcr
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0
* Bits 7:4 — Res: Reserved Bits
These bits are reserved bits in the ATmega16A and will always read as zero.
* Bit 3 - EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing EERIE to zero
disables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEWE is cleared.
e Bit 2 - EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When EEMWE is
set, setting EEWE within four clock cycles will write data to the EEPROM at the selected address If EEMWE is
ATmega16A [DATASHEET 20
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

zero, setting EEWE will have no effect. When EEMWE has been written to one by software, hardware clears the
bit to zero after four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

* Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data are
correctly set up, the EEWE bit must be written to one to write the value into the EEPROM. The EEMWE bit must
be written to one before a logical one is written to EEWE, otherwise no EEPROM write takes place. The
following procedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

Al

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that
the Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the
software contains a Boot Loader allowing the CPU to program the Flash. If the Flash is never being updated by
the CPU, step 2 can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on

page 237 for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write
Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM Access, the
EEAR or EEDR reGister will be modified, causing the interrupted EEPROM Access to fail. It is recommended to
have the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can poll this
bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles
before the next instruction is executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal — EERE - is the read strobe to the EEPROM. When the correct address is
set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The
EEPROM read access takes one instruction, and the requested data is available immediately. When the
EEPROM is read, the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it is
neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-1 lists the typical programming time for
EEPROM access from the CPU.

Table 7-1. EEPROM Programming Time
Number of Calibrated RC Oscillator
Symbol Cycles Typ Programming Time
EEPROM write (from CPU) 8448 8.5ms

Note: 1. Uses 1MHz clock, independent of CKSEL Fuse setting.

The following code examples show one assembly and one C function for writing to the EEPROM. The examples
assume that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur
during execution of these functions. The examples also assume that no Flash Boot Loader is present in the
software. If such code is present, the EEPROM write function must also wait for any ongoing SPM command to
finish

Atmel ATmega16A [DATASHEET] 21

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write

; Set up address (r18:rl17) in address register
out EEARH, ri18

out EEARL, ri17

; Write data (rl6) to data register
out EEDR,r16

; Write logical one to EEMWE

sbi EECR,EEMWE

; Start eeprom write by setting EEWE
sbi EECR,EEWE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while(EECR & (1<<EEWE))
/* Set up address and data registers */
EEAR = uilAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE);
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);
}

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that
interrupts are controlled so that no interrupts will occur during execution of these functions

Atmel ATmega16A [DATASHEET] 22

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:rl17) in address register
out EEARH, ri18

out EEARL, ri17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{
/* Wait for completion of previous write */
while(EECR & (1<<EEWE))
/* Set up address register */
EEAR = uilAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;

}

/ltmeL ATmega16A [DATASHEET] 23

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

8.1

8.1.1

8.1.2

8.1.3

Atmel

System Clock and Clock Options

Clock Systems and their Distribution

Figure 8-1 presents the principal clock systems in the Atmel AVR and their distribution. All of the clocks need not
be active at a given time. In order to reduce power consumption, the clocks to modules not being used can be
halted by using different sleep modes, as described in “Power Management and Sleep Modes” on page 31. The
clock systems are detailed Figure 8-1.

Figure 8-1. Clock Distribution
Asynchronous General I/O Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
Y 4 / 4 Y 4 A 4
clkype
clk,o AVR Clock clkepy
Control Unit
cIkASY CIkFLASH
Y A
Reset Logic Watchdog Timer
1 t
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
A A A A A
Timer/Counter External RC External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Oscillator Crystal Oscillator Oscillator

CPU Clock — clkepy

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such
modules are the General Purpose Register File, the Status Register and the data memory holding the Stack
Pointer. Halting the CPU clock inhibits the core from performing general operations and calculations.

/0 Clock — clkq

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous
logic, allowing such interrupts to be detected even if the I/O clock is halted. Also note that address recognition in
the TWI module is carried out asynchronously when clk,q is halted, enabling TWI address reception in all sleep
modes.

Flash Clock — clkg ash

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with
the CPU clock.

ATmega16A [DATASHEET] 24

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

8.1.4 Asynchronous Timer Clock —clk,gy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external
32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time counter even
when the device is in sleep mode.
8.1.5 ADC Clock — clkape
The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to
reduce noise generated by digital circuitry. This gives more accurate ADC conversion results.
8.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock
from the selected source is input to the clock generator, and routed to the appropriate modules.
Table 8-1. Device Clocking Options Select("
Device Clocking Option CKSEL3:0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000
Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
The various choices for each clocking option is given in the following sections. When the CPU wakes up from
Power-down or Power-save, the selected clock source is used to time the start-up, ensuring stable Oscillator
operation before instruction execution starts. When the CPU starts from Reset, there is as an additional delay
allowing the power to reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator cycles used for each time-
out is shown in Table 8-2. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Typical
Characteristics” on page 290.
Table 8-2. Number of Watchdog Oscillator Cycles
Typ Time-out (Ve = 5.0V) Typ Time-out (Ve = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)
8.3 Default Clock Source
The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is therefore the 1
MHz Internal RC Oscillator with longest startup time. This default setting ensures that all users can make their
desired clock source setting using an In-System or Parallel Programmer.
8.4 Crystal Oscillator
XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use
as an On-chip Oscillator, as shown in Figure 8-2. Either a quartz crystal or a ceramic resonator may be used.
The CKOPT Fuse selects between two different Oscillator amplifier modes. When CKOPT is programmed, the
Oscillator output will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operating in a
very noisy environment or when the output from XTAL2 drives a second clock buffer. This mode has a wide
frequency range. When CKOPT is unprogrammed, the Oscillator has a smaller output swing. This reduces
ATmega16A [DATASHEET 25
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

power consumption considerably. This mode has a limited frequency range and it can not be used to drive other
clock buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and 16 MHz with CKOPT
programmed. C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic
noise of the environment. Some initial guidelines for choosing capacitors for use with crystals are given in Table
8-3. For ceramic resonators, the capacitor values given by the manufacturer should be used.

Figure 8-2.

Crystal Oscillator Connections

GND

2, XTAL2
70 l
c1 T

o St 1 IxTALL

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSEL3:1 as shown in Table 8-3.

Table 8-3. Crystal Oscillator Operating Modes
Frequency Range Recommended Range for Capacitors C1
CKOPT CKSEL3:1 (MHz) and C2 for Use with Crystals (pF)
1 101" 0.4-0.9 -
1 110 09-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0< 12-22
Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELDO Fuse together with the SUT1:0 Fuses select the start-up times as shown in Table 8-4.

Table 8-4. Start-up Times for the Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vee =5.0V) Recommended Usage

0 00 258 CK(") 4.1ms Ceramic resonator, fast rising
power

0 01 258 CK() 65ms Qgramlc resonator, slowly
rising power

0 10 1K CK) _ Ceramic resonator, BOD
enabled

0 1 1K CK® 4.1ms Ceramic resonator, fast rising
power

1 00 1K CK® 65ms Qgramlc resonator, slowly
rising power

Atmel

ATmega16A [DATASHEET] 26

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

8.5

8.6

Table 8-4. Start-up Times for the Crystal Oscillator Clock Selection (Continued)
Start-up Time from Additional Delay
Power-down and from Reset
CKSELO SUT1:0 Power-save (Vec =5.0V) Recommended Usage

1 01 16K CK _ Crystal Oscillator, BOD
enabled

1 10 16K CK 4.1ms Crystal Oscillator, fast rising
power

1 1 16K CK 65ms (?r}/stal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and
only if frequency stability at start-up is not important for the application. These options are not suitable for
crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They
can also be used with crystals when not operating close to the maximum frequency of the device, and if
frequency stability at start-up is not important for the application.

Low-frequency Crystal Oscillator

To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator must
be selected by setting the CKSEL Fuses to “1001”. The crystal should be connected as shown in Figure 8-2. By
programming the CKOPT Fuse, the user can enable internal capacitors on XTAL1 and XTALZ2, thereby
removing the need for external capacitors. The internal capacitors have a nominal value of 36pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in Table 8-5.

Table 8-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vec =5.0V) Recommended Usage

00 1K CK™ 4.1ms Fast rising power or BOD enabled

01 1K CK™ 65ms Slowly rising power

10 32K CK 65ms Stable frequency at start-up

1 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important for the application.

External RC Oscillator

For timing insensitive applications, the external RC configuration shown in Figure 8-3 can be used. The
frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22pF. By programming the
CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and GND, thereby removing the
need for an external capacitor. For more information on Oscillator operation and details on how to choose R and
C, refer to the External RC Oscillator application note.

Atmel ATmega16A [DATASHEET] 27

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

8.7

Figure 8-3. External RC Configuration

VCC
R & NC —— XTAL2
]_ XTAL1
©T
l GND

The Oscillator can operate in four different modes, each optimized for a specific frequency range. The operating
mode is selected by the fuses CKSEL3:0 as shown in Table 8-6.

Table 8-6. External RC Oscillator Operating Modes

CKSEL3:0 Frequency Range (MHz)
0101 0.1<0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in Table 8-7.

Table 8-7. Start-up Times for the External RC Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vec =5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1ms Fast rising power
10 18 CK 65ms Slowly rising power
11 6 cK(4.1ms Fast rising power or BOD enabled

Note: 1. This option should not be used when operating close to the maximum frequency of the device.

Calibrated Internal RC Oscillator

The Calibrated Internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0MHz clock. All frequencies are nominal
values at 5V and 25°C. This clock may be selected as the sys-tem clock by programming the CKSEL Fuses as
shown in Table 8-8. If selected, it will operate with no external components. The CKOPT Fuse should always be
unpro-grammed when using this clock option. During Reset, hardware loads the calibration byte into the
OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V, 25°C and 1.0, 2.0, 4.0 or
8.0MHz Oscillator frequency selected, this calibration gives a frequency within + 3% of the nominal frequency.
Using calibration methods as described in application notes available at www.atmel.com/avr it is possible to
achieve £1% accuracy at any given V. and Temperature. When this Oscillator is used as the Chip Clock, the
Watchdog Oscillator will still be used for the Watchdog Timer and for the reset time-out. For more information on
the pre-programmed calibration value, see the section “Calibration Byte” on page 253.

Atmel ATmega16A [DATASHEET] 28

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 8-8. Internal Calibrated RC Oscillator Operating Modes
CKSEL3:0 Nominal Frequency (MHz)
0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in Table 8-9. XTAL1
and XTALZ2 should be left unconnected (NC).

Table 8-9. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Ve =5.0v) Recommended Usage

00 6 CK - BOD enabled

01 6 CK 4.1ms Fast rising power

10 6 CK 65ms Slowly rising power

11 Reserved

Note: 1. The device is shipped with this option selected.

8.8 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 8-4. To run the
device on an external clock, the CKSEL Fuses must be programmed to “0000”. By programming the CKOPT
Fuse, the user can enable an internal 36pF capacitor between XTAL1 and GND.
Figure 8-4. External Clock Drive Configuration
NC ———— XTAL2
EXTERNAL
cLock —————1 XTAL1
SIGNAL
ﬁ GND
ATmega16A [DATASHEET 29
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 8-10.

Table 8-10. Start-up Times for the External Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
SUT1:0 Power-save (Vec =5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10 6 CK 65ms Slowly rising power
1" Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to
ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next
can lead to unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in
the clock frequency.

8.9 Timer/Counter Oscillator

For microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSC2), the crystal is connected directly
between the pins. No external capacitors are needed. The Oscillator is optimized for use with a 32.768kHz
watch crystal. Applying an external clock source to TOSC1 is not recommended.

Note: The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency Oscillator and the internal
capacitors have the same nominal value of 36pF.

8.10 Register Description

8.10.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

| caLz | cae | cas | cala | cALs CAL2 CAL1 CALO | osccAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the Internal Oscillator to remove process variations from the
Oscillator frequency. This is done automatically during Chip Reset. When OSCCAL is zero, the lowest available
frequency is chosen. Writing non-zero values to this register will increase the frequency of the Internal
Oscillator. Writing $FF to the register gives the highest available frequency. The calibrated Oscillator is used to
time EEPROM and Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above the
nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 1.0, 2.0, 4.0, or 8.0MHz. Tuning to other values is not guaranteed, as indicated in Table 8-11.

Table 8-11. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency (%) Nominal Frequency (%)
$00 50 100
$7F 75 150
$FF 100 200
/ItmeL ATmega16A [DATASHEET] 30

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

9. Power Management and Sleep Modes
9.1 Overview
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The
Atmel AVR provides various sleep modes allowing the user to tailor the power consumption to the application’s
requirements.
9.2 Sleep Modes
Figure 8-1 on page 24 presents the different clock systems in the ATmega16A, and their distribution. The figure
is helpful in selecting an appropriate sleep mode. Table 9-1 shows the different sleep modes and their wake-up
sources.
Table 9-1. Active Clock Domains and Wake Up Sources in the Different Sleep Modes
Active Clock domains Oscillators Wake-up Sources
e}
8 3 . s g
w S El B &
T 8 g = = = (@]
2l 2 o 38 5 5 w4 gl S o o T
o 5 = < = 3 S E| & ol | Aal 5
x N 35 X X) @ Z| 5 El a| <| <
o 5 o o ~ (@] o~ S [L 5
8 5 E| I 4
S)OE 2R g
3 n
Sleep Mode =
ldle X | X X X X X | X | X X | X
ADC NRM X X X X@ XX X X | X
Power Down XG X
Power Save X@ X@ X x | x@
Standby'") X X&) X
Extended @) @) 3) @)
Standby" X X X X X X
Notes: 1. External Crystal or resonator selected as clock source.
2. If AS2 bitin ASSR is set.
3. Only INT2 or level interrupt INT1 and INTO.
To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP instruction
must be executed. The SM2, SM1, and SMO bits in the MCUCR Register select which sleep mode (Idle, ADC
Noise Reduction, Power-down, Power-save, Standby, or Extended Standby) will be activated by the SLEEP
instruction. See Table 9-2 for a summary.
If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for
four cycles in addition to the start-up time, it executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes
up from sleep. If a Reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector.
9.3 Idle Mode
When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the
CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters,
ATmega16A [DATASHEET 31
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clkp and clkg agps
while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the Timer
Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator interrupt is not
required, the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator
Control and Status Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is enabled, a
conversion starts automatically when this mode is entered.

9.4 ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction

mode, stopping the CPU but allowing the ADC, the External Interrupts, the Two-wire Serial Interface address
watch, Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep mode basically halts
clkyo, clkgpy, and clkg asy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is
enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion
Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
Address Match Interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External level
interrupt on INTO or INT1, or an external interrupt on INT2 can wake up the MCU from ADC Noise Reduction
mode.

95 Power-down Mode

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this
mode, the External Oscillator is stopped, while the External interrupts, the Two-wire Serial Interface address
watch, and the Watchdog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-
out Reset, a Two-wire Serial Interface address match interrupt, an External level interrupt on INTO or INT1, or
an External interrupt on INT2 can wake up the MCU. This sleep mode basically halts all generated clocks,
allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be
held for some time to wake up the MCU. Refer to “External Interrupts” on page 66 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the wake-up
becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up
period is defined by the same CKSEL Fuses that define the reset time-out period, as described in “Clock
Sources” on page 25.

9.6 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode. This
mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set, Timer/Counter2 will run during
sleep. The device can wake up from either Timer Overflow or Output Compare event from Timer/Counter2 if the
corresponding Timer/Counter2 interrupt enable bits are set in TIMSK, and the Global Interrupt Enable bit in
SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended instead of
Power-save mode because the contents of the registers in the Asynchronous Timer should be considered
undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous modules,
including Timer/Counter2 if clocked asynchronously.

Atmel ATmega16A [DATASHEET] 32

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

9.7

9.8

9.9

9.9.1

9.9.2

9.9.3

9.94

9.9.5

Standby Mode

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the
Oscillator is kept running. From Standby mode, the device wakes up in six clock cycles.

Extended Standby Mode

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP instruction
makes the MCU enter Extended Standby mode. This mode is identical to Power-save mode with the exception
that the Oscillator is kept running. From Extended Standby mode, the device wakes up in six clock cycles.

Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR controlled
system. In general, sleep modes should be used as much as possible, and the sleep mode should be selected
so that as few as possible of the device’s functions are operating. All functions not needed should be disabled.
In particular, the following modules may need special consideration when trying to achieve the lowest possible
power consumption.

Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before
entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended
conversion. Refer to “Analog to Digital Converter” on page 196 for details on ADC operation.

Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC Noise
Reduction mode, the Analog Comparator should be disabled. In the other sleep modes, the Analog Comparator
is automatically disabled. However, if the Analog Comparator is set up to use the Internal Voltage Reference as
input, the Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Reference
will be enabled, independent of sleep mode. Refer to “Analog Comparator” on page 193 for details on how to
configure the Analog Comparator.

Brown-out Detector

If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-out
Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consumption. Refer to
“Brown-out Detection” on page 38 for details on how to configure the Brown-out Detector.

Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the Analog
Comparator or the ADC. If these modules are disabled as described in the sections above, the internal voltage
reference will be disabled and it will not be consuming power. When turned on again, the user must allow the
reference to start up before the output is used. If the reference is kept on in sleep mode, the output can be used
immediately. Refer to “Internal Voltage Reference” on page 39 for details on the start-up time.

Watchdog Timer

If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer
is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes,
this will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 40 for
details on how to configure the Watchdog Timer.

Atmel ATmega16A [DATASHEET] 33

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

9.9.6

9.9.7

Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most important
thing is then to ensure that no pins drive resistive loads. In sleep modes where the both the 1/O clock (clk,5) and
the ADC clock (clkapc) are stopped, the input buffers of the device will be disabled. This ensures that no power
is consumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 53
for details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or have an
analog signal level close to V/2, the input buffer will use excessive power.

JTAG Interface and On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or Power save
sleep mode, the main clock source remains enabled. In these sleep modes, this will contribute significantly to
the total current consumption. There are three alternative ways to avoid this:

e Disable OCDEN Fuse.

e Disable JTAGEN Fuse.

e Write one to the JTD bitin MCUCSR.
The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is not shifting
data. If the hardware connected to the TDO pin does not pull up the logic level, power consumption will
increase. Note that the TDI pin for the next device in the scan chain contains a pull-up that avoids this problem.

Writing the JTD bit in the MCUCSR register to one or leaving the JTAG fuse unprogrammed disables the JTAG
interface.

Atmel ATmega16A [DATASHEET] 34

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

9.10 Register Description
9.10.1 MCUCR - MCU Control Register
The MCU Control Register contains control bits for power management.
Bit 7 6 5 4 3 2 1 0
[sv2 | se | sm1i | swo | iscit | i1scio | iscor | 1scoo | MCUCR
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bits 7,5, 4 — SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the six available sleep modes as shown in Table 9-2.
Table 9-2. Sleep Mode Select
SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby"
1 1 1 Extended Standby!"
Note: 1. Standby mode and Extended Standby mode are only available with external crystals or resonators.
e Bit 6 — SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is
executed. To avoid the MCU entering the sleep mode unless it is the programmers purpose, it is recommended
to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it
immediately after waking up.
/ItmeL ATmega16A [DATASHEET] 35

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

10.

10.1

10.1.1

System Control and Reset

Resetting the AVR

During Reset, all I/O Registers are set to their initial values, and the program starts execution from the Reset
Vector. The instruction placed at the Reset Vector must be a JMP — absolute jump — instruction to the reset
handling routine. If the program never enables an interrupt source, the Interrupt Vectors are not used, and
regular program code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in Figure
10-1 shows the reset logic. “System and Reset Characteristics” on page 282 defines the electrical parameters
of the reset circuitry.

The I/O ports are immediately reset to their initial state when a reset source goes active. This does not require
any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the Internal Reset. This allows
the power to reach a stable level before normal operation starts. The time-out period of the delay counter is

defined by the user through the CKSEL Fuses. The different selections for the delay period are presented in
“Clock Sources” on page 25.

Reset Sources

The ATmega16A has five sources of reset:

e Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold
(Veor)-

e External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the
minimum pulse length.

e Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is
enabled.

e Brown-out Reset. The MCU is reset when the supply voltage V; is below the Brown-out Reset threshold
(VgoT) and the Brown-out Detector is enabled.

e JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan
chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-scan” on page 219 for
details.

Atmel ATmega16A [DATASHEET] 36

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 10-1. Reset Logic

DATA BUS

MCU Control and Status
Register (MCUCSR)
wluwfufwfw
geEsE
vee Power-on I
Reset Circuit
BODEN Brown-lout.
BODLEVEL Reset Circuit -
m
[lj Pull-up Resistor g
SPIKE .- \ \ 4
RESET FILTER Reset Circuit 1| s Q 2
! i
w
[rl I £
w z
JTAG Reset Watchdog g
Register Timer o
m}
T =
z
=)
Watchdog 8
Oscillator v
Clock CK Delay Counters —
Generator TIMEOUT
CKSEL([3:0] u
SUT[1:0]

10.1.2 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is defined in
“System and Reset Characteristics” on page 282. The POR is activated whenever V. is below the detection
level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset
threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after V.
rise. The RESET signal is activated again, without any delay, when V. decreases below the detection level.

Figure 10-2. MCU Start-up, RESET Tied to V.

TIME-OUT

INTERNAL |
RESET

Atmel ATmega16A [DATASHEET] 37

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

10.1.3

10.1.4

Figure 10-3. MCU Start-up, RESET Extended Externally

1
-7~ Veor
Vee |

RESET

TIME-OUT

INTERNAL |
RESET

External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum pulse
width (see “System and Reset Characteristics” on page 282) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset
Threshold Voltage — Vrgt — 0n its positive edge, the delay counter starts the MCU after the Time-out period
trout has expired.

Figure 10-4. External Reset During Operation
Vee

1
1
I
1
TIME-OUT :
1
1
1
1
1

INTERNAL | |
RESET

Brown-out Detection

The ATmega16A has an On-chip Brown-out Detection (BOD) circuit for monitoring the V. level during
operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the fuse
BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger level has
a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level should be
interpreted as Vgors = Vot + Viyst/2 and Vggor. = Veor - Viyst/2-

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled (BODEN
programmed), and V; decreases to a value below the trigger level (Vgor. in Figure 10-5), the Brown-out Reset
is immediately activated. When V. increases above the trigger level (Vggr. in Figure 10-5), the delay counter
starts the MCU after the Time-out period t;o1 has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for longer than tgop
given in “System and Reset Characteristics” on page 282.

/ltmeL ATmega16A [DATASHEET] 38

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 10-5. Brown-out Reset During Operation

Vee
| |
| |
l l
RESET i i
| |
| |
| |
| |
TIME-OUT ! < trout
| |
I I
| |
INTERNAL ‘ l
RESET ‘ |

10.1.5 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge
of this pulse, the delay timer starts counting the Time-out period tyo1. For details, refer to “Watchdog Timer” on
page 40.
Figure 10-6. Watchdog Reset During Operation
VCC
RESET
WDT —> «— 1 CK Cycle
TIME-OUT J-l
RESET ; frout |
TIME-OUT |
INTERNAL | |
RESET
10.2 Internal Voltage Reference
ATmega16A features an internal bandgap reference. This reference is used for Brown-out Detection, and it can
be used as an input to the Analog Comparator or the ADC. The 2.56V reference to the ADC is generated from
the internal bandgap reference.
10.2.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The start-up time is
given in “System and Reset Characteristics” on page 282. To save power, the reference is not always turned
on. The reference is on during the following situations:
1. When the BOD is enabled (by programming the BODEN Fuse).
2. When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in ACSR).
3. When the ADC is enabled.
Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow
the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power
consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference
is turned off before entering Power-down mode.
ATmega16A [DATASHEET 39
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

10.3 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1MHz. This is the typical value
at V¢ = 5V. See characterization data for typical values at other V. levels. By controlling the Watchdog Timer
prescaler, the Watchdog Reset interval can be adjusted as shown in Table 10-1 on page 42. The WDR —
Watchdog Reset — instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled
and when a Chip Reset occurs. Eight different clock cycle periods can be selected to determine the reset period.
If the reset period expires without another Watchdog Reset, the ATmega16A resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to page 39.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be followed when the
Watchdog is disabled. Refer to the description of the Watchdog Timer Control Register for details.

Figure 10-7. Watchdog Timer

WATCHDOG = WATCHDOG
OSCILLATOR > PRESCALER
X¥IX|X|X| X|X|X|X
RN EEERE
slsls|5|8| 5|8l &
WATCHDOG 313|8|2|2|2|3|9
RESET clefels|as
VYVVYVYVVY
WDPO 9&
WDP1 o\
WDP2
WDE
MCU RESET
/ItmeL ATmega16A [DATASHEET] 40

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

10.4 Register Description
10.4.1 MCUCSR — MCU Control and Status Register
The MCU Control and Status Register provides information on which reset source caused an MCU Reset.
Bit 7 6 5 4 3 2 1 0
| oo | sc2 | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUCSR
Read/Write RIW RIW R RIW RIW RIW RIW RIW
Initial Value 0 0 0 See Bit Description
e Bit4 - JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG
instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.
« Bit 3—- WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.
e Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.
e Bit 1 - EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero to the
flag.
e Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.
To make use of the Reset Flags to identify a reset condition, the user should read and then reset the MCUCSR
as early as possible in the program. If the register is cleared before another reset occurs, the source of the reset
can be found by examining the Reset Flags.
10.4.2 WDTCR — Watchdog Timer Control Register
Bit 7 6 5 4 3 2 1 0
| - | - - | WDTOE | WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
» Bits 7:5 - Res: Reserved Bits
These bits are reserved bits in the ATmega16A and will always read as zero.
e Bit 4 - WDTOE: Watchdog Turn-off Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not be disabled.
Once written to one, hardware will clear this bit after four clock cycles. Refer to the description of the WDE bit for
a Watchdog disable procedure.
ATmega16A [DATASHEET 41
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

* Bit 3— WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written to logic zero,
the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit has logic level one. To
disable an enabled Watchdog Timer, the following procedure must be followed:
1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be written to WDE
even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.

e Bits 2:0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and O

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watchdog Timer is
enabled. The different prescaling values and their corresponding Timeout Periods are shown in Table 10-1.

Table 10-1. Watchdog Timer Prescale Select
Number of WDT Typical Time-out Typical Time-out
WDP2 | WDP1 | WDPO Oscillator Cycles at Ve = 3.0V at Ve = 5.0V
0 0 0 16K (16,384) 17.1 ms 16.3 ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5 ms 65 ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 11s 10s
1 1 1 2,048K (2,097,152) 22s 21s

The following code example shows one assembly and one C function for turning off the WDT. The example
assumes that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will
occur during execution of these functions.

ATmega16A [DATASHEET] 42

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Atmel

Assembly Code Example

WDT_off:
; Reset WDT
WDR
; Write logical one to WDTOE and WDE
in r16, WDTCR
ori r16, (1<<WDTOE) | (1<<WDE)
out WDTCR, rl16
; Turn off WDT
Idi ri6, (0<<WDE)
out WDTCR, rl16
ret

C Code Example

void WDT_off(void)
{

/* Reset WDT*/

_WDRQO);

/* Write logical one to WDTOE and WDE */
WDTCR |= (1<<WDTOE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0xO00;

ATmega16A [DATASHEET] 43
AtmeL Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

11. Interrupts
11.1 Overview
This section describes the specifics of the interrupt handling as performed in ATmega16A. For a general
explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on page 13.
11.2 Interrupt Vectors
Table 11-1. Reset and Interrupt Vectors
Program
Vector No. | Address® Source Interrupt Definition
1 $000™" RESET External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset
2 $002 INTO External Interrupt Request 0
3 $004 INT1 External Interrupt Request 1
4 $006 TIMER2 COMP Timer/Counter2 Compare Match
5 $008 TIMER2 OVF Timer/Counter2 Overflow
6 $00A TIMER1 CAPT Timer/Counter1 Capture Event
7 $o0C TIMER1 COMPA | Timer/Counter1 Compare Match A
8 $00E TIMER1 COMPB | Timer/Counter1 Compare Match B
9 $010 TIMER1 OVF Timer/Counter1 Overflow
10 $012 TIMERO OVF Timer/Counter0 Overflow
11 $014 SPI, STC Serial Transfer Complete
12 $016 USART, RXC USART, Rx Complete
13 $018 USART, UDRE USART Data Register Empty
14 $01A USART, TXC USART, Tx Complete
15 $01C ADC ADC Conversion Complete
16 $01E EE_RDY EEPROM Ready
17 $020 ANA_COMP Analog Comparator
18 $022 TWI Two-wire Serial Interface
19 $024 INT2 External Interrupt Request 2
20 $026 TIMERO COMP Timer/Counter0 Compare Match
21 $028 SPM_RDY Store Program Memory Ready
Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot
Loader Support — Read-While-Write Self-Programming” on page 237.
2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot Flash section. The
address of each Interrupt Vector will then be the address in this table added to the start address of the Boot
Flash section.
Table 11-2 shows Reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL
settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular
program code can be placed at these locations. This is also the case if the Reset Vector is in the Application
section while the Interrupt Vectors are in the Boot section or vice versa.
ATmega16A [DATASHEET 44
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 11-2. Reset and Interrupt Vectors Placement!")
BOOTRST IVSEL Reset address Interrupt Vectors Start Address
1 0 $0000 $0002
1 1 $0000 Boot Reset Address + $0002
0 0 Boot Reset Address $0002
0 1 Boot Reset Address Boot Reset Address + $0002
Note: 1. The Boot Reset Address is shown in Table 25-6 on page 249. For the BOOTRST Fuse “1” means

unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega16A is:

Address Labels Code Comments
$000 jmp RESET ; Reset Handler
$002 jmp EXT_INTO ; IRQO Handler
$004 jmp EXT_INT1 ; IRQ1 Handler
$006 jmp TIM2_COMP ; Timer2 Compare Handler
$008 jmp TIM2_OVF ; Timer2 Overflow Handler
$00A jmp TIM1_CAPT ; Timerl Capture Handler
$00C jmp TIM1_COMPA ; Timerl CompareA Handler
$00E jmp TIM1_COMPB ; Timerl CompareB Handler
$010 jmp TIM1_OVF ; Timerl Overflow Handler
$012 jmp TIMO_OVF ; TimerO Overflow Handler
$014 jmp SP1_STC ; SP1 Transfer Complete Handler
$016 jmp USART_RXC ; USART RX Complete Handler
$018 jmp USART_UDRE ; UDR Empty Handler
$01A jmp USART_TXC ; USART TX Complete Handler
$01C jmp ADC ; ADC Conversion Complete Handler
$01E jmp EE_RDY ; EEPROM Ready Handler
$020 jmp ANA_COMP ; Analog Comparator Handler
$022 jmp TWSI ; Two-wire Serial Interface Handler
$024 jmp EXT_INT2 ; IRQ2 Handler
$026 jmp TIMO_COMP ; TimerO Compare Handler
$028 jmp SPM_RDY ; Store Program Memory Ready Handler
$02A RESET: Idi r16,high(RAMEND; Main program start
$02B out SPH,r16 ; Set Stack Pointer to top of RAM
$02C Idi r16, low(RAMEND)
$02D out SPL,ri16
$02E sei ; Enable interrupts
<instr> Xxxx

$02F

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the IVSEL bit in the
GICR Register is set before any interrupts are enabled, the most typical and general program setup for the
Reset and Interrupt Vector Addresses is:

Atmel

Address Labels

$000
$001
$002
$003
$004
$005

RESET:

Code Comments

Idi r16,high(RAMEND) ; Main program start

out SPH,r16 ; Set Stack Pointer to top of RAM
Idi r16, low(RAMEND)

out SPL,r16

sei ; Enable interrupts

<instr> Xxxx

ATmega16A [DATASHEET] 45

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

.org $1C02

$1C02
$1C04

$1C28

Jjmp EXT_INTO ; IRQO Handler
jmp EXT_INT1 ; IRQ1 Handler

Jjmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels
.org $002

$002
$004

$028

.org $1C00
$1C00 RESET:

$1C01
$1C02
$1C03
$1C04
$1C05

Jmp
Ready Handler

Code Comments

jmp EXT_INTO
jmp EXT_INT1

IRQO Handler
IRQ1 Handler

SPM_RDY ; Store Program Memory

Idi r16,high(RAMEND)
out SPH,r16

Idi r16, low(RAMEND)
out SPL,r16

sei ; Enable interrupts
<Instr> Xxxx

Main program start
Set Stack Pointer to top of RAM

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the IVSEL bit in the GICR
Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and

Interrupt Vector Addresses is:

Address Labels

.org $1C00

$1C00
$1C02
$1C04

$1C28

$1C2A RESET:

$1C2B
$1C2C
$1C2D
$1C2E
$1C2F

Code Comments

Reset handler
IRQO Handler
IRQ1 Handler

Jjmp RESET
Jjmp EXT_INTO
Jjmp EXT_INT1

jmp SPM_RDY ; Store Program Memory Ready Handler

Idi r16,high(RAMEND)
out SPH,r16

Idi r16, low(RAMEND)
out SPL,r16

sei ; Enable interrupts
<Instr> Xxxx

Main program start
Set Stack Pointer to top of RAM

11.2.1 Moving Interrupts Between Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

11.2.2 GICR - General Interrupt Control Register

Bit 7 6 5 4 3 2 1 0
| mwm INTO INT2 = = = IVSEL IWVCE | GICR
Read/Write R/W R/W R/W R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0
ATmega16A [DATASHEET 46
Atmel galbA |]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory. When
this bit is set (one), the interrupt vectors are moved to the beginning of the Boot Loader section of the Flash. The
actual address of the start of the Boot Flash section is determined by the BOOTSZ Fuses. Refer to the section
“Boot Loader Support — Read-While-Write Self-Programming” on page 237 for details. To avoid unintentional
changes of Interrupt Vector tables, a special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle

IVCE is set, and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not

written, interrupts remain disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic

disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are
disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section and

Boot Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support — Read-While-Write Self-Programming” on page 237 for details on Boot Lock bits.

* Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware four
cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as explained in the
IVSEL description above. See Code Example below.

Atmel ATmega16A [DATASHEET] 47

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example

Move_interrupts:
; Enable change of interrupt vectors

Idi ri6, (1<<IVCE)

out GICR, ril6

; Move interrupts to boot Flash section
Idi ri6, (1<<IVSEL)

out GICR, ri6

ret

C Code Example

void Move_interrupts(void)

{
/* Enable change of interrupt vectors */
GICR = (1<<IVCE);
/* Move interrupts to boot Flash section */
GICR = (1<<IVSEL);

}

ATmega16A [DATASHEET] 48
/4 t m eL Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

12.

12.1

I/O Ports

Overview

All ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the
direction of one port pin can be changed without unintentionally changing the direction of any other pin with the
SBI and CBI instructions. The same applies when changing drive value (if configured as output) or
enabling/disabling of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough to drive LED displays
directly. All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All
I/0 pins have protection diodes to both V- and Ground as indicated in Figure 12-1. Refer to “Electrical
Characteristics” on page 279 for a complete list of parameters.

Figure 12-1. I/O Pin Equivalent Schematic

pu

Logic

See Figure 23
"General Digital 1/0" for
Details

L
!

All registers and bit references in this section are written in general form. A lower case “x” represents the
numbering letter for the port, and a lower case “n” represents the bit number. However, when using the register
or bit defines in a program, the precise form must be used. i.e., PORTB3 for bit no. 3 in Port B, here
documented generally as PORTxn. The physical I/O Registers and bit locations are listed in “Register
Description” on page 64.

Three 1/0 memory address locations are allocated for each port, one each for the Data Register — PORTx, Data
Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins 1/O location is read only, while
the Data Register and the Data Direction Register are read/write. In addition, the Pull-up Disable — PUD bit in
SFIOR disables the pull-up function for all pins in all ports when set.

Using the 1/0O port as General Digital I/O is described in “Ports as General Digital I/0” on page 50. Most port pins
are multiplexed with alternate functions for the peripheral features on the device. How each alternate function
interferes with the port pin is described in “Alternate Port Functions” on page 53. Refer to the individual module
sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the
port as general digital I/O.

Atmel ATmega16A [DATASHEET] 49

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

12.2

1221

Ports as General Digital 1/0

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 12-2 shows a functional description of
one I/O-port pin, here generically called Pxn.

Figure 12-2. General Digital /0"

Tjk—oQ a— i

1'A'A%
X
o
x

DATA BUS

Q D |¢g

Pxn “1
~ PORTxn|

3., <
I _l— WPx

p———— SLEEP C RRx

SYNCHRONIZER

[

WDx: WRITE DDRx

PUD: PULLUP DISABLE RDx: READ DDRx

SLEEP: SLEEP CONTROL WPx: WRITE PORTx

clk, ! 1/0 CLOCK RRx: READ PORTx REGISTER
RPx: READ PORTXx PIN

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,o, SLEEP, and PUD are
common to all ports.

Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register Description” on
page 64, the DDxn bits are accessed at the DDRx |/O address, the PORTxn bits at the PORTx I/O address, and
the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is
configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated. To
switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as an output
pin. The port pins are tri-stated when a reset condition becomes active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If
PORTXxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11), an
intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output low ({DDxn, PORTxn} =
0b10) must occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant environment will
not notice the difference between a strong high driver and a pull-up. If this is not the case, the PUD bit in the
SFIOR Register can be set to disable all pull-ups in all ports.

Atmel ATmega16A [DATASHEET] 50

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Switching between input with pull-up and output low generates the same problem. The user must use either the
tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 12-1 summarizes the control signals for the pin value.

Table 12-1. Port Pin Configurations

DDxn PORTxn (in |;llill:())R) I/0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

12.2.2 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit.
As shown in Figure 12-2, the PINxn Register bit and the preceding latch constitute a synchronizer. This is
needed to avoid metastability if the physical pin changes value near the edge of the internal clock, but it also
introduces a delay. Figure 12-3 shows a timing diagram of the synchronization when reading an externally
applied pin value. The maximum and minimum propagation delays are denoted t,4 .« @and tyg min respectively.

Figure 12-3. Synchronization when Reading an Externally Applied Pin Value

SYSTEMCLK [|] T]
insTrucTions — X x> xdkx X ek X

SYNC LATCH | U
PINxn
17 | 0x00 | | X oxFF
tpd, max ‘ ‘

'
L}

e

§ tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when
the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC
LATCH? signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn
Register at the succeeding positive clock edge. As indicated by the two arrows t,g ax and tog min, @ single signal
transition on the pin will be delayed between 2 and 1% system clock period depending upon the time of
assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 12-
4. The out instruction sets the “SYNC LATCH" signal at the positive edge of the clock. In this case, the delay t,4
through the synchronizer is one system clock period.

Atmel ATmega16A [DATASHEET] 51

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 12-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

r1é OXFF
INSTRUCTIONS X outPORTx, 116X nop >< inri7, PNk >
SYNC LATCH | ‘
PINxn
17 § 0x00 X oxFF
I tpd

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port pins
from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read back again, but

as previously discussed, a nop instruction is included to be able to read back the value recently assigned to
some of the pins.

Assembly Code Example'"

; Define pull-ups and set outputs high
; Define directions for port pins

Idi
r16, (1<<PB7)] (1<<PB6) | (1<<PB1)] (1<<PB0)

Idi
r17,(1<<DDB3)| (1<<DDB2)] (1<<DDB1) | (1<<DDB0)

out PORTB,r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

n r16,PINB

C Code Example'"

unsigned char i;
/* Define pull-ups and set outputs high */
/* Define directions for port pins */
PORTB = (1<<PB7)](1<<PB6)|](1<<PB1) | (1<<PB0);
DDRB = (1<<DDB3)| (1<<DDB2)|] (1<<DDB1) | (1<<DDBO);
/* Insert nop for synchronization*/
_NOPQ);
/* Read port pins */
i = PINB;

Atmel ATmega16A [DATASHEET] 52

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Note: 1. Forthe assembly program, two temporary registers are used to minimize the time from pull-ups are set on pins
0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and redefining bits 0 and 1 as
strong high drivers.

12.2.3 Digital Input Enable and Sleep Modes

As shown in Figure 12-2, the digital input signal can be clamped to ground at the input of the schmitt-trigger. The
signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down mode, Power-save
mode, Standby mode, and Extended Standby mode to avoid high power consumption if some input signals are
left floating, or have an analog signal level close to V /2.

SLEEP is overridden for port pins enabled as External Interrupt pins. If the External Interrupt Request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as
described in “Alternate Port Functions” on page 53.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as “Interrupt on
Rising Edge, Falling Edge, or Any Logic Change on Pin” while the External Interrupt is not enabled, the
corresponding External Interrupt Flag will be set when resuming from the above mentioned sleep modes, as the
clamping in these sleep modes produces the requested logic change.

12.2.4 Unconnected pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of
the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to
reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and
Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case,
the pull-up will be disabled during reset. If low power consumption during reset is important, it is recommended
to use an external pull-up or pull-down. Connecting unused pins directly to V; or GND is not recommended,
since this may cause excessive currents if the pin is accidentally configured as an output.

12.3 Alternate Port Functions

Most port pins have alternate functions in addition to being General Digital I/Os. Figure 12-5 shows how the port
pin control signals from the simplified Figure 12-2 can be overridden by alternate functions. The overriding
signals may not be present in all port pins, but the figure serves as a generic description applicable to all port
pins in the AVR microcontroller family.

Atmel ATmega16A [DATASHEET] 53

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 12-5. Alternate Port Functions(")

PUOEXxn:
PUOVxn:
DDOEXxn:
DDOVxn:
PVOExn:
PVOVxn:

DIEOEXxn:
DIEQVxn:

SLEEP:

Pxn PULL-UP OVERRIDE ENABLE
Pxn PULL-UP OVERRIDE VALUE

Pxn DATA DIRECTION OVERRIDE ENABLE
Pxn DATA DIRECTION OVERRIDE VALUE
Pxn PORT VALUE OVERRIDE ENABLE
Pxn PORT VALUE OVERRIDE VALUE

Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP CONTROL

PUOEXn A
PUOVxn
PUD
DDOExn
DDOVxn
Q b
DDxn
Bon
PVOE: Wox
xn RESET
PVOVxn RDx
r/[g %)
1 o)
Q Db m
[PORTxn 'S
3 <<
DIEOExn Sq
WPx o
DIEOVxn RESET
RRx
SLEEP E
SYNCHRONIZER
P Dixn
@ AlOxn
PUD: PULLUP DISABLE
WDx: WRITE DDRx
RDx: READ DDRx
RRx: READ PORTx REGISTER
WPx: WRITE PORTx
RPx: READ PORTXx PIN
ek, 1/0 CLOCK
Dixn: DIGITAL INPUT PIN n ON PORTx
AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,o, SLEEP, and PUD are
common to all ports. All other signals are unique for each pin.

Table 12-2 summarizes the function of the overriding signals. The pin and port indexes from Figure 12-5 are not
shown in the succeeding tables. The overriding signals are generated internally in the modules having the

alternate function.

Atmel

ATmega16A [DATASHEET] 54

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 12-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description
PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the
Enable PUOQV signal. If this signal is cleared, the pull-up is enabled
when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override Value | If PUOE is set, the pull-up is enabled/disabled when PUOV
is set/cleared, regardless of the setting of the DDxn,
PORTxn, and PUD Register bits.

DDOE Data Direction If this signal is set, the Output Driver Enable is controlled by

Override Enable the DDOV signal. If this signal is cleared, the Output driver
is enabled by the DDxn Register bit.

DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled when

Override Value DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.
PVOE Port Value Override If this signal is set and the Output Driver is enabled, the port
Enable value is controlled by the PVOV signal. If PVOE is cleared,
and the Output Driver is enabled, the port Value is controlled
by the PORTxn Register bit.
PVOV Port Value Override If PVOE is set, the port value is set to PVOV, regardless of
Value the setting of the PORTxn Register bit.
DIEOE Digital Input Enable If this bit is set, the Digital Input Enable is controlled by the
Override Enable DIEQV signal. If this signal is cleared, the Digital Input
Enable is determined by MCU-state (Normal Mode, sleep
modes).

DIEOV Digital Input Enable If DIEOE is set, the Digital Input is enabled/disabled when

Override Value DIEQV is set/cleared, regardless of the MCU state (Normal
Mode, sleep modes).

DI Digital Input This is the Digital Input to alternate functions. In the figure,
the signal is connected to the output of the schmitt trigger
but before the synchronizer. Unless the Digital Input is used
as a clock source, the module with the alternate function will
use its own synchronizer.

AlIO Analog Input/ output This is the Analog Input/output to/from alternate functions.
The signal is connected directly to the pad, and can be used
bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding signals
to the alternate function. Refer to the alternate function description for further details.

12.3.1 Alternate Functions of Port A

Port A has an alternate function as analog input for the ADC as shown in Table 12-3. If some Port A pins are
configured as outputs, it is essential that these do not switch when a conversion is in progress. This might
corrupt the result of the conversion.

ATmega16A [DATASHEET] 55

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Atmel

Table 12-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 ADCY7 (ADC input channel 7)
PAG ADCG6 (ADC input channel 6)
PA5 ADCS5 (ADC input channel 5)
PA4 ADC4 (ADC input channel 4)
PA3 ADC3 (ADC input channel 3)
PA2 ADC2 (ADC input channel 2)
PA1 ADC1 (ADC input channel 1)
PAO ADCO (ADC input channel 0)

Table 12-4 and Table 12-5 relate the alternate functions of Port A to the overriding signals shown in Figure 12-5

on page 54.

Table 12-4. Overriding Signals for Alternate Functions in PA7:PA4
Signal Name PA7/ADCY PAGB/ADC6 PAS5/ADC5 PA4/ADC4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

Table 12-5. Overriding Signals for Alternate Functions in PA3:PAO

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PAO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOCE 0 0 0 0
DIEOV 0 0 0 0

DI - - - -

AlIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

/ItmeL ATmega16A [DATASHEET] 56

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

12.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 12-6.

Table 12-6. Port B Pins Alternate Functions

Port Pin Alternate Functions
PB7 SCK (SPI Bus Serial Clock)
PB6 MISO (SPI Bus Master Input/Slave Output)
PB5 MQOSI (SPI Bus Master Output/Slave Input)
PB4 Ss (SPI Slave Select Input)
PB3 AIN1 (Analog Comparator Negative Input)

OCO (Timer/Counter0 Output Compare Match Output)

AINO (Analog Comparator Positive Input)

PB2

INT2 (External Interrupt 2 Input)
PB1 T1 (Timer/Counter1 External Counter Input)
PBO TO (Timer/Counter0 External Counter Input)

XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:

e SCK - Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a Slave, this pin
is configured as an input regardless of the setting of DDB7. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up can still
be controlled by the PORTB?7 bit.

« MISO - Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a Master, this pin
is configured as an input regardless of the setting of DDB6. When the SPI is enabled as a Slave, the data
direction of this pin is controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up can still
be controlled by the PORTBSG bit.

* MOSI - Port B, Bit5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a Slave, this pin
is configured as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up can still
be controlled by the PORTBS5 bit.

« SS—Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the
setting of DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is enabled as a
Master, the data direction of this pin is controlled by DDB4. When the pin is forced by the SPI to be an input, the
pull-up can still be controlled by the PORTB4 bit.

* AIN1/OCO - Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the analog comparator.

Atmel ATmega16A [DATASHEET] 57

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

OCO0, Output Compare Match output: The PB3 pin can serve as an external output for the Timer/Counter0
Compare Match. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function. The
OCO pin is also the output pin for the PWM mode timer function.

* AINO/INT2 — Port B, Bit 2

AINO, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up switched off to
avoid the digital port function from interfering with the function of the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the MCU.

e T1-PortB, Bit1l
T1, Timer/Counter1 Counter Source.

e TO/XCK - Port B, Bit 0
TO, Timer/CounterO Counter Source.

XCK, USART External Clock. The Data Direction Register (DDBO0) controls whether the clock is output (DDBO
set) or input (DDBO cleared). The XCK pin is active only when the USART operates in Synchronous mode.

Table 12-7 and Table 12-8 relate the alternate functions of Port B to the overriding signals shown in Figure 12-5
on page 54. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into
SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 12-7. Overriding Signals for Alternate Functions in PB7:PB4
Signal _
Name | PB7/SCK PB6/MISO PB5/MOSI PB4/SS
PUOE | SPE-«MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV | PORTB7 +PUD | PORTB6 « PUD PORTB5 « PUD PORTB4 « PUD
DDOE | SPE«MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV | 0 0 0 0
PVOE | SPE+MSTR SPE « MSTR SPE « MSTR 0
PVOV | SCK OUTPUT SPI SLAVE OUTPUT SPI MSTR OUTPUT 0
DIEOE | 0 0 0 0
DIEOV | 0 0 0 0
DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT SPISS
AIO - - - -
Atmel ATmega16A [DATASHEET] 58

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 12-8. Overriding Signals for Alternate Functions in PB3:PB0O
Signal
Name PB3/OCO/AIN1 PB2/INT2/AINO PB1/T1 PBO/TO/XCK
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OCO ENABLE 0 0 UMSEL
PVOV OocCo 0 0 XCK OUTPUT
DIEOE 0 INT2 ENABLE 0 0
DIEOV 0 1 0 0
DI - INT2 INPUT T1 INPUT XCK INPUT/TO INPUT
AlO AIN1T INPUT AINO INPUT - -

12.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 12-9. If the JTAG interface is enabled, the pull-up

resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Table 12-9.

Port C Pins Alternate Functions

Port Pin

Alternate Function

PC7

TOSC2 (Timer Oscillator Pin 2)

PC6

TOSCH1 (Timer Oscillator Pin 1)

PC5

TDI (JTAG Test Data In)

PC4

TDO (JTAG Test Data Out)

PC3

TMS (JTAG Test Mode Select)

PC2

TCK (JTAG Test Clock)

PC1

SDA (Two-wire Serial Bus Data Input/Output Line)

PCO

SCL (Two-wire Serial Bus Clock Line)

The alternate pin configuration is as follows:

+ TOSC2 -PortC, Bit 7

TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting output of the Oscillator

amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

 TOSC1 - Port C, Bit 6

TOSCA1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of
Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the inverting Oscillator

amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

Atmel

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

59

e TDI-Port C, Bit5

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Register (scan
chains). When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

e TDO - Port C, Bit 4
TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When the JTAG
interface is enabled, this pin can not be used as an I/O pin.

The TDO pin is tri-stated unless TAP states that shifts out data are entered.

« TMS - Port C, Bit 3

TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state machine. When
the JTAG interface is enabled, this pin can not be used as an 1/O pin.

« TCK—-PortC, Bit2

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is enabled, this pin
can not be used as an I/O pin.

+ SDA -Port C,Bit1l

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial
Interface, pin PC1 is disconnected from the port and becomes the Serial Data I/O pin for the Two-wire Serial
Interface. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal,
and the pin is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire
Serial Interface, the pull-up can still be controlled by the PORTC1 bit.

* SCL —Port C, Bit0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the Two-wire Serial
Interface, pin PCO is disconnected from the port and becomes the Serial Clock I/O pin for the Two-wire Serial
Interface. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal,
and the pin is driven by an open drain driver with slew-rate limitation. When this pin is used by the Two-wire
Serial Interface, the pull-up can still be controlled by the PORTCO bit.

Table 12-10 and Table 12-11 relate the alternate functions of Port C to the overriding signals shown in Figure
12-5 on page 54.

Atmel ATmega16A [DATASHEET] 60

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 12-10. Overriding Signals for Alternate Functions in PC7:PC4
Signal
Name PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO
PUOE AS2 AS2 JTAGEN JTAGEN
PUOV 0 0 1 0
DDOE AS2 AS2 JTAGEN JTAGEN
DDOV 0 0 0 SHIFT_IR + SHIFT_DR
PVOE 0 0 0 JTAGEN
PVOV 0 0 0 TDO
DIEOE | AS2 AS2 JTAGEN JTAGEN
DIEOV | O 0 0 0
DI - - - -
AlIO T/C2 OSC OUTPUT T/C2 OSC INPUT TDI -
Table 12-11. Overriding Signals for Alternate Functions in PC3:PC0'")
Signal
Name PC3/TMS PC2/TCK PC1/SDA PCO/SCL
PUOE JTAGEN JTAGEN TWEN TWEN
PUOV 1 1 PORTC1 + PUD PORTCO + PUD
DDOE JTAGEN JTAGEN TWEN TWEN
DDOV 0 0 SDA_OUT SCL_OuUT
PVOE 0 0 TWEN TWEN
PVOV 0 0 0 0
DIEOE JTAGEN JTAGEN 0 0
DIEOV 0 0 0 0
DI - - - -
AlO TMS TCK SDA INPUT SCL INPUT
Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output pins PC0O and PC1. This

Atmel

is not shown in the figure. In addition, spike filters are connected between the AIO outputs shown in the port

figure and the digital logic of the TWI module.

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

12.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 12-12.

Table 12-12. Port D Pins Alternate Functions

Port Pin Alternate Function
PD7 OC2 (Timer/Counter2 Output Compare Match Output)
PD6 ICP1 (Timer/Counter1 Input Capture Pin)
PD5 OCA1A (Timer/Counter1 Output Compare A Match Output)
PD4 OC1B (Timer/Counter1 Output Compare B Match Output)
PD3 INT1 (External Interrupt 1 Input)
PD2 INTO (External Interrupt O Input)
PD1 TXD (USART Output Pin)
PDO RXD (USART Input Pin)

The alternate pin configuration is as follows:

« OC2-PortD,Bit7

0OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare. The pin has to be configured as an output (DDD7 set (one)) to serve this
function. The OC2 pin is also the output pin for the PWM mode timer function.

* ICP1-PortD, Bit6
ICP1 — Input Capture Pin: The PD6 pin can act as an Input Capture pin for Timer/Counter1.

*+ OC1A —Port D, Bit5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the Timer/Counter1
Output Compare A. The pin has to be configured as an output (DDD5 set (one)) to serve this function. The
OC1A pin is also the output pin for the PWM mode timer function.

+ OC1B - Port D, Bit 4

0OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the Timer/Counter1
Output Compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this function. The
OC1B pin is also the output pin for the PWM mode timer function.

e INT1 - Port D, Bit 3
INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

* INTO - Port D, Bit 2
INTO, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.

« TXD -Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled, this pin is
configured as an output regardless of the value of DDD1.

Atmel ATmega16A [DATASHEET] 62

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

* RXD -Port D, Bit0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this pin is configured
as an input regardless of the value of DDDO0. When the USART forces this pin to be an input, the pull-up can still
be controlled by the PORTDO bit.

Table 12-13 and Table 12-14 relate the alternate functions of Port D to the overriding signals shown in Figure
12-5 on page 54.

Table 12-13. Overiding Signals for Alternate Functions PD7:PD4
Signal Name PD7/0C2 PD6/ICP1 PD5/OC1A PD4/0OC1B
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE
PVOV 0C2 0 OC1A OC1B
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - ICP1INPUT | — -
AIO - - - -
Table 12-14. Overriding Signals for Alternate Functions in PD3:PDO
Signhal Name PD3/INT1 PD2/INTO PD1/TXD PDO/RXD
PUOE 0 0 TXEN RXEN
PUOV 0 0 0 PORTDO « PUD
DDOE 0 0 TXEN RXEN
DDOV 0 0 1 0
PVOE 0 0 TXEN 0
PVOV 0 0 TXD 0
DIEOE INT1 ENABLE INTO ENABLE 0 0
DIEOV 1 1 0 0
DI INT1 INPUT INTO INPUT - RXD
AlO - - - -
ATmega16A [DATASHEET]

Atmel

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

63

12.4 Register Description

12.4.1 SFIOR — Special Function I/O Register

Bit 7 6 5 4 3 2 1 0

| Apts2 | ADTs1i | ADTSO | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW R/W R/W R R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 2 - PUD: Pull-up disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers
are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Configuring the Pin” on page 50 for more
details about this feature.

12.4.2 PORTA - Port A Data Register

Bit 7 6 5 4 3 2 1 0

I PORTA7 | PORTAG | PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

12.4.3 DDRA — Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0

I poar DDA6 | DDA5 | DDA4 DDA3 DDA2 DDAL DDAO | DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

12.4.4 PINA — Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

| PNa7 | PiNAs | PINAS PINA4 PINA3 PINA2 PINA1 PINAO | PINA
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

12.4.5 PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0

I PORTB7 | PORTB6 | PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

12.4.6 DDRB — Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0
| oos7 DDB6 | DDB5 | DDB4 DDB3 DDB2 DDB1 opBo | DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
/ItmeL ATmega16A [DATASHEET] 64

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

12.4.7 PINB — Port B Input Pins Address
Bit 7 6 5 4 3 2 1 0
| PINB7 | PINB6 | PINB5 PINB4 PINB3 PINB2 PINB1 PINBO | PINB
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
12.4.8 PORTC - Port C Data Register
Bit 7 6 5 4 3 2 1 0
I PORTC7 | PORTC6 | PORTCS PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.9 DDRC - Port C Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDC7 | DDC6 | DDC5 | DDC4 DDC3 DDC2 DDC1 DDCO | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.10 PINC — Port C Input Pins Address
Bit 7 6 5 4 3 2 1 0
| PINC7 | PINC6 | PINC5 PINC4 PINC3 PINC2 PINC1 PINCO | PINC
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
12.4.11 PORTD - Port D Data Register
Bit 7 6 5 4 3 2 1 0
I PORTD7 | PORTD6 | PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.12 DDRD - Port D Data Direction Register
Bit 7 6 5 4 3 2 1 0
| DDD7 | DDD6 | DDD5 | DDD4 DDD3 DDD2 DDD1 DDDO | DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.13 PIND — Port D Input Pins Address
Bit 7 6 5 4 3 2 1 0
| PIND7 | PIND6 | PIND5 PIND4 PIND3 PIND2 PIND1 PINDO | PIND
Read/Write R R R R R R R R
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
/ItmeL ATmega16A [DATASHEET] 65

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

13.

13.1

1311

External Interrupts

The External Interrupts are triggered by the INTO, INT1, and INT2 pins. Observe that, if enabled, the interrupts
will trigger even if the INTO:2 pins are configured as outputs. This feature provides a way of generating a
software interrupt. The external interrupts can be triggered by a falling or rising edge or a low level (INT2 is only
an edge triggered interrupt). This is set up as indicated in the specification for the MCU Control Register —
MCUCR - and MCU Control and Status Register - MCUCSR. When the external interrupt is enabled and is
configured as level triggered (only INTO/INT1), the interrupt will trigger as long as the pin is held low. Note that
recognition of falling or rising edge interrupts on INTO and INT1 requires the presence of an I/O clock, described
in “Clock Systems and their Distribution” on page 24. Low level interrupts on INTO/INT1 and the edge interrupt
on INT2 are detected asynchronously. This implies that these interrupts can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level must be
held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The changed level is
sampled twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator is 1 ys (nominal) at 5.0V
and 25°C. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Electrical
Characteristics” on page 279. The MCU will wake up if the input has the required level during this sampling or if
it is held until the end of the start-up time. The start-up time is defined by the SUT Fuses as described in
“System Clock and Clock Options” on page 24. If the level is sampled twice by the Watchdog Oscillator clock
but disappears before the end of the start-up time, the MCU will still wake up, but no interrupt will be generated.
The required level must be held long enough for the MCU to complete the wake up to trigger the level interrupt.

Register Description

MCUCR — MCU Control Register

The MCU Control Register contains control bits for interrupt sense control and general MCU functions.

Bit 7 6 5 4 3 2 1 0

[sv2 | s | smi | smo [iscii | 1sCi0 | 1scol | 1SCO0 | MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 3,2 -1SC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corresponding interrupt
mask in the GICR are set. The level and edges on the external INT1 pin that activate the interrupt are defined in
Table 13-1. The value on the INT1 pin is sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the
currently executing instruction to generate an interrupt.

Table 13-1. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Atmel ATmega16A [DATASHEET] 66

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

13.1.2

13.1.3

* Bit 1, 0-1SCO01, ISCOO: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INTO if the SREG I-flag and the corresponding interrupt
mask are set. The level and edges on the external INTO pin that activate the interrupt are defined in Table 13-2.
The value on the INTO pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that
last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an
interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently
executing instruction to generate an interrupt.

Table 13-2. Interrupt 0 Sense Control

1ISC01 ISC00 Description

0 0 The low level of INTO generates an interrupt request.

0 1 Any logical change on INTO generates an interrupt request.

1 0 The falling edge of INTO generates an interrupt request.

1 1 The rising edge of INTO generates an interrupt request.

MCUCSR — MCU Control and Status Register

Bit 7 6 5 4 3 2 1 0
| oo | 1sc2 | = | JTRF | WDRF BORF EXTRF PORF | Mcucsr

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

¢ Bit 6 — ISC2: Interrupt Sense Control 2

The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and the
corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on INT2 activates the
interrupt. If ISC2 is written to one, a rising edge on INT2 activates the interrupt. Edges on INT2 are registered
asynchronously. Pulses on INT2 wider than the minimum pulse width given in “External Interrupts
Characteristics” on page 283 will generate an interrupt. Shorter pulses are not guaranteed to generate an
interrupt. When changing the ISC2 bit, an interrupt can occur. Therefore, it is recommended to first disable INT2
by clearing its Interrupt Enable bit in the GICR Register. Then, the ISC2 bit can be changed. Finally, the INT2
Interrupt Flag should be cleared by writing a logical one to its Interrupt Flag bit (INTF2) in the GIFR Register
before the interrupt is re-enabled.

GICR — General Interrupt Control Register

Bit 7 6 5 4 3 2 1 0

| w1 | inTo |oiNT2] IVSEL IVCE | GICR
Read/Write R/W R/W R/W R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt
is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU General Control Register
(MCUCR) define whether the External Interrupt is activated on rising and/or falling edge of the INT1 pin or level
sensed. Activity on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from the INT1 interrupt Vector.

Atmel ATmega16A [DATASHEET] 67

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 6 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt
is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU General Control Register
(MCUCR) define whether the External Interrupt is activated on rising and/or falling edge of the INTO pin or level
sensed. Activity on the pin will cause an interrupt request even if INTO is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from the INTO interrupt vector.

e Bit 5—-INT2: External Interrupt Request 2 Enable

When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt
is enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU Control and Status Register (MCUCSR) defines
whether the External Interrupt is activated on rising or falling edge of the INT2 pin. Activity on the pin will cause
an interrupt request even if INT2 is configured as an output. The corresponding interrupt of External Interrupt
Request 2 is executed from the INT2 Interrupt Vector.

13.1.4 GIFR - General Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

| mwrer | inTRO | iNTR2 - - - - - | orr
Read/Write R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — INTF1: External Interrupt Flag 1

When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-
bit in SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a
logical one to it. This flag is always cleared when INT1 is configured as a level interrupt.

e Bit 6 — INTFO: External Interrupt Flag O

When an edge or logic change on the INTO pin triggers an interrupt request, INTFO becomes set (one). If the I-
bitin SREG and the INTO bit in GICR are set (one), the MCU will jump to the corresponding interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical
one to it. This flag is always cleared when INTO is configured as a level interrupt.

* Bit 5 - INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-bitin SREG and
the INT2 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared
when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. Note
that when entering some sleep modes with the INT2 interrupt disabled, the input buffer on this pin will be
disabled. This may cause a logic change in internal signals which will set the INTF2 Flag. See “Digital Input
Enable and Sleep Modes” on page 53 for more information.

Atmel ATmega16A [DATASHEET] 68

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

14. 8-bit Timer/CounterO with PWM

141 Features
* Single Compare Unit Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOVO and OCFO)

14.2 Overview

Timer/CounterQ is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block
diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual placement of I/O pins, refer to “Pinout
ATmega16A” on page 3. CPU accessible 1/0 Registers, including I/O bits and 1/O pins, are shown in bold. The
device-specific I/O Register and bit locations are listed in the “Register Description” on page 79.

Figure 14-1. 8-bit Timer/Counter Block Diagram

< | TCCRn
/
count a TOVN
clear Control Lodi " (Int.Req.)
ontrol Logic
direction 9 clkrp, Clock Select
Edge
A y Detector [Tn
BOTTOM TOP
’ VY _X (From Prescaler)
% Timer/Counter A
m TCNTn |
< [=0] [=oxFF > ocn
g f f (Int.Req.)
\ 4
— Waveform ocn
— Generation l
A
| OCRn

14.2.1 Registers

The Timer/Counter (TCNTO) and Output Compare Register (OCRO0) are 8-bit registers. Interrupt request
(abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All
interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not
shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO pin.
The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or

/ltmeL ATmega16A [DATASHEET] 69

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

14.2.2

14.3

14.4

decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock
Select logic is referred to as the timer clock (clkg).

The double buffered Output Compare Register (OCRO) is compared with the Timer/Counter value at all times.
The result of the compare can be used by the waveform generator to generate a PWM or variable frequency
output on the Output Compare Pin (OCO0). See “Output Compare Unit” on page 71. for details. The compare
match event will also set the Compare Flag (OCFQ) which can be used to generate an output compare interrupt
request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 0. However, when using the register or bit defines in a program, the precise
form must be used i.e., TCNTO for accessing Timer/CounterO counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.
Table 14-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCRO Register. The assignment is dependent
on the mode of operation.

TOP

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by
the clock select logic which is controlled by the clock select (CS02:0) bits located in the Timer/Counter Control
Register (TCCRO). For details on clock sources and prescaler, see “Timer/CounterO and Timer/Counter1
Prescalers” on page 83.

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 14-2 shows a
block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

TOVn

(Int. Regq.)
DATA BUS - nt. Req

t Clock Select

count Edge
-
clk Detector
TCNTn ¢ clear | control Logic |a—™
__ direction

(From Prescaler)
BO‘I‘I’OMT TTOP

-t

Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Select between increment and decrement.
clear Clear TCNTO (set all bits to zero).

Atmel ATmega16A [DATASHEET] 70

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

clky, Timer/Counter clock, referred to as clky, in the following.
TOP Signalize that TCNTO has reached maximum value.
BOTTOM Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky). clkyg can be generated from an external or internal clock source, selected by the Clock Select bits
(CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can
be accessed by the CPU, regardless of whether clky is present or not. A CPU write overrides (has priority over)
all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in the
Timer/Counter Control Register (TCCRO). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare output OCO. For more details about
advanced counting sequences and waveform generation, see “Modes of Operation” on page 73.

The Timer/Counter Overflow (TOVO) Flag is set according to the mode of operation selected by the WGMO01:0
bits. TOVO0 can be used for generating a CPU interrupt.

14.5 Output Compare Unit
The 8-bit comparator continuously compares TCNTO with the Output Compare Register (OCRO0). Whenever
TCNTO equals OCRO, the comparator signals a match. A match will set the Output Compare Flag (OCFO) at the
next timer clock cycle. If enabled (OCIEOQ = 1 and Global Interrupt Flag in SREG is set), the Output Compare
Flag generates an output compare interrupt. The OCFO Flag is automatically cleared when the interrupt is
executed. Alternatively, the OCFO Flag can be cleared by software by writing a logical one to its I/O bit location.
The waveform generator uses the match signal to generate an output according to operating mode set by the
WGMO01:0 bits and Compare Output mode (COMO01:0) bits. The max and bottom signals are used by the
waveform generator for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 73.).
Figure 14-3 shows a block diagram of the output compare unit.
Figure 14-3. Output Compare Unit, Block Diagram
- ¢ DATA BUS i >
| |
OCRn TCNTn
I = (8-bit Comparator) I
OC@ (Int.Req.)
Y
top »
bottom ! Waveform Generator »| ocn
FOCn —
WGMn1:0 COMn1:0
ATmega16A [DATASHEET 71
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

1451

145.2

145.3

14.6

The OCRO Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the
normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR0O Compare Register to either top or bottom of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCRO Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCRO0 Buffer Register, and if double buffering is disabled the CPU will access the OCRO
directly.

Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOCO) bit. Forcing compare match will not set the OCFO Flag or reload/clear the
timer, but the OCO pin will be updated as if a real compare match had occurred (the COMO01:0 bits settings
define whether the OCO pin is set, cleared or toggled).

Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO Register will block any compare match that occur in the next timer clock
cycle, even when the timer is stopped. This feature allows OCRO to be initialized to the same value as TCNTO
without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle, there
are risks involved when changing TCNTO when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNTO equals the OCRO value, the compare match will
be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNTO value equal to
BOTTOM when the counter is downcounting.

The setup of the OCO should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OCO value is to use the Force Output Compare (FOCO) strobe bits in Normal
mode. The OCO Register keeps its value even when changing between waveform generation modes.

Be aware that the COMO01:0 bits are not double buffered together with the compare value. Changing the
COMO01:0 bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COMO01:0) bits have two functions. The Waveform Generator uses the COMO01:0
bits for defining the Output Compare (OCO0) state at the next compare match. Also, the COMO01:0 bits control the
OCO pin output source. Figure 14-4 shows a simplified schematic of the logic affected by the COMO01:0 bit
setting. The 1/0O Registers, I/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general /O
port Control Registers (DDR and PORT) that are affected by the COMO01:0 bits are shown. When referring to the
OCO state, the reference is for the internal OCO Register, not the OCO pin. If a System Reset occur, the OCO
Register is reset to “0”.

Atmel ATmega16A [DATASHEET] 72

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 14-4. Compare Match Output Unit, Schematic

—

COMn1
COMnO Waveform
D Q
FOCn Generator
— 1
OCn
OCn o > Pin
A
»D Q
(3 [
o PORT
<
2
a »D Q
\ DDR
clk,o

The general I/O port function is overridden by the Output Compare (OCO0) from the Waveform Generator if either
of the COMO01:0 bits are set. However, the OCO pin direction (input or output) is still controlled by the Data
Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCO pin (DDR_OCO0) must be
set as output before the OCO value is visible on the pin. The port override function is independent of the
Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OCO state before the output is enabled.
Note that some COMO1:0 bit settings are reserved for certain modes of operation. See “Register Description” on
page 79.

14.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMO01:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COMO01:0 = 0 tells the waveform generator that no action on the OCO Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 14-3 on page 80.
For fast PWM mode, refer to Table 14-4 on page 80, and for phase correct PWM refer to Table 14-5 on

page 81.

A change of the COMO01:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOCO strobe bits.

14.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is defined by the
combination of the Waveform Generation mode (WGMO01:0) and Compare Output mode (COMO01:0) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COMO01:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COMO01:0 bits control whether the output should be set, cleared, or
toggled at a compare match (See “Compare Match Output Unit” on page 72.).

For detailed timing information refer to Figure 14-8, Figure 14-9, Figure 14-10 and Figure 14-11 in
“Timer/Counter Timing Diagrams” on page 77.
14.7.1 Normal Mode

The simplest mode of operation is the normal mode (WGMO01:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its

Atmel ATmega16A [DATASHEET] 73

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the
Timer/Counter Overflow Flag (TOVO) will be set in the same timer clock cycle as the TCNTO becomes zero. The
TOVO Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOVO Flag, the timer resolution can be increased by
software. There are no special cases to consider in the normal mode, a new counter value can be written
anytime.

The output compare unit can be used to generate interrupts at some given time. Using the output compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCRO Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTO) matches the OCRO.
The OCRO defines the top value for the counter, hence also its resolution. This mode allows greater control of
the compare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNTO) increases until a
compare match occurs between TCNTO and OCRO, and then counter (TCNTO) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

1 roTre ' OCn Interrupt Flag Set
i bl A\
v v
TCNTn
OCn
(Toggle) (COMNn1:0=1)
Period I~ 1 =I<

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFO Flag. If
the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must
be done with care since the CTC mode does not have the double buffering feature. If the new value written to
OCRO is lower than the current value of TCNTO, the counter will miss the compare match. The counter will then
have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OCO output can be set to toggle its logical level on each
compare match by setting the Compare Output mode bits to toggle mode (COMO01:0 = 1). The OCO value will
not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will
have a maximum frequency of foco = fu 110/2 when OCRO is set to zero (0x00). The waveform frequency is
defined by the following equation: -

£ _ fclk_I/O
OCn = 2.N-(1+OCRn)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

Atmel ATmega16A [DATASHEET] 74

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

14.7.3

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCO) is cleared on the compare match between TCNTO and OCRO, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode
that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is
then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
14-6. The TCNTO value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO
slopes represent compare matches between OCRO and TCNTO.

Figure 14-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

. ; OCRn Update and
l ! ! TOVn Interrupt Flag Set
\j \

v [20 2 B

- VWA

v v l v
OCn : : _J (COMN1:0 = 2)

‘ocn [(COMN1:0 = 3)
Period F—1 al«—z —+—3—+—4—+—5—+—6—+—7—>‘

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches MAX. If the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the
COMO01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COMO01:0 to 3 (See Table 14-4 on page 80). The actual OCO value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OCO
Register at the compare match between OCRO and TCNTO, and clearing (or setting) the OCO Register at the
timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

; _ fa o
OCnPWM — N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represents special cases when generating a PWM waveform output
in the fast PWM mode. If the OCRO is set equal to BOTTOM, the output will be a narrow spike for each MAX+1
timer clock cycle. Setting the OCRO0 equal to MAX will result in a constantly high or low output (depending on the
polarity of the output set by the COMO01:0 bits.)

Atmel ATmega16A [DATASHEET] 75

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCO to
toggle its logical level on each compare match (COMO01:0 = 1). The waveform generated will have a maximum
frequency of foco = fuk 110/2 when OCRO is set to zero. This feature is similar to the OCO toggle in CTC mode,
except the double buffer feature of the output compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCO0) is cleared on the compare match between TCNTO and OCRO while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The
dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode the
counter is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the
count direction. The TCNTO value will be equal to MAX for one timer clock cycle. The timing diagram for the
phase correct PWM mode is shown on Figure 14-7. The TCNTO value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTO slopes represent compare matches between OCRO and
TCNTO.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

TCNTn \/ v
A, A A, Y

OCn u L (COMN1:0 = 2)

OCn ﬁ ﬁ F (COMN1:0 = 3)

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The Interrupt Flag
can be used to generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting
the COMO01:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting
the COMO01:0 to 3 (see Table 14-5 on page 81). The actual OCO value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OCO
Register at the compare match between OCRO and TCNTO when the counter increments, and setting (or

Atmel ATmega16A [DATASHEET] 76

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

clearing) the OCO Register at compare match between OCRO and TCNTO when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the following equation:

‘ _ fox wo
OCnPCPWM N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCRO is set equal to BOTTOM, the output will be continuously low and if
set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output
will have the opposite logic values.

At the very start of Period 2 in Figure 14-7 OCn has a transition from high to low even though there is no
Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases
that give a transition without Compare Match:

e OCROA changes its value from MAX, like in Figure 14-7. When the OCROA value is MAX the OCn pin
value is the same as the result of a down-counting Compare Match. To ensure symmetry around
BOTTOM the OCn value at MAX must be correspond to the result of an up-counting Compare Match.

e The Timer starts counting from a value higher than the one in OCROA, and for that reason misses the
Compare Match and hence the OCn change that would have happened on the way up.

14.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkyy) is therefore shown as a clock enable
signal in the following figures. The figures include information on when Interrupt Flags are set. Figure 14-8
contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX
value in all modes other than phase correct PWM mode.
Figure 14-8. Timer/Counter Timing Diagram, no Prescaling
clk,o
clkq,
(clk, /1)
TCNTn MAX -1 MAX BOTTOM BOTTOM + 1
TOVn
Figure 14-9 shows the same timing data, but with the prescaler enabled.
ATmega16A [DATASHEET 77
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 14-9.

clk,o H
1l

clkq,

clk,,/8

(

(MR
:

JB TR
:

Timer/Counter Timing Diagram, with Prescaler (fyy ,0/8)

JB TR
:

LB

—

TCNTn

TOVn

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 14-10 shows the setting of OCFO in all modes except CTC mode.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCFO, with Prescaler (f; ,,0/8)

cIkVO H

QMR

LM

JBRTARA

LB

clk;,
(clk,o/8)
TCNTn OCRn - 1 OCRn OCRn + 1 OCRn +2
—
OCRn OCRn Value
OCFn
Figure 14-11 shows the setting of OCF0 and the clearing of TCNTO in CTC mode.
ATmega16A [DATASHEET

Atmel gatoAl]

Atmel-8154C-8-bit-AVR:

-ATmega16A_Datasheet-07/2014

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (f; ,,0/8)

AR AT AR
S || 1 I 1

TCNTn
(CTC)

TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

14.9 Register Description

14.9.1 TCCRO - Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0

| Foco | wamoo | comoi | comoo | wemol | Cs02 Cso01 csoo | TCCRoO
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — FOCO: Force Output Compare

The FOCO bit is only active when the WGMOO bit specifies a non-PWM mode. However, for ensuring
compatibility with future devices, this bit must be set to zero when TCCRO is written when operating in PWM
mode. When writing a logical one to the FOCO bit, an immediate compare match is forced on the Waveform
Generation unit. The OCO output is changed according to its COMO01:0 bits setting. Note that the FOCO bit is
implemented as a strobe. Therefore it is the value present in the COMO01:0 bits that determines the effect of the
forced compare.

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCRO0 as TOP.

The FOCO bit is always read as zero.

e Bit 3, 6 - WGMO[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of Waveform Generation to be used. Modes of operation supported by the Timer/Counter unit are:
Normal mode, Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM)
modes. See Table 14-2 and “Modes of Operation” on page 73.

Atmel ATmega16A [DATASHEET] 79

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 14-2. Waveform Generation Mode Bit Description(!)
WGMO01 WGMO00 | Timer/Counter Mode of Update of TOVO Flag
Mode (CTCO) (PWMO) | Operation TOP OCRO Set-on

0 0 0 Normal OxFF Immediate MAX

1 0 1 PWM, Phase Correct OxFF TOP BOTTOM

2 1 0 CTC OCRO Immediate MAX

3 1 1 Fast PWM OxFF BOTTOM MAX
Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions. However, the

functionality and location of these bits are compatible with previous versions of the timer.

e Bit 5:4 — COMO01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCO0) behavior. If one or both of the COMO01:0 bits are set, the OCO
output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to the OCO0 pin must be set in order to enable the output driver.

When OCO is connected to the pin, the function of the COMO01:0 bits depends on the WGMO01:0 bit setting.
Table 14-3 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to a normal or CTC mode (non-

PWM).
Table 14-3. Compare Output Mode, non-PWM Mode
COMO01 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on compare match
1 0 Clear OCO on compare match
1 1 Set OCO0 on compare match

Table 14-4 shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.

Table 14-4. Compare Output Mode, Fast PWM Mode("
COMO01 COMO00 Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO on compare match, set OC0 at BOTTOM,
(non-inverting mode)
1 1 Set OCO0 on compare match, clear OCO at BOTTOM,
(inverting mode)
Note: 1. A special case occurs when OCRO equals TOP and COMO1 is set. In this case, the compare match is ignored,

but the set or clear is done at TOP. See “Fast PWM Mode” on page 75 for more details.
Table 14-5 shows the COMO1:0 bit functionality when the WGMO01:0 bits are set to phase correct PWM mode.

ATmega16A [DATASHEET] 80

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Atmel

14.9.2

Table 14-5. Compare Output Mode, Phase Correct PWM Mode!")

COMO01 | COMOO | Description

0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO0 on compare match when up-counting. Set OC0O on compare match

when downcounting.

1 1 Set OCO on compare match when up-counting. Clear OC0 on compare match
when downcounting.

Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the compare match is ignored,
but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 76 for more details.

e Bit 2:0 — CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 14-6. Clock Select Bit Description

CSs02 Cso1 CS00 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk;o/(No prescaling)
0 1 0 clk;,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clk;o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

TCNTO — Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0]] Tento
Read/Write RIW R/W R/W R/W RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-
bit counter. Writing to the TCNTO Register blocks (removes) the compare match on the following timer clock.
Modifying the counter (TCNTO) while the counter is running, introduces a risk of missing a compare match
between TCNTO and the OCRO Register.

Atmel ATmega16A [DATASHEET] 81

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

14.9.3 OCRO - Output Compare Register

Bit 7 6 5 4 3 2 1 0

| OCRO[7:0] | ocro
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNTO). A match can be used to generate an output compare interrupt, or to generate a waveform output on
the OCO pin.

14.9.4 TIMSK — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

| oce2 | ToiE2 | TiCIEL | OCIE1IA | OCIE1B TOIEL OCIEO TOIEO | TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCIEO: Timer/Counter0 Output Compare Match Interrupt Enable

When the OCIEDO bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0
Compare Match interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter0 occurs, i.e., when the OCFO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

« Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/CounterO occurs,
i.e., when the TOVO bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

14.9.5 TIFR gP Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 TOV2 | ICF1 | OCFIA | OCF1B TOV1 OCF0 Tov0 | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 1 - OCFO: Output Compare Flag 0

The OCFO bit is set (one) when a compare match occurs between the Timer/Counter0 and the data in OCRO —
Output Compare Register0. OCFO is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCFO is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEO
(Timer/Counter0 Compare Match Interrupt Enable), and OCFO are set (one), the Timer/Counter0 Compare
Match Interrupt is executed.

e Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared by writing a logic one to
the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is set when
Timer/Counter0 changes counting direction at $00.

Atmel ATmega16A [DATASHEET] 82

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

15.

15.1

15.2

15.3

15.4

Timer/CounterO and Timer/Counterl Prescalers

Overview

Timer/Counter1 and Timer/CounterQ share the same prescaler module, but the Timer/Counters can have
different prescaler settings. The description below applies to both Timer/Counter1 and Timer/CounterQ.

Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the
fastest operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fo k 10)-
Alternatively, one of four taps from the prescaler can be used as a clock source. The prescaled clock has a
frequency of either fg k 1,0/8, foik 110/04, foLk 10/256, or fe k 10/ 1024.

Prescaler Reset

The prescaler is free running, i.e., operates independently of the clock select logic of the Timer/Counter, and it is
shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock
select, the state of the prescaler will have implications for situations where a prescaled clock is used. One
example of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1).
The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to
N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the Prescaler Reset for synchronizing the Timer/Counter to program execution. However,
care must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler
reset will affect the prescaler period for all Timer/Counters it is connected to.

External Clock Source

An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock (clky4/clkg). The T1/TO
pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled)
signal is then passed through the edge detector. Figure 15-1 shows a functional equivalent block diagram of the
T1/T0 synchronization and edge detector logic. The registers are clocked at the positive edge of the internal
system clock (clk,). The latch is transparent in the high period of the internal system clock.

The edge detector generates one clk4/clky, pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge
it detects.

Figure 15-1. T1/TO Pin Sampling

™ [P QP @ D Por])

Select Logic)

i |
clk

110
Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge
has been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0O has been stable for at least one system
clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Atmel ATmega16A [DATASHEET] 83

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Each half period of the external clock applied must be longer than one system clock cycle to ensure correct
sampling. The external clock must be guaranteed to have less than half the system clock frequency (fgyci <
fux 1o/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an
external clock it can detect is half the sampling frequency (Nyquist sampling theorem). However, due to
variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and
capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than
fo_10/2-5.

An external clock source can not be prescaled.

Figure 15-2. Prescaler for Timer/Counter0 and Timer/Counter1(!)

clkyq > 10-BIT T/C PRESCALER
Clear
S g 2 g
) g S e
o 2
PSR10 5
®

T0

: Synchronization
T1 -'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-':- &
+ Synchronization & | 0 E
CSs10 ;\\ CS00
cs i\ cS01
CS12 r\ CS02

! '

TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTERO CLOCK SOURCE

clkyy clkyg

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 15-1.

15.5 Register Description
15.5.1 SFIOR - Special Function IO Register
Bit 7 6 5 4 3 2 1 0
| abts2 | Abtsi | ADTso | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
e Bit 0 — PSR10: Prescaler Reset Timer/Counterl and Timer/CounterQ
When this bit is written to one, the Timer/Counter1 and Timer/CounterQ prescaler will be reset. The bit will be
cleared by hardware after the operation is performed. Writing a zero to this bit will have no effect. Note that
Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers. This bit will always be read as zero.
ATmega16A [DATASHEET 84
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.

16.1

16.2

16-bit Timer/Counterl

Features

* True 16-bit Design (i.e., Allows 16-bit PWM)

* Two Independent Output Compare Units

* Double Buffered Output Compare Registers

* One Input Capture Unit

* Input Capture Noise Canceler

* Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period

* Frequency Generator

* External Event Counter

* Four Independent Interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation,
and signal timing measurement. Most register and bit references in this section are written in general form. A
lower case “n” replaces the Timer/Counter number, and a lower case “x” replaces the output compare unit.
However, when using the register or bit defines in a program, the precise form must be used (i.e., TCNT1 for

accessing Timer/Counter1 counter value and so on).

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1. For the actual placement of /O
pins, refer to Figure 1-1 on page 3. CPU accessible 1/0 Registers, including I/O bits and 1/O pins, are shown in
bold. The device specific I/O Register and bit locations are listed in the “Register Description” on page 105.

/ltmeL ATmega16A [DATASHEET] 85

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.2.1

Figure 16-1. 16-bit Timer/Counter Block Diagram'"

Count TOVn
F—»
Clear c (Int.Req.)
ontrol Logic
Direction g clk Clock Select

Tn

Edge
y y Detector [Tn
TOP | BOTTOM

r vy

(From Prescaler)

A Timer/Counter A
TCNTn | | | [=0]
* A ﬁ ocna
I (Int.Req.)
I
| Waveform
|$ ["| Generation > 0CnA
OCRnA 2 ;
> 1
| [Fed ocnB
| TOP (Int.Req.)
% ! Yahues Waveform
— | - -
Q X ! Generation ocnB
=< |
<DE I
OCRnB ‘ (From Analog
- : Comparator Ouput)
| ICFn (Int.Req.)
i I
I .
Edge Noise
> Ic‘Rn | Detector [Canceler
| | ICPn
TCCRnA | | TCCRnB |
v< t t -

Note: 1. Referto Figure 1-1 on page 3, Table 12-6 on page 57, and Table 12-12 on page 62 for Timer/Counter1 pin
placement and description.

Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Register (ICR1) are all
16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These procedures
are described in the section “Accessing 16-bit Registers” on page 87. The Timer/Counter Control Registers
(TCCR1A/B) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to Int.Req.
in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are individually
masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the figure since
these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin.
The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or
decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the clock
select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value at all
time. The result of the compare can be used by the Waveform Generator to generate a PWM or variable
frequency output on the Output Compare pin (OC1A/B). See “Output Compare Units” on page 93. The compare
match event will also set the Compare Match Flag (OCF1A/B) which can be used to generate an output
compare interrupt request.

Atmel ATmega16A [DATASHEET] 86

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.2.2

16.2.3

16.3

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on
either the Input Capture Pin (ICP1) or on the Analog Comparator pins (See “Analog Comparator” on page 193.)
The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing
noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the
OCR1A Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in a PWM
mode, the OCR1A Register can not be used for generating a PWM output. However, the TOP value will in this
case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the
ICR1 Register can be used as an alternative, freeing the OCR1A to be used as PWM output.

Definitions

The following definitions are used extensively throughout the document:

Table 16-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF,
0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assign-
ment is dependent of the mode of operation.

TOP

Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit AVR
Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding:
e All 16-bit Timer/Counter related 1/0 Register address locations, including Timer Interrupt Registers.
e Bitlocations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.
e Interrupt Vectors.

The following control bits have changed name, but have same functionality and register location:
e PWM10 is changed to WGM10.
e PWM11 is changed to WGM11.
e CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

e FOC1A and FOC1B are added to TCCR1A.
e WGM13is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special cases.

Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data
bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a
single 8-bit register for temporary storing of the High byte of the 16-bit access. The same temporary register is
shared between all 16-bit registers within each 16-bit timer. Accessing the Low byte triggers the 16-bit read or
write operation. When the Low byte of a 16-bit register is written by the CPU, the High byte stored in the
temporary register, and the Low byte written are both copied into the 16-bit register in the same clock cycle.
When the Low byte of a 16-bit register is read by the CPU, the High byte of the 16-bit register is copied into the
temporary register in the same clock cycle as the Low byte is read.

Atmel ATmega16A [DATASHEET] 87

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-bit registers
does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the Low byte must be
read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts
updates the temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1
Registers. Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example'"

Set TCNT1 to OxO1FF

di ril7,0x01

di r16,0xFF
out TCNT1H,r17
out TCNT1L,r16

; Read TCNT1 into rl17:rl6
in r16,TCNTI1L

n r17,TCNT1H

C Code Example'"

unsigned int i;

/* Set TCNT1 to OxO1lFF */
TCNT1 = Ox1FF;

/* Read TCNT1 into i */

i = TCNT1;

Note: 1. See “About Code Examples” on page 7.
The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the
two instructions accessing the 16-bit register, and the interrupt code updates the temporary register by
accessing the same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt
will be corrupted. Therefore, when both the main code and the interrupt code update the temporary register, the
main code must disable the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading any of
the OCR1A/B or ICR1 Registers can be done by using the same principle

/ltmeL ATmega16A [DATASHEET] 88

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

TIM16_ReadTCNT1:
; Save global interrupt flag
in ri18,SREG
; Disable interrupts
chi
; Read TCNT1 into r17:r16

in r16,TCNT1L

in r17,TCNT1H

; Restore global interrupt flag
out SREG, ri18

ret

C Code Example!")

unsigned int TIM16_ReadTCNT1(void)
{
unsigned char sreg;
unsigned int ij;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLIO;
/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */
SREG = sreg;
return i;

}

Note: 1. See “About Code Examples” on page 7.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing any of
the OCR1A/B or ICR1 Registers can be done by using the same principle.

Atmel

ATmega16A [DATASHEET] 89

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to rl17:rl6

out TCNT1H,r17

out TCNT1L,r16

; Restore global interrupt flag
out SREG, ri18

ret

C Code Example!")

void TIM16_WriteTCNT1 (unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLIO:
/* Set TCNT1 to 1 */
TCNT1 = i;
/* Restore global interrupt flag */
SREG = sreg;
}

Note: 1. See “About Code Examples” on page 7.
The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1.

16.3.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the High byte is the same for all registers written, then the High
byte only needs to be written once. However, note that the same rule of atomic operation described previously
also applies in this case.

16.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by
the Clock Select logic which is controlled by the Clock Select (CS12:0) bits located in the Timer/Counter Control
Register B (TCCR1B). For details on clock sources and prescaler, see “Timer/Counter0 and Timer/Counter
Prescalers” on page 83.

16.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 16-2
shows a block diagram of the counter and its surroundings.

ATmega16A [DATASHEET 90
Atmel galoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 16-2. Counter Unit Block Diagram
DATA BUS (8-bit)

- > TOV
n
(Int.Req.)
Clock Select
Count Edge
- -t Tn
[ToNTaH(@8bity | TCNTL(8bit) | Clear | ok, Detector
-+ Control Logic [
TCNTR (16-bit Counter) ¢ 2reetion
(From Prescaler)
TTOF‘ TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).
clky, Timer/Counter clock.
TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper
eight bits of the counter, and Counter Low (TCNT1L) containing the lower 8 bits. The TCNT1H Register can only
be indirectly accessed by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU
accesses the High byte temporary register (TEMP). The temporary register is updated with the TCNT1H value
when the TCNT1L is read, and TCNT1H is updated with the temporary register value when TCNT1L is written.
This allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the counter is
counting that will give unpredictable results. The special cases are described in the sections where they are of
importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky4). The clky4 can be generated from an external or internal clock source, selected by the Clock Select
bits (CS12:0). When no clock source is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value
can be accessed by the CPU, independent of whether clky, is present or not. A CPU write overrides (has priority
over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation Mode bits (WGM13:0) located
in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B). There are close connections between
how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC1x.
For more details about advanced counting sequences and waveform generation, see “Modes of Operation” on
page 96.

The Timer/Counter Overflow (TOV1) Flag is set according to the mode of operation selected by the WGM13:0
bits. TOV1 can be used for generating a CPU interrupt.

16.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-
stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied
via the ICP1 pin or alternatively, via the Analog Comparator unit. The time-stamps can then be used to calculate
frequency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for
creating a log of the events.
ATmega16A [DATASHEET 91
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.6.1

The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements of the block
diagram that are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit
names indicates the Timer/Counter number.

Figure 16-3. Input Capture Unit Block Diagram
DATA BUS (s-bit)

[TEMP(8bit) |
ICRnH (8-bit) | ICRnL (8-bit) | [TONTnH(8-bit) | TCNTnL(8-bi) |
»| WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
w ACO* AcCIC* ICNC ICES
p Analog - ¢ ¢
Comparator o .
Noise . Edge .
Canceler | Detector »ICFn (Int.Req.)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively on the Analog
Comparator output (ACQO), and this change confirms to the setting of the edge detector, a capture will be
triggered. When a capture is triggered, the 16-bit value of the counter (TCNT1) is written to the Input Capture
Register (ICR1). The Input Capture Flag (ICF1) is set at the same system clock as the TCNT1 value is copied
into ICR1 Register. If enabled (TICIE1 = 1), the Input Capture Flag generates an Input Capture Interrupt. The
ICF1 Flag is automatically cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by
software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the Low byte (ICR1L) and
then the High byte (ICR1H). When the Low byte is read the High byte is copied into the High byte temporary
register (TEMP). When the CPU reads the ICR1H 1/O location it will access the TEMP Register.

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes the ICR1 Register
for defining the counter’'s TOP value. In these cases the Waveform Generation mode (WGM13:0) bits must be
set before the TOP value can be written to the ICR1 Register. When writing the ICR1 Register the High byte
must be written to the ICR1H I/O location before the Low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 87.

Input Capture Pin Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Timer/Counter1 can
alternatively use the Analog Comparator output as trigger source for the Input Capture unit. The Analog
Comparator is selected as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in the
Analog Comparator Control and Status Register (ACSR). Be aware that changing trigger source can trigger a
capture. The Input Capture Flag must therefore be cleared after the change.

Atmel ATmega16A [DATASHEET] 92

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.6.2

16.6.3

16.7

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled using the same
technique as for the T1 pin (Figure 15-1 on page 83). The edge detector is also identical. However, when the
noise canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by
four system clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless
the Timer/Counter is set in a waveform generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input
is monitored over four samples, and all four must be equal for changing the output that in turn is used by the
edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in Timer/Counter Control
Register B (TCCR1B). When enabled the noise canceler introduces additional four system clock cycles of delay
from a change applied to the input, to the update of the ICR1 Register. The noise canceler uses the system
clock and is therefore not affected by the prescaler.

Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the
incoming events. The time between two events is critical. If the processor has not read the captured value in the
ICR1 Register before the next event occurs, the ICR1 will be overwritten with a new value. In this case the result
of the capture will be incorrect.

When using the Input Capture Interrupt, the ICR1 Register should be read as early in the interrupt handler
routine as possible. Even though the Input Capture Interrupt has relatively high priority, the maximum interrupt
response time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt
requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed
during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture.
Changing the edge sensing must be done as early as possible after the ICR1 Register has been read. After a
change of the edge, the Input Capture Flag (ICF1) must be cleared by software (writing a logical one to the I/O
bit location). For measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt handler
is used).

Output Compare Units

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register (OCR1x). If TCNT
equals OCR1x the comparator signals a match. A match will set the Output Compare Flag (OCF1x) at the next
timer clock cycle. If enabled (OCIE1x = 1), the Output Compare Flag generates an output compare interrupt.
The OCF1x Flag is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag can be
cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the Waveform Generation mode (WGM13:0)
bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals are used by the Waveform
Generator for handling the special cases of the extreme values in some modes of operation (See “Modes of
Operation” on page 96.)

A special feature of output compare unit A allows it to define the Timer/Counter TOP value (i.e., counter
resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms generated
by the Waveform Generator.

Atmel ATmega16A [DATASHEET] 93

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 16-4 shows a block diagram of the output compare unit. The small “n” in the register and bit names
indicates the device number (n = 1 for Timer/Counter1), and the “x” indicates output compare unit (A/B). The
elements of the block diagram that are not directly a part of the output compare unit are gray shaded.

Figure 16-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit)
- -
AdA A t
\ TEMP (8-bit) \
[t
—] ¥ ¥
[oCRnxH But. (8-bit) | OCRnxL Buf. (8-bit) | [TocNTnH 8-bity | TCNTnL 8bit) |
OCRnNXx Buffer (16-bit Register) TCNTn (16-bit Counter)
— !
—V
[ocRnxH (8-bity | OCRnxL (8-bit) |
OCRnNXx (16-bit Register)

WL

| = (16-bit Comparator) |

—— OCFnx (Int.Req.)
A

TOP —
BOTTOM ———p

Waveform Generator » OCnx

; :

WGMn3:0 COMnNx1:0

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes.
For the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The
double buffering synchronizes the update of the OCR1x Compare Register to either TOP or BOTTOM of the
counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR1x Buffer Register, and if double buffering is disabled the CPU will access the
OCR1x directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation
(the Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore
OCR1x is not read via the High byte temporary register (TEMP). However, it is a good practice to read the Low
byte first as when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP
Register since the compare of all 16 bits is done continuously. The High byte (OCR1xH) has to be written first.
When the High byte 1/O location is written by the CPU, the TEMP Register will be updated by the value written.
Then when the Low byte (OCR1xL) is written to the lower eight bits, the High byte will be copied into the upper
8-bits of either the OCR1x buffer or OCR1x Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers” on page 87.

16.7.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one
to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the OCF1x Flag or reload/clear
the timer, but the OC1x pin will be updated as if a real compare match had occurred (the COM1x1:0 bits settings
define whether the OC1x pin is set, cleared or toggled).

Atmel ATmega16A [DATASHEET] 94

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.7.2

16.7.3

16.8

Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer clock cycle,
even when the timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without
triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there
are risks involved when changing TCNT1 when using any of the output compare units, independent of whether
the Timer/Counter is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match
will be missed, resulting in incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes
with variable TOP values. The compare match for the TOP will be ignored and the counter will continue to
OxFFFF. Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OC1x value is to use the force output compare (FOC1x) strobe bits in Normal
mode. The OC1x Register keeps its value even when changing between waveform generation modes.

Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the
COM1x1:0 bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses the COM1x1:0
bits for defining the Output Compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits
control the OC1x pin output source. Figure 16-5 shows a simplified schematic of the logic affected by the
COM1x1:0 bit setting. The I/O Registers, I/O bits, and /O pins in the figure are shown in bold. Only the parts of
the general I/O Port Control Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown.
When referring to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a System
Reset occur, the OC1x Register is reset to “0”.

Figure 16-5. Compare Match Output Unit, Schematic

COMnx1

COMnx0 Waveform
FOCnx Generator

— 1
OCnx
OCnx 0 Pin

DATABUS

\ DDR

clk,o

The general 1/O port function is overridden by the Output Compare (OC1x) from the Waveform Generator if
either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the
Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x)
must be set as output before the OC1x value is visible on the pin. The port override function is generally

Atmel ATmega16A [DATASHEET] 95

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.8.1

16.9

16.9.1

16.9.2

independent of the Waveform Generation mode, but there are some exceptions. Refer to Table 16-2, Table 16-
3 and Table 16-4 for details.

The design of the output compare pin logic allows initialization of the OC1x state before the output is enabled.
Note that some COM1x1:0 bit settings are reserved for certain modes of operation. See “Register Description”
on page 105.

The COM1x1:0 bits have no effect on the Input Capture unit.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes,
setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the OC1x Register is to be performed
on the next compare match. For compare output actions in the non-PWM modes refer to Table 16-2 on

page 105. For fast PWM mode refer to Table 16-3 on page 106, and for phase correct and phase and frequency
correct PWM refer to Table 16-4 on page 106.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For
non-PWM modes, the action can be forced to have immediate effect by using the FOC1x strobe bits.

Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGM13:0) and Compare Output mode (COM1x1:0) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COM1x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COM1x1:0 bits control whether the output should be set, cleared or
toggle at a compare match (See “Compare Match Output Unit” on page 95.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 103.

Normal Mode

The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its
maximum 16-bit value (MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the
Timer/Counter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero. The
TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between

the external events must not exceed the resolution of the counter. If the interval between events are too long,
the timer overflow interrupt or the prescaler must be used to extend the resolution for the capture unit.

The output compare units can be used to generate interrupts at some given time. Using the output compare to
generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM13:0 =4 or 12), the OCR1A or ICR1 Register are used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1)
matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top
value for the counter, hence also its resolution. This mode allows greater control of the compare match output
frequency. It also simplifies the operation of counting external events.

Atmel ATmega16A [DATASHEET] 96

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The timing diagram for the CTC mode is shown in Figure 16-6. The counter value (TCNT1) increases until a
compare match occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared.

Figure 16-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

} 3 3 3 3 3 3 y‘ (Interrupt on TOP)
v v ‘ ‘
TCNTn
A
?ngg\ue) (COMnA1:0 = 1)

- \ J sl
Period [1 0 2 0 3 4—4

An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCF1A
or ICF1 Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt
handler routine can be used for updating the TOP value. However, changing the TOP to a value close to
BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC
mode does not have the double buffering feature. If the new value written to OCR1A or ICR1 is lower than the
current value of TCNT1, the counter will miss the compare match. The counter will then have to count to its
maximum value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using OCR1A for
defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical level on each
compare match by setting the compare output mode bits to toggle mode (COM1A1:0 = 1). The OC1A value will
not be visible on the port pin unless the data direction for the pin is set to output (DDR_OC1A = 1). The
waveform generated will have a maximum frequency of focqa = fok 110/2 when OCR1A is set to zero (0x0000).
The waveform frequency is defined by the following equation: -

‘ _ fai 1o
OCnA = 2.N-(1+O0CRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x0000.

16.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5,6,7,14, or 15) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope
operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare
Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x, and
set at BOTTOM. In inverting Compare Output mode output is set on compare match and cleared at BOTTOM.
Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the
phase correct and phase and frequency correct PWM modes that use dual-slope operation. This high frequency
makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency
allows physically small sized external components (coils, capacitors), hence reduces total system cost.

Atmel ATmega16A [DATASHEET] 97

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or OCR1A. The
minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit
(ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following equation:

R _ log(TOP +1)
FPWM Iog(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values
0x00FF, 0x01FF, or Ox03FF (WGM13:0 =5, 6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A
(WGM13:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 16-7. The figure shows fast PWM mode when OCR1A or ICR1 is used to define
TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a
compare match occurs.

Figure 16-7. Fast PWM Mode, Timing Diagram

OCRnx / TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
OCnA Interrupt Flag Set
(Interrupt on TOP)

TCNTn

OCnx

OCnx FL T UL || (COMnx1:0 = 3)
Period ‘%1 —+—2—+—3—+—4—+5+6+—7—»‘4—8—»‘

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition the OC1A or

ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A or ICR1 is used for defining
the TOP value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the

TOP and compare values.

(COMnx1:0 = 2)

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits
are masked to zero when any of the OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP value. The ICR1
Register is not double buffered. This means that if ICR1 is changed to a low value when the counter is running
with none or a low prescaler value, there is a risk that the new ICR1 value written is lower than the current value
of TCNT1. The result will then be that the counter will miss the compare match at the TOP value. The counter
will then have to count to the MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare
match can occur. The OCR1A Register however, is double buffered. This feature allows the OCR1A 1/O location
to be written anytime. When the OCR1A I/O location is written the value written will be put into the OCR1A
Buffer Register. The OCR1A Compare Register will then be updated with the value in the Buffer Register at the

Atmel ATmega16A [DATASHEET] 98

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.9.4

next timer clock cycle the TCNT1 matches TOP. The update is done at the same timer clock cycle as the
TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is
actively changed (by changing the TOP value), using the OCR1A as TOP is clearly a better choice due to its
double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the
COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COM1x1:0 to 3 (See Table 16-2 on page 105). The actual OC1x value will only be visible on the port pin if
the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or
clearing) the OC1x Register at the compare match between OCR1x and TCNT1, and clearing (or setting) the
OC1x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ __ fowo
OCnxPWM N - (1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow spike
for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP will result in a constant high or low output
(depending on the polarity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A to
toggle its logical level on each compare match (COM1A1:0 = 1). This applies only if OCR1A is used to define
the TOP value (WGM13:0 = 15). The waveform generated will have a maximum frequency of focqa = fox 10/2
when OCR1A is set to zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double
buffer feature of the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1,2,3,10, or 11) provides
a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the
phase and frequency correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on
the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-
slope operation has lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1
or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum
resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the
following equation:

R _ log(TOP +1)
PCPWM Iog(2)

In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed
values 0x00FF, 0x01FF, or OxO3FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or the value in
OCR1A (WGM13:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNT1
value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is
shown on Figure 16-8. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define
TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation.

Atmel ATmega16A [DATASHEET] 99

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a
compare match occurs.

Figure 16-8. Phase Correct PWM Mode, Timing Diagram

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

N
AN

TCNTn

OCnx (COMNx1:0 = 2)
OCnx m (COMnx1:0 = 3)

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A
or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accordingly at the same timer clock
cycle as the OCR1x Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be
used to generate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits
are masked to zero when any of the OCR1x Registers are written. As the third period shown in Figure 16-8
illustrates, changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in
an unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Register. Since
the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the
falling slope is determined by the previous TOP value, while the length of the rising slope is determined by the
new TOP value. When these two values differ the two slopes of the period will differ in length. The difference in
length gives the unsymmetrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct mode when
changing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically
no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting
the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM1x1:0 to 3 (See Table 16-2 on page 105). The actual OC1x value will only be visible on the port
pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by
setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter
increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when

Atmel ATmega16A [DATASHEET] 100

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.9.5

the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated
by the following equation:

‘ _ fakwo
OCnxPCPWM — 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and
if set equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the
output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode
(WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option.
The phase and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope
operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC1x) is cleared on the compare match between
TCNT1 and OCR1x while upcounting, and set on the compare match while downcounting. In inverting Compare
Output mode, the operation is inverted. The dual-slope operation gives a lower maximum operation frequency
compared to the single-slope operation. However, due to the symmetric feature of the dual-slope PWM modes,
these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the time
the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 16-8 and Figure 16-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A.
The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit
(ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated using the following equation:

_ log(TOP +1)
Rprcpwm = “log(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value matches either
the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The
timing diagram for the phase correct and frequency correct PWM mode is shown on Figure 16-9. The figure
shows phase and frequency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes
represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare
match occurs.

Atmel ATmega16A [DATASHEET] 101

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 16-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx / TOP Update
and

TOVn Interrupt Flag Set
(Interrupt on Bottom)

Y
OCnx (COMNx1:0 = 2)
OCnx (COMnNx1:0 = 3)

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x Registers are
updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP
value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP. The Interrupt Flags can then be used to
generate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value
of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match
will never occur between the TCNT1 and the OCR1x.

As Figure 16-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods.
Since the OCR1x Registers are updated at BOTTOM, the length of the rising and the falling slopes will always
be equal. This gives symmetrical output pulses and is therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A
Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is
actively changed by changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its
double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can
be generated by setting the COM1x1:0 to 3 (See Table on page 106). The actual OC1x value will only be
visible on the port pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is
generated by setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when
the counter increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase and frequency
correct PWM can be calculated by the following equation:

. __fawo
OCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously
low and if set equal to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the
output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and
COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle.

Atmel ATmega16A [DATASHEET] 102

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky4) is therefore shown as a clock enable
signal in the following figures. The figures include information on when Interrupt Flags are set, and when the
OCR1x Register is updated with the OCR1x buffer value (only for modes utilizing double buffering). Figure 16-
10 shows a timing diagram for the setting of OCF1x.

Figure 16-10. Timer/Counter Timing Diagram, Setting of OCF1x, No Prescaling

clkyo

clkq,
(clkyo/1)

TCNTn OCRnx - 1 OCRnNx OCRnx + 1 OCRnNx + 2

OCRnNx OCRnXx Value

OCFnx

Figure 16-11 shows the same timing data, but with the prescaler enabled.

Figure 16-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (f; ,,0/8)

oA A A A A
s 0T

—

TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value
OCFnx

Figure 16-12 shows the count sequence close to TOP in various modes. When using phase and frequency
correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams will be the same, but
TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes
that set the TOV1 Flag at BOTTOM.

/ItmeL ATmega16A [DATASHEET] 103

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 16-12. Timer/Counter Timing Diagram, no Prescaling

clk,o

clkq,
(clk,o/1)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOVn (FPWM)

and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

TOP -1 TOP BOTTOM BOTTOM + 1
TOP -1 TOP TOP -1 TOP -2
Old OCRnx Value New OCRnx Value

Figure 16-13 shows the same timing data, but with the prescaler enabled.

Figure 16-13. Timer/Counter Timing Diagram, with Prescaler (f; ,,0/8)

clk,o

clkq,
(clk,/8)

TCNTn
(CTC and FPWM)

TCNTn

I
.

DR AR R
i i

DA R
i

(PC and PFC PWM) |

TOVn (FPWM)
and ICFn (if used
as TOP)

OCRnx
(Update at TOP)

Atmel

TOP -1 TOP BOTTOM BOTTOM + 1
TOP -1 TOP TOP -1 TOP -2
Old OCRnx Value New OCRnx Value
ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

104

16.11 Register Description

16.11.1 TCCRI1A - Timer/Counterl Control Register A

Bit 7 6 5 4 3 2 1 0

I COM1A1 COM1A0 COM1B1 | COM1BO FOC1A FOC1B WGM11 WGM10 I TCCR1A
Read/Write R/W R/IW R/IW R/IW w w R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — COM1A1:0: Compare Output Mode for Channel A

e Bit 5:4 — COM1B1:0: Compare Output Mode for Channel B

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respectively) behavior. If
one or both of the COM1A1:0 bits are written to one, the OC1A output overrides the normal port functionality of
the 1/0 pin it is connected to. If one or both of the COM1B1:0 bit are written to one, the OC1B output overrides
the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register
(DDR) bit corresponding to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is dependent of the
WGM13:0 bits setting. Table 16-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to a
normal or a CTC mode (non-PWM).

Table 16-2. Compare Output Mode, non-PWM

COM1Al/COM1B1 COM1A0/COM1BO Description
0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on compare match
1 0 Clear OC1A/OC1B on compare match (Set output
to low level)
1 1 Set OC1A/OC1B on compare match (Set output to
high level)

Table 16-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode.

/ItmeL ATmega16A [DATASHEET] 105

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 16-3. Compare Output Mode, Fast PWM(")
COM1A1/COM1B1 COM1A0/COM1BO Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare Match,
OC1B disconnected (normal port operation).
For all other WGM13:0 settings, normal port
operation, OCnA/OCnB disconnected.

1 0 Clear OC1A/OC1B on compare match, set

OC1A/OC1B at BOTTOM,
(non-inverting mode)

Set OC1A/OC1B on compare match, clear
OC1A/OC1B at BOTTOM,

(inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this case the

compare match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 97. for

more details.

Table 16-4 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the
phase and frequency correct, PWM mode.

Table 16-4.

Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM ()

COM1A1/COM1B1

COM1A0/COM1BO

Description

0

0

Normal port operation, OC1A/OC1B disconnected.

0

1

WGM13:0 = 9 or 14: Toggle OCnA on Compare

Match, OCnB disconnected (normal port
operation).

For all other WGM13:0 settings, normal port
operation, OC1A/OC1B disconnected.

Clear OC1A/OC1B on compare match when up-
counting. Set OC1A/OC1B on compare match
when downcounting.

Set OC1A/OC1B on compare match when up-
counting. Clear OC1A/OC1B on compare match
when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See “Phase Correct
PWM Mode” on page 99. for more details.

e Bit 3—- FOC1A: Force Output Compare for Channel A

e Bit 2 - FOC1B: Force Output Compare for Channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for
ensuring compatibility with future devices, these bits must be set to zero when TCCR1A is written when
operating in a PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match
is forced on the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits
setting. Note that the FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare
match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

ATmega16A [DATASHEET] 106

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Atmel

¢ Bit 1:0 - WGM11:0: Waveform Generation Mode

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting sequence of
the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used,
see Table 16-5. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear
Timer on Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See “Modes
of Operation” on page 96.)

Table 16-5. Waveform Generation Mode Bit Description(!)

WGM12 | WGM11 | WGM10 Update of TOV1 Flag Set
Mode | WGM13 | (CTC1) | (PWM1l) | (PWM10) | Timer/Counter Mode of Operation | TOP OCR1X on

0 0 0 0 0 Normal OxFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF | TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF | TOP BOTTOM
4 0 1 0 0 CTC OCR1A | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF | BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF | BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF | BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency Correct | ICR1 BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
1 1 0 1 1 PWM, Phase Correct OCR1A | TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 Reserved - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality

and location of these bits are compatible with previous versions of the timer.

16.11.2 TCCRI1B - Timer/Counterl Control Register B

Bit 7 6 5 4 3 2 1 0

| recner | oicest | - | WGM13 | wGM12 CSs12 csi1 csio | Tccrie
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the
input from the Input Capture Pin (ICP1) is filtered. The filter function requires four successive equal valued
samples of the ICP1 pin for changing its output. The Input Capture is therefore delayed by four Oscillator cycles
when the Noise Canceler is enabled.

e Bit 6 — ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICP1) that is used to trigger a capture event. When the
ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is written to one,
a rising (positive) edge will trigger the capture.

Atmel ATmega16A [DATASHEET] 107

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When a capture is triggered according to the ICES1 setting, the counter value is copied into the Input Capture
Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this can be used to cause an Input
Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and the
TCCR1B Register), the ICP1 is disconnected and consequently the Input Capture function is disabled.

* Bit 5 - Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero
when TCCR1B is written.

¢ Bit 4:3-WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

e Bit 2:0 — CS12:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 16-10 and

Figure 16-11.
Table 16-6. Clock Select Bit Description
CS12 Cs11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk;,o/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the
pin is configured as an output. This feature allows software control of the counting.

16.11.3 TCNT1H and TCNT1L —Timer/Counterl High and Low Register

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNT1L
Read/Write R/W R/W R/IW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for
read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and Low
bytes are read and written simultaneously when the CPU accesses these registers, the access is performed
using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 87.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match
between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all compare
units.

Atmel ATmega16A [DATASHEET] 108

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

16.11.4 OCR1AH and OCRI1AL — Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCR1AH
OCR1A[7:0] OCRI1AL
Read/Write RIW RW RIW RW RIW RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
16.11.5 OCR1BH and OCR1BL — Output Compare Register 1 B
Bit 7 6 5 4 3 2 1 0
OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

16.11.6

16.11.7

Atmel

The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value
(TCNT1). A match can be used to generate an output compare interrupt, or to generate a waveform output on
the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and Low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary High
Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 87.

ICR1H and ICR1L — Input Capture Register 1
Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICRIL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or
optionally on the analog comparator output for Timer/Counter1). The Input Capture can be used for defining the
counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and Low bytes are read simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on
page 87.

TIMSK — Timer/Counter Interrupt Mask Register!")

Bit 7 6 5 4 3 2 1 0
| ocie2 | ToilE2 | TICIEL | OCIE1IA | OCIE1B TOIEL OCIEO TOIEO | TIMsSK
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are described in this

section. The remaining bits are described in their respective timer sections.

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

109

e Bit 5—TICIEL: Timer/Counterl, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Input Capture Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on
page 44.) is executed when the ICF1 Flag, located in TIFR, is set.

e Bit 4 — OCIE1A: Timer/Counterl, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding Interrupt Vector (See
“Interrupts” on page 44.) is executed when the OCF1A Flag, located in TIFR, is set.

e Bit 3—- OCIE1B: Timer/Counterl, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding Interrupt Vector (See
“Interrupts” on page 44.) is executed when the OCF1B Flag, located in TIFR, is set.

e Bit 2 - TOIE1: Timer/Counterl, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector (See “Interrupts” on
page 44.) is executed when the TOV1 Flag, located in TIFR, is set.

16.11.8 TIFR — Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 | TOV2 | IcF1 | OCF1A | OCF1B TOV1 OCFO TOV0 | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Note: This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in this section. The
remaining bits are described in their respective timer sections.

e Bit 5—-ICF1: Timer/Counterl, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is set by
the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be
cleared by writing a logic one to its bit location.

¢ Bit 4 — OCF1A: Timer/Counterl, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register A
(OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively,
OCF1A can be cleared by writing a logic one to its bit location.

e Bit 3—- OCF1B: Timer/Counterl, Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register B
(OCR1B).

Note that a forced output compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively,
OCF1B can be cleared by writing a logic one to its bit location.

Atmel ATmega16A [DATASHEET] 110

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 2 - TOV1: Timer/Counterl, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In normal and CTC modes, the TOV1 Flag is
set when the timer overflows. Refer to Table 16-5 on page 107 for the TOV1 Flag behavior when using another
WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow interrupt vector is executed. Alternatively,
TOV1 can be cleared by writing a logic one to its bit location.

AtmeL ATmega16A [DATASHEET] 111

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.

17.1

17.2

17.2.1

8-bit Timer/Counter2 with PWM and Asynchronous Operation

Features

Single Compare unit Counter

Clear Timer on Compare Match (Auto Reload)

Glitch-free, Phase Correct Pulse Width Modulator (PWM)

Frequency Generator

10-bit Clock Prescaler

Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)

Allows clocking from External 32kHz Watch Crystal Independent of the 1/0O Clock

Overview

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block
diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual placement of I/O pins, refer to “Pinout
ATmega16A” on page 3. CPU accessible 1/0 Registers, including I/O bits and 1/O pins, are shown in bold. The
device-specific I/0 Register and bit locations are listed in the “Register Description” on page 125.

Figure 17-1. 8-bit Timer/Counter Block Diagram
[

A
> > TCCRn

count . TOVn

clear = (Int.Req.)
Control Logic
direction clk;,

-t TOSC1

BOTTOM

T/IC

Prescaler Oscillator

' Vv ¥

Timer/Counter
TCNTn | l__o_l

f * ocn
r(lmﬂeq.)

»| TOSC2

clk,,

Waveform
7| Generation

| OCn

>m<
N

DATABUS

] OCRn |

[— clk,
Synchronized Status flags

Syncl on Unit
‘ [—clk,gy

Status flags } A
< > ASSRn

asynchronous mode
select (ASn)

\

Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt request
(shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are
individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in the
figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2
pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status

/ItmeL ATmega16A [DATASHEET] 112

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.2.2

17.3

17.4

Register (ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment
(or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the
Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter value at all times.
The result of the compare can be used by the waveform generator to generate a PWM or variable frequency
output on the Output Compare Pin (OC2). See “Output Compare Unit” on page 114. for details. The compare
match event will also set the Compare Flag (OCF2) which can be used to generate an output compare interrupt
request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces the
Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise
form must be used (i.e., TCNT2 for accessing Timer/Counter2 counter value and so on). The definitions in Table
17-1 are also used extensively throughout the document.

Table 17-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2 Register. The assignment is dependent
on the mode of operation.

TOP

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The
clock source clky, is by default equal to the MCU clock, clk;,o. When the AS2 bit in the ASSR Register is written
to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For
details on asynchronous operation, see “ASSR — Asynchronous Status Register” on page 127. For details on
clock sources and prescaler, see “Timer/Counter Prescaler” on page 124.

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 17-2 shows a
block diagram of the counter and its surrounding environment.

Figure 17-2. Counter Unit Block Diagram

) TOVn

DATA BUS (Int.Req.)

-t TOSC1

count

-
clear clk
TCNTn - Control Logic |- = Prescaler

direction
-

bottom T T top

count Increment or decrement TCNT2 by 1.

T/C
Oscillator

TOSC2

y

CIK/O

Signal description (internal signals):

direction Selects between increment and decrement.

Atmel ATmega16A [DATASHEET] 113

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.5

clear Clear TCNT2 (set all bits to zero).

clkyy Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer
clock (clky,). clkr, can be generated from an external or internal clock source, selected by the Clock Select bits
(CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can
be accessed by the CPU, regardless of whether clky, is present or not. A CPU write overrides (has priority over)
all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGMZ20 bits located in the
Timer/Counter Control Register (TCCR2). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare output OC2. For more details about
advanced counting sequences and waveform generation, see “Modes of Operation” on page 116.

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by the WGM21:0
bits. TOV2 can be used for generating a CPU interrupt.

Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2). Whenever
TCNT2 equals OCR2, the comparator signals a match. A match will set the Output Compare Flag (OCF2) at the
next timer clock cycle. If enabled (OCIE2 = 1), the Output Compare Flag generates an output compare interrupt.
The OCF2 Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF2 Flag can be
cleared by software by writing a logical one to its I/O bit location. The waveform generator uses the match signal
to generate an output according to operating mode set by the WGM21:0 bits and Compare Output mode
(COM21:0) bits. The max and bottom signals are used by the waveform generator for handling the special
cases of the extreme values in some modes of operation (“Modes of Operation” on page 116). Figure 17-3
shows a block diagram of the output compare unit.

Figure 17-3. Output Compare Unit, Block Diagram
DATA BUS

| = (8-bit Comparator) |

OCEI (Int.Req.)

top »

bottom | Waveform Generator OCxy

L]

WGMn1:0 COMnN1:0

FOCn >

Atmel ATmega16A [DATASHEET] 114

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

1751

17.5.2

1753

17.6

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the
normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double
buffering synchronizes the update of the OCR2 Compare Register to either top or bottom of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby
making the output glitch-free.

The OCR2 Register access may seem complex, but this is not case. When the double buffering is enabled, the
CPU has access to the OCR2 Buffer Register, and if double buffering is disabled the CPU will access the OCR2
directly.

Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to
the Force Output Compare (FOC2) bit. Forcing compare match will not set the OCF2 Flag or reload/clear the
timer, but the OC2 pin will be updated as if a real compare match had occurred (the COM21:0 bits settings
define whether the OC2 pin is set, cleared or toggled).

Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCR2 to be initialized to the same value as TCNT2
without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there
are risks involved when changing TCNT2 when using the output compare unit, independently of whether the
Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2 value, the compare match will
be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to
BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to output.
The easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit in Normal
mode. The OC2 Register keeps its value even when changing between Waveform Generation modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value. Changing the
COM21:0 bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COM21:0) bits have two functions. The Waveform Generator uses the COM21:0
bits for defining the Output Compare (OC2) state at the next compare match. Also, the COM21:0 bits control the
OC2 pin output source. Figure 17-4 shows a simplified schematic of the logic affected by the COM21:0 bit
setting. The 1/0O Registers, I/O bits, and 1/O pins in the figure are shown in bold. Only the parts of the general /O
Port Control Registers (DDR and PORT) that are affected by the COM21:0 bits are shown. When referring to
the OC2 state, the reference is for the internal OC2 Register, not the OC2 pin.

Atmel ATmega16A [DATASHEET] 115

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 17-4. Compare Match Output Unit, Schematic

— D

COMn1
COMnO Waveform
D Q
FOCn Generator
— 1
OCn
OCn 0 > Pin
f 3
»D Q
% L
m PORT
<
k
Ol 1D Q
DDR
clk,o

The general 1/O port function is overridden by the Output Compare (OC2) from the waveform generator if either
of the COM21:0 bits are set. However, the OC2 pin direction (input or output) is still controlled by the Data
Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin (DDR_OC2) must be
set as output before the OC2 value is visible on the pin. The port override function is independent of the
Waveform Generation mode.

The design of the output compare pin logic allows initialization of the OC2 state before the output is enabled.
Note that some COM21:0 bit settings are reserved for certain modes of operation. See “Register Description” on
page 125.

17.6.1 Compare Output Mode and Waveform Generation

The waveform generator uses the COM21:0 bits differently in Normal, CTC, and PWM modes. For all modes,
setting the COM21:0 = 0 tells the Waveform Generator that no action on the OC2 Register is to be performed on
the next compare match. For compare output actions in the non-PWM modes refer to Table 17-3 on page 126.
For fast PWM mode, refer to Table 17-4 on page 126, and for phase correct PWM refer to Table 17-5 on

page 126.

A change of the COM21:0 bits state will have effect at the first compare match after the bits are written. For non-
PWM modes, the action can be forced to have immediate effect by using the FOC2 strobe bits.

17.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the output compare pins, is defined by the
combination of the Waveform Generation mode (WGM21:0) and Compare Output mode (COM21:0) bits. The
Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do.
The COM21:0 bits control whether the PWM output generated should be inverted or not (inverted or non-
inverted PWM). For non-PWM modes the COM21:0 bits control whether the output should be set, cleared, or
toggled at a compare match (See “Compare Match Output Unit” on page 115.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 120.

17.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting direction is
always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its
maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal operation the
Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The

Atmel ATmega16A [DATASHEET] 116

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.7.2

Atmel

TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with
the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the output compare to
generate waveforms in normal mode is not recommended, since this will occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manipulate the counter
resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2.
The OCR2 defines the top value for the counter, hence also its resolution. This mode allows greater control of
the compare match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 17-5. The counter value (TCNT2) increases until a
compare match occurs between TCNT2 and OCR2, and then counter (TCNT2) is cleared.

Figure 17-5. CTC Mode, Timing Diagram
r . r OCn Interrupt Flag Set
v v
TCNTn
OCn
(Toggle) (COMn1:0=1)
Period I‘ 1 ~I‘ 2 ~I4 3 ~I4 4)

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2 Flag. If
the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value
must be done with care since the CTC mode does not have the double buffering feature. If the new value written
to OCR2 is lower than the current value of TCNT2, the counter will miss the compare match. The counter will
then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical level on each
compare match by setting the Compare Output mode bits to toggle mode (COM21:0 = 1). The OC2 value will
not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will
have a maximum frequency of foc, = fy 10/2 when OCR2 is set to zero (0x00). The waveform frequency is
defined by the following equation: -
_ fok 1o

2-N-(1+O0CRn)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts
from MAX to 0x00.

fOCn

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

117

17.7.3

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency PWM waveform
generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter
counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OC2) is cleared on the compare match between TCNT2 and OCR2, and set at BOTTOM. In inverting
Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode
that uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized external components (coils,
capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is
then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
17-6. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2
slopes represent compare matches between OCR2 and TCNT2.

Figure 17-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

‘ ‘ OCRn Update and
l i i TOVn Interrupt Flag Set
\j \

v YOOvY Y v v

- VWA

v v l v
OCn : : _J (COMN1:0 = 2)

‘ocn [(COMN1:0 = 3)
Period F—1 al«—z —+—3—+—4—+—5—+—6—+—7—>‘

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is enabled,
the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by setting
the COM21:0 to 3 (see Table 17-4 on page 126). The actual OC2 value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2
Register at the compare match between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the
timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

; _ fa o
OCnPWM — N - 256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output
in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for each MAX+1
timer clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low output (depending on the
polarity of the output set by the COM21:0 bits.)

Atmel ATmega16A [DATASHEET] 118

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.7.4

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to
toggle its logical level on each compare match (COM21:0 = 1). The waveform generated will have a maximum
frequency of f,., = fy 10/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle in CTC mode,
except the double buffer feature of the output compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC2) is cleared on the compare match between TCNT2 and OCR2 while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The
dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct PWM mode the counter
is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count
direction. The TCNT2 value will be equal to MAX for one timer clock cycle. The timing diagram for the phase
correct PWM mode is shown on Figure 17-7. The TCNTZ2 value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2 and TCNT2.

Figure 17-7. Phase Correct PWM Mode, Timing Diagram

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

\ v Vv Yy vy \A

w /N NSNS

OCn ‘u L (COMn1:0 = 2)
OCn ﬁ ﬁ F (COMN1:0 = 3)
Period }<71 4+724+734>‘

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can
be used to generate an interrupt each time the counter reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting
the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be generated by setting
the COM21:0 to 3 (see Table 17-5 on page 126). The actual OC2 value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2
Register at the compare match between OCR2 and TCNT2 when the counter increments, and setting (or

Atmel ATmega16A [DATASHEET] 119

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

clearing) the OC2 Register at compare match between OCR2 and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the following equation:

‘ _ fox wo
OCnPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform output
in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the output will be continuously low and if
set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output
will have the opposite logic values.

At the very start of Period 2 in Figure 17-7 OCn has a transition from high to | ow even though there is no
Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases
that will give transition without Compare Match:

e OCR2A changes its value from Max, like in Figure 17-7. When the OCR2A value is MAX the OCn pin
value is the same as the result of a down-counting Compare Match. To ensure symmetry around
BOTTOM the OCn value at MAX must be correspond the the result of an up-counting Compare Match.

e The Timer starts counting from a value higher than the one in OCR2A, and for that reason misses the
Compare Match and hence the OCn that would have happened on the way up.

17.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clky,) is therefore
shown as a clock enable signal. In Asynchronous mode, clk;, should be replaced by the Timer/Counter
Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 17-8 contains timing
data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all
modes other than phase correct PWM mode.
Figure 17-8. Timer/Counter Timing Diagram, no Prescaling
clkyo
clk;,
(clk,o/1)
TCNTnN MAX - 1 MAX BOTTOM BOTTOM + 1
TOVn
Figure 17-9 shows the same timing data, but with the prescaler enabled.
ATmega16A [DATASHEET 120
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (f; ,,0/8)

oA AT A
s I T

—

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 17-10 shows the setting of OCF2 in all modes except CTC mode.

Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f; ,,0/8)

e T AL
Ey I B

TCNTn OCRn - 1 OCRn OCRn + 1 OCRn +2

OCRn OCRn Value

OCFn

Figure 17-11 shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

AtmeL ATmega16A [DATASHEET] 121

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (f; ,,0/8)

e IR R
sl T T

TCNTn
(CTC)

TOP -1 TOP BOTTOM BOTTOM + 1

OCRn TOP

OCFn

17.9 Asynchronous Operation of the Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

e o U s WM

Atmel

Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer
Registers TCNT2, OCR2, and TCCR2 might be corrupted. A safe procedure for switching clock source is:
Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.

Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2, and TCCR2.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

Clear the Timer/Counter2 Interrupt Flags.

Enable interrupts, if needed.

The Oscillator is optimized for use with a 32.768 kHz watch crystal. Applying an external clock to the
TOSC1 pin may result in incorrect Timer/Counter2 operation. The CPU main clock frequency must be
more than four times the Oscillator frequency.

When writing to one of the registers TCNT2, OCR2, or TCCR2, the value is transferred to a temporary
register, and latched after two positive edges on TOSC1. The user should not write a new value before the
contents of the temporary register have been transferred to its destination. Each of the three mentioned
registers have their individual temporary register, which means for example that writing to TCNT2 does
not disturb an OCR2 write in progress. To detect that a transfer to the destination register has taken place,
the Asynchronous Status Register — ASSR has been implemented.

When entering Power-save or Extended Standby mode after having written to TCNT2, OCR2, or TCCR2,
the user must wait until the written register has been updated if Timer/Counter2 is used to wake up the
device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly
important if the Output Compare2 interrupt is used to wake up the device, since the output compare
function is disabled during writing to OCR2 or TCNT2. If the write cycle is not finished, and the MCU
enters sleep mode before the OCR2UB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby mode,
precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one
TOSC1 cycle to be reset. If the time between wake-up and re-entering sleep mode is less than one
TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the user is in doubt whether

ATmega16A [DATASHEET] 122

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Wi~

e Wi~

Atmel

the time before re-entering Power-save or Extended Standby mode is sufficient, the following algorithm
can be used to ensure that one TOSC1 cycle has elapsed:

Write a value to TCCR2, TCNT2, or OCR2.
Wait until the corresponding Update Busy Flag in ASSR returns to zero.
Enter Power-save or Extended Standby mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is always
running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-
down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one
second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after
power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers
must be considered lost after a wake-up from Power-down or Standby mode due to unstable clock signal
upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is clocked
asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle
of the timer clock, that is, the timer is always advanced by at least one before the processor can read the
counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and
resumes execution from the instruction following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result.
Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a
register synchronized to the internal I/O clock domain. Synchronization takes place for every rising
TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clk,5) again becomes active,
TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The
phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it
depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows:

Write any value to either of the registers OCR2 or TCCR2.

Wait for the corresponding Update Busy Flag to be cleared.

Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer
takes three processor cycles plus one timer cycle. The timer is therefore advanced by at least one before

the processor can read the timer value causing the setting of the Interrupt Flag. The output compare pin is
changed on the timer clock and is not synchronized to the processor clock.

ATmega16A [DATASHEET] 123

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.10 Timer/Counter Prescaler

Figure 17-12. Prescaler for Timer/Counter2

clk,o — Olky g
Clear 10-BIT T/C PRESCALER
TOSC1 —» A @ o 3 © @ N
4 > |Tw |2 |Y o
< FlS B | % <
[E) = = x'— x’— I
AS2 o o] = = &
[5)
PSR2 0
l Y V y VVY
CS20 %
cs21 r&
CS22

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clkr,g. Clkyog is by default connected to the main system /O
clock clk,y. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin.
This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2
are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve
as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz
crystal. Applying an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clky,5/8, Clkyyg/32, Clky,5/64, clk1yg/128, clk,5/256,
and clky,s/1024. Additionally, clky,g as well as 0 (stop) may be selected. Setting the PSR2 bit in “SFIOR —
Special Function |0 Register” on page 129, resets the prescaler. This allows the user to operate with a
predictable prescaler.

/ItmeL ATmega16A [DATASHEET] 124

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.11 Register Description

17.11.1 TCCR2 - Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0

| Foc2 | wemzo | com2i | comzo | wGMm21 CcSs22 cs21 cs20 | TccRr2
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility
with future devices, this bit must be set to zero when TCCR2 is written when operating in PWM mode. When
writing a logical one to the FOC2 bit, an immediate compare match is forced on the waveform generation unit.
The OC2 output is changed according to its COM21:0 bits setting. Note that the FOC2 bit is implemented as a
strobe. Therefore it is the value present in the COM21:0 bits that determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2 as TOP.

The FOC2 bit is always read as zero.

¢ Bit 3, 6 - WGMZ2[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and
what type of waveform generation to be used. Modes of operation supported by the Timer/Counter unit are:
Normal mode, Clear Timer on Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM)
modes. See Table 17-2 and “Modes of Operation” on page 116.

Table 17-2. Waveform Generation Mode Bit Description(")

WGM21 | WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2 Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 | Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTC2 and PWMZ2 bit definition names are now obsolete. Use the WGM21:0 definitions. However, the
functionality and location of these bits are compatible with previous versions of the timer.

e Bit 5:4 — COM21:0: Compare Match Output Mode

These bits control the Output Compare pin (OC2) behavior. If one or both of the COM21:0 bits are set, the OC2
output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data
Direction Register (DDR) bit corresponding to OC2 pin must be set in order to enable the output driver.

Atmel ATmega16A [DATASHEET] 125

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0 bit setting.
Table 17-3 shows the COM21:0 bit functionality when the WGM21:0 bits are set to a normal or CTC mode (non-
PWM).

Table 17-3. Compare Output Mode, non-PWM Mode

COoM21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Toggle OC2 on compare match
1 0 Clear OC2 on compare match
1 1 Set OC2 on compare match

Table 17-4 shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast PWM mode.

Table 17-4. Compare Output Mode, Fast PWM Mode("

CcomM21 COM20 Description
0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on compare match, set OC2 at BOTTOM,

(non-inverting mode)

1 1 Set OC2 on compare match, clear OC2 at BOTTOM,
(inverting mode)

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored,
but the set or clear is done at BOTTOM. See “Fast PWM Mode” on page 118 for more details.

Table 17-5 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase correct PWM mode

Table 17-5. Compare Output Mode, Phase Correct PWM Mode!")

COomM21 COM20 | Description

0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on compare match when up-counting. Set OC2 on compare match

when downcounting.

1 1 Set OC2 on compare match when up-counting. Clear OC2 on compare match
when downcounting.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the compare match is ignored,
but the set or clear is done at TOP. See “Phase Correct PWM Mode” on page 119 for more details.

* Bit 2:0 — CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 17-6.

Table 17-6. Clock Select Bit Description

CSs22 Cs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkrog/(No prescaling)
0 1 0 clky,5/8 (From prescaler)
0 1 1 Clky,5/32 (From prescaler)

ATmega16A [DATASHEET] 126
A t m e L Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 17-6. Clock Select Bit Description (Continued)

CS22 CSs21 CS20 Description
1 0 0 Clky,5/64 (From prescaler)
1 0 1 clky,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

17.11.2 TCNTZ2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

| TCNT2[7:0] | Tent2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-
bit counter. Writing to the TCNT2 Register blocks (removes) the compare match on the following timer clock.
Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a compare match
between TCNT2 and the OCR2 Register.

17.11.3 OCR2 - Output Compare Register

Bit 7 6 5 4 3 2 1 0

| OCR2[7:0] | ocr2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register contains an 8-bit value that is continuously compared with the counter value
(TCNT2). A match can be used to generate an output compare interrupt, or to generate a waveform output on
the OC2 pin.

17.11.4 ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0

| | = AS2 TCN2UB | OCR2UB | TCR2UB | ASSR
Read/Write R R R R R/W R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 3—-AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the 1/O clock, clk;,5. When AS2 is written to one,
Timer/Counter2 is clocked from a Crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the
value of AS2 is changed, the contents of TCNT2, OCR2, and TCCR2 might be corrupted.

e Bit 2-TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that TCNT2 is ready to be updated with a new value.

e Bit 1 - OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR?2 is written, this bit becomes set. When OCR2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that OCR?2 is ready to be updated with a new value.

Atmel ATmega16A [DATASHEET] 127

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

* Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set. When TCCR2 has
been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit
indicates that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is set, the updated
value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNT2, the actual timer
value is read. When reading OCR2 or TCCRZ2, the value in the temporary storage register is read.

17.11.5 TIMSK — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

| ocie2 | ToIE2 | TICIEL | OCIE1A | OCIE1B TOIE1 OCIEO TOIEO | TIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match interrupt is enabled. The corresponding interrupt is executed if a compare match in
Timer/Counter2 occurs, i.e., when the OCF2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

¢ Bit 6 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs,
i.e., when the TOV2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR.

17.11.6 TIFR - Timer/Counter Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
| ocr2 | TOV2 | iIcFr | ocFiA | oOcFiB TOV1 OCF0 Tovo | TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2 —
Output Compare Register2. OCF2 is cleared by hardware when executing the corresponding interrupt handling
vector. Alternatively, OCF2 is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2
(Timer/Counter2 Compare match Interrupt Enable), and OCF2 are set (one), the Timer/Counter2 Compare
match Interrupt is executed.

e Bit 6 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to
the flag. When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes
counting direction at $00.

Atmel ATmega16A [DATASHEET] 128

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

17.11.7 SFIOR - Special Function IO Register

Bit 7 6 5 4 3 2 1 0

| Apts2 | AbTsi | ADTso | - ACME PUD PSR2 PSR10 | SFIOR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 1 -PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared by hardware
after the operation is performed. Writing a zero to this bit will have no effect. This bit will always be read as zero
if Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/Counter2 is operating in
asynchronous mode, the bit will remain one until the prescaler has been reset.

/ItmeL ATmega16A [DATASHEET] 129

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18. SPI - Serial Peripheral Interface

18.1 Features

Full-duplex, Three-wire Synchronous Data Transfer
Master or Slave Operation

LSB First or MSB First Data Transfer

Seven Programmable Bit Rates

End of Transmission Interrupt Flag

Write Collision Flag Protection

Wake-up from Idle Mode

Double Speed (CK/2) Master SPI Mode

18.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega16A
and peripheral devices or between several AVR devices. The ATmega16A SPI iSPI Block Diagram'"

MISO
y =
M MOSI
XTAL MSB LSB o -
DR ‘e ° s ©
l 8 BIT SHIFT REGISTER 9
READ DATA BUFFER 5
DIVIDER &
/2/4/8/16/32/64/128 _ E
(@]
O
Yy vV VvV Vv C zZ
SPI CLOCK (MASTER), CLOZK o
SELECT CLOCK [« S SCK
LOGIC M
><AF OA —
ol SS
gz g 55|
x [a]
= w| X
2% 8
MSTR
SPI CONTROL «SPE
1 o d < | o
@)
L 8 % ol B4 55 g FHse
(/)' ;V ‘ ‘ ‘ ‘ ‘% n|l v o = O O un n
| SPI STATUS REGISTER | | SPI CONTROL REGISTER
- 8 8,
v

SPIINTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 1-1 on page 3, and Table 12-6 on page 57 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-1. The system consists of
two Shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when
pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their
respective Shift Registers, and the Master generates the required clock pulses on the SCK line to interchange
data. Data is always shifted from Master to Slave on the Master Out — Slave In, MOSI, line, and from Slave to

Atmel

ATmega16A [DATASHEET] 130

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Master on the Master In — Slave %t, MISO, line. After each data packet, the Master will synchronize the Slave
by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled
by user software before communication can start. When this is done, writing a byte to the SPI Data Register
starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the
SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in
the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it
into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is
driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not
be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been
completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR
Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR
before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 18-1. SPI Master-Slave Interconnection
MSB MASTER _ LSB ' MSB___ SLAVE LSB
i MISO MISO,
T 8 BIT SHIFT REGISTER |—<«———————<«—| 8BIT SHIFT REGISTER T

A | A
> | MOSI__ MOSI; A
SHIFT
SPI | SCK SCK | ENABLE
CLOCK GENERATOR [¢ 5 <

—>

The system is single buffered in the transmit direction and double buffered in the receive direction. This means
that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed.
When receiving data, however, a received character must be read from the SPI Data Register before the next
character has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling
of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.
High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to
Table 18-1 on page 132. For more details on automatic port overrides, refer to “Alternate Port Functions” on
page 53.

Atmel ATmega16A [DATASHEET] 131

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 18-1. SPI Pin Overrides
Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined
SCK User Defined Input
SS User Defined Input
Note: See “Alternate Functions of Port B” on page 57 for a detailed description of how to define the direction of the user

defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a simple
transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the
SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins.
For example if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

Atmel

ATmega16A [DATASHEET] 132

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

SP1_Masterlinit:
; Set MOSI and SCK output, all others input

Idi r17,(1<<DD_MOSI) | (1<<DD_SCK)
out DDR_SPI1,rl17
; Enable SP1, Master, set clock rate fck/16
Idi
r17, (1<<SPE) | (1<<MSTR)] (1<<SPRO)
out SPCR,r17
ret

SP1_MasterTransmit:
; Start transmission of data (rl6)
out SPDR, r16

Wait_Transmit:

; Wait for transmission complete

shis SPSR,SPIF
rjmp Wait_Transmit
ret

C Code Example!")
void SP1_Masterilnit(void)

{
/* Set MOSI and SCK output, all others input */
DDR_SP1 = (1<<DD_MOSI1)|](1<<DD_SCK);
/* Enable SPl, Master, set clock rate fck/16 */
SPCR = (1<<SPE)] (1<<MSTR)] (1<<SPRO);

3

void SP1_MasterTransmit(char cData)

{
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while(1(SPSR & (1<<SPIF)))

3

Note: 1. See “About Code Examples” on page 7.

ATmega16A [DATASHEET] 133
/ItmeL Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The following code examples show how to initialize the SPI as a Slave and how to perform a simple reception.

Assembly Code Example'"

SPI_Slavelnit:
; Set MISO output, all others input

1di r17,(1<<DD_MI1S0)
out DDR_SPI1,r17

; Enable SPI

Idi r17, (1<<SPE)

out SPCR,r17

ret

SPI1_SlaveReceive:
; Wait for reception complete

sbis SPSR,SPIF

rjmp SP1_SlaveReceive
; Read received data and return

in r16,SPDR

ret

C Code Example'")
void SP1_Slavelnit(void)

{
/* Set MISO output, all others input */
DDR_SP1 = (1<<DD_MISO);
/* Enable SP1 */
SPCR = (1<<SPE);
}
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(T(SPSR & (1<<SPIF)))
/* Return data register */
return SPDR;
}

Note: 1. See “About Code Examples” on page 7.
18.3 SS Pin Functionality

18.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (S_S) pin is always input. When SS is held low, the SPI
is activated, and MISO becomes an output if configured so by the user. All other pins are inputs. When SSis
driven high, all pins are inputs except MISO which can be user configured as an output, and the SPI is passive,
which means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin is driven
high.

The SS pin is useful for packet/byte synchronization to keep the Slave Bit Counter synchronous with the Master
Clock generator. When the SS pin is driven high, the SPI Slave will immediately reset the send and receive
logic, and drop any partially received data in the Shift Register.

/ItmeL ATmega16A [DATASHEET] 134

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of the SS
pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system. Typically,
the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven low by
peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the SPI system
interprets this as another Master selecting the SPI as a Slave and starting to send data to it. To avoid bus
contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI becom-
ing a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the interrupt
routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that SSis
driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been cleared by
a Slave Select, it must be set by the user to re-enable SPI Master mode.

18.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are determined by
control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 18-2 and Figure 18-3. Data
bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for data signals
to stabilize. This is clearly seen by summarizing Table 18-3 and Table 18-4, as done below:

Table 18-2. CPOL and CPHA Functionality

Leading Edge Trailing Edge SPI Mode
CPOL=0,CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL =0,CPHA =1 Setup (Rising) Sample (Falling) 1
CPOL=1,CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1,CPHA =1 Setup (Falling) Sample (Rising) 3

Figure 18-2. SPI Transfer Format with CPHA =0

[~ sck (cpPoL = 0)
mode 0

Hpiigiinh
Lmeces 0 L L L
-
N

SAMPLE |
MOSI/MISO

CHANGE 0 \
MOSI PIN

CHANGE 0 ‘<'
L MISOPIN
(s 0

JEREREEE
L L L
X H_
H_H HNK

A
3t

=

'

S

MSB first (DORD = 0) MSB Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = l) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB
ATmega16A [DATASHEET] 135
Atmel g

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 18-3. SPI Transfer Format with CPHA =1
[~ sck (cPoL=0)

mode 1
SCK (CPOL = 1)*‘

mode 3

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0 O<_

L_ MISO PIN
IR

MSB first (DORD = 0) MSB Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

Sl

SRR ENENENE
L L L
D E H_HHC
OO KOO

a
s

\\l/\‘

AtmeL ATmega16A [DATASHEET] 136

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18.5 Register Description

18.5.1 SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0
| spE | spe | porD MSTR CPOL CPHA SPR1 sPrO | spcr

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if the global
interrupt enable bit in SREG is set.

« Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.

+ Bit 5—- DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SS is
configured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR will
become set. The user will then have to set MSTR to re-enable SPI Master mode.

e Bit 3—- CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when idle.
Refer to Figure 18-2 and Figure 18-3 for an example. The CPOL functionality is summarized below:

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing (last)
edge of SCK. Refer to Figure 18-2 and Figure 18-3 for an example. The CPHA functionality is summarized
below:

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

* Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect on
the Slave. The relationship between SCK and the Oscillator Clock frequency f.; is shown in the following table

Atmel ATmega16A [DATASHEET] 137

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

18.5.2

Atmel

Table 18-5. Relationship Between SCK and the Oscillator Frequency
SPI2X SPR1 SPRO SCK Frequency

0 0 0 foo/4

0 0 1 f./16

0 1 0 f.s/64

0 1 1 fos/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fos/32

1 1 1 f.o/64
SPSR — SPI Status Register
Bit 7 6 5 4 3 2 1 0

| spF | weoo | - | - - SPi2x | SPSR

Read/Write R R R R R RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set and
global interrupts are enabled. If SSis an input and is driven low when the SPI is in Master mode, this will also
set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing the
SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the
SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the SPI Data
Register.

e Bit 5:1 — Res: Reserved Bits
These bits are reserved bits in the ATmega16A and will always read as zero.

e Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in Master
mode (see Table 18-5). This means that the minimum SCK period will be two CPU clock periods. When the SPI
is configured as Slave, the SPI is only guaranteed to work at f_../4 or lower.

The SPI interface on the ATmega16A is also used for program memory and EEPROM downloading or
uploading. See page 262 for SPI Serial Programming and Verification.

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

138

18.5.3 SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0

| wmse | | LS8 | SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift

Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register
Receive buffer to be read.

/ItmeL ATmega16A [DATASHEET] 139

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19. USART

19.1 Features

Full Duplex Operation (Independent Serial Receive and Transmit Registers)
Asynchronous or Synchronous Operation

Master or Slave Clocked Synchronous Operation

High Resolution Baud Rate Generator

Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
Odd or Even Parity Generation and Parity Check Supported by Hardware
Data OverRun Detection

Framing Error Detection

Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
Three Separate Interrupts on TX Complete, TX Data Register Empty, and RX Complete
Multi-processor Communication Mode

Double Speed Asynchronous Communication Mode

19.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible
serial communication device. A simplified block diagram of the USART transmitter is shown in Figure 19-1. CPU
accessible 1/0 Registers and I/O pins are shown in bold.

/ItmeL ATmega16A [DATASHEET] 140

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 19-1. USART Block Diagram("

a2
r *77777777777776I070I7G§n;a70ﬂ
! UBRR[H:L] ‘
\ 0sC |
\ v \
\
‘ BAUD RATE GENERATOR }
‘ |
Y
| SYNC LOGIC PIN ‘
< »| XCK
\ A »| CONTROL \
\ |
e —
| Transmltteﬁ‘
|) ™
‘ UDR (Transmit) CONTROL \
7 PARITY ‘
o \ GENERATOR \
=] I PIN [
2| | TRANSMIT SHIFT REGISTER CONTROL ‘ T*D
< -
> [
o | Receiver |
| » cLock RX \
\ RECOVERY CONTROL \
‘ |
‘ |
DATA PIN ‘
\ RECEIVE SHIFT REGISTER RECOVERY CONTROL t—| RxD
‘ |
| L |
) PARITY
} UDR (Receive) CHEGKER }
- _ __ __ _ L fffffffffffffffffff J
UCSRA UCSRB UCSRC

Note: 1. Refer to Figure 1-1 on page 3, Table 12-14 on page 63, and Table 12-8 on page 59 for USART pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top): Clock
Generator, Transmitter and Receiver. Control Registers are shared by all units. The clock generation logic
consists of synchronization logic for external clock input used by synchronous Slave operation, and the baud
rate generator. The XCK (Transfer Clock) pin is only used by Synchronous Transfer mode. The Transmitter
consists of a single write buffer, a serial Shift Register, parity generator and control logic for handling different
serial frame formats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery units. The
recovery units are used for asynchronous data reception. In addition to the recovery units, the receiver includes
a parity checker, control logic, a Shift Register and a two level receive buffer (UDR). The receiver supports the
same frame formats as the transmitter, and can detect frame error, data overrun and parity errors.

19.2.1 AVR USART vs. AVR UART - Compatibility
The USART is fully compatible with the AVR UART regarding:

e Bit locations inside all USART Registers
e Baud Rate Generation
e Transmitter Operation
e Transmit Buffer Functionality
e Receiver Operation
/ItmeL ATmega16A [DATASHEET] 141

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.3

However, the receive buffering has two improvements that will affect the compatibility in some special cases:

e A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO buffer.
Therefore the UDR must only be read once for each incoming data! More important is the fact that the
Error Flags (FE and DOR) and the 9th data bit (RXB8) are buffered with the data in the receive buffer.
Therefore the status bits must always be read before the UDR Register is read. Otherwise the error status
will be lost since the buffer state is lost.

e The receiver Shift Register can now act as a third buffer level. This is done by allowing the received data
to remain in the serial Shift Register (see Figure 19-1) if the Buffer Registers are full, until a new start bit is
detected. The USART is therefore more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

e CHRO9 is changed to UCSZ2
e ORis changed to DOR

Clock Generation

The clock generation logic generates the base clock for the Transmitter and Receiver. The USART supports
four modes of clock operation: Normal Asynchronous, Double Speed Asynchronous, Master Synchronous and
Slave Synchronous mode. The UMSEL bit in USART Control and Status Register C (UCSRC) selects between
asynchronous and synchronous operation. Double Speed (Asynchronous mode only) is controlled by the U2X
found in the UCSRA Register. When using Synchronous mode (UMSEL = 1), the Data Direction Register for the
XCK pin (DDR_XCK) controls whether the clock source is internal (Master mode) or external (Slave mode). The
XCK pin is only active when using Synchronous mode.

Figure 19-2 shows a block diagram of the clock generation logic.

Figure 19-2. Clock Generation Logic, Block Diagram

UBRR
u2x
fosc

rescalin UBRR+1
D:wn—Colurger > /2 e > /2
X
OSC — txclk
Y v
xcki |_> ngir:t:er > DEtde?:?or
XCK " Iy UMSEL
Pin |2 A
DDR_XCK UCPOL
rxclk
Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (Internal Signal). Used for synchronous Slave operation.
xcko Clock output to XCK pin (Internal Signal). Used for synchronous Master
operation.
fosc XTAL pin frequency (System Clock).
ATmega16A [DATASHEET 142
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.3.1 Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous Master modes of operation. The
description in this section refers to Figure 19-2.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a programmable
prescaler or baud rate generator. The down-counter, running at system clock (fosc), is loaded with the UBRR
value each time the counter has counted down to zero or when the UBRRL Register is written. A clock is
generated each time the counter reaches zero. This clock is the baud rate generator clock output (=
fosc/(UBRR+1)). The Transmitter divides the baud rate generator clock output by 2, 8 or 16 depending on
mode. The baud rate generator output is used directly by the receiver’s clock and data recovery units. However,
the recovery units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSEL, U2X and DDR_XCK bits.

Table 19-1 contains equations for calculating the baud rate (in bits per second) and for calculating the UBRR
value for each mode of operation using an internally generated clock source.

Table 19-1. Equations for Calculating Baud Rate Register Setting
Equation for Calculating Equation for Calculating
Operating Mode Baud Rate!" UBRR Value
/(Aus%/;c:rcc)))nous Normal Mode BAUD < fosc UBRR fosc)
16(UBRR + 1) 16BAUD
,;ks1y)nchronous Double Speed Mode (U2X BAUD = fosc UBRR < fosc)
8(UBRR +1) 8BAUD
Synchronous Master Mode BAUD < fosc UBRR - fosc)
2(UBRR +1) 2BAUD
Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).
BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)
Some examples of UBRR values for some system clock frequencies are found in Table 19-9 (see page

163).

19.3.2 Double Speed Operation (U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer rate
for asynchronous communication. Note however that the receiver will in this case only use half the number of
samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more accurate baud rate
setting and system clock are required when this mode is used. For the Transmitter, there are no downsides.

19.3.3 External Clock

External clocking is used by the synchronous Slave modes of operation. The description in this section refers to
Figure 19-2 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of meta-
stability. The output from the synchronization register must then pass through an edge detector before it can be

ATmega16A [DATASHEET] 143

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Atmel

19.3.4

19.4

used by the Transmitter and receiver. This process introduces a two CPU clock period delay and therefore the
maximum external XCK clock frequency is limited by the following equation:
fosc
fxek <=~

Note that f.,, depends on the stability of the system clock source. It is therefore recommended to add some
margin to avoid possible loss of data due to frequency variations.

Synchronous Clock Operation

When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or clock
output (Master). The dependency between the clock edges and data sampling or data change is the same. The
basic principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the edge the data
output (TxD) is changed.

Figure 19-3. Synchronous Mode XCK Timing.

UCPOL=1 XCK \—/—®—/—m

RxD / TxD *

RxD / TxD *

The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is used for data
change. As Figure 19-3 shows, when UCPOL is zero the data will be changed at rising XCK edge and sampled
at falling XCK edge. If UCPOL is set, the data will be changed at falling XCK edge and sampled at rising XCK
edge.

Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and
optionally a parity bit for error checking. The USART accepts all 30 combinations of the following as valid frame
formats:

e 1 start bit

e 5,6,7,8, or9 data bits

® no, even or odd parity bit

e 1 or2 stop bits
A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a total of
nine, are succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after the data bits,
before the stop bits. When a complete frame is transmitted, it can be directly followed by a new frame, or the

communication line can be set to an idle (high) state. Figure 19-4 illustrates the possible combinations of the
frame formats. Bits inside brackets are optional.

Atmel ATmega16A [DATASHEET] 144

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

1941

195

Figure 19-4. Frame Formats

% FRAME %
(IDLE) St/ 0 >< 1 >< 2 >< 3 >< 4 ><[5]>< [6]>< [7]>< [8]><[P]/Sp1 [Sp2]\ (St/IDLE)
St Start bit, always low.
(n) Data bits (0 to 8).
P Parity bit. Can be odd or even.
Sp Stop bit, always high.

IDLENOo transfers on the communication line (RxD or TxD). An IDLE line must be

high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0, and USBS bits in UCSRB and UCSRC.
The Receiver and Transmitter use the same setting. Note that changing the setting of any of these bits will
corrupt all ongoing communication for both the Receiver and Transmitter.

The USART Character SiZe (UCSZ2:0) bits select the number of data bits in the frame. The USART Parity
mode (UPM1:0) bits enable and set the type of parity bit. The selection between one or two stop bits is done by
the USART Stop Bit Select (USBS) bit. The receiver ignores the second stop bit. An FE (Frame Error) will
therefore only be detected in the cases where the first stop bit is zero.

Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the
exclusive or is inverted. The relation between the parity bit and data bits is as follows::
Peven = dp_19...0d;@d,®d; ®d; ®0

Podd = dp_1®..0d;©d,®d; ©d; ® 1
Parity bit using even parity
Podd Parity bit using odd parity
d, Data bit n of the character
If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

USART Initialization

The USART has to be initialized before any communication can take place. The initialization process normally

consists of setting the baud rate, setting frame format and enabling the Transmitter or the Receiver depending

on the usage. For interrupt driven USART operation, the Global Interrupt Flag should be cleared (and interrupts
globally disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing
transmissions during the period the registers are changed. The TXC Flag can be used to check that the
Transmitter has completed all transfers, and the RXC Flag can be used to check that there are no unread data
in the receive buffer. Note that the TXC Flag must be cleared before each transmission (before UDR is written)
if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C function that are equal
in functionality. The examples assume asynchronous operation using polling (no interrupts enabled) and a fixed
frame format. The baud rate is given as a function parameter. For the assembly code, the baud rate parameter
is assumed to be stored in the r17:r16 registers. When the function writes to the UCSRC Register, the URSEL
bit (MSB) must be set due to the sharing of I/O location by UBRRH and UCSRC.

Atmel ATmega16A [DATASHEET] 145

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

USART_Init:
; Set baud rate
out UBRRH, ri17
out UBRRL, ril6
; Enable receiver and transmitter
Idi r16, (1<<RXEN)|(1<<TXEN)
out UCSRB, rl16
; Set frame format: 8data, 2stop bit
Idi r16, (1<<URSEL)|](1<<USBS)|(3<<UCSZ0)
out UCSRC,r16
ret

C Code Example!")

#define FOSC 1843200// Clock Speed
#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1
void main(void)

{
USART_Init (MYUBRR);
}
void USART_Init(unsigned int ubrr)
{
/* Set baud rate */
UBRRH = (unsigned char)(ubrr>>8);
UBRRL = (unsigned char)ubrr;
/* Enable receiver and transmitter */
UCSRB = (1<<RXEN)|] (1<<TXEN);
/* Set frame format: 8data, 2stop bit */
UCSRC = (1<<URSEL)](1<<USBS) | (3<<UCSz0);
}

Note: 1. See “About Code Examples” on page 7.

More advanced initialization routines can be made that include frame format as parameters, disable interrupts
and so on. However, many applications use a fixed setting of the Baud and Control Registers, and for these
types of applications the initialization code can be placed directly in the main routine, or be combined with
initialization code for other 1/0O modules.

19.6 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB Register. When
the Transmitter is enabled, the normal port operation of the TxD pin is overridden by the USART and given the
function as the transmitter’s serial output. The baud rate, mode of operation and frame format must be set up
once before doing any transmissions. If synchronous operation is used, the clock on the XCK pin will be
overridden and used as transmission clock.

19.6.1 Sending Frames with 5to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU can load
the transmit buffer by writing to the UDR I/O location. The buffered data in the transmit buffer will be moved to
the Shift Register when the Shift Register is ready to send a new frame. The Shift Register is loaded with new
data if it is in idle state (no ongoing transmission) or immediately after the last stop bit of the previous frame is

Atmel ATmega16A [DATASHEET] 146

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

transmitted. When the Shift Register is loaded with new data, it will transfer one complete frame at the rate
given by the Baud Register, U2X bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the Data Register
Empty (UDRE) Flag. When using frames with less than eight bits, the most significant bits written to the UDR
are ignored. The USART has to be initialized before the function can be used. For the assembly code, the data
to be sent is assumed to be stored in Register R16.

Assembly Code Example!"

USART_Transmit:
; Wait for empty transmit buffer

sbis UCSRA, UDRE

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data
out UDR,rl16

ret

C Code Example'")

void USART_Transmit(unsigned char data)

{
/* Wait for empty transmit buffer */
while ('(UCSRA & (1<<UDRE)))
/* Put data into buffer, sends the data */
UDR = data;

}

Note: 1. See “About Code Examples” on page 7.

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag, before loading it with

new data to be transmitted. If the Data Register Empty Interrupt is utilized, the interrupt routine writes the data
into the buffer.

19.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB before the Low
byte of the character is written to UDR. The following code examples show a transmit function that handles 9-bit
characters. For the assembly code, the data to be sent is assumed to be stored in Registers R17:R16.

/ItmeL ATmega16A [DATASHEET] 147

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Note:)

Assembly Code Example!

USART_Transmit:
; Wait for empty transmit buffer

sbis UCSRA, UDRE

rjmp USART_Transmit

; Copy 9th bit from rl7 to TXBS8

cbi UCSRB, TXB8

sbrc rl7,0

sbi UCSRB, TXB8

; Put LSB data (r16) into buffer, sends the data
out UDR,r16

ret

C Code ExampleN°t)

void USART_Transmit(unsigned int data)

{
/* Wait for empty transmit buffer */
while ('(UCSRA & (1<<UDRE))))

/* Copy 9th bit to TXB8 */
UCSRB &= ~(1<<TXB8);
if (data & 0x0100)
UCSRB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDR = data;

Note: These transmit functions are written to be general functions. They can be optimized if the contents of the UCSRB is
static. (i.e., only the TXB8 bit of the UCSRB Register is used after initialization).

The ninth bit can be used for indicating an address frame when using multi processor communication mode or

for other protocol handling as for example synchronization.

19.6.3 Transmitter Flags and Interrupts

The USART transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and Transmit
Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive new data. This
bit is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be transmitted
that has not yet been moved into the Shift Register. For compatibility with future devices, always write this bit to
zero when writing the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the USART Data
Register Empty Interrupt will be executed as long as UDRE is set (provided that global interrupts are enabled).
UDRE is cleared by writing UDR. When interrupt-driven data transmission is used, the Data Register Empty
Interrupt routine must either write new data to UDR in order to clear UDRE or disable the Data Register empty
Interrupt, otherwise a new interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit Shift Register has been
shifted out and there are no new data currently present in the transmit buffer. The TXC Flag bit is automatically
cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location.

The TXC Flag is useful in half-duplex communication interfaces (like the RS485 standard), where a transmitting

Atmel ATmega16A [DATASHEET] 148

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

application must enter receive mode and free the communication bus immediately after completing the
transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART Transmit Complete
Interrupt will be executed when the TXC Flag becomes set (provided that global interrupts are enabled). When
the transmit complete interrupt is used, the interrupt handling routine does not have to clear the TXC Flag, this is
done automatically when the interrupt is executed.

19.6.4 Parity Generator
The parity generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPM1 = 1),
the transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the frame that is
sent.

19.6.5 Disabling the Transmitter
The disabling of the transmitter (setting the TXEN to zero) will not become effective until ongoing and pending
transmissions are completed, i.e., when the transmit Shift Register and transmit Buffer Register do not contain
data to be transmitted. When disabled, the transmitter will no longer override the TxD pin.

19.7 Data Reception — The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Register to one.
When the receiver is enabled, the normal pin operation of the RxD pin is overridden by the USART and given
the function as the receiver’s serial input. The baud rate, mode of operation and frame format must be set up
once before any serial reception can be done. If synchronous operation is used, the clock on the XCK pin will be
used as transfer clock.

19.7.1 Receiving Frames with 5 to 8 Data Bits
The receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be
sampled at the baud rate or XCK clock, and shifted into the receive Shift Register until the first stop bit of a
frame is received. A second stop bit will be ignored by the receiver. When the first stop bit is received, i.e., a
complete serial frame is present in the receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDR 1/O location.
The following code example shows a simple USART receive function based on polling of the Receive Complete
(RXC) Flag. When using frames with less than eight bits the most significant bits of the data read from the UDR
will be masked to zero. The USART has to be initialized before the function can be used

ATmega16A [DATASHEET 149
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

USART_Receive:
; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get and return received data from buffer
in rl6, UDR

ret

C Code Example!")

unsigned char USART_Receive(void)

{
/* Wait for data to be received */
while (I'(UCSRA & (1<<RXC)))
/* Get and return received data from buffer */
return UDR;
3

Note: 1. See “About Code Examples” on page 7.

The function simply waits for data to be present in the receive buffer by checking the RXC Flag, before reading
the buffer and returning the value.

19.7.2 Receiving Frames with 9 Databits

If 9 bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB before reading
the low bits from the UDR. This rule applies to the FE, DOR and PE status Flags as well. Read status from
UCSRA, then data from UDR. Reading the UDR I/O location will change the state of the receive buffer FIFO and
consequently the TXB8, FE, DOR and PE bits, which all are stored in the FIFO, will change.

/ItmeL ATmega16A [DATASHEET] 150

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The following code example shows a simple USART receive function that handles both 9-bit characters and the
status bits.

Assembly Code Example'"

USART_Receive:
; Wait for data to be received

sbis UCSRA, RXC

rjmp USART_Receive

; Get status and 9th bit, then data from buffer
in ri8, UCSRA

in r17, UCSRB

in rl6, UDR

; If error, return -1

andi r18, (1<<FE)|] (1<<DOR) | (1<<PE)
breq USART_ReceiveNoError

Idi rl7, HIGH(-1)

Idi rl6, LOW(-1)

USART_ReceiveNoError:
; Filter the 9th bit, then return

Isr ri7
andi ri7, 0x01
ret

C Code Example!")

unsigned int USART_Receive(void)

{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (T'(UCSRA & (1<<RXC)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRA;
resh = UCSRB;
resl = UDR;
/* If error, return -1 */
if (status & (1<<FE)](1<<DOR)|](1<<PE))
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;
return ((resh << 8) | resl);
}

Note: 1. See “About Code Examples” on page 7.

The receive function example reads all the 1/0 Registers into the Register File before any computation is done.
This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as
early as possible.

19.7.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buffer. This flag is
one when unread data exist in the receive buffer, and zero when the receive buffer is empty (i.e., does not
contain any unread data). If the receiver is disabled (RXEN = 0), the receive buffer will be flushed and
consequently the RXC bit will become zero.

/ItmeL ATmega16A [DATASHEET] 151

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive Complete
Interrupt will be executed as long as the RXC Flag is set (provided that global interrupts are enabled). When
interrupt-driven data reception is used, the receive complete routine must read the received data from UDR in
order to clear the RXC Flag, otherwise a new interrupt will occur once the interrupt routine terminates.

19.7.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). All
can be accessed by reading UCSRA. Common for the Error Flags is that they are located in the receive buffer
together with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the
UCSRA must be read before the receive buffer (UDR), since reading the UDR 1/O location changes the buffer
read location. Another equality for the Error Flags is that they can not be altered by software doing a write to the
flag location. However, all flags must be set to zero when the UCSRA is written for upward compatibility of future
USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame stored in the receive
buffer. The FE Flag is zero when the stop bit was correctly read (as one), and the FE Flag will be one when the
stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break
conditions and protocol handling. The FE Flag is not affected by the setting of the USBS bit in UCSRC since the
receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRA.

The Data OverRun (DOR) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun
occurs when the receive buffer is full (two characters), it is a new character waiting in the receive Shift Register,
and a new start bit is detected. If the DOR Flag is set there was one or more serial frame lost between the frame
last read from UDR, and the next frame read from UDR. For compatibility with future devices, always write this
bit to zero when writing to UCSRA. The DOR Flag is cleared when the frame received was successfully moved
from the Shift Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error when received. If
parity check is not enabled the PE bit will always be read zero. For compatibility with future devices, always set
this bit to zero when writing to UCSRA. For more details see “Parity Bit Calculation” on page 145 and “Parity
Checker” on page 152.

19.7.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type of parity check to be
performed (odd or even) is selected by the UPMO bit. When enabled, the parity checker calculates the parity of
the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of
the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (PE) Flag
can then be read by software to check if the frame had a parity error.

The PE bit is set if the next character that can be read from the receive buffer had a parity error when received
and the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is
read.

19.7.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will
therefore be lost. When disabled (i.e., the RXEN is set to zero) the Receiver will no longer override the normal
function of the RxD port pin. The receiver buffer FIFO will be flushed when the receiver is disabled. Remaining
data in the buffer will be lost

Atmel ATmega16A [DATASHEET] 152

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.7.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be emptied of its
contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an

error condition, read the UDR 1/O location until the RXC Flag is cleared. The following code example shows how
to flush the receive buffer.

Assembly Code Example!"
USART_Flush:

sbis UCSRA, RXC
ret

in ri6, UDR
rjmp USART_Flush

C Code Example!")

void USART_Flush(void)
{

unsigned char dummy;
while (UCSRA & (1<<RXC)) dummy = UDR;

}

Note: 1. See “About Code Examples” on page 7.

19.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The
clock recovery logic is used for synchronizing the internally generated baud rate clock to the incoming
asynchronous serial frames at the RxD pin. The data recovery logic samples and low pass filters each incoming
bit, thereby improving the noise immunity of the receiver. The asynchronous reception operational range

depends on the accuracy of the internal baud rate clock, the rate of the incoming frames, and the frame size in
number of bits.

19.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5 illustrates the
sampling process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal
mode, and 8 times the baud rate for Double Speed mode. The horizontal arrows illustrate the synchronization
variation due to the sampling process. Note the larger time variation when using the double speed mode (U2X =
1) of operation. Samples denoted zero are samples done when the RxD line is idle (i.e., no communication

activity).

Figure 19-5. Start Bit Sampling
RxD IDLE START BIT O
=N B N N A S B S A A R AR IO
Sam?Ie T P—t—ﬂ T T * % T T T T
(uz2x=1) 0 2 3 7 8 1 2

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the start bit detection
sequence is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The clock recovery logic
then uses samples 8, 9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated
with sample numbers inside boxes on the figure), to decide if a valid start bit is received. If two or more of these
three samples have logical high levels (the majority wins), the start bit is rejected as a noise spike and the

Atmel ATmega16A [DATASHEET] 153

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

receiver starts looking for the next high to low-transition. If however, a valid start bit is detected, the clock
recovery logic is synchronized and the data recovery can begin. The synchronization process is repeated for
each start bit.

19.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery unit
uses a state machine that has 16 states for each bit in normal mode and 8 states for each bit in Double Speed
mode. Figure 19-6 shows the sampling of the data bits and the parity bit. Each of the samples is given a number
that is equal to the state of the recovery unit.

Figure 19-6. Sampling of Data and Parity Bit

RxD BITn

Sample "i’{ T T
(U2X = 0) 1 2 3
2

Sample P—t—ﬂ

(U2X = 1) 1

5 6 7 [8]9]10]11 12 13 14 15 16
3

The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to the three
samples in the center of the received bit. The center samples are emphasized on the figure by having the
sample number inside boxes. The majority voting process is done as follows: If two or all three samples have
high levels, the received bit is registered to be a logic 1. If two or all three samples have low levels, the received
bit is registered to be a logic 0. This majority voting process acts as a low pass filter for the incoming signal on
the RxD pin. The recovery process is then repeated until a complete frame is received. Including the first stop
bit. Note that the receiver only uses the first stop bit of a frame.

Figure 19-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit of the next
frame.

Figure 19-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP 1 A ®) ©)
Sample PL(T T T T T T

(U2X=0) 12 3 4 5 6 7 [8]9 10|01 o1 on

e T

(U2x = 1) 1 2 3 on

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is
registered to have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits used
for majority voting. For Normal Speed mode, the first low level sample can be at point marked (A) in Figure 19-
7. For Double Speed mode the first low level must be delayed to (B). (C) marks a stop bit of full length. The early
start bit detection influences the operational range of the receiver.

19.8.3 Asynchronous Operational Range

The operational range of the receiver is dependent on the mismatch between the received bit rate and the
internally generated baud rate. If the Transmitter is sending frames at too fast or too slow bit rates, or the

Atmel ATmega16A [DATASHEET] 154

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

internally generated baud rate of the receiver does not have a similar (see Table 19-2) base frequency, the

receiver will not be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal receiver baud

rate.

slow

R (D+1)S
slow = S_1+D-S+Sg
R = _(D+2)s

fast = (D+1)S+Sy,

Sum of character size and parity size (D = 5 to 10 bit)

Samples per bit. S = 16 for Normal Speed mode and S = 8 for

Double Speed mode.

First sample number used for majority voting. S = 8 for Normal Speed and

Sg = 4 for Double Speed mode.

Middle sample number used for majority voting. Sy, = 9 for Normal Speed and

Sy = 5 for Double Speed mode.

is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 19-2 and Table 19-3 list the maximum receiver baud rate error that can be tolerated. Note that Normal
Speed mode has higher toleration of baud rate variations.

Table 19-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X = 0)
D Max Total Error | Recommended Max Receiver
(Data+Parity Bit) Rgiow (%0) Riasi(%0) (%) Error (%)
5 93.20 106.67 +6.67/-6.8 +3.0
6 94.12 105.79 +5.79/-5.88 +25
7 94.81 105.11 +5.11/-5.19 +2.0
8 95.36 104.58 +4.58/-4.54 +2.0
9 95.81 104.14 +4.14/-4.19 +15
10 96.17 103.78 +3.78/-3.83 +15
Table 19-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X = 1)
D Max Total Error | Recommended Max Receiver
(Data+Parity Bit) Rsiow (%0) Riast (%0) (%) Error (%)
5 94.12 105.66 +5.66/-5.88 +25
6 94.92 104.92 +4.92/-5.08 +2.0
7 95.52 104.35 +4.35/-4.48 +15
8 96.00 103.90 +3.90/-4.00 +15
9 96.39 103.53 +3.53/-3.61 +15
10 96.70 103.23 +3.23/-3.30 +1.0

Atmel

ATmega16A [DATASHEET] 155

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.9

19.9.1

The recommendations of the maximum receiver baud rate error was made under the assumption that the
receiver and transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The receiver’s system clock (XTAL) will always
have some minor instability over the supply voltage range and the temperature range. When using a crystal to
generate the system clock, this is rarely a problem, but for a resonator the system clock may differ more than
2% depending of the resonators tolerance. The second source for the error is more controllable. The baud rate
generator can not always do an exact division of the system frequency to get the baud rate wanted. In this case
an UBRR value that gives an acceptable low error can be used if possible.

Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering function of incoming
frames received by the USART Receiver. Frames that do not contain address information will be ignored and
not put into the receive buffer. This effectively reduces the number of incoming frames that has to be handled by
the CPU, in a system with multiple MCUs that communicate via the same serial bus. The Transmitter is
unaffected by the MPCM setting, but has to be used differently when it is a part of a system utilizing the Multi-
processor Communication mode.

If the receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if the frame
contains data or address information. If the receiver is set up for frames with nine data bits, then the ninth bit
(RXB8) is used for identifying address and data frames. When the frame type bit (the first stop or the ninth bit) is
one, the frame contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data from a Master MCU.
This is done by first decoding an address frame to find out which MCU has been addressed. If a particular Slave

MCU has been addressed, it will receive the following data frames as normal, while the other Slave MCUs will
ignore the received frames until another address frame is received.

Using MPCM

For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ = 7). The ninth bit (TXB8)
must be set when an address frame (TXB8 = 1) or cleared when a data frame (TXB = 0) is being transmitted.
The Slave MCUs must in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communication mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).

2. The Master MCU sends an address frame, and all Slaves receive and read this frame. In the Slave
MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it clears the
MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is received. The other Slave
MCUs, which still have the MPCM bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCM bit and
waits for a new address frame from Master. The process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the receiver must change
between using n and n+1 character frame formats. This makes full-duplex operation difficult since the
transmitter and receiver uses the same character size setting. If 5- to 8-bit character frames are used, the
transmitter must be set to use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame
type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The MPCM bit shares
the same 1/O location as the TXC Flag and this might accidentally be cleared when using SBI or CBI
instructions.

Atmel ATmega16A [DATASHEET] 156

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.10 Accessing UBRRH/ UCSRC Registers

The UBRRH Register shares the same 1/O location as the UCSRC Register. Therefore some special
consideration must be taken when accessing this I/O location.

19.10.1 Write Access

When doing a write access of this I/0O location, the high bit of the value written, the USART Register Select
(URSEL) bit, controls which one of the two registers that will be written. If URSEL is zero during a write
operation, the UBRRH value will be updated. If URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Assembly Code Example'"

et UBRRH to 2
di r1l6,0x02

out UBRRH, r16

; Set the USBS and the UCSZ1 bit to one, and
; the remaining bits to zero.

Idi r16, (1<<URSEL) | (1<<USBS) | (1<<UCSZ1)
out UCSRC,r16

C Code Example!")

/* Set UBRRH to 2 */
UBRRH = 0x02;

/* Set the USBS and the UCSZ1 bit to one, and */
/* the remaining bits to zero. */
UCSRC = (1<<URSEL)](1<<USBS)|](1<<UCSZ1);

Note: 1. See “About Code Examples” on page 7.
As the code examples illustrate, write accesses of the two registers are relatively unaffected of the sharing of I/O
location.

19.10.2 Read Access
Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. However, in most
applications, it is rarely necessary to read any of these registers.
The read access is controlled by a timed sequence. Reading the I/O location once returns the UBRRH Register
contents. If the register location was read in previous system clock cycle, reading the register in the current
clock cycle will return the UCSRC contents. Note that the timed sequence for reading the UCSRC is an atomic
operation. Interrupts must therefore be controlled (for example by disabling interrupts globally) during the read
operation.

The following code example shows how to read the UCSRC Register contents.

ATmega16A [DATASHEET] 157
/I t m eL Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly Code Example'"

USART_ReadUCSRC:
; Read UCSRC

in r16,UBRRH
in r16,UCSRC
ret

C Code Example!")
unsigned char USART_ReadUCSRC(void)

{
unsigned char ucsrc;
/* Read UCSRC */
ucsrc = UBRRH;
ucsrc = UCSRC;
return ucsrc;

}

Note: 1. See “About Code Examples” on page 7.
The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as an ordinary register, as
long as the previous instruction did not access the register location.

19.11 Register Description

19.11.1 UDR - USART /O Data Register

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDR (Read)
TXB[7:0] UDR (Write)
Read/Write R/W R/W R/W RIW R/W RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same 1/0
address referred to as USART Data Register or UDR. The Transmit Data Buffer Register (TXB) will be the
destination for data written to the UDR Register location. Reading the UDR Register location will return the
contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by the
Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data written to UDR
when the UDRE Flag is not set, will be ignored by the USART Transmitter. When data is written to the transmit
buffer, and the Transmitter is enabled, the Transmitter will load the data into the transmit Shift Register when the
Shift Register is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive buffer is
accessed. Due to this behavior of the receive buffer, do not use read modify write instructions (SBI and CBI) on
this location. Be careful when using bit test instructions (SBIC and SBIS), since these also will change the state
of the FIFO.

Atmel ATmega16A [DATASHEET] 158

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.11.2 UCSRA — USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| rRxc | T | ubre | FE | DOR | PE u2Xx MPCM | UCSRA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e Bit 7 - RXC: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is empty
(i.e., does not contain any unread data). If the receiver is disabled, the receive buffer will be flushed and
consequently the RXC bit will become zero. The RXC Flag can be used to generate a Receive Complete
interrupt (see description of the RXCIE bit).

e Bit 6 - TXC: USART Transmit Complete

This flag bit is set when the entire frame in the transmit Shift Register has been shifted out and there are no new
data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared when a transmit
complete interrupt is executed, or it can be cleared by writing a one to its bit location. The TXC Flag can
generate a Transmit Complete interrupt (see description of the TXCIE bit).

* Bit 5—- UDRE: USART Data Register Empty

The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the buffer is
empty, and therefore ready to be written. The UDRE Flag can generate a Data Register empty Interrupt (see
description of the UDRIE bit).

UDRE is set after a reset to indicate that the transmitter is ready.

e Bit 4 — FE: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. i.e., when the first stop
bit of the next character in the receive buffer is zero. This bit is valid until the receive buffer (UDR) is read. The
FE bit is zero when the stop bit of received data is one. Always set this bit to zero when writing to UCSRA.

* Bit 3—-DOR: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is full
(two characters), it is a new character waiting in the receive Shift Register, and a new start bit is detected. This
bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to UCSRA.

« Bit 2 - PE: Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the parity checking
was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read. Always set this bit
to zero when writing to UCSRA.

e Bit 1 - U2X: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the transfer
rate for asynchronous communication.

e Bit 0 — MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is written to one, all the
incoming frames received by the USART receiver that do not contain address information will be ignored. The

Atmel ATmega16A [DATASHEET] 159

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

transmitter is unaffected by the MPCM setting. For more detailed information see “Multi-processor
Communication Mode” on page 156.

19.11.3 UCSRB — USART Control and Status Register B

Bit 7 6 5 4 3 2 1 0

| RxclE | TxclE | UDRIE | RXEN | TXEN | uCSZ2 RXB8 TXB8 | UCSRB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete Interrupt will be
generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the
RXC bit in UCSRA is set.

e Bit 6 — TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete Interrupt will be
generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the TXC
bit in UCSRA is set.

* Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty Interrupt will be generated
only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and the UDRE bit in
UCSRA is set.

* Bit 4 — RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for the
RxD pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR, and PE
Flags.

¢ Bit 3—-TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation for
the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, i.e., when the transmit Shift Register and transmit Buffer
Register do not contain data to be transmitted. When disabled, the transmitter will no longer override the TxD
port.

e Bit 2 - UCSZ2: Character Size

The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size) in a
frame the receiver and transmitter use.

* Bit 1 - RXB8: Receive Data Bit 8

RXBS8 is the ninth data bit of the received character when operating with serial frames with nine data bits. Must
be read before reading the low bits from UDR.

¢ Bit 0 — TXB8: Transmit Data Bit 8

TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine data
bits. Must be written before writing the low bits to UDR.

Atmel ATmega16A [DATASHEET] 160

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

19.11.4 UCSRC — USART Control and Status Register C

Bit 7 6 5 4 3 2 1 0

| urseL | umseL | upmi | upmo | usBS | ucszi ucszo | ucpoL | UCSRC
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 0 0 0 0 1 1 0

The UCSRC Register shares the same I/O location as the UBRRH Register. See the “Accessing UBRRH/
UCSRC Registers” on page 157 section which describes how to access this register.

e Bit 7 - URSEL: Register Select

This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when reading UCSRC.
The URSEL must be one when writing the UCSRC.

« Bit 6 — UMSEL: USART Mode Select
This bit selects between Asynchronous and Synchronous mode of operation.

Table 19-4. UMSEL Bit Settings

UMSEL Mode
0 Asynchronous Operation
1 Synchronous Operation

e Bit 5:4 — UPML1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the transmitter will automatically
generate and send the parity of the transmitted data bits within each frame. The Receiver will generate a parity
value for the incoming data and compare it to the UPMO setting. If a mismatch is detected, the PE Flag in
UCSRA will be set.

Table 19-5. UPM Bits Settings

UPM1 UPMO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

« Bit 3—-USBS: Stop Bit Select
This bit selects the number of Stop Bits to be inserted by the Transmitter. The Receiver ignores this setting.

Table 19-6. USBS Bit Settings

USBS Stop Bit(s)
0 1-bit
1 2-bit
ATmega16A [DATASHEET 161
Atmel galon |]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 2:1 - UCSZ1:0: Character Size

The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Character Size) in a
frame the Receiver and Transmitter use.

Table 19-7. UCSZ Bits Settings
ucsz2 ucsz1 UCSZ0 Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

e Bit 0 — UCPOL: Clock Polarity

This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous mode is used. The
UCPOL bit sets the relationship between data output change and data input sample, and the synchronous clock
(XCK).

Table 19-8. UCPOL Bit Settings
Transmitted Data Changed (Output of TxD Received Data Sampled (Input on RxD
UCPOL | Pin) Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

19.11.5 UBRRL and UBRRH — USART Baud Rate Registers

Bit

Read/Write

Initial Value

15 14 13 12 11 10 9 8
URSEL | - | - | - | UBRR[11:8] UBRRH
UBRR[7:0] UBRRL
7 6 5 4 3 2 1 0
R/W R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0
0 0 0 0

Atmel

The UBRRH Register shares the same I/O location as the UCSRC Register. See the “Accessing UBRRH/
UCSRC Registers” on page 157 section which describes how to access this register.

e Bit 15 - URSEL: Register Select

This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when reading
UBRRH. The URSEL must be zero when writing the UBRRH.

* Bit 14:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be written to zero
when UBRRH is written.

ATmega16A [DATASHEET]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

162

19.12

e Bit 11:0 — UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most significant
bits, and the UBRRL contains the 8 least significant bits of the USART baud rate. Ongoing transmissions by the
transmitter and receiver will be corrupted if the baud rate is changed. Writing UBRRL will trigger an immediate
update of the baud rate prescaler.

Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous
operation can be generated by using the UBRR settings in Table 19-9. UBRR values which yield an actual baud
rate differing less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are acceptable,
but the receiver will have less noise resistance when the error ratings are high, especially for large serial frames
(see “Asynchronous Operational Range” on page 154). The error values are calculated using the following
equation:

Baud RateClosest Match
BaudRate

Error[%] = (1) « 100%

Table 19-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies
fysc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

g;‘ed U2X=0 U2x=1 U2X=0 U2x=1 U2X=0 U2x=1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 1 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 1 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max () 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps

1. UBRR = 0, Error = 0.0%

ATmega16A [DATASHEET] 163

Atmel

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 19-10. Examples of UBRR Settings for Commonly Used Oscillator Frequencies
fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

FBz:;Jed U2X =0 U2x=1 U2X=0 U2x =1 U2X =0 U2x =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 21% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 21% 15 0.0% 31 0.0%
38.4k 5 0.0% 1 0.0% 6 -7.0% 12 0.2% 1 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 1 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
™ - - - - - - - - - - 0 -7.8%
Max () 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

1. UBRR = 0, Error = 0.0%

/ItmeL ATmega16A [DATASHEET] 164

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 19-11. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

fysc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz
nged U2x=0 U2x=1 U2X=0 U2x=1 U2X =0 U2x=1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 1 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 1 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 1 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
™ - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max (! 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps
1. UBRR = 0, Error = 0.0%
/ItmeL ATmega16A [DATASHEET] 165

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 19-12.

Examples of UBRR Settings for Commonly Used Oscillator Frequencies

fysc = 16.0000MHz
uz2x=0 uzx=1
Baud Rate (bps) UBRR Error UBRR Error
2400 416 -0.1% 832 0.0%
4800 207 0.2% 416 -0.1%
9600 103 0.2% 207 0.2%
14.4k 68 0.6% 138 -0.1%
19.2k 51 0.2% 103 0.2%
28.8k 34 -0.8% 68 0.6%
38.4k 25 0.2% 51 0.2%
57.6k 16 2.1% 34 -0.8%
76.8k 12 0.2% 25 0.2%
115.2k 8 -3.5% 16 2.1%
230.4k 3 8.5% 8 -3.5%
250k 3 0.0% 7 0.0%
0.5M 1 0.0% 3 0.0%
™ 0 0.0% 1 0.0%
Max (D 1Mbps 2Mbps
1. UBRR = 0, Error = 0.0%
ATmega16A [DATASHEET]

Atmel

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

166

20. Two-wire Serial Interface

20.1 Features
* Simple Yet Powerful and Flexible Communication Interface, Only Two Bus Lines Needed
* Both Master and Slave Operation Supported
* Device Can Operate as Transmitter or Receiver
* 7-bit Address Space allows up to 128 Different Slave Addresses
* Multi-master Arbitration Support
* Up to 400kHz Data Transfer Speed
* Slew-rate Limited Output Drivers
* Noise Suppression Circuitry Rejects Spikes on Bus Lines
* Fully Programmable Slave Address with General Call Support
* Address Recognition causes Wake-up when AVR is in Sleep Mode

20.2 Two-wire Serial Interface Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The TWI protocol
allows the systems designer to interconnect up to 128 different devices using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA). The only external hardware needed to implement the bus is a single
pull-up resistor for each of the TWI bus lines. All devices connected to the bus have individual addresses, and
mechanisms for resolving bus contention are inherent in the TWI protocol.

Figure 20-1. TWI Bus Interconnection

VCC
Device 1 Device 2 Device3 | Device n R1 R2
SDA - >
SCL = >
20.2.1 TWI Terminology
The following definitions are frequently encountered in this section.
Table 20-1. TWI Terminology
Term Description
Master The device that initiates and terminates a transmission. The Master also generates the
SCL clock.
Slave The device addressed by a Master.
Transmitter The device placing data on the bus.
Receiver The device reading data from the bus.
ATmega16A [DATASHEET 167
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.2.2 Electrical Interconnection

As depicted in Figure 20-1, both bus lines are connected to the positive supply voltage through pull-up resistors.
The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements a wired-AND
function which is essential to the operation of the interface. A low level on a TWI bus line is generated when one
or more TWI devices output a zero. A high level is output when all TWI devices tri-state their outputs, allowing
the pull-up resistors to pull the line high. Note that all AVR devices connected to the TWI bus must be powered
in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of 400pF
and the 7-bit Slave address space. A detailed specification of the electrical characteristics of the TWI is given in
“Two-wire Serial Interface Characteristics” on page 283. Two different sets of specifications are presented
there, one relevant for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.

20.3 Data Transfer and Frame Format

20.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the data line
must be stable when the clock line is high. The only exception to this rule is for generating start and stop
conditions.

Figure 20-2. Data Validity

SDA
Data Stable Data Stable
Data Change

20.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the Master issues a
START condition on the bus, and it is terminated when the Master issues a STOP condition. Between a START
and a STOP condition, the bus is considered busy, and no other Master should try to seize control of the bus. A
special case occurs when a new START condition is issued between a START and STOP condition. This is
referred to as a REPEATED START condition, and is used when the Master wishes to initiate a new transfer
without releasing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As depicted below, START
and STOP conditions are signalled by changing the level of the SDA line when the SCL line is high.

Figure 20-3. START, REPEATED START, and STOP Conditions

Atmel ATmega16A [DATASHEET] 168

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.3.3 Address Packet Format

All address packets transmitted on the TWI bus are nine bits long, consisting of seven address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be
performed, otherwise a write operation should be performed. When a Slave recognizes that it is being
addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed Slave is
busy, or for some other reason can not service the Master’s request, the SDA line should be left high in the ACK
clock cycle. The Master can then transmit a STOP condition, or a REPEATED START condition to initiate a new
transmission. An address packet consisting of a Slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer, but
the address 0000 000 is reserved for a general call.

When a general call is issued, all Slaves should respond by pulling the SDA line low in the ACK cycle. A general
call is used when a Master wishes to transmit the same message to several Slaves in the system. When the
general call address followed by a Write bit is transmitted on the bus, all Slaves set up to acknowledge the
general call will pull the SDA line low in the ack cycle. The following data packets will then be received by all the
Slaves that acknowledged the general call. Note that transmitting the general call address followed by a Read
bit is meaningless, as this would cause contention if several Slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 20-4. Address Packet Format

Addr MSB AddrLSB R/W ACK
I((

A X A KX

)

sct M
1 2 § 7 8 9 B

START

20.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an acknowledge
bit. During a data transfer, the Master generates the clock and the START and STOP conditions, while the
receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is signalled by the receiver
pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is
signalled. When the receiver has received the last byte, or for some reason cannot receive any more bytes, it
should inform the transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted
first.

Figure 20-5. Data Packet Format

Data MSB Data LSB ACK
Aggregate b
SDA R Eé

SDA from
Transmitter §>
SDA from /)

receiverR /
SCL from

Master % B

! 2 ’ 8 ° STOP, REPEATED
SLA+R/W Data Byte START or Next
Data Byte
Atmel ATmegal16A [DATASHEET] 169

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a STOP
condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note that the
wired-ANDing of the SCL line can be used to implement handshaking between the Master and the Slave. The
Slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
Master is too fast for the Slave, or the Slave needs extra time for processing between the data transmissions.
The Slave extending the SCL low period will not affect the SCL high period, which is determined by the Master.
As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the SCL duty cycle.

Figure 20-6 shows a typical data transmission. Note that several data bytes can be transmitted between the
SLA+R/W and the STOP condition, depending on the software protocol implemented by the application
software.

Figure 20-6. Typical Data Transmission

Addr MSB AddrLSB RW ACK Data MSB DataLSB ACK

o I 60 G G G X

N AV AN AVAVANE Y AVANRYAVA VAN 20
3 1 2 7 8 9 1 2 § 7 8 9 1

START SLA+R/W Data Byte STOP

20.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several Masters. Special concerns have been taken in order to
ensure that transmissions will proceed as normal, even if two or more Masters initiate a transmission at the
same time. Two problems arise in multi-master systems:

e An algorithm must be implemented allowing only one of the Masters to complete the transmission. All
other Masters should cease transmission when they discover that they have lost the selection process.
This selection process is called arbitration. When a contending Master discovers that it has lost the
arbitration process, it should immediately switch to Slave mode to check whether it is being addressed by
the winning Master. The fact that multiple Masters have started transmission at the same time should not
be detectable to the Slaves, i.e., the data being transferred on the bus must not be corrupted.

e Different Masters may use different SCL frequencies. A scheme must be devised to synchronize the serial
clocks from all Masters, in order to let the transmission proceed in a lockstep fashion. This will facilitate
the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all Masters will
be wired-ANDed, yielding a combined clock with a high period equal to the one from the Master with the
shortest high period. The low period of the combined clock is equal to the low period of the Master with the
longest low period. Note that all Masters listen to the SCL line, effectively starting to count their SCL high and
low time-out periods when the combined SCL line goes high or low, respectively.

Atmel ATmega16A [DATASHEET] 170

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 20-7. SCL Synchronization between Multiple Masters

[TA . [[TAhigh [
\ \ \ \
| | | |
| I] |
SCL from [[\ \
Master A ‘ g | |
\ \
| |
,,,,,, | L __
SCL from | 8 L/ | N
Master B \) V| | I
l [| I
|] | |
| \
SCL bus | |/ | |
Line \ \ } } [
I 1 | T
\ \ \
| TBIow | } TBhigh |
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all Masters continuously monitoring the SDA line after outputting data. If the value
read from the SDA line does not match the value the Master had output, it has lost the arbitration. Note that a
Master can only lose arbitration when it outputs a high SDA value while another Master outputs a low value. The
losing Master should immediately go to Slave mode, checking if it is being addressed by the winning Master.
The SDA line should be left high, but losing Masters are allowed to generate a clock signal until the end of the
current data or address packet. Arbitration will continue until only one Master remains, and this may take many
bits. If several Masters are trying to address the same Slave, arbitration will continue into the data packet.

Figure 20-8. Arbitration between Two Masters

Master A Loses
|| | rbitration, SDA,# SDA
SDA from

Master A .
| |
|

SDA from |

MasterB |\ / \ / \
|

Synchronized
| |

Note that arbitration is not allowed between:

o A REPEATED START condition and a data bit

e A STOP condition and a data bit

e A REPEATED START and a STOP condition
It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This implies
that in multi-master systems, all data transfers must use the same composition of SLA+R/W and data packets.

In other words: All transmissions must contain the same number of data packets, otherwise the result of the
arbitration is undefined.

/ItmeL ATmega16A [DATASHEET] 171

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 20-9. All registers drawn in a thick line
are accessible through the AVR data bus.

Figure 20-9. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
A A
y Y
Bus Interface Unit Bit Rate Generator
START / STOP . .
Control Spike Suppression Prescaler
I . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
A A A
4 4 4
Address Match Unit Control Unit
Address Register > . Status Register Control Register
(TWAR) (TWSR) (TWCR)
TWI Unit
State Machine and
Address Comparator Status control

20.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-rate
limiter in order to conform to the TWI specification. The input stages contain a spike suppression unit removing
spikes shorter than 50 ns. Note that the internal pull-ups in the AVR pads can be enabled by setting the PORT
bits corresponding to the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

20.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by settings
in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR). Slave operation
does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave must be at least 16
times higher than the SCL frequency. Note that Slaves may prolong the SCL low period, thereby reducing the
average TWI bus clock period. The SCL frequency is generated according to the following equation:

CPU Clock frequency
16 + 2(TWBR) - 4" "'73

SCL frequency =

e TWBR = Value of the TWI Bit Rate Register
o TWPS = Value of the prescaler bits in the TWI Status Register

Note: Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus line load.
See Table 27-4 on page 283 for value of pull-up resistor.

/ItmeL ATmega16A [DATASHEET] 172

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and Arbitration
detection hardware. The TWDR contains the address or data bytes to be transmitted, or the address or data
bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a register containing the
(N)ACK bit to be transmitted or received. This (N)ACK Register is not directly accessible by the application
software. However, when receiving, it can be set or cleared by manipulating the TWI Control Register (TWCR).
When in Transmitter mode, the value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START, and
STOP conditions. The START/STOP controller is able to detect START and STOP conditions even when the
AVR MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continuously monitors the
transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration, the Control Unit is
informed. Correct action can then be taken and appropriate status codes generated.

20.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the 7-bit address in the TWI Address Register
(TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is written to one, all incoming

address bits will also be compared against the General Call address. Upon an address match, the Control Unit
is informed, allowing correct action to be taken. The TWI may or may not acknowledge its address, depending
on settings in the TWCR. The Address Match unit is able to compare addresses even when the AVR MCU is in
sleep mode, enabling the MCU to wake up if addressed by a Master.

20.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the TWI Control
Register (TWCR). When an event requiring the attention of the application occurs on the TWI bus, the TWI
Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Status Register (TWSR) is updated with a
status code identifying the event. The TWSR only contains relevant status information when the TWI Interrupt
Flag is asserted. At all other times, the TWSR contains a special status code indicating that no relevant status
information is available. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

After the TWI has transmitted a START/REPEATED START condition

After the TWI has transmitted SLA+R/W

After the TWI has transmitted an address byte

After the TWI has lost arbitration

After the TWI has been addressed by own Slave address or general call

After the TWI has received a data byte

After a STOP or REPEATED START has been received while still addressed as a Slave.
When a bus error has occurred due to an illegal START or STOP condition

20.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like reception of a
byte or transmission of a START condition. Because the TWI is interrupt-based, the application software is free
to carry on other operations during a TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR
together with the Global Interrupt Enable bit in SREG allow the application to decide whether or not assertion of
the TWINT Flag should generate an interrupt request. If the TWIE bit is cleared, the application must poll the
TWINT Flag in order to detect actions on the TWI bus.

Atmel ATmega16A [DATASHEET] 173

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In this
case, the TWI Status Register (TWSR) contains a value indicating the current state of the TWI bus. The
application software can then decide how the TWI should behave in the next TWI bus cycle by manipulating the
TWCR and TWDR Registers.

Figure 20-10 is a simple example of how the application can interface to the TWI hardware. In this example, a
Master wishes to transmit a single data byte to a Slave. This description is quite abstract, a more detailed
explanation follows later in this section. A simple code example implementing the desired behavior is also

presented.
Figure 20-10. Interfacing the Application to the TWI in a Typical Transmission
1. Application 8. Check TWSR ;?aste e if START was 5 Checske'rl;\t/\ﬁg K)CS: z;esi\l;:(;w was 7.Check TWSR to see if data was sent
Application ertesi;?t;\t/ZCR to Application loads SLA+W into TWDR, and Application loads data into TWDR, and A Iicati::?ogdcsl(a:ecfc;vfida.te control
Action transmission of loads appropriate control signalsinto loads appropriate control signals into spipnals to send STF')SP ipnto TWCR
START TWCR, making sure that TWINT is written TWCR, making sure that TWINT is makir? sure that TWINT is written to ,one
to one, and TWSTA is written to zero written to one 9

L

TWI bus START SLA+W ’—AF Data A STOP ‘

TWI
Hardware
Action

Indicates
2. TWINT set. 4. TWINT set. 6. TWINT set. . TWINT set
A~ Status code indicates P
Status code indicates SLA+W sent. ACK Status code indicates
START condition sent receiveéj data sent, ACK received

Atmel

The first step in a TWI transmission is to transmit a START condition. This is done by writing a specific
value into TWCR, instructing the TWI hardware to transmit a START condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a one

to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the START condition has successfully been sent.

The application software should now examine the value of TWSR, to make sure that the START condition
was successfully transmitted. If TWSR indicates otherwise, the application software might take some
special action, like calling an error routine. Assuming that the status code is as expected, the application
must load SLA+W into TWDR. Remember that TWDR is used both for address and data. After TWDR has
been loaded with the desired SLA+W, a specific value must be written to TWCR, instructing the TWI
hardware to transmit the SLA+W present in TWDR. Which value to write is described later on. However, it
is important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the application has
cleared TWINT, the TWI will initiate transmission of the address packet.

When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated
with a status code indicating that the address packet has successfully been sent. The status code will also
reflect whether a Slave acknowledged the packet or not.

The application software should now examine the value of TWSR, to make sure that the address packet
was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates
otherwise, the application software might take some special action, like calling an error routine. Assuming
that the status code is as expected, the application must load a data packet into TWDR. Subsequently, a

ATmega16A [DATASHEET] 174

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

specific value must be written to TWCR, instructing the TWI hardware to transmit the data packet present
in TWDR. Which value to write is described later on. However, it is important that the TWINT bit is set in

the value written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as

the TWINT bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate

transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is updated with
a status code indicating that the data packet has successfully been sent. The status code will also reflect
whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the data packet was
successfully transmitted, and that the value of the ACK bit was as expected. If TWSR indicates otherwise,
the application software might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must write a specific value to TWCR, instructing the TWI
hardware to transmit a STOP condition. Which value to write is described later on. However, it is important
that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will not start
any operation as long as the TWINT bit in TWCR is set. Immediately after the application has cleared
TWINT, the TWI will initiate transmission of the STOP condition. Note that TWINT is NOT set after a
STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can be
summarized as follows:

e When the TWI has finished an operation and expects application response, the TWINT Flag is set. The
SCL line is pulled low until TWINT is cleared.

e When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the next
TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the next bus
cycle.

e After all TWI Register updates and other pending application software tasks have been completed, TWCR
is written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears the flag. The
TWI will then commence executing whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code below assumes
that several definitions have been made, for example by using include-files.

Assembly code example C example Comments
1di rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) | Send START condition
(1<<TWEN) (1<<TWEN)

out TWCR, rlé

waitl: while (1 (TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the START condition has been

sbrs rl6, TWINT transmitted

rijmp waitl

in rl6,TWSR if ((TWSR & OxF8) != START) Check value of TWI Status Register. Mask
andi rl16, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, START START go to ERROR

brne ERROR

1di - rl6, SLAW TWDR = SLA_W; Load SLA_W into TWDR Register. Clear
out TWDR, rlé6 TWCR = (1<<TWINT) | (1<<TWEN); TWINT bit in TWCR to start transmission
1di rleé, (1<<TWINT) | (1<<TWEN) of address

out TWCR, rlé6

Atmel ATmega16A [DATASHEET] 175

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Assembly code example C example Comments

4 wait2: while (!(TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the SLA+W has been transmitted,
sbrs rl6, TWINT and ACK/NACK has been received.
rjmp wait2

5 in rl6,TWSR if ((TWSR & 0xF8) != MT_SLA_ACK) |Check value of TWI Status Register. Mask
andi rlé6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, MT_SLA ACK MT_SLA_ACK go to ERROR
brne ERROR
1ldi rlé, DATA TWDR = DATA; Load DATA into TWDR Register. Clear
out TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN); TWINT bit in TWCR to start transmission
1di r16, (1<<TWINT) | (1<<TWEN) of data

out TWCR, rlé

6 wait3: while (! (TWCR & (1<<TWINT))) Wait for TWINT Flag set. This indicates
in rl6, TWCR ; that the DATA has been transmitted, and
sbrs rl6, TWINT ACK/NACK has been received.
rijmp wait3

7 in rlé,TWSR if ((TWSR & 0xF8) != MT_DATA_ACK) | Check value of TWI Status Register. Mask
andi rl6, OxF8 ERROR () ; prescaler bits. If status different from
cpi rl6, MT_DATA ACK MT_DATA_ACK go to ERROR
brne ERROR
1di rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (L<<TWEN) | Transmit STOP condition

(1<<TWSTO) (1<<TWSTO) ;

out TWCR, rlé6

20.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT), Master Receiver
(MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these modes can be used in the same
application. As an example, the TWI can use MT mode to write data into a TWI EEPROM, MR mode to read the
data back from the EEPROM. If other Masters are present in the system, some of these might transmit data to
the TWI, and then SR mode would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described along with figures
detailing data transmission in each of the modes. These figures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R Read bit (high level at SDA)

W: Write bit (low level at SDA)

A Acknowledge bit (low level at SDA)

A Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 20-12 to Figure 20-18, circles are used to indicate that the TWINT Flag is set. The numbers in the
circles show the status code held in TWSR, with the prescaler bits masked to zero. At these points, actions must
be taken by the application to continue or complete the TWI transfer. The TWI transfer is suspended until the
TWINT Flag is cleared by software.

Atmel ATmega16A [DATASHEET] 176

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.7.1

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate software action. For
each status code, the required software action and details of the following serial transfer are given in Table 20-2
to Table 20-5. Note that the prescaler bits are masked to zero in these tables.

Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver (see Figure 20-11).
In order to enter a Master mode, a START condition must be transmitted. The format of the following address
packet determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is
transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned
in this section assume that the prescaler bits are zero or are masked to zero.

Figure 20-11. Data Transfer in Master Transmitter Mode

cc

Device 1 Device 2 . .
MASTER SLAVE Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER

SDA '

scL v

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit a START
condition and TWINT must be written to one to clear the TWINT Flag. The TWI will then test the Two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 20-2). In
order to enter MT mode, SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the
TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE
Value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is set again and
a number of status codes in TWSR are possible. Possible status codes in Master mode are $18, $20, or $38.
The appropriate action to be taken for each of these status codes is detailed in Table 20-2.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by writing
the data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be discarded,
and the Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR, the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the following
value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 0 X 1 0 X
ATmega16A [DATASHEET 177
Atmel galoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

This scheme is repeated until the last byte has been sent and the transfer is ended by generating a STOP
condition or a repeated START condition. A STOP condition is generated by writing the following value to

TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same Slave again,
or a new Slave without transmitting a STOP condition. Repeated START enables the Master to switch between
Slaves, Master Transmitter mode and Master Receiver mode without losing control of the bus.

Table 20-2. Status Codes for Master Transmitter Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- | 1/60m TWDR
are 0 face Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
$10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
$18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be Reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be Reset
$20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$38 Arbitration lost in SLA+W or data | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free

Atmel

ATmega16A [DATASHEET] 178

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 20-12. Formats and States in the Master Transmitter Mode

MT

Successfull T
transmission | S | SLA |

w

A DATA

to a slave
receiver

$08

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$18

$28

MR

x P |

Other master
AorA | continues

continues

AorA | Other master

Other master
continues

$38

To corresponding
states in slave mode

From master to slave

From slave to master

[]
[]

20.7.2 Master Receiver Mode

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter (see Figure 20-13).
In order to enter a Master mode, a START condition must be transmitted. The format of the following address
packet determines whether Master Transmitter or Master Receiver mode is to be entered. If SLA+W is
transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned
in this section assume that the prescaler bits are zero or are masked to zero.

Atmel

ATmega16A [DATASHEET] 179

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 20-13. Data Transfer in Master Receiver Mode

cc

Device 1 Device 2 . .
MASTER SLAVE Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER

SDA y

Y

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to one to transmit
a START condition and TWINT must be set to clear the TWINT Flag. The TWI will then test the Two-wire Serial
Bus and generate a START condition as soon as the bus becomes free. After a START condition has been
transmitted, the TWINT Flag is set by hardware, and the status code in TWSR will be $08 (See Table 20-2). In
order to enter MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the
TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE
Value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is set again and a
number of status codes in TWSR are possible. Possible status codes in Master mode are $38, $40, or $48. The
appropriate action to be taken for each of these status codes is detailed in Table 20-3. Received data can be
read from the TWDR Register when the TWINT Flag is set high by hardware. This scheme is repeated until the
last byte has been received. After the last byte has been received, the MR should inform the ST by sending a
NACK after the last received data byte. The transfer is ended by generating a STOP condition or a repeated
START condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
Value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE
Value 1 X 1 0 X 1 0 X

After a repeated START condition (state $10) the Two-wire Serial Interface can access the same Slave again,
or a new Slave without transmitting a STOP condition. Repeated START enables the Master to switch between
Slaves, Master Transmitter mode and Master Receiver mode without losing control over the bus.

/ItmeL ATmega16A [DATASHEET] 180

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 20-3. Status Codes for Master Receiver Mode
Status Code Application Software Response
(TWSR) Status of the Two-wire Serial To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- | 1/6-0m TWDR
are 0 face Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
$10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to masTer Transmitter mode
$38 Arbitration lost in SLA+R or NOT | No TWDR action or 0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
$40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
$48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
$50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
$58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
Figure 20-14. Formats and States in the Master Receiver Mode
MR
sl s | SlA ! R A | DATA A | DATA | L.y P |
from a slave _—
receiver
508 $40 558
Startod with Rs | s !
repeated start
condition

Atmel

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

[]
[]

From master to slave

From slave to master

w
® P
$48
MT
Other master Other master
AorA | continues A | continues
$38 $38
Other master
continues
To corresponding
states in slave mode
- Any number of data bytes
DATA A and their associated acknowledge bits
This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero
ATmega16A [DATASHEET] 181

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.7.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter (see Figure 20-15).
All the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 20-15. Data Transfer in Slave Receiver Mode

cc

Device 1 Device 2 . .
SLAVE MASTER Device3 | ... Device n R1 R2
RECEIVER TRANSMITTER

SDA Y

scL Y

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 ‘ TWAS ‘ TWA4 ‘ TWA3 | TWA2 | TWA1 | TWAO TWGCE
Value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
Master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the
general call address.

TWCR TWINT TWEA TWSTA TWSTO TWwWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the
acknowledgement of the device’s own Slave address or the general call address. TWSTA and TWSTO must be
written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own Slave address (or
the general call address if enabled) followed by the data direction bit. If the direction bit is “0” (write), the TWI will
operate in SR mode, otherwise ST mode is entered. After its own Slave address and the write bit have been
received, the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each status code is detailed in
Table 20-4. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see states $68 and $78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA after the next
received data byte. This can be used to indicate that the Slave is not able to receive any more bytes. While
TWEA is zero, the TWI does not acknowledge its own Slave address. However, the Two-wire Serial Bus is still
monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA bit
may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle Mode, the clock system to the TWI is turned off. If the TWEA bit is set, the
interface can still acknowledge its own Slave address or the general call address by using the Two-wire Serial
Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock low
during the wake up and until the TWINT Flag is cleared (by writing it to one). Further data reception will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-
up time, the SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

Atmel ATmega16A [DATASHEET] 182

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 20-4.

Status Codes for Slave Receiver Mode

Atmel

Status Code Application Software Response
(TWSR) Status of the Two-wire Serial Bus To TWCR
Prescaler Bits and Two-wire Serial Interface | 1o/0m TWDR
are 0 Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$60 Own SLA+W has been received,; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
$78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
$80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
$88 Previously addressed with own | Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
$90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
$98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
$A0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
Slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
ATmega16A [DATASHEET] 183

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 20-16. Formats and States in the Slave Receiver Mode

Atmel

Reception of the own T T
slave address and one or S SLA W A DATA A DATA A PorS
more data bytes. All are -T -
acknowledged

$60 $80 $80 $A0
Last data byte received
is not acknowledged A

$88

Arbitration lost as master
and addressed as slave A

$68
Reception of the general call -
address and one or more data General Call A DATA A DATA A PorS
bytes I
Last data byte received is
not acknowledged A

$98

Arbitration lost as master and
addressed as slave by general call A

$78

o Any number of data bytes
I:I From master to slave DATA | A and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

20.7.4 Slave Transmitter Mode

prescaler bits are zero or masked to zero

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver (see Figure 20-17).
All the status codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 20-17. Data Transfer in Slave Transmitter Mode

cc
Device 1 Device 2
SLAVE MASTER Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA A
scL Y

ATmega16A [DATASHEET] 184

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWAB ‘ TWAS5 ‘ TWA4 ‘ TWA3 ‘ TWA2 | TWA1 | TWAO TWGCE
Value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when addressed by a
Master. If the LSB is set, the TWI will respond to the general call address ($00), otherwise it will ignore the
general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
Value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable the
acknowledgement of the device’s own Slave address or the general call address. TWSTA and TWSTO must be
written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own Slave address (or
the general call address if enabled) followed by the data direction bit. If the direction bit is “1” (read), the TWI will
operate in ST mode, otherwise SR mode is entered. After its own Slave address and the write bit have been
received, the TWINT Flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each status code is detailed in
Table 20-5. The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the Master
mode (see state $B0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the transfer. State $C0 or
state $C8 will be entered, depending on whether the Master Receiver transmits a NACK or ACK after the final
byte. The TWI is switched to the not addressed Slave mode, and will ignore the Master if it continues the
transfer. Thus the Master Receiver receives all “1” as serial data. State $C8 is entered if the Master demands
additional data bytes (by transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero
and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own Slave address. However, the Two-wire Serial Bus is
still monitored and address recognition may resume at any time by setting TWEA. This implies that the TWEA
bit may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set, the
interface can still acknowledge its own Slave address or the general call address by using the Two-wire Serial
Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL clock will low
during the wake up and until the TWINT Flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is set up with a long start-
up time, the SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte present on the bus
when waking up from these sleep modes.

Atmel ATmega16A [DATASHEET] 185

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 20-5.

Status Codes for Slave Transmitter Mode

Status Code Application Software Response
(TWSR) Status of the Two-wire Serial Bus To TWCR
Prescaler Bits | and Two-wire Serial Interface | 1/60m TWDR
are 0 Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
$A8 Own SLA+R has been received; Load data byte or X 0 1 0 Last data byte will be transmitted and NOT ACK should
ACK has been returned be received
Load data byte X 0 1 1 Data byte will be transmitted and ACK should be re-
ceived
$BO Arbitration lost in SLA+R/W as | Load data byte or X 0 1 0 Last data byte will be transmitted and NOT ACK should
Master; own SLA+R has been be received
received; ACK has been returned | Load data byte X 0 1 1 Data byte will be transmitted and ACK should be re-
ceived
$B8 Data byte in TWDR has been Load data byte or X 0 1 0 Last data byte will be transmitted and NOT ACK should
transmitted; ACK has been be received
received Load data byte X 0 1 1 Data byte will be transmitted and ACK should be re-
ceived
$CO Data byte in TWDR has been No TWDR action or 0 0 1 0 Switched to the not addressed Slave mode;
transmitted; NOT ACK has been no recognition of own SLA or GCA
received No TWDR action or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
No TWDR action or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
No TWDR action 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
$C8 Last data byte in TWDR has been | No TWDR action or 0 0 1 0 Switched to the not addressed Slave mode;
transmitted (TWEA = “0”); ACK no recognition of own SLA or GCA
has been received No TWDR action or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
No TWDR action or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
No TWDR action 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
Figure 20-18. Formats and States in the Slave Transmitter Mode
Sveadmossmaomeor | S | sta 1 R A DATA | A |om | & [Pos|
more data bytes -
$A8 $B8 @
Arbitration lost as master
and addressed as slave A
$BO

Atmel

Last data byte transmitted.
Switched to not addressed
slave (TWEA ='0")

A | All 1's | PorS |

$C8

[]
L]

From master to slave

[om [a |

From slave to master

O,

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

ATmega16A [DATASHEET] 186

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.7.5

Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 20-6.

Status $F8 indicates that no relevant information is available because the TWINT Flag is not set. This occurs
between other states, and when the TWI is not involved in a serial transfer.

Status $00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus error occurs
when a START or STOP condition occurs at an illegal position in the format frame. Examples of such illegal
positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error
occurs, TWINT is set. To recover from a bus error, the TWSTO Flag must set and TWINT must be cleared by
writing a logic one to it. This causes the TWI to enter the not addressed Slave mode and to clear the TWSTO
Flag (no other bits in TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

Table 20-6. Miscellaneous States

Status Code Application Software Response

(TWSR) . Status of the 'I"wo-wir‘e Serial To TWCR

Prescaler Bits Bus and Two-wire Serial Inter- | 1/60m TWDR

are 0 face Hardware STA ‘ STO ‘ TWINT | TWEA | Next Action Taken by TWI Hardware

$F8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

$00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released

and TWSTO is cleared.
20.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action. Consider for
example reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read
3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct the Slave what
location it wants to read, requiring the use of the MT mode. Subsequently, data must be read from the Slave,
implying the use of the MR mode. Thus, the transfer direction must be changed. The Master must keep control
of the bus during all these steps, and the steps should be carried out as an atomical operation. If this principle is
violated in a multi-master system, another Master can alter the data pointer in the EEPROM between steps 2
and 3, and the Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception of the data.
After a REPEATED START, the Master keeps ownership of the bus. The following figure shows the flow in this
transfer.

Figure 20-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
/—\/\\ /—\/\—\
S SLA+W A ADDRESS A | Rs SLA+R A DATA X P
S = START Rs = REPEATED START P = STOP
Transmitted from Master to Slave Transmitted from Slave to Master

ATmega16A [DATASHEET] 187

A t I I . e L Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.8 Multi-master Systems and Arbitration

If multiple Masters are connected to the same bus, transmissions may be initiated simultaneously by one or
more of them. The TWI standard ensures that such situations are handled in such a way that one of the Masters
will be allowed to proceed with the transfer, and that no data will be lost in the process. An example of an
arbitration situation is depicted below, where two Masters are trying to transmit data to a Slave Receiver.

Figure 20-20. An Arbitration Example

Vee
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE [e Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER

SDA

A
Y

SCL - Y v

\

Several different scenarios may arise during arbitration, as described below:

e Two or more Masters are performing identical communication with the same Slave. In this case, neither
the Slave nor any of the Masters will know about the bus contention.

e Two or more Masters are accessing the same Slave with different data or direction bit. In this case,
arbitration will occur, either in the READ/WRITE bit or in the data bits. The Masters trying to output a one
on SDA while another Master outputs a zero will lose the arbitration. Losing Masters will switch to not
addressed Slave mode or wait until the bus is free and transmit a new START condition, depending on
application software action.

e Two or more Masters are accessing different Slaves. In this case, arbitration will occur in the SLA bits.
Masters trying to output a one on SDA while another Master outputs a zero will lose the arbitration.
Masters losing arbitration in SLA will switch to Slave mode to check if they are being addressed by the
winning Master. If addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed Slave mode or wait
until the bus is free and transmit a new START condition, depending on application software action.

This is summarized in Figure 20-21. Possible status values are given in circles.

/ItmeL ATmega16A [DATASHEET] 188

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 20-21. Possible Status Codes Caused by Arbitration

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own
Address / General Call
received

No 38 'w| TWI bus will be released and not addressed slave mode will be entered
'\LSTART condition will be transmitted when the bus becomes free

Yes

Write 68/78)_ [Data byte will be received and NOT ACK will be returned
\/ '@a byte will be received and ACK will be returned

Direction

Read _[Last data byte will be transmitted and NOT ACK should be received
@' Data byte will be transmitted and ACK should be received

20.9 Register Description
20.9.1 TWBR — TWI Bit Rate Register
Bit 7 6 5 4 3 2 1 0
| Twer7 | TwBre | TwBR5 | TwWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO | TWBR
Read/Write RIW RIW RIW RIW RIW RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bits 7:0 — TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider which
generates the SCL clock frequency in the Master modes. See “Bit Rate Generator Unit” on page 172 for
calculating bit rates.
20.9.2 TWCR - TWI Control Register
Bit 7 6 5 4 3 2 1 0
| TwnT | Twea | TwsTA | TwsTO | TwwC TWEN - TWEE | Twcr
Read/Write RIW RIW RIW RIW R RIW R RIW
Initial Value 0 0 0 0 0 0 0 0
The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a Master access
by applying a START condition to the bus, to generate a receiver acknowledge, to generate a stop condition,
and to control halting of the bus while the data to be written to the bus are written to the TWDR. It also indicates
a write collision if data is attempted written to TWDR while the register is inaccessible.
e Bit 7—-TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application software response.
If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the TWI Interrupt Vector. While the TWINT
Flag is set, the SCL low period is stretched. The TWINT Flag must be cleared by software by writing a logic one
to it. Note that this flag is not automatically cleared by hardware when executing the interrupt routine. Also note
that clearing this flag starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI
Status Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this flag.
ATmega16A [DATASHEET 189
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Bit 6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the ACK
pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own Slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire Serial Bus
temporarily. Address recognition can then be resumed by writing the TWEA bit to one again.

* Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the Two-wire Serial Bus.
The TWI hardware checks if the bus is available, and generates a START condition on the bus if it is free.
However, if the bus is not free, the TWI waits until a STOP condition is detected, and then generates a new
START condition to claim the bus Master status. TWSTA must be cleared by software when the START
condition has been transmitted.

e Bit4-TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire Serial Bus. When
the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In Slave mode, setting the
TWSTO bit can be used to recover from an error condition. This will not generate a STOP condition, but the TWI
returns to a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high impedance
state.

e Bit 3—- TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register - TWDR when TWINT is low. This flag
is cleared by writing the TWDR Register when TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the TWI
takes control over the 1/O pins connected to the SCL and SDA pins, enabling the slew-rate limiters and spike
filters. If this bit is written to zero, the TWI is switched off and all TWI transmissions are terminated, regardless of
any ongoing operation.

* Bit 1 - Res: Reserved Bit
This bit is a reserved bit and will always read as zero.

e Bit 0 — TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for as long
as the TWINT Flag is high.

Atmel ATmega16A [DATASHEET] 190

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.9.3

2094

TWSR — TWI Status Register

Bit 7 6 5 4 3 2 1 0

| rws7 | Ttwse | Twss TWS4 TWS3 - TWPS1 | TwPsO | TwSR
Read/Write R R R R R R R/W R/W
Initial Value 1 1 1 1 1 0 0 0

e Bits 7:3 - TWS: TWI Status

These five bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status codes are
described later in this section. Note that the value read from TWSR contains both the 5-bit status value and the
2-bit prescaler value. The application designer should mask the prescaler bits to zero when checking the Status
bits. This makes status checking independent of prescaler setting. This approach is used in this datasheet,
unless otherwise noted.

* Bit 2 - Res: Reserved Bit
This bit is reserved and will always read as zero.

e Bits 1:0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 20-7. TWI Bit Rate Prescaler

TWPS1 TWPSO0 Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 172. The value of TWPS1:0 is used in the
equation.

TWDR — TWI Data Register

Bit 7 6 5 4 3 2 1 0

| rwo7 | Twbe | TwDs TWD4 TWD3 TWD2 TWD1 TWDO | TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains the
last byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when the TWI
Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by the user before
the first interrupt occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted out,
data on the bus is simultaneously shifted in. TWDR always contains the last byte present on the bus, except
after a wake up from a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the
case of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

e Bits 7:0 - TWD: TWI Data Register

These eight bits contain the next data byte to be transmitted, or the latest data byte received on the Two-wire
Serial Bus.

Atmel ATmega16A [DATASHEET] 191

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

20.9.5

TWA R- TWI (Slave) Address Register

Bit 7 6 5 4 3 2 1 0

| rwae | Twas | Twa4 | Twa3 TWA2 TWA1 TWAO TWGCE | TwaAR
Read/Write RIW R/W R/W RIW R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of TWAR) to which
the TWI will respond when programmed as a Slave Transmitter or receiver. In multi-master systems, TWAR
must be set in Masters which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address ($00). There is an associated
address comparator that looks for the Slave address (or general call address if enabled) in the received serial
address. If a match is found, an interrupt request is generated.

e Bits 7:1 - TWA[6:0]: TWI (Slave) Address Register
These seven bits constitute the Slave address of the TWI unit.

e Bit 0 —- TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

/ItmeL ATmega16A [DATASHEET] 192

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

21. Analog Comparator
The Analog Comparator compares the input values on the positive pin AINO and negative pin AIN1. When the
voltage on the positive pin AINO is higher than the voltage on the negative pin AIN1, the Analog Comparator
Output, ACO, is set. The comparator’s output can be set to trigger the Timer/Counter1 Input Capture function. In
addition, the comparator can trigger a separate interrupt, exclusive to the Analog Comparator. The user can
select Interrupt triggering on comparator output rise, fall or toggle. A block diagram of the comparator and its
surrounding logic is shown in Figure 21-1.
Figure 21-1. Analog Comparator Block Diagram®
BANDGAP
REFERENCE VCC
ACB l
ACD —»
ACIE
AINO
+ | ANALOG
INTERRUPT)—» COMPARATOR
/ > SELECT IRQ
AIN1 —Bﬁ—< T T — > Ac
ACIST ACISO ACIC
ACME
TO T/C1 CAPTURE
TRIGGER MUX
ADC MULTIPLEXER ACO >
OUTPUT®W D%
Notes: 1. See Table 1 on page 193.
2. Referto Figure 1-1 on page 3 and Table 12-6 on page 57 for Analog Comparator pin placement.
21.1 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Comparator. The ADC
multiplexer is used to select this input, and consequently, the ADC must be switched off to utilize this feature. If
the Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set and the ADC is switched off (ADEN in
ADCSRA is zero), MUX2:0 in ADMUX select the input pin to replace the negative input to the Analog
Comparator, as shown in Table 1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the
Analog Comparator.
Table 1. Analog Comparator Multiplexed Input
ACME ADEN MUX2:0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO
1 0 001 ADCA1
1 0 010 ADC2
1 0 oM ADC3
ATmega16A [DATASHEET 193
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 1. Analog Comparator Multiplexed Input (Continued)

ACME ADEN MUX2:0 Analog Comparator Negative Input
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7
21.2 Register Description
21.2.1 SFIOR - Special Function 10 Register
Bit 7 6 5 4 3 2 1 0
| Aots2 ADTSL | ADTSO | = ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW RIW RIW R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
¢ Bit 3— ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC multiplexer
selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1 is applied to the
negative input of the Analog Comparator. For a detailed description of this bit, see “Analog Comparator
Multiplexed Input” on page 193.
21.2.2 ACSR - Analog Comparator Control and Status Register
Bit 7 6 5 4 3 2 1 0
| Aco | Aacee | Aco | aAct | AciE | AciC ACIS1 ACISO | Acsr
Read/Write RIW RW R RW RIW RIW RW RIW
Initial Value 0 0 N/A 0 0 0 0 0
* Bit 7 — ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set at any
time to turn off the Analog Comparator. This will reduce power consumption in active and Idle mode. When
changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the ACIE bit in ACSR.
Otherwise an interrupt can occur when the bit is changed.
« Bit 6 — ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog Comparator.
When this bit is cleared, AINO is applied to the positive input of the Analog Comparator. See “Internal Voltage
Reference” on page 39.
e Bit 5—- ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The synchronization
introduces a delay of 1 - 2 clock cycles.
* Bit 4 - ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1 and
ACISO0. The Analog Comparator Interrupt routine is executed if the ACIE bit is set and the I-bit in SREG is set.
ACl is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ACl is
cleared by writing a logic one to the flag.
ATmega16A [DATASHEET 194
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

* Bit 3— ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator Interrupt
is activated. When written logic zero, the interrupt is disabled.

* Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be triggered by the
Analog Comparator. The comparator output is in this case directly connected to the Input Capture front-end
logic, making the comparator utilize the noise canceler and edge select features of the Timer/Counter1 Input
Capture interrupt. When written logic zero, no connection between the Analog Comparator and the Input
Capture function exists. To make the comparator trigger the Timer/Counter1 Input Capture interrupt, the TICIE1
bit in the Timer Interrupt Mask Register (TIMSK) must be set.

e Bits 1, 0 — ACIS1, ACISO: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator interrupt. The different
settings are shown in Table 21-1.

Table 21-1. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge
1 1 Comparator Interrupt on Rising Output Edge

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by clearing its
Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the bits are changed.

/ItmeL ATmega16A [DATASHEET] 195

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22. Analog to Digital Converter

22.1 Features
* 10-bit Resolution
* 0.5LSB Integral Non-linearity
* +2 L SB Absolute Accuracy
* 13- 260 ps Conversion Time
* Up to 15 kSPS at Maximum Resolution
* 8 Multiplexed Single Ended Input Channels
» 7 Differential Input Channels
« 2 Differential Input Channels with Optional Gain of 10x and 200x "
* Optional Left adjustment for ADC Result Readout
* 0-Vc ADC Input Voltage Range
* Selectable 2.56V ADC Reference Voltage
* Free Running or Single Conversion Mode
* ADC Start Conversion by Auto Triggering on Interrupt Sources
* Interrupt on ADC Conversion Complete
* Sleep Mode Noise Canceler
Note: 1. The differential input channels are not tested for devices in PDIP Package. This feature is only guaranteed to

work for devices in TQFP and QFN/MLF Packages

22.2 Overview
The ATmega16A features a 10-bit successive approximation ADC. The ADC is connected to an 8-channel
Analog Multiplexer which allows 8 single-ended voltage inputs constructed from the pins of Port A. The single-
ended voltage inputs refer to OV (GND).
The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADC1, ADCO
and ADC3, ADC2) are equipped with a programmable gain stage, providing amplification steps of 0 dB (1x), 20
dB (10x), or 46 dB (200x) on the differential input voltage before the A/D conversion. Seven differential analog
input channels share a common negative terminal (ADC1), while any other ADC input can be selected as the
positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 7-bit
resolution can be expected.
The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a
constant level during conversion. A block diagram of the ADC is shown in Figure 22-1.
The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than 0.3 V from V.
See the paragraph “ADC Noise Canceler” on page 203 on how to connect this pin.
Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The voltage reference may be
externally decoupled at the AREF pin by a capacitor for better noise performance.

/ItmeL ATmega16A [DATASHEET] 196

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 22-1. Analog to Digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]
_, 8-BIT DATABUS
15 T 0

) v v

\

ADIF
ADIE

ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
- ol <] o] o] =] o w N ol = o \A 4
x| < < T < < < <| <« S
»| TRIGGER g
»| SELECT <
vy v v
| MUX DECODER | Y V¥
PRESCALER
START

CONVERSION LOGIC

CHANNEL SELECTION
GAIN SELECTION

|<

AVCC I:'i 3
| =

INTERNAL 256V | |
REFERENCE \ 4 SAMPLE & HOLD

COMPARATOR
AREF ® > 10-BIT DAC

BANDGAP
REFERENCE
ADC7 I:'i

ADC6

'\ SINGLE ENDED / DIFFERENTIAL SELECTION

POS. ADC MULTIPLEXER
INPUT » OUTPUT
MUX

[l
ADC4 I:'i Y
Apes I:'i Y SI\A;III!’\‘LIFIER j—’
[l _
[l
[l

v

NEG.
INPUT
MUX

ADC5

+

ADC1

ADCO

22.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The
minimum value represents GND and the maximum value represents the voltage on the AREF pin minus 1 LSB.
Optionally, AVCC or an internal 2.56V reference voltage may be connected to the AREF pin by writing to the
REFSn bits in the ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in ADMUX. Any of the
ADC input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended inputs
to the ADC. A selection of ADC input pins can be selected as positive and negative inputs to the differential gain
amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference between the
selected input channel pair by the selected gain factor. This amplified value then becomes the analog input to
the ADC. If single ended channels are used, the gain amplifier is bypassed altogether.

/ItmeL ATmega16A [DATASHEET] 197

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.4

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input channel
selections will not go into effect until ADEN is set. The ADC does not consume power when ADEN is cleared, so
it is recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By default,
the result is presented right adjusted, but can optionally be presented left adjusted by setting the ADLAR bit in
ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH, to ensure that the content of the Data Registers belongs to the same
conversion. Once ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been
read, and a conversion completes before ADCH is read, neither register is updated and the result from the
conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access to the
Data Registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if the result is
lost.

Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit stays high
as long as the conversion is in progress and will be cleared by hardware when the conversion is completed. If a
different data channel is selected while a conversion is in progress, the ADC will finish the current conversion
before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled by
setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting the ADC
Trigger Select bits, ADTS in SFIOR (see description of the ADTS bits for a list of the trigger sources). When a
positive edge occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is started. This
provides a method of starting conversions at fixed intervals. If the trigger signal still is set when the conversion
completes, a new conversion will not be started. If another positive edge occurs on the trigger signal during
conversion, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific interrupt is
disabled or the global interrupt enable bit in SREG is cleared. A conversion can thus be triggered without
causing an interrupt. However, the Interrupt Flag must be cleared in order to trigger a new conversion at the
next interrupt event.

Figure 22-2. ADC Auto Trigger Logic

ADTS[2:0]
——»| PRESCALER

START CLK o
ADIF — ADATE
SOURCE1 —— L

""" ! } CONVERSION
LOGIC

""" EDGE
DETECTOR

SOURCE n

ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon as the ongoing
conversion has finished. The ADC then operates in Free Running mode, constantly sampling and updating the
ADC Data Register. The first conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In

Atmel ATmega16A [DATASHEET] 198

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.5

this mode the ADC will perform successive conversions independently of whether the ADC Interrupt Flag, ADIF
is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one. ADSC can
also be used to determine if a conversion is in progress. The ADSC bit will be read as one during a conversion,
independently of how the conversion was started.

Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler

TART ese
S 7-BIT ADC PRESCALER

CK —»

CK/2
CK/4
CK/8
CK/16
CK/32
CK/64
CK/128

.
<
-
<
.
&
&
<

A

ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50 kHz and 200
kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency to the
ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any CPU
frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts counting
from the moment the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler keeps running for
as long as the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at the
following rising edge of the ADC clock cycle. See “Differential Gain Channels” on page 201 for details on
differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN in
ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and 13.5
ADC clock cycles after the start of a first conversion. When a conversion is complete, the result is written to the
ADC Data Registers, and ADIF is set. In single conversion mode, ADSC is cleared simultaneously. The
software may then set ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed delay
from the trigger event to the start of conversion. In this mode, the sample-and-hold takes place 2 ADC clock
cycles after the rising edge on the trigger source signal. Three additional CPU clock cycles are used for
synchronization logic. When using Differential mode, along with Auto triggering from a source other than the
ADC Conversion Complete, each conversion will require 25 ADC clocks. This is because the ADC must be
disabled and re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion completes, while
ADSC remains high. For a summary of conversion times, see Table 22-1.

Atmel ATmega16A [DATASHEET] 199

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 22-4.

Figure 22-5.

Figure 22-6.

Atmel

ADC Timing Diagram, First Conversion (Single Conversion Mode)
First Conversion ’(\l)z)rilersion
‘ b ‘ b
Cycle Number \1\2: :12\13\14\15\16\17\18\19\20\21\22\23\24\25\ |1]2]s
‘ | ‘ L
ADC Clock EninindnininininininSnEninEnPabyEnin
\ | | \ | |
ADEN | . o | L
ADSC] L ! V17
. | | ! i ,
ADIF ! : ! ! '
‘ | ‘ S
ADCH] /A Y //p<_MSB of Result
T 1 I i ' T
ADCL 7 D 7 7)< LSB of Resul
, | | , , ,
\ MUX and REFS \ Conversion _/> \
Update Sample & Hold Complete MUX and REFS
Update
ADC Timing Diagram, Single Conversion
One Conversion __Next Conversion
Cycle Number | 1] 2] 3| 4| 5| 6| 7] 8] 9| 10/ 11| 12| 13| | 1] 2] 3
ADC Clock
ADSC 74 i V1
ADIF 1 1 .
ADCH) ‘ /)< MSB of Result
ADCL w 7 7»<__LSB of Result
\ “—_ Sample & Hold Conversion /)
MUX and REFS Complete MUX and REFS
Update Update
ADC Timing Diagram, Auto Triggered Conversion

One Conversion

__Next Conversion
<

"

Cycle Number Lt 2 s 4 s 6] 7] 8] 9 10 1] 12|]2
ADC Clock i
Trigger : : : ‘ ‘
Source ———/ ! : V 4/
ADATE L] | |
ADIF N 1 ‘ |
ADCH T / /}»(MSBjof Result
ADCL T 7] /p<__LSB of Result
Vel (\ Sample & Hold Conversion ' “ Prescaler
Prescaler Complete Reset
Reset MUX and REFS
Update
ATmega16A [DATASHEET] 200

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 22-7. ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion

<
| |

11‘ 12‘ 131 1‘2‘3‘4‘

Cycle Number

ADC Clock
ADSC]]
ADIF] ?
ADCH ﬂk MSB (%f Result
ADCL /}K LSB o‘f Result
Conversion /—) K <\ Sample & Hold
Complete MUX and REFS

Update

Table 22-1. ADC Conversion Time

Sample & Hold (Cycles
Condition from Start of Conversion) | Conversion Time (Cycles)
First conversion 13.5 25
Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 135
Normal conversions, differential 1.5/2.5 13/14

22.5.1 Differential Gain Channels
When using differential gain channels, certain aspects of the conversion need to be taken into consideration.

Differential conversions are synchronized to the internal clock CK,pc, equal to half the ADC clock. This
synchronization is done automatically by the ADC interface in such a way that the sample-and-hold occurs at a
specific phase of CK,pco. A conversion initiated by the user (i.e., all single conversions, and the first free
running conversion) when CK,pc, is low will take the same amount of time as a single ended conversion (13
ADC clock cycles from the next prescaled clock cycle). A conversion initiated by the user when CK,pc, is high
will take 14 ADC clock cycles due to the synchronization mechanism. In Free Running mode, a new conversion
is initiated immediately after the previous conversion completes, and since CK,pc, is high at this time, all
automatically started (i.e., all but the first) free running conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may be subjected to
non-linear amplification. An external low-pass filter should be used if the input signal contains higher frequency
components than the gain stage bandwidth. Note that the ADC clock frequency is independent of the gain stage
bandwidth limitation. For example, the ADC clock period may be 6 ps, allowing a channel to be sampled at
12kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC must be switched
off between conversions. When Auto Triggering is used, the ADC prescaler is reset before the conversion is
started. Since the gain stage is dependent of a stable ADC clock prior to the conversion, this conversion will not
be valid. By disabling and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to “0”
then to “1”), only extended conversions are performed. The result from the extended conversions will be valid.
See “Prescaling and Conversion Timing” on page 199 for timing details.

Atmel ATmega16A [DATASHEET] 201

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to which
the CPU has random access. This ensures that the channels and reference selection only takes place at a safe
point during the conversion. The channel and reference selection is continuously updated until a conversion is
started. Once the conversion starts, the channel and reference selection is locked to ensure a sufficient
sampling time for the ADC. Continuous updating resumes in the last ADC clock cycle before the conversion
completes (ADIF in ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special care must be
taken when updating the ADMUX Register, in order to control which conversion will be affected by the new
settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX Register is
changed in this period, the user cannot tell if the next conversion is based on the old or the new settings.
ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

Special care should be taken when changing differential channels. Once a differential channel has been
selected, the gain stage may take as much as 125 ps to stabilize to the new value. Thus conversions should not
be started within the first 125 us after selecting a new differential channel. Alternatively, conversion results
obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing ADC reference (by
changing the REFS1:0 bits in ADMUX).

22.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the correct
channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The channel selection
may be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the
conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The channel selection
may be changed one ADC clock cycle after writing one to ADSC. However, the simplest method is to wait for the
first conversion to complete, and then change the channel selection. Since the next conversion has already
started automatically, the next result will reflect the previous channel selection. Subsequent conversions will
reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accuracy due to the
required settling time for the automatic offset cancellation circuitry. The user should preferably disregard the first
conversion result.

22.6.2 ADC Voltage Reference

The reference voltage for the ADC (Vggg) indicates the conversion range for the ADC. Single ended channels
that exceed Vgge ill result in codes close to 0x3FF. Vg can be selected as either AVCC, internal 2.56V
reference, or external AREF pin.

Atmel ATmega16A [DATASHEET] 202

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is generated from the
internal bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin is directly
connected to the ADC, and the reference voltage can be made more immune to noise by connecting a capacitor
between the AREF pin and ground. Vi can also be measured at the AREF pin with a high impedant voltmeter.
Note that Vger is a high impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other reference
voltage options in the application, as they will be shorted to the external voltage. If no external voltage is applied
to the AREF pin, the user may switch between AVCC and 2.56V as reference selection. The first ADC
conversion result after switching reference voltage source may be inaccurate, and the user is advised to discard
this result.

If differential channels are used, the selected reference should not be closer to AVCC than indicated in
Table 27-6 on page 287.

22.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced from
the CPU core and other I/O peripherals. The noise canceler can be used with ADC Noise Reduction and Idle
mode. To make use of this feature, the following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion Mode must be
selected and the ADC conversion complete interrupt must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the CPU has
been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the CPU
and execute the ADC Conversion Complete interrupt routine. If another interrupt wakes up the CPU
before the ADC conversion is complete, that interrupt will be executed, and an ADC Conversion Complete
interrupt request will be generated when the ADC conversion completes. The CPU will remain in active
mode until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle mode and
ADC Noise Reduction mode. The user is advised to write zero to ADEN before entering such sleep modes to
avoid excessive power consumption. If the ADC is enabled in such sleep modes and the user wants to perform
differential conversions, the user is advised to switch the ADC off and on after waking up from sleep to prompt
an extended conversion to get a valid result.

22.7.1 Analog Input Circuitry

The Analog Input Circuitry for single ended channels is illustrated in Figure 22-8. An analog source applied to
ADCn is subjected to the pin capacitance and input leakage of that pin, regardless of whether that channel is
selected as input for the ADC. When the channel is selected, the source must drive the S/H capacitor through
the series resistance (combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or less. If such a
source is used, the sampling time will be negligible. If a source with higher impedance is used, the sampling
time will depend on how long time the source needs to charge the S/H capacitor, with can vary widely. The user
is recommended to only use low impedant sources with slowly varying signals, since this minimizes the required
charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source impedances
of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for either kind of channels,
to avoid distortion from unpredictable signal convolution. The user is advised to remove high frequency
components with a low-pass filter before applying the signals as inputs to the ADC.

Atmel ATmega16A [DATASHEET] 203

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 22-8. Analog Input Circuitry

1..100 kQ

ADCn M L

Cgqy= 14 pF

22.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog
measurements. If conversion accuracy is critical, the noise level can be reduced by applying the following

techniques:
1. Keep analog signal paths as short as possible. Keep them well away from high-speed switching digital
tracks.

2. The AVCC pin on the device should be connected to the digital V. supply voltage via an LC network as
shown in Figure 22-9.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do not switch while a conversion
is in progress.

Figure 22-9. ADC Power Connections

R

| |Pat(aDct)
| |Pa2(aDC2)
| | Pas(aDcy)

j PA4 (ADC4)
|| Pas (aDCS)
j PA6 (ADCS6)
j PA7 (ADC?7)
|| AREF

AVCC

10uH

100nF

] Per

ATmega16A [DATASHEET] 204
/I t m eL Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.7.3 Offset Compensation Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential measurements as
much as possible. The remaining offset in the analog path can be measured directly by selecting the same
channel for both differential inputs. This offset residue can be then subtracted in software from the
measurement results. Using this kind of software based offset correction, offset on any channel can be reduced
below one LSB.

22.7.4 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and Vggg in 2" steps (LSBs). The lowest
code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:
e Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5 LSB).
Ideal value: 0 LSB.
Figure 22-10. Offset Error

Output Coded

77777 Ideal ADC
—— Actual ADC

Vger Input Voltage

e Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last transition (Ox3FE
to Ox3FF) compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB

Figure 22-11. Gain Error

Output Coded . Gain
Errgr'
————— Ideal ADC
Actual ADC
VREF>Input Voltage
ATmega16A [DATASHEET 205
Atmel vk :

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum deviation of
an actual transition compared to an ideal transition for any code. Ideal value: 0 LSB.

Figure 22-12. Integral Non-linearity (INL)
Output Code A

N

77777 Ideal ADC

Actual ADC

Vrer Input Voltage

e Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval between
two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

OutputCode A
Ox3FF

[

0 Vgreg Input Voltage

e Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a range of
input voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.

e Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to an ideal
transition for any code. This is the compound effect of Offset, Gain Error, Differential Error, Non-linearity,
and Quantization Error. Ideal value: £0.5 LSB.

/ItmeL ATmega16A [DATASHEET] 206

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers
(ADCL, ADCH).

For single ended conversion, the result is

Vi - 1024
ADC = L
VREF

where V| is the voltage on the selected input pin and Vg the selected voltage reference (see Table 22-3 on
page 208 and Table 22-4 on page 209). 0x000 represents ground, and Ox3FF represents the selected
reference voltage minus one LSB.

If differential channels are used, the result is
(Vpos—Vneg) - GAIN - 512

ADC =
VRer

where Vg is the voltage on the positive input pin, Vygg the voltage on the negative input pin, GAIN the
selected gain factor, and Vg the selected voltage reference. The result is presented in two’s complement form,
from 0x200 (-512d) through Ox1FF (+511d). Note that if the user wants to perform a quick polarity check of the

results, it is sufficient to read the MSB of the result (ADC9 in ADCH). If this bit is one, the result is negative, and
if this bit is zero, the result is positive. Figure 22-14 shows the decoding of the differential input range.

Table 22-2 shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is selected with
a gain of GAIN and a reference voltage of Vggr.

Figure 22-14. Differential Measurement Range

Output Code
Ox1FF

-V

ox000 |+
T 1) — T T T T T)()—v—v—i—>
/GAIN ((170 (V._/GAIN Differential Input

i REF Voltage (Volts)

((

0x200

/ItmeL ATmega16A [DATASHEET] 207

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 22-2. Correlation between Input Voltage and Output Codes

Vaoen Read code Corresponding Decimal Value
Vapcm + Vree/GAIN Ox1FF 511
Vapem + 511/512 Vgee/GAIN Ox1FF 511
Vapem + 510/512 Vgee/GAIN Ox1FE 510
Vapcm + 17512 Vgee/GAIN 0x001 1
Vapcm 0x000 0
Vapcm - 1/512 Vgee/GAIN Ox3FF -1
Vapcem - 511/512 Vgee/GAIN 0x201 -511
Vapem - Vrer/GAIN 0x200 -512
Example:

ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV.
ADCR =512 *10 * (300 - 500) / 2560 = -400 = 0x270

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the result: ADCL
= 0x70, ADCH = 0x02.

22.9 Register Description

22.9.1 ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0

| reFs1 | REFSO | ADLAR | Mux4 | MUx3 MUX2 MUX1 Muxo | ADMUX
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The
internal voltage reference options may not be used if an external reference voltage is being applied to the AREF
pin.

Table 22-3. Voltage Reference Selections for ADC

REFS1 REFSO | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin

« Bit5—-ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. Write one to
ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will affect the

Atmel ATmega16A [DATASHEET] 208

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

ADC Data Register immediately, regardless of any ongoing conversions. For a complete description of this bit,
see “ADCL and ADCH — The ADC Data Register” on page 211.

* Bits 4:0 - MUX4:0: Analog Channel and Gain Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC. These bits also
select the gain for the differential channels. See Table 22-4 for details. If these bits are changed during a
conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

Table 22-4. Input Channel and Gain Selections
Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
00000 ADCO
00001 ADC1
00010 ADC2
00011 ADC3 N/A
00100 ADC4
00101 ADC5
00110 ADC6
00111 ADC7
01000 ADCO ADCO 10x
01001 ADCA1 ADCO 10x
01010 ADCO ADCO 200x
01011 ADC1 ADCO 200x
01100 ADC2 ADC2 10x
01101 ADC3 ADC2 10x
011101 ADC2 ADC2 200x
01111 ADC3 ADC2 200x
10000 ADCO ADC1 1x
10001 ADCA1 ADC1 1x
10010 N/A ADC2 ADC1 1x
10011 ADC3 ADC1 1x
10100 ADC4 ADCA1 1x
10101 ADC5 ADCH1 1x
10110 ADC6 ADCH1 1x
10111 ADC7 ADC1 1x
11000 ADCO ADC2 1x
11001 ADC1 ADC2 1x
11010 ADC2 ADC2 1x
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x
/ItmeL ATmega16A [DATASHEET] 209

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 22-4. Input Channel and Gain Selections (Continued)

Single Ended Positive Differential Negative Differential
MUX4:0 Input Input Input Gain
11101 ADC5 ADC2 1x
11110 1.22 V (Vgg) N/A
11111 0V (GND)

Note: 1. The differential input channels are not tested for devices in PDIP Package. This feature is only guaranteed to
work for devices in TQFP and QFN/MLF Packages

22.9.2 ADCSRA — ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| ApEN | ADSC | ADATE | ADIF | ADIE ADPS2 ADPS1 ADPSO | ADCSRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off while a
conversion is in progress, will terminate this conversion.

* Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode, write this bit to
one to start the first conversion. The first conversion after ADSC has been written after the ADC has been
enabled, or if ADSC is written at the same time as the ADC is enabled, will take 25 ADC clock cycles instead of
the normal 13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns to
zero. Writing zero to this bit has no effect.

* Bit 5—- ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a conversion on a
positive edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger Select bits,
ADTS in SFIOR.

« Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The ADC Conversion

Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared by hardware when
executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical one to

the flag. Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also
applies if the SBI and CBI instructions are used.

e Bit 3— ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is activated.

e Bits 2:0 - ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.

Atmel ATmega16A [DATASHEET] 210

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 22-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO Division Factor
0 0 2
0 0 2
0 1 4
0 1 8
1 0 16
1 0 32
1 1 64
1 1 128
22.9.3 ADCL and ADCH — The ADC Data Register
ADLA
R Bit 15 14 13 12 11 10 9 8
— _ — - — - ADC9 ADC8 ADCH
- ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
0 R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ADLA
R it 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
- ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
1 R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differential channels are
used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left
adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be

read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from the registers. If
ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

« ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result” on page 207.

Atmel

ATmega16A [DATASHEET] 211

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

22.9.4 SFIOR - Special FunctionlO Register
Bit 7 6 5 4 3 2 1 0
| ApTs2 | abtsi | ADTsO | B ACME PUD PSR2 PSR10 | SFIOR
Read/Write RIW RIW RIW R RIW RIW RW RIW
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:5—- ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC
conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion will be triggered by the
rising edge of the selected Interrupt Flag. Note that switching from a trigger source that is cleared to a trigger
source that is set, will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will start a
conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC
Interrupt Flag is set.
Table 22-6. ADC Auto Trigger Source Selections
ADTS2 ADTS1 ADTSO Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event
« Bit 4 — Res: Reserved Bit
This bit is reserved for future use. To ensure compatibility with future devices, this bit must be written to zero
when SFIOR is written.
ATmega16A [DATASHEET 212
Atmel gaionl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

23. JTAG Interface and On-chip Debug System
23.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:
— All Internal Peripheral Units
— Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
— Extensive On-chip Debug Support for Break Conditions, Including
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Breakpoints on Single Address or Address Range
— Data Memory Breakpoints on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
+ On-chip Debugging Supported by AVR Studio®
23.2 Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for
e Testing PCBs by using the JTAG Boundary-scan capability
e Programming the non-volatile memories, Fuses and Lock bits
e On-chip Debugging
A brief description is given in the following sections. Detailed descriptions for Programming via the JTAG
interface, and using the Boundary-scan Chain can be found in the sections “Programming via the JTAG
Interface” on page 267 and “IEEE 1149.1 (JTAG) Boundary-scan” on page 219, respectively. The On-chip
Debug support is considered being private JTAG instructions, and distributed within Atmel and to selected third
party vendors only.
Figure 23-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The TAP Controller is
a state machine controlled by the TCK and TMS signals. The TAP Controller selects either the JTAG Instruction
Register or one of several Data Registers as the scan chain (Shift Register) between the TDI input and TDO
output. The Instruction Register holds JTAG instructions controlling the behavior of a Data Register.
The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used for board-level
testing. The JTAG Programming Interface (actually consisting of several physical and virtual Data Registers) is
used for JTAG Serial Programming via the JTAG interface. The Internal Scan Chain and Break Point Scan
Chain are used for On-chip Debugging only.
23.3 TAP —Test Access Port
The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins constitute the
Test Access Port — TAP. These pins are:
e TMS: Test Mode Select. This pin is used for navigating through the TAP-controller state machine.
e TCK: Test Clock. JTAG operation is synchronous to TCK.
ATmega16A [DATASHEET 213
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

e TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register (Scan
Chains).

e TDO: Test Data Out. Serial output data from Instruction register or Data Register.
The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the TAP controller is in
reset. When programmed and the JTD bitin MCUCSR is cleared, the TAP input signals are internally pulled
high and the JTAG is enabled for Boundary-scan and programming. In this case, the TAP output pin (TDO) is
left floating in states where the JTAG TAP controller is not shifting data, and must therefore be connected to a
pull-up resistor or other hardware having pull-ups (for instance the TDI-input of the next device in the scan
chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is monitored by the
debugger to be able to detect external reset sources. The debugger can also pull the RESET pin low to reset the
whole system, assuming only open collectors on the reset line are used in the application.

Figure 23-1. Block Diagram

1/0 PORT O

A
DEVICE BOUNDARY Y

BOUNDARY SCAN CHAIN

™ 4y
DO ¢1, p JTAG PROGRAMMING
1 TAP INTERFACE
TCK —»| | CONTROLLER
|
|

™S —> 3

AVR CPU
INTERNAL
FLASH Address [<

INSTRUCTION MEMORY Data |»] SoAN PC
CHAIN i
REGISTER J Instruction
D
REGISTER BREAKPOINT

A

A
Y

M onT [~ FLOW CONTROL[| .
X REGISTER — 9%, g
< PERIPHERAL =E E§ I
< UNITS a2 8
< 2 g
BREAKPOINT & g
SCAN CHAIN
y JTAG / AVR CORE
COMMUNICATION
ADDRESS
OCD STATUS _| INTERFACE "
AND CONTROL [> g
<
8
< O
=]
s
! £
| 8
|
A
Y
1/0 PORT n
Atmel ATmega16A [DATASHEET] 214

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 23-2.

23.4 TAP Controller

TAP Controller State Diagram

.G

Test-Logic-Reset

A

°G

Run-Test/Idle

Select-DR Scan

A 4

Select-IR Scan

Update-DR

1 0

Update-IR

A

1 0

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-scan circuitry,
JTAG programming circuitry, or On-chip Debug system. The state transitions depicted in Figure 23-2 depend on
the signal present on TMS (shown adjacent to each state transition) at the time of the rising edge at TCK. The
initial state after a Power-On Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

Atmel

At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift Instruction
Register — Shift-IR state. While in this state, shift the four bits of the JTAG instructions into the JTAG
Instruction Register from the TDI input at the rising edge of TCK. The TMS input must be held low during
input of the 3 LSBs in order to remain in the Shift-IR state. The MSB of the instruction is shifted in when
this state is left by setting TMS high. While the instruction is shifted in from the TDI pin, the captured IR-

ATmega16A [DATASHEET] 215

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

23.5

23.6

state 0x01 is shifted out on the TDO pin. The JTAG Instruction selects a particular Data Register as path
between TDI and TDO and controls the circuitry surrounding the selected Data Register.

e Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto the
parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-IR, and Exit2-IR
states are only used for navigating the state machine.

e Atthe TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data Register —
Shift-DR state. While in this state, upload the selected Data Register (selected by the present JTAG
instruction in the JTAG Instruction Register) from the TDI input at the rising edge of TCK. In order to
remain in the Shift-DR state, the TMS input must be held low during input of all bits except the MSB. The
MSB of the data is shifted in when this state is left by setting TMS high. While the Data Register is shifted
in from the TDI pin, the parallel inputs to the Data Register captured in the Capture-DR state is shifted out
on the TDO pin.

e Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register has a
latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-DR, and
Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG instruction
and using Data Registers, and some JTAG instructions may select certain functions to be performed in the Run-
Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be entered by holding
TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography” on page 218.

Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1 (JTAG)
Boundary-scan” on page 219.

Using the On-chip Debug System

As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of:
e A scan chain on the interface between the internal AVR CPU and the internal peripheral units
e Break Point unit
e Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying AVR

instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O memory mapped location
which is part of the communication interface between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, 2 Program Memory
Break Points, and 2 combined Break Points. Together, the 4 Break Points can be configured as either:

4 single Program Memory Break Points

3 Single Program Memory Break Point + 1 single Data Memory Break Point

2 single Program Memory Break Points + 2 single Data Memory Break Points

2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range Break Point”)
e 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break Point”)

A debugger, like the AVR Studio, may however use one or more of these resources for its internal purpose,
leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG Instructions” on
page 217.

Atmel ATmega16A [DATASHEET] 216

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the OCDEN Fuse
must be programmed and no Lock bits must be set for the On-chip Debug system to work. As a security feature,
the On-chip Debug system is disabled when any Lock bits are set. Otherwise, the On-chip Debug system would
have provided a back-door into a secured device.

The AVR JTAG ICE from Atmel is a powerful development tool for On-chip Debugging of all AVR 8-bit RISC
Microcontrollers with IEEE 1149.1 compliant JTAG interface. The JTAG ICE and the AVR Studio user interface
give the user complete control of the internal resources of the microcontroller, helping to reduce development
time by making debugging easier. The JTAG ICE performs real-time emulation of the microcontroller while it is
running in a target system.

Please refer to the Support Tools section on the AVR pages on www.atmel.com for a full description of the AVR
JTEG ICE. AVR Studio can be downloaded free from Software section on the same web site.

All necessary execution commands are available in AVR Studio, both on source level and on disassembly level.
The user can execute the program, single step through the code either by tracing into or stepping over
functions, step out of functions, place the cursor on a statement and execute until the statement is reached, stop
the execution, and reset the execution target. In addition, the user can have an unlimited number of code
breakpoints (using the BREAK instruction) and up to two data memory breakpoints, alternatively combined as a
mask (range) Break Point.

23.7 On-chip Debug Specific JTAG Instructions
The On-chip Debug support is considered being private JTAG instructions, and distributed within Atmel and to
selected third party vendors only. Instruction opcodes are listed for reference.
23.7.1 PRIVATEO; $8
Private JTAG instruction for accessing On-chip Debug system.
23.7.2 PRIVATEL; $9
Private JTAG instruction for accessing On-chip Debug system.
23.7.3 PRIVATEZ2; $A
Private JTAG instruction for accessing On-chip Debug system.
23.7.4 PRIVATE3; $B
Private JTAG instruction for accessing On-chip Debug system.
23.8 Using the JTAG Programming Capabilities
Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI and TDO. These are
the only pins that need to be controlled/observed to perform JTAG programming (in addition to power pins). It is
not required to apply 12V externally. The JTAGEN Fuse must be programmed and the JTD bit in the MCUSR
Register must be cleared to enable the JTAG Test Access Port.
The JTAG programming capability supports:
e Flash programming and verifying
e EEPROM programming and verifying
e Fuse programming and verifying
e Lock bit programming and verifying
ATmega16A [DATASHEET 217
Atmel gatoAl)

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are programmed,
the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a security feature that ensures
no back-door exists for reading out the content of a secured device.

The details on programming through the JTAG interface and programming specific JTAG instructions are given
in the section “Programming via the JTAG Interface” on page 267.

23.9 Register Description

23.9.1 OCDR - On-chip Debug Register

Bit 7 6 5 4 3 2 1 0

| wsBibrRD | | Lse | ocor
Read/Write R/W RIW R/W RIW R/W RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the microcontroller to the
debugger. The CPU can transfer a byte to the debugger by writing to this location. At the same time, an Internal
Flag; I/O Debug Register Dirty — IDRD — is set to indicate to the debugger that the register has been written.
When the CPU reads the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the IDRD
bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR Register can
only be accessed if the OCDEN Fuse is programmed, and the debugger enables access to the OCDR Register.
In all other cases, the standard 1/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

23.10 Bibliography
For more information about general Boundary-scan, the following literature can be consulted:

e |EEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture, IEEE,
1993

e Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992

/ItmeL ATmega16A [DATASHEET] 218

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

24. |EEE 1149.1 (JTAG) Boundary-scan

24.1 Features
* JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the JTAG Standard
* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction
* Additional Public AVR_RESET Instruction to Reset the AVR

24.2 Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as
well as the boundary between digital and analog logic for analog circuitry having Off-chip connections. At
system level, all ICs having JTAG capabilities are connected serially by the TDI/TDO signals to form a long Shift
Register. An external controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the expected result. In this
way, Boundary-scan provides a mechanism for testing interconnections and integrity of components on Printed
Circuits Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and
EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be used for testing the Printed
Circuit Board. Initial scanning of the Data Register path will show the ID-code of the device, since IDCODE is
the default JTAG instruction. It may be desirable to have the AVR device in Reset during Test mode. If not reset,
inputs to the device may be determined by the scan operations, and the internal software may be in an
undetermined state when exiting the Test mode. Entering reset, the outputs of any Port Pin will instantly enter
the high impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be
issued to make the shortest possible scan chain through the device. The device can be set in the reset state
either by pulling the external RESET pin low, or issuing the AVR_RESET instruction with appropriate setting of
the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the
output latch will be driven out on the pins as soon as the EXTEST instruction is loaded into the JTAG IR-
Register. Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to
avoid damaging the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD can also
be used for taking a snapshot of the external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the 1/O Register MCUCSR must be cleared to
enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher than the internal
chip frequency is possible. The chip clock is not required to run.

24.3 Data Registers

The Data Registers relevant for Boundary-scan operations are:

e Bypass Register
e Device Identification Register
e Reset Register
e Boundary-scan Chain
ATmega16A [DATASHEET 219
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

24.3.1 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is selected as path
between TDI and TDO, the register is reset to 0 when leaving the Capture-DR controller state. The Bypass
Register can be used to shorten the scan chain on a system when the other devices are to be tested.

24.3.2 Device ldentification Register

Figure 24-1 shows the structure of the Device Identification Register.

Figure 24-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 11 1 0
Device ID | version Part Number Manufacturer ID 1 |
4 bits 16 bits 11 bits 1 bit

24.3.2.1 Version

Version is a 4-bit number identifying the revision of the component. The JTAG version number follows the
revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

24.3.2.2 Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for ATmega16A is listed in

Table 24-1.

Table 24-1. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
ATmega16A 0x9403

24.3.2.3 Manufacturer ID

The Manufacturer ID is a 11 bit code identifying the manufacturer. The JTAG manufacturer ID for Atmel is listed

in Table 24-2.

Table 24-2. Manufacturer ID
Manufacturer JTAG Manufacturer ID (Hex)
Atmel 0x01F

24.3.3 Reset Register

The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port Pins when
reset, the Reset Register can also replace the function of the unimplemented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the External Reset low. The part is reset as long as
there is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the
part will remain reset for a Reset Time-Out Period (refer to “Clock Sources” on page 25) after releasing the
Reset Register. The output from this Data Register is not latched, so the reset will take place immediately, as
shown in Figure 24-2.

Atmel ATmega16A [DATASHEET] 220

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-2. Reset Register

To
TDO

From other Internal and
External Reset Sources

From i>—> Internal Reset
D Q

T

ClockDR - AVR_RESET

24.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital 1/O pins, as
well as the boundary between digital and analog logic for analog circuitry having Off-chip connections.

See “Boundary-scan Chain” on page 222 for a complete description.

24.4 Boundary-scan Specific JTAG Instructions
The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG instructions
useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not implemented, but all outputs
with tri-state capability can be set in high-impedant state by using the AVR_RESET instruction, since the initial
state for all port pins is tri-state.
As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.
The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which
Data Register is selected as path between TDI and TDO for each instruction.
2441 EXTEST, $0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing circuitry
external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output Data, and Input Data are all
accessible in the scan chain. For Analog circuits having Off-chip connections, the interface between the analog
and the digital logic is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.
The active states are:
e Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
e Shift-DR: The Internal Scan Chain is shifted by the TCK input.
e Update-DR: Data from the scan chain is applied to output pins.
24.4.2 IDCODE; $1
Optional JTAG instruction selecting the 32-bit ID-register as Data Register. The ID-register consists of a version
number, a device number and the manufacturer code chosen by JEDEC. This is the default instruction after
power-up.
The active states are:
e Capture-DR: Data in the IDCODE-register is sampled into the Boundary-scan Chain.
e Shift-DR: The IDCODE scan chain is shifted by the TCK input.
ATmega16A [DATASHEET 221
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

2443 SAMPLE_PRELOAD; $2

Mandatory JTAG instruction for pre-loading the output latches and talking a snap-shot of the input/output pins
without affecting the system operation. However, the output latches are not connected to the pins. The
Boundary-scan Chain is selected as Data Register.

The active states are:
e Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
e Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

e Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However, the output
latches are not connected to the pins.

24.4.4 AVR_RESET; $C

The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or releasing the JTAG
Reset source. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as Data
Register. Note that the reset will be active as long as there is a logic 'one' in the Reset Chain. The output from
this chain is not latched.

The active states are:

e Shift-DR: The Reset Register is shifted by the TCK input.

24.45 BYPASS; $F
Mandatory JTAG instruction selecting the Bypass Register for Data Register.
The active states are:

e Capture-DR: Loads a logic “0” into the Bypass Register.
e Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

24.5 Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as
well as the boundary between digital and analog logic for analog circuitry having Off-chip connection.

24.5.1 Scanning the Digital Port Pins

Figure 24-3 shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The cell consists of
a standard Boundary-scan cell for the Pull-up Enable — PUExn — function, and a bi-directional pin cell that
combines the three signals Output Control — OCxn, Output Data — ODxn, and Input Data — IDxn, into only a two-
stage Shift Register. The port and pin indexes are not used in the following description.

The Boundary-scan logic is not included in the figures in the datasheet. Figure 24-4 shows a simple digital Port
Pin as described in the section “I/O Ports” on page 49. The Boundary-scan details from Figure 24-3 replaces the
dashed box in Figure 24-4.

When no alternate port function is present, the Input Data — ID — corresponds to the PINxn Register value (but
ID has no synchronizer), Output Data corresponds to the PORT Register, Output Control corresponds to the
Data Direction — DD Register, and the Pull-up Enable — PUExn — corresponds to logic expression PUD - DDxn -
PORTXxn.

Digital alternate port functions are connected outside the dotted box in Figure 24-4 to make the scan chain read
the actual pin value. For Analog function, there is a direct connection from the external pin to the analog circuit,
and a scan chain is inserted on the interface between the digital logic and the analog circuitry.

Atmel ATmega16A [DATASHEET] 222

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-3. Boundary-scan Cell for Bidirectional Port Pin with Pull-up Function.

ShiftDR To Next Cell EXTEST Vee
N

Pullup Enable (PUE)

o |, Tl

Q
G
Output Control (OC)
FF1 LD1 0
0
D Q Q 5
1
>—| —1 G

Output Data (OD)

D Port Pin (PXn)

0 FFO LDO 0
0 ’—[\/
1 D 1

Input Data (ID)

From Last Cell ClockDR UpdateDR

AtmeL ATmega16A [DATASHEET] 223

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-4. General Port Pin Schematic Diagram(")

T T I
I —
| | e
| | DDxn
3., <—]
| | F{EISET Wox
| | OCxn
> el i e
2z RDx
I 3 | [:
| | %)
| 2
[>] ! T Tl 2
| \l | ODxn PORTxn <
U U 3., 4 l E
IDxn [WPx ()
RESET
SLEEP C RRx
SYNCHRONIZER
| —————— RPx
)~ b al—Jp a _L_I L’
== | e
| ’_L [l—> o |
|______i ClKyo
PUD: PULLUP DISABLE WDx: WRITE DDRx
PUEXxn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OCxn: OUTPUT CONTROL for pin Pxn WPx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pln Pxn RPx: READ PORTXx PIN
SLEEP: SLEEP CONTROL CLKyo: /0 CLOCK

Note: 1. See Boundary-scan description for details.

24.5.2 Boundary-scan and the Two-wire Interface

The 2 Two-wire Interface pins SCL and SDA have one additional control signal in the scan-chain; Two-wire
Interface Enable — TWIEN. As shown in Figure 24-5, the TWIEN signal enables a tri-state buffer with slew-rate
control in parallel with the ordinary digital port pins. A general scan cell as shown in Figure 24-9 is attached to
the TWIEN signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordinary scan support for

digital port pins suffice for connectivity tests. The only reason for having TWIEN in the scan path, is to be able
to disconnect the slew-rate control buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to drive contention.

/ItmeL ATmega16A [DATASHEET] 224

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-5. Additional Scan Signal for the Two-wire Interface

b o] PUExn

OCxn
%,7 ODxn

Pxn * TWIEN
<
Slew-rate Limited
IDxn

24.5.3 Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high logic for High
Voltage Parallel Programming. An observe-only cell as shown in Figure 24-6 is inserted both for the 5V reset
signal; RSTT, and the 12V reset signal; RSTHV.

Figure 24-6. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin > * I X > To System Logic
FF1
D Q
From ClockDR
Previous
Cell

24.5.4 Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator, External RC,
External Clock, (High Frequency) Crystal Oscillator, Low Frequency Crystal Oscillator, and Ceramic Resonator.

Figure 24-7 shows how each Oscillator with external connection is supported in the scan chain. The Enable
signal is supported with a general boundary-scan cell, while the Oscillator/Clock output is attached to an
observe-only cell. In addition to the main clock, the Timer Oscillator is scanned in the same way. The output
from the internal RC Oscillator is not scanned, as this Oscillator does not have external connections.

/ItmeL ATmega16A [DATASHEET] 225

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-7.

Boundary-scan Cells for Oscillators and Clock Options
XTAL1/TOSCA XTAL2/TOSC2

To
Next
ShiftDR Cell

EXTEST Oscillator

From Digital Logic

D QD Q
—G

-

From ClockDR UpdateDR
Previous
Cell

ENABLE

To
Next
ShiftDR Cell

| I

-
: |

OUTPUT

To System Logic

From ClockDR
Previous
Cell

Table 24-3 summaries the scan registers for the external clock pin XTAL1, Oscillators with XTAL1/XTAL2
connections as well as 32 kHz Timer Oscillator.

Table 24-3. Scan Signals for the Oscillators("?)®)
Scanned Clock Line
Enable Signal Scanned Clock Line Clock Option when not Used
EXTCLKEN EXTCLK (XTAL1) External Clock 0
OSCON OSCCK External Crystal 0
External Ceramic Resonator
RCOSCEN RCCK External RC 1
OSC32EN 0OSC32CK Low Freq. External Crystal 0
TOSKON TOSCK 32 kHz Timer Oscillator 0
Notes: 1. Do not enable more than one clock source as main clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between the Internal
Oscillator and the JTAG TCK clock. If possible, scanning an external clock is preferred.
3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock configuration is

considered fixed for a given application. The user is advised to scan the same clock option as to be used in the
final system. The enable signals are supported in the scan chain because the system logic can disable clock
options in sleep modes, thereby disconnecting the Oscillator pins from the scan path if not provided. The
INTCAP Fuses are not supported in the scan-chain, so the boundary scan chain can not make a XTAL
Oscillator requiring internal capacitors to run unless the fuse is correctly programmed.

2455 Scanning the Analog Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 24-8. The Boundary-scan cell
from Figure 24-9 is attached to each of these signals. The signals are described in Table 24-4,

The Comparator need not be used for pure connectivity testing, since all analog inputs are shared with a digital
port pin as well.

Atmel

ATmega16A [DATASHEET] 226

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 24-8. Analog Comparator

BANDGAP
REFERENCE VCC
ACBG
ACD —»
AINO
A
ACO
AC_IDLE
ACME =
ADC MULTIPLEXER

OUTPUT

Pl

Figure 24-9. General Boundary-scan Cell used for Signals for Comparator and ADC

To
Next
ShiftDR Cell EXTEST
[A
From Digital Logic/ . 0
From Analog Ciruitry To Analog Circuitry/
1 To Digital Logic
0
D Q Q
1
— G
From ClockDR UpdateDR
Previous
Cell
ATmega16A [DATASHEET] 227
Atmel

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-4. Boundary-scan Signals for the Analog Comparator

Signal Direction as Seen from Recommended Input Output Values when

Name the Comparator Description when Not in Use Recommended Inputs are Used

AC_IDLE Input Turns off Analog 1 Depends upon pC code being
comparator when true executed

ACO Output Analog Comparator Will become inputtouC | 0
Qutput code being executed

ACME Input Uses output signal from 0 Depends upon pC code being
ADC mux when true executed

ACBG Input Bandgap Reference 0 Depends upon uC code being
enable executed

24.5.6 Scanning the ADC

Figure 24-10 shows a block diagram of the ADC with all relevant control and observe signals. The Boundary-scan cell
from Figure 24-9 is attached to each of these signals. The ADC need not be used for pure connectivity testing, since all
analog inputs are shared with a digital port pin as well.

Figure 24-10. Analog to Digital Converter

VCCREN),
AREF)
IREFEN
J
» To Comparator p
PASSEN)j/
G
|
ADCBGEN

SCTEST)ﬁ/

G0,

10x

G20

>
_ADC_2 P
ADC_1
: — ST
DDCJ ACLK
— AMPEN

The signals are described briefly in Table 24-5.

Atmel

ACTEN

PRECH

REE

»

AREF

GNDEN

DACOUT

DAC_9..0 10-bit DAC i + o
comp_ g
ADCEN man o
S|
HOLD =
ATmega16A [DATASHEET] 228

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-5. Boundary-scan Signals for the ADC

Recommended | Output Values when Recommended

Signal Direction as Seen Input when Not | Inputs are used, and CPU is not
Name from the ADC Description in Use Using the ADC
COMP Output Comparator Output 0 0
ACLK Input Clock signal to gain stages 0 0
implemented as Switch-cap filters
ACTEN Input Enable path from gain stages to 0 0
the comparator
ADCBGEN | Input Enable Band-gap reference as 0 0
negative input to comparator
ADCEN Input Power-on signal to the ADC 0 0
AMPEN Input Power-on signal to the gain stages 0 0
DAC 9 Input Bit 9 of digital value to DAC 1 1
DAC_8 Input Bit 8 of digital value to DAC 0 0
DAC_7 Input Bit 7 of digital value to DAC 0 0
DAC_6 Input Bit 6 of digital value to DAC 0 0
DAC 5 Input Bit 5 of digital value to DAC 0 0
DAC 4 Input Bit 4 of digital value to DAC 0 0
DAC_3 Input Bit 3 of digital value to DAC 0 0
DAC_2 Input Bit 2 of digital value to DAC 0 0
DAC_1 Input Bit 1 of digital value to DAC 0 0
DAC_O Input Bit 0 of digital value to DAC 0 0
EXTCH Input Connect ADC channels 0 - 3 to by- 1 1
pass path around gain stages
G10 Input Enable 10x gain 0 0
G20 Input Enable 20x gain 0 0
GNDEN Input Ground the negative input to 0 0

comparator when true

HOLD Input Sample&Hold signal. Sample 1 1
analog signal when low. Hold
signal when high. If gain stages
are used, this signal must go
active when ACLK is high.

IREFEN Input Enables Band-gap reference as 0 0
AREF signal to DAC
MUXEN_7 | Input Input Mux bit 7 0 0
MUXEN_6 | Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0
/ItmeL ATmega16A [DATASHEET] 229

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-5. Boundary-scan Signals for the ADC (Continued)

Recommended | Output Values when Recommended

Signal Direction as Seen Input when Not | Inputs are used, and CPU is not

Name from the ADC Description in Use Using the ADC

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_O Input Input Mux bit 0 1 1

NEGSEL_2 | Input Input Mux for negative input for 0 0
differential signal, bit 2

NEGSEL_1 | Input Input Mux for negative input for 0 0
differential signal, bit 1

NEGSEL_O | Input Input Mux for negative input for 0 0
differential signal, bit 0

PASSEN Input Enable pass-gate of gain stages. 1 1

PRECH Input Precharge output latch of 1 1
comparator. (Active low)

SCTEST Input Switch-cap TEST enable. Output 0 0

from x10 gain stage send out to
Port Pin having ADC_4

ST Input Output of gain stages will settle 0 0
faster if this signal is high first two
ACLK periods after AMPEN goes
high.

VCCREN Input Selects Vcc as the ACC reference 0 0
voltage.

Note: Incorrect setting of the switches in Figure 24-10 will make signal contention and may damage the part. There are several input
choices to the S&H circuitry on the negative input of the output comparator in Figure 24-10. Make sure only one path is
selected from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 24-5 should be used. The
user is recommended not to use the Differential Gain stages during scan. Switch-cap based gain stages require
fast operation and accurate timing which is difficult to obtain when used in a scan chain. Details concerning
operations of the differential gain stage is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 24-10 with a successive approximation
algorithm implemented in the digital logic. When used in Boundary-scan, the problem is usually to ensure that
an applied analog voltage is measured within some limits. This can easily be done without running a successive
approximation algorithm: apply the lower limit on the digital DAC[9:0] lines, make sure the output from the
comparator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the output from the
comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with a digital port pin
as well.

When using the ADC, remember the following:

e The Port Pin for the ADC channel in use must be configured to be an input with pull-up disabled to avoid
signal contention.

e In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when enabling the
ADC. The user is advised to wait at least 200 ns after enabling the ADC before controlling/observing any
ADC signal, or perform a dummy conversion before using the first result.

e The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low (Sample
mode).

Atmel ATmega16A [DATASHEET] 230

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

24.6

As an example, consider the task of verifying a 1.5V £ 5% input signal at ADC channel 3 when the power supply
is 5.0V and AREF is externally connected to V.

The lower limitis: [1024-1,5V-0,95/5V] = 291 = 0x123

The upper limitis: [1024 - 1,5V -1,05/5V| = 323 = 0x143
The recommended values from Table 24-5 are used unless other values are given in the algorithm in Table 24-
6. Only the DAC and Port Pin values of the Scan-chain are shown. The column “Actions” describes what JTAG
instruction to be used before filling the Boundary-scan Register with the succeeding columns. The verification
should be done on the data scanned out when scanning in the data on the same row in the table.

Table 24-6. Algorithm for Using the ADC

PA3.
PA3. PA3. Pullup_
Step Actions ADCEN DAC MUXEN HOLD PRECH Data Control Enable

1 SAMPLE_ 1 0x200 0x08 1 1 0 0 0

PRELOAD
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
5 1 0x123 0x08 1 0 0 0 0
6 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

outto be O
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
1 Verify the 1 0x200 0x08 1 1 0 0 0

COMP bit

scanned

out to be 1

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock frequency. As the
algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at least five times the number of
scan bits divided by the maximum hold time, t,,4 max-

Boundary-scan Order

Table 24-7 shows the scan order between TDI and TDO when the Boundary-scan chain is selected as data
path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The scan order follows the pin-out
order as far as possible. Therefore, the bits of Port A is scanned in the opposite bit order of the other ports.
Exceptions from the rules are the Scan chains for the analog circuits, which constitute the most significant bits of
the scan chain regardless of which physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to

/ItmeL ATmega16A [DATASHEET] 231

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

FFO, PXn. Control corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C
is not in the scan chain, since these pins constitute the TAP pins when the JTAG is enabled.

Table 24-7. ATmegal6A Boundary-scan Order

Bit Number Signal Name Module
140 AC_IDLE Comparator
139 ACO
138 ACME
137 ACBG
136 COMP ADC
135 PRIVATE_SIGNAL1("
134 ACLK
133 ACTEN
132 PRIVATE_SIGNAL2?
131 ADCBGEN
130 ADCEN
129 AMPEN
128 DAC_9
127 DAC_8
126 DAC_7
125 DAC_6
124 DAC_5
123 DAC_4
122 DAC_3
121 DAC_2
120 DAC_1
119 DAC_0
118 EXTCH
17 G10
116 G20
115 GNDEN
114 HOLD
113 IREFEN
112 MUXEN_7
/ItmeL ATmega16A [DATASHEET] 232

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-7. ATmegal6A Boundary-scan Order (Continued)

Bit Number Signal Name Module

1M MUXEN_6

110 MUXEN_5

109 MUXEN_4

108 MUXEN_3

107 MUXEN_2

106 MUXEN_1

105 MUXEN_O

104 NEGSEL_2

103 NEGSEL_1

102 NEGSEL_0

101 PASSEN

100 PRECH

99 SCTEST

98 ST

97 VCCREN

96 PBO0.Data Port B

95 PBO.Control

94 PBO.Pullup_Enable

93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable

90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable

87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable

84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

81 PB5.Data

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable
/ItmeL ATmega16A [DATASHEET] 233

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-7. ATmegal6A Boundary-scan Order (Continued)

Bit Number Signal Name Module
75 PB7.Data
74 PB7.Control
73 PB7.Pullup_Enable
72 RSTT Reset Logic
71 RSTHV (Observe-Only)
70 EXTCLKEN Enable signals for main clock/Oscillators
69 OSCON
68 RCOSCEN
67 OSC32EN
66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
65 0SCCK (Observe-Only)
64 RCCK
63 0SC32CK
62 TWIEN TWI
61 PDO0.Data Port D
60 PDO.Control
59 PDO.Pullup_Enable
58 PD1.Data
57 PD1.Control
56 PD1.Pullup_Enable
55 PD2.Data
54 PD2.Control
53 PD2.Pullup_Enable
52 PD3.Data
51 PD3.Control
50 PD3.Pullup_Enable
49 PD4.Data
48 PD4.Control
47 PD4.Pullup_Enable
46 PD5.Data
45 PD5.Control
44 PD5.Pullup_Enable
43 PD6.Data
42 PD6.Control
41 PD6.Pullup_Enable
40 PD7.Data
/ItmeL ATmega16A [DATASHEET] 234

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Table 24-7. ATmegal6A Boundary-scan Order (Continued)

Bit Number Signal Name Module
39 PD7.Control
38 PD7.Pullup_Enable
37 PCO0.Data Port C
36 PCO0.Control
35 PCO.Pullup_Enable
34 PC1.Data
33 PC1.Control
32 PC1.Pullup_Enable
31 PC6.Data
30 PC6.Control
29 PC6.Pullup_Enable
28 PC7.Data
27 PC7.Control
26 PC7.Pullup_Enable
25 TOSC 32 kHz Timer Oscillator
24 TOSCON
23 PA7.Data Port A
22 PA7.Control
21 PA7.Pullup_Enable
20 PA6.Data
19 PA6.Control
18 PA6.Pullup_Enable
17 PA5.Data
16 PA5.Control
15 PA5.Pullup_Enable
14 PA4.Data
13 PA4.Control
12 PA4.Pullup_Enable
11 PA3.Data
10 PA3.Control
9 PA3.Pullup_Enable
8 PA2.Data
7 PA2.Control
6 PA2.Pullup_Enable
5 PA1.Data
/ItmeL ATmega16A [DATASHEET] 235

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

24.7

24.8

248.1

Table 24-7. ATmegal6A Boundary-scan Order (Continued)

Bit Number Signal Name Module
4 PA1.Control

3 PA1.Pullup_Enable

2 PAO.Data

1 PAO.Control

0 PAO.Pullup_Enable

Notes: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
2. PRIVATE:SIGNAL2 should always be scanned in as zero.

Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in a standard
format used by automated test-generation software. The order and function of bits in the Boundary-scan Data
Register are included in this description. A BSDL file for ATmega16A is available.

Register Description

MCUCSR — MCU Control and Status Register

The MCU Control and Status Register contains control bits for general MCU functions, and provides information
on which reset source caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0

| oo | sc2 | - | JTRF | WDRF BORF EXTRF PORF | mcucsr
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 0 See Bit Description

e Bit 7-JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this bit is one, the

JTAG interface is disabled. In order to avoid unintentional disabling or enabling of the JTAG interface, a timed
sequence must be followed when changing this bit: The application software must write this bit to the desired

value twice within four cycles to change its value.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to one. The reason
for this is to avoid static current at the TDO pin in the JTAG interface.

e Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG
instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

Atmel ATmega16A [DATASHEET] 236

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

25.

25.1

25.2

25.3

253.1

25.3.2

25.4

Boot Loader Support — Read-While-Write Self-Programming

Features

* Read-While-Write Self-Programming

* Flexible Boot Memory size

* High Security (Separate Boot Lock Bits for a Flexible Protection)
» Separate Fuse to Select Reset Vector

+ Optimized Page!" Size

* Code Efficient Algorithm

» Efficient Read-Modify-Write Support

Note: 1. A page is a section in the flash consisting of several bytes (see Table 26-5 on page 254) used during
programming. The page organization does not affect normal operation.

Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for downloading and
uploading program code by the MCU itself. This feature allows flexible application software updates controlled
by the MCU using a Flash-resident Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the Flash memory, or read the
code from the Program memory. The program code within the Boot Loader section has the capability to write
into the entire Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it can
also erase itself from the code if the feature is not needed anymore. The size of the Boot Loader memory is
configurable with Fuses and the Boot Loader has two separate sets of Boot Lock bits which can be set
independently. This gives the user a unique flexibility to select different levels of protection.

Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot Loader section (see
Figure 25-2). The size of the different sections is configured by the BOOTSZ Fuses as shown in Table 25-6 on
page 249 and Figure 25-2. These two sections can have different level of protection since they have different
sets of Lock bits.

Application Section

The Application section is the section of the Flash that is used for storing the application code. The protection
level for the application section can be selected by the Application Boot Lock bits (Boot Lock bits 0), see
Table 25-2 on page 241. The Application section can never store any Boot Loader code since the SPM
instruction is disabled when executed from the Application section.

BLS — Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader software must be
located in the BLS since the SPM instruction can initiate a programming when executing from the BLS only. The
SPM instruction can access the entire Flash, including the BLS itself. The protection level for the Boot Loader
section can be selected by the Boot Loader Lock bits (Boot Lock bits 1), see Table 25-3 on page 241.

Read-While-Write and no Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software update is
dependent on which address that is being programmed. In addition to the two sections that are configurable by
the BOOTSZ Fuses as described above, the Flash is also divided into two fixed sections, the Read-While-Write

Atmel ATmega16A [DATASHEET] 237

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

254.1

2542

(RWW) section and the No Read-While-Write (NRWW) section. The limit between the RWW- and NRWW
sections is given in Table 25-7 on page 249 and Figure 25-2 on page 240. The main difference between the two
sections is:

e When erasing or writing a page located inside the RWW section, the NRWW section can be read during
the operation.

e When erasing or writing a page located inside the NRWW section, the CPU is halted during the entire
operation.

Note that the user software can never read any code that is located inside the RWW section during a Boot
Loader software operation. The syntax “Read-While-Write section” refers to which section that is being
programmed (erased or written), not which section that actually is being read during a Boot Loader software
update.

RWW — Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible to read code
from the Flash, but only code that is located in the NRWW section. During an on-going programming, the
software must ensure that the RWW section never is being read. If the user software is trying to read code that
is located inside the RWW section (i.e., by a call/jmp/lpm or an interrupt) during programming, the software
might end up in an unknown state. To avoid this, the interrupts should either be disabled or moved to the Boot
Loader section. The Boot Loader section is always located in the NRWW section. The RWW Section Busy bit
(RWWSB) in the Store Program Memory Control Register (SPMCR) will be read as logical one as long as the
RWW section is blocked for reading. After a programming is completed, the RWWSB must be cleared by
software before reading code located in the RWW section. See “SPMCR — Store Program Memory Control
Register” on page 242. for details on how to clear RWWSB.

NRWW — No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating a page in the
RWW section. When the Boot Loader code updates the NRWW section, the CPU is halted during the entire
page erase or page write operation.

Table 25-1. Read-While-Write Features

Which Section does the Z- Which Section can be Read-While-
pointer Address during the Read during Is the CPU Write
Programming? Programming? Halted? Supported?
RWW section NRWW section No Yes
NRWW section None Yes No
ATmega16A [DATASHEET 238
Atmel galon |]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

Figure 25-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

— - - - - — — = Z-pointer
Addresses NRWW
Z-pointer Section
Addresses RWW No Read-While-Write
Section (NRWW) Section
CPU is Halted
f during the Operation
Code Located in
NRWW Section
Can be Read during
the Operation
ATmega16A [DATASHEET 239
Atmel gatoAl]

Atmel-8154C-8-bit-AVR-ATmega16A_Datasheet-07/2014

25.5

Figure 25-2.

Note: 1.

Read-While-Write Section

No Read-While-Write Section

Read-While-Write Section

No Read-While-Write Section

Memory Sections'"

Program Memory
BOOTSZ ="11'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ ='01"

Application Flash Section

Application Flash Section

Boot Loader Flash Section

$0000

End RWW
Start NRWW

End Application
Start Boot Loader
Flashend

$0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

Read-While-Write Section

No Read-While-Write Section

Read-While-Write Section

No Read-While-Write Section

Program Memory
BOOTSZ ='10'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ = '00'

Application flash Section

Boot Loader Flash Section

The parameters in the figure above are given in Table 25-6 on page 249.

Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader has
two separate sets of Boot Lock bits which can be set independently. This gives the user a unique flexibility to
select different levels of protection.

The user can select:
To protect the entire Flash from a software update by the MCU
To protect only the Boot Loader Flash section from a software update by the MCU
To protect only the Application Flash section from a software update by the MCU

Allow software update in the entire Flash

$0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

$0000

End RWW, End Application
Start NRWW, Start Boot Loader

Flashend

See Table 25-2 and Table 25-3 for further details. The Boot Lock bits can be set in software and in Serial or
Parallel Programming mode, but they can be cleared by a Chip Erase command only. The general Write Lock

(Lock Bit mode 2) does not control the programming of the Flash memory by SPM instruction. Similarly, the

general Read/Write Lock (Lock Bit mode 3) does not