Features

* High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
¢ Advanced RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-Chip 2-cycle Multiplier
¢ High Endurance Non-volatile Memory segments
— 16 Kbytes of In-System Self-programmable Flash program memory
512 Bytes EEPROM
1 Kbytes Internal SRAM
— Write/Erase cyles: 10,000 Flash/100,000 EEPROM(®
— Data retention: 20 years at 85°C/100 years at 25°C?©)
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— Programming Lock for Software Security
¢ JTAG (IEEE std. 1149.1 compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC
Programmable Serial USART
Master/Slave SPI Serial Interface
Universal Serial Interface with Start Condition Detector
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
— Interrupt and Wake-up on Pin Change
* Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated Oscillator
— External and Internal Interrupt Sources
— Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
* |/O and Packages
— 54 Programmabile I/O Lines
— 64-lead TQFP and 64-pad QFN/MLF
* Speed Grade:
— ATmega165PV: 0-4 MHz @ 1.8V - 5.5V, 0- 8 MHz @ 2.7V - 5.5V
— ATmega165P: 0 - 8 MHz @ 2.7V - 5.5V, 0 - 16 MHz @ 4.5V - 5.5V
* Temperature range:
— -40°C to 85°C Industrial
¢ Ultra-Low Power Consumption
— Active Mode:
1 MHz, 1.8V: 330 pA
32 kHz, 1.8V: 10 pA (including Oscillator)
— Power-down Mode:
0.1 pA at 1.8V
— Power-save Mode:
0.6 pA at 1.8V(Including 32 kHz RTC)

Notes: 1. Worst case temperature. Guaranteed after last write cycle.
2. Failure rate less than 1 ppm.
3. Characterized through accelerated tests.

ATMEL

Y ()

8-bit AVR"
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATmegal65P
ATmegal65PV

Preliminary

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

1. Pin Configurations

Figure 1-1. Pinout ATmega165P

& 6 =
O = 0O 0
- -~ ~ ~ B B B £
8 8 8 3 &8 8 &
o O o o o o o 0O
L £ < £ £ < £ < <
W e - @ 2 7 £ e 2 8 g2z ¢
< 0o o o o o oo o 06O > o oo o
(] [=] [l 3] [=] [B] [8] [8] [3] [8] [$] [c][38] [2]

DNC

4] PAs
INDEX CORNER 7] Pha
46] PAS
E PA6
4] PA7
43] P2
42] P7
41] Pce
40] Pes
9] PC4
8] PC3

64] avee
63] GnD

]
(RXD/PCINTO) PEO | 2
(TXD/PCINT1) PE1

(XCK/AINO/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4
(DI/SDA/PCINT5) PE5S

(DO/PCINTS) PE6

(CLKO/PCINT7) PE7

(SS/PCINT8) PBO

(SCK/PCINT9) PB1

(MOSI/PCINT10) PB2 37| PC2
(MISO/PCINT11) PB3 E PC1
(OCOA/PCINT12) PB4 35| PCO
(OC1A/PCINT13) PB5 34| pg1
(OC1B/PCINT14) PB6 33| pgo

[zl [l [z] [a] (5] [=] (5] [e] [=] [N [o] [o] [+] [«] [~]

(T1) PG3 [18]
(T0) PG4 [19]
RESET/PGS5 [20]
vee [21]

GND [22]
(TOSC2) XTAL2 [23)
E

(ICP1) PDO E
(INTO) PD1 E
PD2 27

PD3 [28

PD4 @

PD5 |3__0

PD6 E

PD7 |3__2

(OC2A/PCINT15) PB7 [17]

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If
the center pad is left unconnected, the package might loosen from the board.

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

ATMEL z

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

2. Overview

The ATmega165P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By execut-
ing powerful instructions in a single clock cycle, the ATmega165P achieves throughputs approaching 1 MIPS per MHz
allowing the system designer to optimize power consumption versus processing speed.

21 Block Diagram

Figure 2-1. Block Diagram

-~ N
PFO - PF7 PAQ - PA7 PCO - PC7 '#_z ':5‘
A A A A A A A x x
R —— Y O Yt O ! N T Y N A ! DU N N Y DY Y A DY N R
VCC !
GND : Y _V Y.V VY
' | PORTF DRIVERS | | PORTA DRIVERS | | PORTC DRIVERS

DATA DIR.
REG. PORTF

DATA REGISTER DATA DIR.
PORTA REG. PORTA

! ! ! | eomomaus | i

DATA REGISTER
PORTC

DATA DIR.
REG. PORTC

DATA REGISTER
PORTF

l

CALIB.OSC

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
OSCILLATOR |7 .
] 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1 4| INTERNAL
> APC OSCILLATOR
, O . ;
! PROGRAM STACK ! WATCHDOG
JTAGTAP | ' _’l COUNTER POINTER X TIMER
V- f -t ----- CONTROL
: A

TIMING AND
::I SRAM MCU CONTROL
|‘ > REGISTER

->|ON-CHIPDEBUG]
1
1
1
BOUNDARY- | !
! TIVER/ |
|] s e
1
1
1
1
0 INTERRUPT
I UNIT <
1

A

INSTRUCTION
REGISTER

PROGRAMMING
INSTRUCTION
LOGIC | DECODER |
[

Y

GENERAL
™ PURPOSE
REGISTERS [€

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
| T ¢
1 1 [
! ' CONTROL ﬁ
| , LINES ! o
| ! |
1 ! 1
| ! |
1 I 1
1 I 1
i 1 AVR CPU !
: _________________________ 1
1 1
1 1
UNIVERSAL |
! USART < SPI
' | |SERIAL INTERFACEl !
: Y v .
] < 1
1 1
1
: S i A l 1 1 1 i I I i
1 1
8k DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA DIR. 1
b2 YA PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD REG. PORTG '
z4L |
55| | S ey |
1 (@] 1
]]
| | PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS PORTG DRIVERS | !
1
! [H
| |
| |
e e e e e e e e m R [N S AN IS M S S P e e e R R [Y A —
Y Y VY Y
PEO - PE7 PBO - PB7 PDO - PD7 PGO - PG4

ATMEL ;

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATmega165P provides the following features: 16 Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose 1/0
lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip
Debugging support and programming, three flexible Timer/Counters with compare modes, inter-
nal and external interrupts, a serial programmable USART, Universal Serial Interface with Start
Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal
Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode
stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to con-
tinue functioning. The Power-down mode saves the register contents but freezes the Oscillator,
disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode,
the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/0 mod-
ules except asynchronous timer and ADC, to minimize switching noise during ADC conversions.
In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleep-
ing. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega165P is a powerful microcontroller that provides a highly flex-
ible and cost effective solution to many embedded control applications.

The ATmega165P AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation Kits.

ATMEL :

EE——————————————————————————————— A Tmega165P

2.2

2.21

22.2

223

224

2.25

2.2.6

227

Pin Descriptions

vCcC

GND

Digital supply voltage.

Ground.

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega165P as listed on
“Alternate Functions of Port B” on page 69.

Port C (PC7:PCO0)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D (PD7:PDO)

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega165P as listed on
“Alternate Functions of Port D” on page 72.

Port E (PE7:PEO)

8019K-AVR-11/10

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up

ATMEL ;

EE——————————————————————————————— A Tmega165P

2.2.8

229

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega165P as listed in
Chapter “Alternate Functions of Port E” on page 73.

Port F (PF7:PFO0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see “Alternate Functions of Port F” on
page 75.

Port G (PG5:PGO0)

RESET

XTALA1

XTAL2

AVCC

AREF

8019K-AVR-11/10

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features of the ATmega165P as listed in
Chapter “Alternate Functions of Port G” on page 77.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 26-4 on page
302. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V¢, even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

This is the analog reference pin for the A/D Converter.

ATMEL ;

EE——————————————————————————————— A Tmega165P

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

ATMEL 7

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

4. About Code Examples

8019K-AVR-11/10

This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

These code examples assume that the part specific header file is included before compilation.
For 1/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"
instructions must be replaced with instructions that allow access to extended 1/O. Typically
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

ATMEL |

EE——————————————————————————————— A Tmega165P

5. AVR CPU Core

5.1 Overview

8019K-AVR-11/10

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 5-1. Block Diagram of the AVR Architecture

(Data Bus 8-bit

A\ 4
Program Status
PFIash < Counter N and Control
rogram
Memory <
Interrupt
; > 32x8 < Unit
Instruction General
Register Purpose h SPI
< Registrers <> Unit
A
Instruction Watchdog
Decoder A y < Timer
£ 7
[} [}
l 8 L ALU | Analog
Control Lines 32 2 Comparator
< B
[$) [0
[0) =
= © PN
Q £ <1 1/0 Module1
5 Data «sle>| 10 Module 2
SRAM
<—»| 1/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

ATMEL ;

EE——————————————————————————————— A Tmega165P

5.2

53

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The 1/0 memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other 1/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the ATmega165P
has Extended I/O space from 0x60 - OxFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

ALU - Arithmetic Logic Unit

Stack Pointer

8019K-AVR-11/10

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

ATMEL 1

EE——————————————————————————————— A Tmega165P

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above OxFF. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

5.3.1 SPH and SPL - Stack Pointer High and Low

Bit 15 14 13 12 11 10 9 8
0x3E (Ox5E) - - - - - SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5.4 Instruction Execution Timing

8019K-AVR-11/10

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgp, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 5-2 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 5-2. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —1 A N

CPU

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X i '

Figure 5-3 on page 12 shows the internal timing concept for the Register File. In a single clock
cycle an ALU operation using two register operands is executed, and the result is stored back to

the destination register.
A|IIIEI. n
I)

EE——————————————————————————————— A Tmega165P

Figure 5-3. Single Cycle ALU Operation
T1 T2 T3 T4

ok — 4 N/ /N

CPU
Total Execution Time

1 1 1

1 1 1 1

1 1 1 1

] L/]]

1 1 1 1

Register Operands Fetch : : i i
1 1 1 1

ALU Operation Execute : : : :
1 1 1 1

Result Write Back : . > : :

1 L 1 1

5.5 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 266 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 52. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 52 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page
250.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

5.5.1

8019K-AVR-11/10

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Sstore SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_ disable_interrupt () ;

EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ,; set Global Interrupt Enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_ _enable_interrupt(); /* set Global Interrupt Enable */

_ _sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

ATMEL 1

EE——————————————————————————————— A Tmega165P

5.6 Status Register

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

5.6.1 SREG - AVR Status Register

Bit 7 6 5 4 3 2 1 0
0x3F (0x5F) | 1 T H S v N Z 3 | sRea
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
bit is cleared, none of the interrupts are enabled independent of the individual interrupt enable
settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI
instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the applica-
tion with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit, S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3 - V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

e Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

5.7 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

¢ One 8-bit output operand and one 8-bit result input

* Two 8-bit output operands and one 8-bit result input

¢ Two 8-bit output operands and one 16-bit result input

¢ One 16-bit output operand and one 16-bit result input

Figure 5-4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 5-4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0xO0E
Purpose R15 O0xOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 5-4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

5.71 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5-5.

Figure 5-5. The X-, Y-, and Z-registers

15 XH XL
X-register |7 o7 o]
R27 (Ox1B) R26 (Ox1A)
15 YH YL 0
Y-register |7 o7 0|
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

6. AVR Memories

This section describes the different memories in the ATmega165P. The AVR architecture has
two main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmegal165P features an EEPROM Memory for data storage. All three memory spaces are lin-
ear and regular.

6.1 In-System Reprogrammable Flash Program Memory

8019K-AVR-11/10

The ATmega165P contains 16 Kbytes On-chip In-System Reprogrammable Flash memory for
program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 8K
x 16. For software security, the Flash Program memory space is divided into two sections, Boot
Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega165P
Program Counter (PC) is 13 bits wide, thus addressing the 8K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are
described in detail in “Boot Loader Support — Read-While-Write Self-Programming” on page
250. “Memory Programming” on page 266 contains a detailed description on Flash data serial
downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 11.

Figure 6-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

e

Boot Flash Section

Ox1FFF

ATMEL L

EE——————————————————————————————— A Tmega165P

6.2 SRAM Data Memory

Figure 6-2 shows how the ATmega165P SRAM Memory is organized.

The ATmegai165P is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

The lower 1,280 data memory locations address both the Register File, the 1/O memory,
Extended 1/0 memory, and the internal data SRAM. The first 32 locations address the Register
File, the next 64 location the standard I/O memory, then 160 locations of Extended 1/0O memory,
and the next 1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/O Registers, 160 Extended I/O Registers, and
the 1,024 bytes of internal data SRAM in the ATmega165P are all accessible through all these
addressing modes. The Register File is described in “General Purpose Register File” on page
15.

Figure 6-2. Data Memory Map

Data Memory

32 Registers 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - 0x005F
160 Ext I/0 Reg. | 0x0060 - 0XO0FF

0x0100

Internal SRAM
(1024 x 8)

O0x04FF

6.2.1 Data Memory Access Times

8019K-AVR-11/10

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkpy cycles as described in Figure 6-3 on page
19.

ATMEL 1

EE——————————————————————————————— A Tmega165P

Figure 6-3. On-chip Data SRAM Access Cycles
T1 T2 T3

ok — ~— 4 Nt

CPU X X X
Address ' Compute Address | X Address valid |
1 1 1
Data — ~ D =
1 1 1 E
WR _ . / . =
I 1 1 —.
1] L
Data — — P —%
1 1 1 (0]
1 1 1 g
1 1]
RD T T / I\ —
1 1

Memory Access Instruction Next Instruction

6.3 EEPROM Data Memory

The ATmega165P contains 512 bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. This section describes the access between the EEPROM and
the CPU, specifying the EEPROM Address Registers, the EEPROM Data Register, and the
EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
“Serial Downloading” on page 279, “Programming via the JTAG Interface” on page 284, and
“Parallel Programming Parameters, Pin Mapping, and Commands” on page 269 respectively.

6.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 6-1 on page 20. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V. is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See “Preventing EEPROM Corruption” on page 23 for details on how to avoid problems in
these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

The following procedure should be followed when writing the EEPROM (the order of steps 3 and
4 is not essential). See “Register Description” on page 24 for supplementary description for each
register bit:

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o0~ 0bd =

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader
Support — Read-While-Write Self-Programming” on page 250 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 6-1 lists the typical pro-
gramming time for EEPROM access from the CPU.
Table 6-1. EEPROM Programming Time

Number of Calibrated
Symbol RC Oscillator Cycles Typical Programming Time

EEPROM write (from CPU) 27 072 3.3ms

The following code examples show one assembly and one C function for writing to the
EEPROM. To avoid that interrupts will occur during execution of these functions, the examples
assume that interrupts are controlled (for example by disabling interrupts globally). The exam-
ples also assume that no Flash Boot Loader is present in the software. If such code is present,
the EEPROM write function must also wait for any ongoing SPM command to finish.

ATMEL 2

EE——————————————————————————————— A Tmega165P

Assembly Code Example

EEPROM_write:

sbic EECR, EEWE
rjmp EEPROM_write

out EEARH, rl8
out EEARL, rl7

out EEDR,rl6

Wait for completion of previous write

’

Set up address (rl8:rl17) in address register

’

Write data (rl6) to Data Register

; Write logical one to EEMWE
sbi EECR, EEMWE

; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

{

void EEPROM _write (unsigned int uiAddress, unsigned char ucData)

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address and Data Registers */
EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE) ;

/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

8019K-AVR-11/10

ATMEL 2

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write
sbic EECR, EEWE

rjmp EEPROM_read

; Set up address (rl8:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE
sbi EECR, EERE

; Read data from Data Register

in 1rl6,EEDR

ret

C Code Example

unsigned char EEPROM_read (unsigned int uiAddress)

{

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

ATMEL

22

EE——————————————————————————————— A Tmega165P

6.3.2

6.3.3

6.4

EEPROM Write During Power-down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the clock continues running, and as a
consequence, the device does not enter Power-down entirely. It is therefore recommended to
verify that the EEPROM write operation is completed before entering Power-down.

Preventing EEPROM Corruption

/0 Memory

8019K-AVR-11/10

During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low Vo reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

The 1/0 space definition of the ATmega165P is shown in “Register Summary” on page 343.

All ATmega165P 1/Os and peripherals are placed in the 1/O space. All I/0 locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the 1/0 space. I/0 Registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the 1/0 specific commands IN and OUT, the
I/O addresses 0x00 - Ox3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega165P is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 -
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/0 memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to Ox1F only.

The 1/0 and peripherals control registers are explained in later sections.

ATMEL 2

EE——————————————————————————————— A Tmega165P

6.5 General Purpose I/O Registers

The ATmega165P contains three General Purpose I/O Registers. These registers can be used
for storing any information, and they are particularly useful for storing global variables and Sta-
tus Flags. General Purpose I/O Registers within the address range 0x00 - Ox1F are directly bit-
accessible using the SBI, CBI, SBIS, and SBIC instructions.

6.6 Register Description

6.6.1 EEARH and EEARL - EEPROM Address Register

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) - - - - - - - EEARS EEARH
ox21 (0x41) EEAR7 | EEAR6 | EEAR5 | EEAR4 | EEAR3 | EEAR2 | EEAR1 | EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R/W
R/W RW R/W RW R/W R/W RW R/W
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X

* Bits 15..9 — Res: Reserved Bits
These bits are reserved and will always read as zero.

¢ Bits 8..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

6.6.2 EEDR - EEPROM Data Register

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) | MSB | LSB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR?7..0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

6.6.3 EECR - EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

0x1F (OX3F) | - | - EERIE EEMWE EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

* Bits 7..4 — Res: Reserved Bits
These bits are reserved and will always read as zero.

ATMEL 2

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

e Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

e Bit 1 — EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

6.6.4 GPIOR2 - General Purpose I/0 Register 2

Bit 7 6 5 4 3 2 1 0

ox2B (0x4B) | MSB | LsB | GPIOR2
Read/Write R/W RW RIW RIW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

6.6.5 GPIOR1 - General Purpose I/0 Register 1

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) | MSB | LsB | GPIOR1
Read/Write R/W RW RIW RIW R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

6.6.6 GPIORO - General Purpose I/0 Register 0

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0

Ox1E(0x3E) | MsB | | LSB | GPIORo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

ATMEL 2

EE——————————————————————————————— A Tmega165P

7. System Clock and Clock Options

7.1 Clock Systems and their Distribution

Figure 7-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in “Power Manage-
ment and Sleep Modes” on page 36. The clock systems are detailed below.

Figure 7-1. Clock Distribution
Asynchronous General I/0 Flash and
Timer/Counter Modules CPU Core RAM EEPROM
A A J A J Y
clkyo AVR Clock clkgpy
Control Unit
ClkASV ClkFLASH
J A
Reset Logic Watchdog Timer
L *
Source clock Watchdog clock
System Clock -
Prescaler Oscillator
Watchdog
Clock
Multiplexer
A A A
Timer/Counter External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Crystal Oscillator Oscillator

714 CPU Clock — clkepy

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

The 1/O clock is used by the majority of the 1/0 modules, like Timer/Counters, SPI, and USART.
The 1/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that start condition detection in the USI module is carried out asynchro-
nously when clk)q is halted, enabling USI start condition detection in all sleep modes.

7.1 .3 FlaSh Clock - CIkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

ATMEL 2

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

71.4 Asynchronous Timer Clock - clk,gy

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

7.1.5 ADC Clock - clkypc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

7.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 7-1. Device Clocking Options Select(")

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1000
External Low-frequency Crystal 0111 -0110
Calibrated Internal RC Oscillator 0010

External Clock 0000
Reserved 0011, 0001, 0101, 0100

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before com-
mencing normal operation. The Watchdog Oscillator is used for timing this real-time part of the
start-up time. The number of WDT Oscillator cycles used for each time-out is shown in Table 7-
2. The frequency of the Watchdog Oscillator is voltage dependent as shown in “Typical Charac-
teristics” on page 308.

Table 7-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
41ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

ATMEL 2

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

7.3 Default Clock Source

The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.

7.4 Calibrated Internal RC Oscillator

8019K-AVR-11/10

By default, the internal RC Oscillator provides an approximate 8.0 MHz clock. Though voltage
and temperature dependent, this clock can be very accurately calibrated by the user. See Table
26-2 on page 301 and “Internal Oscillator Speed” on page 335 for more details. The device is
shipped with the CKDIV8 Fuse programmed. See “System Clock Prescaler” on page 33 for
more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 7-3. If selected, it will operate with no external components. During reset, hardware loads
the pre-programmed calibration value into the OSCCAL Register and thereby automatically cal-
ibrates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in
Table 26-2 on page 301.

By changing the OSCCAL register from SW, see “OSCCAL — Oscillator Calibration Register” on
page 34, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 26-2 on page 301.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section “Calibration Byte” on page 269.
Table 7-3. Internal Calibrated RC Oscillator Operating Modes"®
Frequency Range® (MHz) CKSEL3..0

7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.
2. The frequency ranges are preliminary values. Actual values are TBD.
3. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 7-4

Table 7-4. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- Additional Delay from
Power Conditions down and Power-save Reset (V¢ = 5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms‘" 10
Reserved 11

Note: 1. The device is shipped with this option selected.

ATMEL 2

EE——————————————————————————————— A Tmega165P

7.5 Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 7-2. Either a quartz crystal or a
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 7-5. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Figure 7-2. Crystal Oscillator Connections

Cc2

—SF—9——| xmAL2(TOSC2)
m
« S L | x7AL1 (TOSCY)

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSELS3..1 as shown in Table 7-5.

Table 7-5. Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1 and
CKSELS3..1 Frequency Range (MHz) C2 for Use with Crystals (pF)
100" 0.4-09 -
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0- 12-22

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

ATMEL 2

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table

7-6.
Table 7-6. Start-up Times for the Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Vgc =5.0V) Recommended Usage

0 00 258 CK(" 14CK +41ms | Ceramic resonator, fast
rising power

0 01 258 CK(14CK + 65 ms Ceramic resonator, slowly
rising power

0 10 1K CK®@ 14CK Ceramic resonator, BOD
enabled

0 11 1K CK® 14CK +41ms | Ceramic resonator, fast
rising power

1 00 1K CK® 14CK + 65 ms Qgramlc resonator, slowly
rising power

1 01 16K CK 14CK Crystal Oscillator, BOD
enabled

1 10 16K CK 14CK + 41 ms | Crystal Oscillator, fast
rising power

1 11 16K CK 14CK + 65 ms erstal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

7.6 Low-frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768 kHz watch crystal.
When selecting crystals, load capasitance and crystal’s Equivalent Series Resistance, ESR
must be taken into consideration. Both values are specified by the crystal vendor. ATmega165P
oscillator is optimized for very low power consumption, and thus when selecting crystals, see
Table 7-7 for maximum ESR recommendations on 9 pF and 6.5 pF crystals.

Table 7-7. Maximum ESR Recommendation for 32.768 kHz Crystal

Crystal CL (pF) Max ESR [kQ]™
6.5 60
9 35

Note: 1. Maximum ESR is typical value based on characterization.

The Low-frequency Crystal Oscillator provides an internal load capacitance of typical 6.5 pF.
Crystals with recommended 6.5 pF load capacitance can be without external capacitors as
shown in Figure 7-3 on page 31.

ATMEL s

8019K-AVR-11/10

8019K-AVR-11/10

ATmegal65P

Figure 7-3. Crystal Oscillator Connections

XTAL2 (TOSC2
— (rose

[]

JEE—— XTAL1 (TOSCH1)

Table 7-8. Low-frequency Crystal Oscillator Internal load Capacitance
Min. (pF) Typ- (pF) Max. (pF)
TBD 6.5 TBD

Crystals specifying load capacitance (CL) higher than 6.5 pF, require external capacitors applied
as described in Figure 7-2 on page 29.

To find suitable load capacitance for a 32.768 kHz crysal, please consult the crystal datasheet.

The Low-frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “0110” or
“0111”, as shown in Table 7-10. Start-up times are determined by the SUT Fuses as shown in

Table 7-9.

Table 7-9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0 Additional Delay from Reset (V¢ = 5.0V) | Recommended Usage
00 4 CK Fast rising power or BOD enabled
01 4CK+4.1ms Slowly rising power
10 4 CK +65ms Stable frequency at start-up
11 Reserved

Table 7-10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from
CKSEL3..0 Power-down and Power-save Recommended Usage
0110 1K CK
0111 32K CK Stable frequency at start-up

Note: 1. This option should only be used if frequency stability at start-up is not important for the
application.

ATMEL s

EE——————————————————————————————— A Tmega165P

7.7 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
7-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 7-4. External Clock Drive Configuration

NC —— XTAL2
EXTERNAL
CLOCK —M XTAL1
SIGNAL
GND

—

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 7-12.

Table 7-11. Crystal Oscillator Clock Frequency
CKSEL3..0 Frequency Range
0000 0-16 MHz

Table 7-12. Start-up Times for the External Clock Selection

Start-up Time from Power- Additional Delay from
SUT1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1 ms Fast rising power
10 6 CK 14CK + 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
33 for details.

ATMEL 5

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

7.8

7.9

Timer/Counter Oscillator

ATmega165P uses the same crystal oscillator for Low-frequency Oscillator and Timer/Counter
Oscillator. See “Low-frequency Crystal Oscillator” on page 30 for details on the oscillator and
crystal requirements.

ATmega165P share the Timer/Counter Oscillator Pins (TOSC1 and TOSC2) with XTAL1 and
XTAL2. When using the Timer/Counter Oscillator, the system clock needs to be four times the
oscillator frequency. Due to this and the pin sharing, the Timer/Counter Oscillator can only be
used when the Calibrated Internal RC Oscillator is selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See “Asynchronous operation of the Timer/Counter” on page 140 for further
description on selecting external clock as input instead of a 32.768 kHz watch crystal.

Clock Output Buffer

When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is
suitable when chip clock is used to drive other circuits on the system. The clock will be output
also during reset and the normal operation of I/O pin will be overridden when the fuse is pro-
grammed. Any clock source, including internal RC Oscillator, can be selected when CLKO
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that
is output when the CKOUT Fuse is programmed.

7.10 System Clock Prescaler

8019K-AVR-11/10

The ATmega165P system clock can be divided by setting the “CLKPR — Clock Prescale Regis-
ter” on page 34. This feature can be used to decrease the system clock frequency and power
consumption when the requirement for processing power is low. This can be used with all clock
source options, and it will affect the clock frequency of the CPU and all synchronous peripherals.
clk,0, ClKape, Clkcpy, and clkg agy are divided by a factor as shown in Table 7-13 on page 35.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occur in the clock system and that no intermediate frequency is higher than neither the
clock frequency corresponding to the previous setting, nor the clock frequency corresponding to
the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU’s clock frequency. Hence, it is not possible to determine the
state of the prescaler — even if it were readable, and the exact time it takes to switch from one
clock division to another cannot be exactly predicted. From the time the CLKPS values are writ-
ten, it takes between T1 + T2 and T1 + 2*T2 before the new clock frequency is active. In this
interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the
period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bitsin
CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

ATMEL s

EE——————————————————————————————— A Tmega165P

7.11 Register Description

7111 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

(0x66) | caLz | cas | cALs CAL4 CAL3 CAL2 CAL1 cALo | osccaL
Read/Write RW R/W RW RW R/W RW RW R/W

Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 26-2 on page 301. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 26-
2 on page 301. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CALY bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CALS6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.

7.11.2 CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

(0x61) | CLKPCE | - - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 — CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

¢ Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3 -0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 7-13 on page 35.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at

the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 7-13. Clock Prescaler Select
CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

8019K-AVR-11/10

ATMEL

35

EE——————————————————————————————— A Tmega165P

8. Power Management and Sleep Modes

8.1 Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving-
power. The AVR provides various sleep modes allowing the user to tailor the power
consumption to the application’s requirements.

Figure 7-1 on page 26 presents the different clock systems in the ATmega165P, and their distri-
bution. The figure is helpful in selecting an appropriate sleep mode. Table 8-1 shows the
different sleep modes and their wake up sources.

Table 8-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.
Active Clock Domains Oscillators Wake-up Sources
z 3
§E 2 k-] :E',’ € S E
2 g 8 3 °8 SE &5 &% ¢ uz 5
Sleep L & £ &5 £ 53 ES Ec| @5 E| ES 8 £o
Mode o o O] o o =] = uw Za S50 S [N+ < o=
Idle X X X X X@ X X X X X X
ADC NRM X@ X® X X@ X
o XX
Power-save X X X® X X
Standby!" X &
Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. Timer/Counter2 is running in asynchronous mode.
3. For INTO, only level interrupt.

8019K-AVR-11/10

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP
instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select which
sleep mode will be activated by the SLEEP instruction. See Table 8-2 on page 41 for a
summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

ATMEL s

EE——————————————————————————————— A Tmega165P

8.2 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, USI,
Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep mode
basically halts clkgpy and clkg gy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

8.3 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI
start condition detection, Timer/Counter2, and the Watchdog to continue operating (if enabled).
This sleep mode basically halts clkq, clkgpy, and clkg asy, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, USI start condition interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready inter-
rupt, an external level interrupt on INTO or a pin change interrupt can wake up the MCU from
ADC Noise Reduction mode.

8.4 Power-down Mode

8019K-AVR-11/10

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-
nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level
interrupt on INTO, or a pin change interrupt can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 57
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 27.

ATMEL s

EE——————————————————————————————— A Tmega165P

8.5 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep on running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.

If Timer/Counter2 is not enabled, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If the Timer/Counter2 is using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If the Timer/Counter2 is using the synchronous clock, the clock source is
stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for Timer/Counter2.

8.6 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

8.7 Power Reduction Register

8019K-AVR-11/10

The Power Reduction Register(PRR), see “PRR — Power Reduction Register” on page 41, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the 1/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.

Module shutdown can be used in ldle mode and Active mode to significantly reduce the overall
power consumption. See “Supply Current of I/O modules” on page 313 for examples. In all other
sleep modes, the clock is already stopped.

ATMEL s

EE——————————————————————————————— A Tmega165P

8.8

8.8.1

8.8.2

8.8.3

8.8.4

8.8.5

8019K-AVR-11/10

Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “ADC - Analog to Digital Converter” on page
204 for details on ADC operation.

Analog Comparator

When entering ldle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “AC - Analog Comparator” on page 200 for details on how to configure the Ana-
log Comparator.

Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 46 for details
on how to configure the Brown-out Detector.

Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 47 for details on the start-up time.

Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 47 for details on how to configure the Watchdog Timer.

ATMEL s

EE——————————————————————————————— A Tmega165P

8.8.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/0 clock (clk,o) and the ADC clock (clkapc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 65 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to “DIDR1 — Digital Input Disable Register 1” on page 203 and “DIDRO — Digital
Input Disable Register 0” on page 221 for details.

8.8.7 JTAG Interface and On-chip Debug System

8019K-AVR-11/10

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or
Power save sleep mode, the main clock source remains enabled. In these sleep modes, this will
contribute significantly to the total current consumption. There are three alternative ways to
avoid this:

¢ Disable OCDEN Fuse.
¢ Disable JTAGEN Fuse.
¢ Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCSR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

ATMEL 4

EE——————————————————————————————— A Tmega165P

8.9 Register Description
8.9.1 SMCR - Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
o333 | - | - | - | - | sm2 | smi | swmo | sE | smcr
Read/Write R R R R R/W RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 3, 2, 1 — SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 8-2.

Table 8-2. Sleep Mode Select

SM2 SM1 SMo Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby!"
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit 1 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

8.9.2 PRR - Power Reduction Register

Bit 7 6 5 4 3 2 1 0

(0x64) I N - - - PRTIM1 PRSPI PRUSARTO PRADC I PRR
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:4 - Res: Reserved bits
These bits are reserved and will always read as zero.

e Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

¢ Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

e Bit 1 - PRUSARTO: Power Reduction USARTO
Writing a logic one to this bit shuts down the USART by stopping the clock to the module. When
waking up the USART again, the USART should be re initialized to ensure proper operation.

e Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

Note: The Analog Comparator is disabled using the ACD-bit in the “ACSR — Analog Comparator Control
and Status Register” on page 202.

ATMEL 1

EE——————————————————————————————— A Tmega165P

9. System Control and Reset

9.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 9-1 on page 44
shows the reset logic. Table 26-4 on page 302 defines the electrical parameters of the reset
circuitry.

The I/0O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 27.

9.2 Reset Sources

8019K-AVR-11/10

The ATmega165P has five sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpor)-

e External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
the minimum pulse length.

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the Brown-out Reset
threshold (Vzo7) and the Brown-out Detector is enabled.

* JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section “IEEE 1149.1 (JTAG) Boundary-
scan” on page 229 for details.

ATMEL i

EE——————————————————————————————— A Tmega165P

Figure 9-1.

vCC

Reset Logic

DATA BUS

A

MCU Status
Register (MCUSR)

Power-on Reset

BODLEVEL [2..0]

” Circuit

LL| Ll LLf L
o

i
O
a

JTR

BO
EXTRF
WDR

> Brown-out
»| Reset Circuit

[‘] Pull-up Resistor
RESET SPIKE

Reset Circuit

9.2.1 Power-on Reset

8019K-AVR-11/10

Y

FILTER

JTAG Reset Watchdog
Register Timer

i

Watchdog
Oscillator

COUNTER RESET

<
<

Clock
Generator

CK

Delay Counters

TIMEOUT

A

A4

CKSEL[3:0]
SUT[1:0]

INTERNAL RESET

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in “System and Reset Characteristics” on page 302. The POR is activated whenever
Vc is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V rise. The RESET signal is activated again, without any delay,
when V. decreases below the detection level.

ATMEL

44

ATmegal65P

Figure 9-2. MCU Start-up, RESET Tied to V¢

1

-~ Veor
Voo J

7Y
RESET J RST

TIME-OUT

trour —>|

INTERNAL
RESET

Figure 9-3. MCU Start-up, RESET Extended Externally

1
-~ Veor

1
1
| \
1 1
1 1,
A
RESET ! v RST
l l
1 1
1 1
TIME-OUT | . trour
: :
1 1
1 1
1 1
1 1
INTERNAL I
RESET :

9.2.2 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see “System and Reset Characteristics” on page 302) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage — Vzg — 0n its positive edge, the
delay counter starts the MCU after the Time-out period — t;o;1 —has expired.

Figure 9-4. External Reset During Operation

Vee
RESET 1 1
J
1 1
1 1
1 1
1 1
| < trour —>
TIME-OUT : !
1
1
1
|
INTERNAL
RESET

ATMEL X

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

9.2.3 Brown-out Detection

ATmega165P has an On-chip Brown-out Detection (BOD) circuit for monitoring the V. level
during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as Vgor, =
Vgot + Vhyst/2 and Vgor. = Vot - Vayst/2.When the BOD is enabled, and V. decreases to a
value below the trigger level (Vgqor. in Figure 9-5), the Brown-out Reset is immediately activated.
When V increases above the trigger level (Vgor, in Figure 9-5), the delay counter starts the
MCU after the Time-out period t;o1 has expired.

The BOD circuit will only detect a drop in V¢ if the voltage stays below the trigger level for lon-
ger than tzop given in “System and Reset Characteristics” on page 302.

Figure 9-5. Brown-out Reset During Operation

Vee S i Veor+
VBor—— he=—— - s

1 1
1 1
1 1
RESET : :
1 1
1 1
1 1
1 1
1 1

TIME-OUT ! < trout
| |
1 1
1 1
INTERNAL ' |
RESET i |

9.24 Watchdog Reset

8019K-AVR-11/10

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t;o 1. Refer to
“Watchdog Timer” on page 47 for details on operation of the Watchdog Timer.

Figure 9-6. Watchdog Reset During Operation

Vee
RESET
WOT —>, («— 1 CK Cycle
TIME-OUT H
o
[}
[}
RESET | trout
TIME-OUT |
1

INTERNAL
RESET

ATMEL 1

EE——————————————————————————————— A Tmega165P

9.3 Internal Voltage Reference

ATmega165P features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

9.3.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset Characteristics” on page 302. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

9.4 Watchdog Timer

8019K-AVR-11/10

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at V¢ = 5V. See characterization data for typical values at other V¢ levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 9-2 on page 51. The WDR — Watchdog Reset — instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the ATmega165P resets and executes from the
Reset Vector. For timing details on the Watchdog Reset, refer to Table 9-2 on page 51.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 9-1. Refer to
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 48 for
details.

Table 9-1. WDT Configuration as a Function of the Fuse Settings of WDTON

Safety WDT Initial How to Disable the How to Change Time-
WDTON Level State WDT out
Unprogrammed 1 Disabled Timed sequence Timed sequence
Programmed 2 Enabled Always enabled Timed sequence

ATMEL i

EE——————————————————————————————— A Tmega165P

Figure 9-7. Watchdog Timer

WATCHDOG _ WATCHDOG
OSCILLATOR > PRESCALER
¥ X¥| X X| X X| X]| X
IR EHEIREINE
ololol=|9|1Lelels
WATCHDOG 218|33|2|3| 3|3
RESET o|e|°|3s|3
WDPO »\
WDP1 =
WDP2 k
WDE

MCU RESET

9.4.1 Timed Sequences for Changing the Configuration of the Watchdog Timer

The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

9.4.1.1 Safety Level 1

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written
to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits as
desired, but with the WDCE bit cleared.

9.4.1.2 Safety Level 2

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

Within the next four clock cycles, in the same operation, write the WDP bits as desired, but with
the WDCE bit cleared. The value written to the WDE bit is irrelevant.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Assembly Code Example("

WDT_off:
; Reset WDT
wdr
; Write logical one to WDCE and WDE
in rl6, WDTCR
ori rl6, (1<<WDCE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di rl6, (O<<WDE)
out WDTCR, rlé6

ret

C Code Example"

void WDT_off (void)
{
/* Reset WDT */
_ _watchdog_reset () ;
/* Write logical one to WDCE and WDE */
WDTCR |= (1<<WDCE) | (1<<WDE) ;
/* Turn off WDT */
WDTCR = 0x00;

Note: 1. See “About Code Examples” on page 8.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

9.5 Register Description
9.5.1 MCUSR - MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) | - | - | - | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

e Bit4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

¢ Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

9.5.2 WDTCR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0

(0x60) | - | | - WDCE WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:5 — Res: Reserved Bits
These bits are reserved and will always read as zero.

e Bit 4 — WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when
changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 48.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

¢ Bit 3 - WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:
1. In the same operation, write a logic one to WDCE and WDE. A logic one must be written

to WDE even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above. See “Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 48.

e Bits 2:0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPQO bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 9-2.

Table 9-2. Watchdog Timer Prescale Select

Number of WDT Typical Time-out at | Typical Time-out at
WDP2 | WDP1 | WDPO Oscillator Cycles Vee = 3.0V Vce = 5.0V
0 0 0 16K cycles 15.4 ms 14.7 ms
0 0 1 32K cycles 30.8 ms 29.3 ms
0 1 0 64K cycles 61.6 ms 58.7 ms
0 1 1 128K cycles 0.12s 0.12s
1 0 0 256K cycles 0.25s 0.23s
1 0 1 512K cycles 0.49s 0.47 s
1 1 0 1,024K cycles 1.0s 09s
1 1 1 2,048K cycles 20s 19s

Note: Also see Figure 27-54 on page 336.

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (for example by disabling interrupts globally)
so that no interrupts will occur during execution of these functions.

ATMEL 2

EE——————————————————————————————— A Tmega165P

10. Interrupts

This section describes the specifics of the interrupt handling as performed in ATmega165P. For
a general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on

page 12.
10.1

Interrupt Vectors in ATmega165P

Table 10-1. Reset and Interrupt Vectors
Vector Program

No. Address® | Source Interrupt Definition

1| w000 | RESET Watohdog Resel and JTAG AVR Reset
2 0x0002 INTO External Interrupt Request 0

3 0x0004 PCINTO Pin Change Interrupt Request 0

4 0x0006 PCINTA Pin Change Interrupt Request 1

5 0x0008 TIMER2 COMP Timer/Counter2 Compare Match

6 0x000A TIMER2 OVF Timer/Counter2 Overflow

7 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A
9 0x0010 TIMER1 COMPB Timer/Counter1i Compare Match B
10 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x0014 TIMERO COMP Timer/Counter0 Compare Match
12 0x0016 TIMERO OVF Timer/Counter0 Overflow

13 0x0018 SPI, STC SPI Serial Transfer Complete

14 0x001A USART, RX USARTO, Rx Complete

15 0x001C USART, UDRE USARTO Data Register Empty

16 0x001E USART, TX USARTO, Tx Complete

17 0x0020 USI START USI Start Condition

18 0x0022 USI OVERFLOW USI Overflow

19 0x0024 ANALOG COMP Analog Comparator

20 0x0026 ADC ADC Conversion Complete

21 0x0028 EE READY EEPROM Ready

22 0x002A SPM READY Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at

reset, see “Boot Loader Support — Read-While-Write Self-Programming” on page 250.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 10-2 on page 53 shows reset and Interrupt Vectors placement for the various combina-
tions of BOOTRST and IVSEL settings.

ATMEL 52

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular
program code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa.

Table 10-2. Reset and Interrupt Vectors Placement(")

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 24-6 on page 262. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmegal165P is:

Address Labels Code Comments

0x0000 Jjmp RESET ; Reset Handler

0x0002 Jjmp EXT_ INTO ; IRQ0 Handler

0x0004 Jjmp PCINTO ; PCINTO Handler

0x0006 Jjmp PCINT1 ; PCINTO Handler

0x0008 Jjmp TIM2_COMP ; Timer2 Compare Handler

0x000A Jjmp TIM2_OVF ; Timer2 Overflow Handler
0x000C Jjmp TIM1_CAPT ; Timerl Capture Handler

0x000E Jjmp TIM1_COMPA ; Timerl CompareA Handler
0x0010 Jjmp TIM1_COMPB ; Timerl CompareB Handler
0x0012 Jjmp TIM1_OVF ; Timerl Overflow Handler
0x0014 Jjmp TIMO_COMP ; Timer(0 Compare Handler

0x0016 Jjmp TIMO_OVF ; Timer0 Overflow Handler
0x0018 Jjmp SPI_STC ; SPI Transfer Complete Handler
0x001A Jjmp USART_RXC ; USART RX Complete Handler
0x001C Jjmp USART_DRE ; USARTO,UDRO Empty Handler
0x001E Jjmp USART_TXC ; USARTO TX Complete Handler
0x0020 Jjmp USI_STRT ; USI Start Condition Handler
0x0022 Jjmp USI_OVFL ; USI Overflow Handler

0x0024 Jjmp ANA_COMP ; Analog Comparator Handler
0x0026 Jjmp ADC ; ADC Conversion Complete Handler
0x0028 Jjmp EE_RDY ; EEPROM Ready Handler

0x002A Jjmp SPM_RDY ; SPM Ready Handler

0x002C RESET: 1di rl6, high(RAMEND); Main program start

0x002D out SPH,rl6 Set Stack Pointer to top of RAM
0x002E 1di rl6, low(RAMEND)

0x002F out SPL,rl6

0x0030 sei ; Enable interrupts

0x0031 <instr> =xxx

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2 Kbytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x0000 RESET: 1di rl6,high(RAMEND); Main program start

0x0001 out SPH,rl6 ; Set Stack Pointer to top of RAM
0x0002 1di rl6,low (RAMEND)

0x0003 out SPL,rl6

0x0004 seil ; Enable interrupts

0x0005 <instr> =xxxX

.org 0x1CO02

0x1C02 Jjmp EXT_INTO ; IRQO Handler

0x1C04 Jjmp PCINTO ; PCINTO Handler

0x1lc2cC jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2 Kbytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x0002 Jjmp EXT_INTO ; IRQO Handler

0x0004 Jjmp PCINTO ; PCINTO Handler

0x002C Jjmp SPM_RDY ; Store Program Memory Ready Handler
.org 0x1CO00

0x1C00 RESET: 1di rl6,high(RAMEND); Main program start

0x1Cc01 out SPH, rl6 ; Set Stack Pointer to top of RAM
0x1C02 1di rl6, low (RAMEND)

0x1C03 out SPL,rl6

0x1c04 seil ; Enable interrupts

0x1c05 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2 Kbytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x1CO00

0x1C00 jmp RESET ; Reset handler

0x1C02 Jjmp EXT_INTO ; IRQO Handler

0x1C04 Jjmp PCINTO ; PCINTO Handler

0x1C2C Jjmp SPM_RDY ; Store Program Memory Ready Handler
0x1C2E RESET: 1di rl6,high (RAMEND); Main program start

0x1C2F out SPH,rl6 ; Set Stack Pointer to top of RAM
0x1C30 1di rl6, low (RAMEND)

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

0x1C31 out SPL,rl6
0x1C32 sei ; Enable interrupts
0x1C33 <instr> xxXx

10.2 Moving Interrupts Between Application and Boot Space

8019K-AVR-11/10

The General Interrupt Control Register controls the placement of the Interrupt Vector table, see
“MCUCR — MCU Control Register” on page 56.

To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be fol-
lowed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled

in the cycle IVCE is set, and they remain disabled until after the instruction following the write to

IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status

Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while

executing from the Boot Loader section. Refer to the section “Boot Loader Support — Read-While-
Write Self-Programming” on page 250 for details on Boot Lock bits.

The following example shows how interrupts are moved.

ATMEL s

EE——————————————————————————————— A Tmega165P

Assembly Code Example

Move_interrupts:

; Get MCUCR

in r16, MCUCR

mov rl7, rlé6

; Enable change of Interrupt Vectors
ori rl6, (1<<IVCE)

out MCUCR, rlé6

; Move Iinterrupts to Boot Flash section
ori rl7, (1<<IVSEL)

out MCUCR, rl7

ret

C Code Example

void Move_interrupts (void)

{
uchar temp;

/* Get MCUCR*/
temp = MCUCR;

/* Enable change of Interrupt Vectors */
MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section
*/ MCUCR = temp | (1<<IVSEL);

}

10.3 Register Description

10.3.1 MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35 (0X55) | s | - - PUD - IVSEL IVCE | Mmcucr
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support — Read-While-Write
Self-Programming” on page 250 for details.

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the description in “Moving Interrupts Between Application and Boot
Space” on page 55. See Code Example.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

11. External Interrupts

The External Interrupts are triggered by the INTO pin or any of the PCINT15..0 pins. Observe
that, if enabled, the interrupts will trigger even if the INTO or PCINT15..0 pins are configured as
outputs. This feature provides a way of generating a software interrupt. The pin change interrupt
PCI1 will trigger if any enabled PCINT15..8 pin toggles. Pin change interrupts PCIO will trigger if
any enabled PCINT7..0 pin toggles. The PCMSK1 and PCMSKO Registers control which pins
contribute to the pin change interrupts. Pin change interrupts on PCINT15..0 are detected asyn-
chronously. This implies that these interrupts can be used for waking the part also from sleep
modes other than Idle mode.

The INTO interrupts can be triggered by a falling or rising edge or a low level. This is set up as
indicated in the specification for the External Interrupt Control Register A — EICRA. When the
INTO interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as
the pin is held low. Note that recognition of falling or rising edge interrupts on INTO requires the
presence of an 1/O clock, described in “Clock Systems and their Distribution” on page 26. Low
level interrupt on INTO is detected asynchronously. This implies that this interrupt can be used
for waking the part also from sleep modes other than Idle mode. The I/O clock is halted in all
sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in “System Clock and Clock Options” on page 26.

11.1 Pin Change Interrupt Timing

8019K-AVR-11/10

An example of timing of a pin change interrupt is shown in Figure 11-1.

Figure 11-1. Pin Change Interrupt

in_lat cint_in_(0
PCINT(0) P peint_in_(0) o pcint_syn pcint_setflag
LE r pin_sync : PCIF
X
clk ’—u

PCINT(0) in PCMSK(x)
clk

clk | | | | | | | | [
PCINT(n) —._ | I I
pinfat — & |
pin_sync
pcint_in_(n) —
peint_syn
peint_setflag I
PCIF

ATMEL 5

EE——————————————————————————————— A Tmega165P

11.2 Register Description
11.2.1 EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0

(0x69) I - | - | - | - | - | - | 1scot | iscoo | EICRA
Read/Write R R R R R R RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit1,0-1ISCO01, ISCO00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INTO if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INTO pin that activate the
interrupt are defined in Table 11-1. The value on the INTO pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

Table 11-1. Interrupt 0 Sense Control

ISCOo1 ISC00 Description
0 0 The low level of INTO generates an interrupt request
0 1 Any logical change on INTO generates an interrupt request
1 0 The falling edge of INTO generates an interrupt request
1 1 The rising edge of INTO generates an interrupt request

11.2.2 EIMSK - External Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) | PCIE1 | PCIEQ | - - INTO | EIMSK
Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - PCIE1: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT15..8 pins are enabled individually by the PCMSK1 Register.

e Bit 6 — PCIEO: Pin Change Interrupt Enable 0

When the PCIEOQ bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCIO Inter-
rupt Vector. PCINT7..0 pins are enabled individually by the PCMSKO Register.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit 0 — INTO: External Interrupt Request 0 Enable

When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the exter-
nal pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the
External Interrupt Control Register A (EICRA) define whether the external interrupt is activated
on rising and/or falling edge of the INTO pin or level sensed. Activity on the pin will cause an
interrupt request even if INTO is configured as an output. The corresponding interrupt of External
Interrupt Request 0 is executed from the INTO Interrupt Vector.

11.2.3 EIFR — External Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) | PCIF1 | PCIFO - - - - - INTFO | EIFR
Read/Write R/W R/W R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

e Bit 6 — PCIFO0: Pin Change Interrupt Flag 0

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIFO becomes set
(one). If the I-bit in SREG and the PCIEOQ bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

¢ Bit 0 — INTFO: External Interrupt Flag 0
When an edge or logic change on the INTO pin triggers an interrupt request, INTFO becomes set
(one). If the I-bit in SREG and the INTO bit in EIMSK are set (one), the MCU will jump to the cor-
responding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INTO is configured as a level interrupt.

11.24 PCMSK1 - Pin Change Mask Register 1

Bit 7 6 5 4 3 2 1 0

(0x6C) I PCINT15 | PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 I PCMSK1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - PCINT15:8: Pin Change Enable Mask 15..8

Each PCINT15..8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15..8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is enabled on
the corresponding I/0 pin. If PCINT15..8 is cleared, pin change interrupt on the corresponding
I/0O pin is disabled.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

11.2.5 PCMSKO - Pin Change Mask Register 0

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0

(0x6B) | PCINT7 | PCINT6 | PCINTS | PCINT4 | PCINT3 | PCINT2 | PCINT1 | PCINTO | PCMSKO
Read/Write RW R/W R/IW R/W R/W RW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 - PCINT7:0: Pin Change Enable Mask 7:0
Each PCINT?7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.
If PCINT7:0 is set and the PCIEOQ bit in EIMSK is set, pin change interrupt is enabled on the cor-

responding I/O pin. If PCINT7:0 is cleared, pin change interrupt on the corresponding I/O pin is
disabled.

ATMEL o

EE——————————————————————————————— A Tmega165P

12. 1/0-Ports

12.1

Overiew

8019K-AVR-11/10

All AVR ports have true Read-Modify-Write functionality when used as general digital 1/0 ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All /O pins have
protection diodes to both V- and Ground as indicated in Figure 12-1. Refer to “Electrical Char-
acteristics” on page 297 for a complete list of parameters.

Figure 12-1. 1/O Pin Equivalent Schematic

pu

Pxn ¢

Logic

See Figure
"General Digital I/0" for
Details

Cpin I
All registers and bit references in this section are written in general form. A lower case “X” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical /O Regis-
ters and bit locations are listed in “Register Description” on page 79.

Three I/O memory address locations are allocated for each port, one each for the Data Register
— PORTXx, Data Direction Register — DDRXx, and the Port Input Pins — PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable — PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital 1/0O is described in “Ports as General Digital I/0” on page
62. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 67. Refer to the individual module sections for a full description of the alter-
nate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

ATMEL o

EE——————————————————————————————— A Tmega165P

12.2 Ports as General Digital I/0

12.2.1

8019K-AVR-11/10

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 12-2 shows a func-
tional description of one 1/O-port pin, here generically called Pxn.

Figure 12-2. General Digital /0"

b PUD
<‘| _F—
Q D <<
DDxn
G,
- L WDx
RESET
RDx
L X
3 1>
No %))
L 8
o
Pxn Q D
\I PORTxn 1 |<_(
G <
I | O
reseT (| C |
WPx
SLEEP r RRx WRx
l/
SYNCHRONIZER
| —————— RPx
3 '.l\ D a—bp @ _|_| g
|~ | PINxn |
| ’7 L g "> 3
|_ _____ f clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDX: READ DDRx
SLEEP: SLEEP CONTROL WRX: WRITE PORTxX
clk,o: /0 CLOCK RRx: READ PORTx REGISTER
RPx' READ PORTx PIN
WPx: WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk,q,
SLEEP, and PUD are common to all ports.

Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description” on page 79, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port

pin is driven low (zero).
ATMEL 62
Y ©)

EE——————————————————————————————— A Tmega165P

12.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

12.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
=0b11) as an intermediate step.

Table 12-1 summarizes the control signals for the pin value.

Table 12-1. Port Pin Configurations

DDxn PORTxn (in l\ll:l,gl[J’CR) /0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

12.24 Reading the Pin Value

8019K-AVR-11/10

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 12-2 on page 62, the PINxn Register bit and the preced-
ing latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure 12-3 on
page 64 shows a timing diagram of the synchronization when reading an externally applied pin
value. The maximum and minimum propagation delays are denoted t 4 max @and tpy min
respectively.

ATMEL e

EE——————————————————————————————— A Tmega165P

Figure 12-3. Synchronization when Reading an Externally Applied Pin value

systTeMok _ [L LI L_
INSTRUCTIONS X x X xx X nreme X

SYNC LATCH v
PINXn : :
r17 0xooé X OxFF
: tpd, max . =
: tpd, min
o

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between %2 and 12 system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 12-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 12-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEMCLK __| | '| | :| | | |

rl6 OxFF
INSTRUCTIONS _ X out PORTx, 116)(nop)(inrz, PN X
SYNC LATCH | E
PINXn |
ri7 0x00 X oxFF

pd

A
I A

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Assembly Code Example("

; Define pull-ups and set outputs high

; Define directions for port pins

1di 116, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO0)

1di 117, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB,rl6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6,PINB

C Code Example

unsigned char 1i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO0) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/
__no_operation() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and bit
3 as low and redefining bits 0 and 1 as strong high drivers.

12.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 12-2 on page 62, the digital input signal can be clamped to ground at the
input of the Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high power
consumption if some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 67.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

12.2.6 Unconnected Pins

8019K-AVR-11/10

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to Vo or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

ATMEL .

EE——————————————————————————————— A Tmega165P

12.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 12-5
shows how the port pin control signals from the simplified Figure 12-2 on page 62 can be over-
ridden by alternate functions. The overriding signals may not be present in all port pins, but the
figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 12-5. Alternate Port Functions'"

PUOExn A

1 — PUOVn
| (‘F- PUD
DDOExn
DDOVxn
s —
1 Q D |
DDxn
Qo
WDx
PVOExn RESET
RDx
PVOVxn N|
l/
8
/I 1
Pxn \I \ R D’J
PORTxn proexn |
DIEOExn e g
1_I—o<]— DIEOVxn RESET WRx
RRx
o —— SLEEP ~
RPx
>~
=
clk 0
= P Dixn
4 AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTxX
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTX PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINX
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE ok, /0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTxX
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkq,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 12-2 on page 68 summarizes the function of the overriding signals. The pin and port
indexes from Figure 12-5 are not shown in the succeeding tables. The overriding signals are
generated internally in the modules having the alternate function.

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 12-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description
Pull-up Override If this signal is set, the pull-up enable is controlled by the PUOV
PUOE Enablz signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.
Pull-up Override If PUOE is set, the pull-up is enabled/disabled when PUQV is
PUOV Valuep set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.
N If this signal is set, the Output Driver Enable is controlled by the
Data Direction : L . . .
DDOE Override Enable DDOQV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.
Data Direction If DDOE is set, the Output Driver is enabled/disabled when
DDOV : DDOV is set/cleared, regardless of the setting of the DDxn
Override Value . .
Register bit.
If this signal is set and the Output Driver is enabled, the port
PVOE Port Value value is controlled by the PVOV signal. If PVOE is cleared, and
Override Enable the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless of the
Override Value setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Digital Input If this bit is set, the Digital Input Enable is controlled by the
DIEOE Enable Override DIEOQV signal. If this signal is cleared, the Digital Input Enable
Enable is determined by MCU state (Normal mode, sleep mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEQV Enable Override DIEQV is set/cleared, regardless of the MCU state (Normal
Value mode, sleep mode).
This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
DI Digital Input before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.
This is the Analog Input/output to/from alternate functions. The
Analog
AlIO signal is connected directly to the pad, and can be used bi-
Input/Output A
directionally.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

ATMEL L

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

12.3.1 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 12-3.

Table 12-3. Port B Pins Alternate Functions

Port Pin | Alternate Functions
OC2A/PCINT15 (Output Compare and PWM Output A for Timer/Counter2 or Pin Change

PB7 Interrupt15).

PB6 OC1B/PCINT14 (Output Compare and PWM Output B for Timer/Counter1 or Pin Change
Interrupt14).

PB5 OC1A/PCINT13 (Output Compare and PWM Output A for Timer/Counter1 or Pin Change
Interrupt13).

PB4 OCOA/PCINT12 (Output Compare and PWM Output A for Timer/Counter0 or Pin Change
Interrupt12).

PB3 MISO/PCINT11 (SPI Bus Master Input/Slave Output or Pin Change Interrupt11).
PB2 MOSI/PCINT10 (SPI Bus Master Output/Slave Input or Pin Change Interrupt10).
PB1 SCK/PCINT9 (SPI Bus Serial Clock or Pin Change Interrupt9).
PBO SS/PCINTS (SPI Slave Select input or Pin Change Interrupt8).

The alternate pin configuration is as follows:

e OC2A/PCINT15, Bit 7

OC2, Output Compare Match A output: The PB7 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB7 set (one))
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt
source.

e OC1B/PCINT14, Bit 6

OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external interrupt
source.

* OC1A/PCINT13, Bit5

OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDBS5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external interrupt
source.

ATMEL L

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e OCOA/PCINT12, Bit 4

OCOA, Output Compare Match A output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB4 set (one))
to serve this function. The OCOA pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external interrupt
source.

* MISO/PCINT11 - Port B, Bit 3

MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master,
this pin is configured as an input regardless of the setting of DDB3. When the SPI is enabled as
a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB3 bit.

PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external interrupt
source.

e MOSI/PCINT10 — Port B, Bit 2

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB2. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB2. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB2 bit.

PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external interrupt
source.

e SCK/PCINT9 - Port B, Bit 1

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave,
this pin is configured as an input regardless of the setting of DDB1. When the SPI is enabled as
a Master, the data direction of this pin is controlled by DDB1. When the pin is forced to be an
input, the pull-up can still be controlled by the PORTB1 bit.

PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt source.

e SS/PCINTS8 - Port B, Bit 0

SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an
input regardless of the setting of DDBO. As a Slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDBO.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO bit

PCINTS8, Pin Change Interrupt Source 8: The PBO pin can serve as an external interrupt source.

Table 12-4 on page 71 and Table 12-5 on page 71 relate the alternate functions of Port B to the
overriding signals shown in Figure 12-5 on page 67. SPI MSTR INPUT and SPI SLAVE OUT-
PUT constitute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

ATMEL 1

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 12-4. Overriding Signals for Alternate Functions in PB7..PB4
Signal PB7/0C2A/ PB6/0C1B/ PB5/0OC1A/ PB4/OCOA/
Name PCINT15 PCINT14 PCINT13 PCINT12
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OCOA ENABLE
PVOV OC2A 0oC1B OC1A OCO0A
PTOE - - - -
DIEOE PCINT15 « PCIE1 PCINT14 PCIET PCINT13 « PCIE1 PCINT12 « PCIE1
DIEOV 1 1 1 1
DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT
AIO - - - -

Table 12-5. Overriding Signals for Alternate Functions in PB3..PB0
Signal PB3/MISO/ PB2/MOSI/ PB1/SCK/ PBO/SS/
Name PCINT11 PCINT10 PCINT9 PCINT8
PUOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV PORTB3 « PUD PORTB2 PUD PORTB1 « PUD PORTBO « PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0
PVOE SPE « MSTR SPE « MSTR SPE « MSTR 0
PVOV SPI SLAVE OUTPUT | SPIMSTR OUTPUT | SCK OUTPUT 0
PTOE - - - -
DIEOE PCINT11 « PCIE1 PCINT10 « PCIE1 PCINT9 « PCIE1 PCINT8 « PCIE1
DIEOV 1 1 1 1
Dl PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

SPI MSTR INPUT SPI SLAVE INPUT SCK INPUT SPISS

AIO - - - -

8019K-AVR-11/10

ATMEL

7

EE——————————————————————————————— A Tmega165P

12.3.2 Alternate Functions of Port D

8019K-AVR-11/10

The Port D pins with alternate functions are shown in Table 12-6.

Table 12-6.

Port D Pins Alternate Functions

Port Pin

Alternate Function

PD7

PD6

PD5

PD4

PD3

PD2

PD1

INTO (External InterruptO Input)

PDO

ICP1 (Timer/Counter1 Input Capture pin)

The alternate pin configuration is as follows:

e INTO - Port D, Bit 1
INTO, External Interrupt Source 0. The PD1 pin can serve as an external interrupt source to the

MCU.

e ICP1-PortD, Bit0
ICP1 — Input Capture pin1: The PDO pin can act as an Input Capture pin for Timer/Counter1.

Table 12-7 on page 72 relates the alternate functions of Port D to the overriding signals shown in
Figure 12-5 on page 67.

Table 12-7.

Overriding Signals for Alternate Functions in PD1..PD0O

Signal
Name

PD1/INTO PDO/ICP1

PUOE

PUOV

DDOE

DDOV

PVOE

PVOV

OO0 oo o |o
oo oo o |o

PTOE

DIEOE

INTO ENABLE 0

DIEOV

INTO ENABLE 0

DI

INTO INPUT ICP1 INPUT

AIO

ATMEL 7

EE——————————————————————————————— A Tmega165P

12.3.3 Alternate Functions of Port E
The Port E pins with alternate functions are shown in Table 12-8.

Table 12-8. Port E Pins Alternate Functions

Port Pin | Alternate Function

PCINT7 (Pin Change Interrupt7)
CLKO (Divided System Clock)

PE6 DO/PCINT®6 (USI Data Output or Pin Change Interrupt6)
PE5 DI/SDA/PCINTS (USI Data Input or TWI Serial DAta or Pin Change Interrupt5)

USCK/SCL/PCINT4 (USART External Clock Input/Output or TWI Serial Clock or Pin
Change Interrupt4)

PE7

PE4

PE3 AIN1/PCINT3 (Analog Comparator Negative Input or Pin Change Interrupt3)

XCK/AINO/ PCINT2 (USART External Clock or Analog Comparator Positive Input or Pin
Change Interrupt2)

PE2

PE1 TXD/PCINT1 (USART Transmit Pin or Pin Change Interrupt1)
PEO RXD/PCINTO (USART Receive Pin or Pin Change Interrupt0)

* PCINT7 - Port E, Bit 7
PCINT7, Pin Change Interrupt Source 7: The PE7 pin can serve as an external interrupt source.

CLKO, Divided System Clock: The divided system clock can be output on the PE7 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTE? and DDE?7 settings. It will also be output during reset.

e DO/PCINT6 — Port E, Bit 6

DO, Universal Serial Interface Data output.

PCINT®6, Pin Change Interrupt Source 6: The PE6 pin can serve as an external interrupt source.
e DI/SDA/PCINT5 - Port E, Bit 5

DI, Universal Serial Interface Data input.

SDA, Two-wire Serial Interface Data:

PCINTS5, Pin Change Interrupt Source 5: The PES5 pin can serve as an external interrupt source.
e USCK/SCL/PCINT4 - Port E, Bit 4

USCK, Universal Serial Interface Clock.

SCL, Two-wire Serial Interface Clock.

PCINT4, Pin Change Interrupt Source 4: The PE4 pin can serve as an external interrupt source.
¢ AIN1/PCINT3 - Port E, Bit 3

AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

PCINTS3, Pin Change Interrupt Source 3: The PES pin can serve as an external interrupt source.

ATMEL 7

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e XCK/AINO/PCINT2 - Port E, Bit 2

XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the clock is
output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the USART oper-
ates in synchronous mode.

AINO — Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt source.
e TXD/PCINT1 - Port E, Bit 1

TXDO0, UARTO Transmit pin.

PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt source.
e RXD/PCINTO - Port E, Bit 0

RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the USART

Receiver is enabled this pin is configured as an input regardless of the value of DDEO. When the
USART forces this pin to be an input, a logical one in PORTEO will turn on the internal pull-up.

PCINTO, Pin Change Interrupt Source 0: The PEO pin can serve as an external interrupt source.

Table 12-9 and Table 12-10 on page 75 relates the alternate functions of Port E to the overriding

signals shown in Figure 12-5 on page 67.

Table 12-9. Overriding Signals for Alternate Functions PE7:PE4
Signal PE6/DO/ PE5/DI/SDA/ PE4/USCK/SCL/
Name PE7/PCINT7 PCINT6 PCINT5 PCINT4
PUOE 0 0 USI_TWO-WIRE USI_TWO-WIRE
PUOV 0 0 0 0
DDOE ckout™ 0 USI_TWO-WIRE USI_TWO-WIRE
(SDA + PORTES) » (USI_SCL_HOLD »
DDOV 1 0 DDE5 PORTE4) + DDE4
USI_THREE- USI_TWO-WIRE ¢

(1) — — - .
PVOE CKOUT WIRE DDE5 USI_TWO-WIRE « DDE4
PVOV clkyo DO 0 0
PTOE - — 0 USITC

. . (PCINT5 « PCIEQ) + | (PCINT4 PCIEO) +
DIEOE PCINT7 « PCIEO | PCINT6 PCIEO USISIE USISIE
DIEQV 1 1 1 1

DI/SDA INPUT USCKL/SCL INPUT
DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT
AIO - - - -
Note: 1. CKOUT is one if the CKOUT Fuse is programmed.

8019K-AVR-11/10

ATMEL

74

EE——————————————————————————————— A Tmega165P

Table 12-10. Overriding Signals for Alternate Functions in PE3:PEOQ

Signal | PE3/AIN1/ PE2/XCK/AINO/ PE1/TXD/
Name | PCINT3 PCINT2 PCINTA PEO/RXD/PCINTO
PUOE | 0 0 TXENnN RXENnN

PUOV 0 0 0 PORTEO « PUD
DDOE | 0 0 TXENnN RXENN

DDOV | 0 0 1 0

PVOE |0 XCK OUTPUT ENABLE | TXENn 0

PVOV |0 XCK TXD 0

PTOE | - - - -

DIECE iP;(\ilr{l\lIS(:) PCIED) gﬁg\gﬁ * PCIEO) + PCINT1+PCIEO | PCINTO « PCIEQ
DIEOV | PCINT3+PCIEO | PCINT2+PCIEO 1 1

DI PCINT3INPUT | XCK/PCINT2INPUT | PCINT1INPUT | RXD/PCINTO INPUT
A0 AIN1 INPUT AINO INPUT - -

Note: 1. AINOD and AIN1D is described in “DIDR1 — Digital Input Disable Register 1” on page 203.

12.3.4 Alternate Functions of Port F

The Port F has an alternate function as analog input for the ADC as shown in Table 12-11. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is
enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even
if a reset occurs.

Table 12-11.

Port F Pins Alternate Functions

Port Pin

Alternate Function

PF7

ADC7/TDI (ADC input channel 7 or JTAG Test Data Input)

PF6

ADCG6/TDO (ADC input channel 6 or JTAG Test Data Output)

PF5

ADC5/TMS (ADC input channel 5 or JTAG Test mode Select)

PF4

ADCA4/TCK (ADC input channel 4 or JTAG Test ClocK)

PF3

ADC3 (ADC input channel 3

PF2

PF1

PFO

)
ADC2 (ADC input channel 2)
ADC1 (ADC input channel 1)
ADCO (ADC input channel 0)

* TDI, ADC7 — Port F, Bit 7
ADC7, Analog to Digital Converter, Channel 7.

TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

8019K-AVR-11/10

ATMEL

75

EE——————————————————————————————— A Tmega165P

e TDO, ADC6 — Port F, Bit 6
ADCS®, Analog to Digital Converter, Channel 6.

TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP states that shift out
data, the TDO pin drives actively. In other states the pin is pulled high.

e TMS, ADC5 — Port F, Bit 5
ADCS5, Analog to Digital Converter, Channel 5.

TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

e TCK, ADC4 - Port F, Bit 4
ADC4, Analog to Digital Converter, Channel 4.

TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

e ADC3 - ADCO - Port F, Bit 3:0
Analog to Digital Converter, Channel 3-0.

Table 12-12. Overriding Signals for Alternate Functions in PF7:PF4

8019K-AVR-11/10

flle?mnzl PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADCA4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV 1 1 1 1

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR+ SHIFT_DR | 0 0

PVOE 0 JTAGEN 0 0

PVOV 0 TDO 0 0

PTOE - - - -

DIEOE JTAGEN JTAGEN JTAGEN JTAGEN

DIEQV 0 0 0 1

DI - - - -

AlO XBIC7 INPUT ADCE INPUT E\SES INPUT ;g}é4 INPUT
AIMEL 76
I ©

EE——————————————————————————————— A Tmega165P

Table 12-13. Overriding Signals for Alternate Functions in PF3:PFO

Signal
Name

PF3/ADC3

PF2/ADC2

PF1/ADC1

PFO/ADCO

PUOE

PUOV

DDOE

DDOV

PVOE

PVOV

OO0 oo o |o

oO|jlo oo o |o

OO0 oo o |o

oo oo o |o

PTOE

DIEOE

o

o

o

o

DIEOV

0

0

0

0

DI

AlIO

ADC3 INPUT

ADC2 INPUT

ADC1 INPUT

ADCO INPUT

12.3.5 Alternate Functions of Port G

The alternate pin configuration is as follows:

Table 12-14. Port G Pins Alternate Functions(")

Port Pin Alternate Function
PG5 RESET
PG4 TO (Timer/Counter0 Clock Input)
PG3 T1 (Timer/Counter1 Clock Input)
PG2 -
PG1 -
PGO -

Note: 1.

Port G, PG5 is input only. Pull-up is always on. See Table 25-3 on page 267 for RSTDISBL

fuse.

The alternate pin configuration is as follows:

* RESET - Port G, Bit 5

RESET: External Reset input. When the RSTDISBL Fuse is programmed (‘0’), PG5 will function
as input with pull-up always on.

e TO-Port G, Bit 4
TO, Timer/Counter0 Counter Source.

e T1-Port G, Bit 3
T1, Timer/Counter1 Counter Source.

8019K-AVR-11/10

ATMEL

77

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Table 12-14 on page 77 and Table 12-15 relates the alternate functions of Port G to the overrid-

ing signals shown in Figure 12-5 on page 67.

Table 12-15. Overriding Signals for Alternate Functions in PG4:PG3

Signal

Name PG4/T0 PG3/T1
PUOE 0 0
PUOV 0 0
DDOE 0 0
DDOV 1 1
PVOE 0 0
PVOV 0 0
PTOE - -
DIEOE 0 0
DIEOV 0 0

DI TO INPUT T1 INPUT
AIO - -

ATMEL

78

EE——————————————————————————————— A Tmega165P

12.4 Register Description

12.4.1

12.4.2

12.4.3

12.4.4

12.45

12.4.6

12.4.7

8019K-AVR-11/10

MCUCR - MCU Control Register

Bit 7 6 5 4 3 2 1 0
0x35(0x55) | JTD | - = PUD = = IVSEL IVCE | mcucr
Read/Write R/IW R R RW R R R/W R/IW
Initial Value 0 0 0 0 0 0 0 0

e Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 62 for more details about this feature.

PORTA - Port A Data Register

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) I PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

DDRA - Port A Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x01 (0x21) I DDA7 | DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO I DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINA - Port A Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) I PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

PORTB - Port B Data Register

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) I PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

DDRB - Port B Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x04 (0x24) I DDB7 | DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO I DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

PINB — Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL 7

EE——————————————————————————————— A Tmega165P

12.4.8 PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) I PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

12.4.9 DDRC - Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) | DDC7 | DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 pDbco | DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

12.4.10 PINC - Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) I PINC7 | PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

12.4.11 PORTD - Port D Data Register

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) I PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

12.4.12 DDRD - Port D Data Direction Register

Bit 7 6 5 4 3 2 1 0
0xO0A (0x2A) I DDD7 | DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO I DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

12.4.13 PIND - Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) I PIND7 | PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

12.4.14 PORTE - Port E Data Register

Bit 7 6 5 4 3 2 1 0

OxOE (0x2E) I PORTE7 PORTE6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO I PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

12.4.15 DDRE - Port E Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x0D (0x2D) I DDE7 | DDE6 DDES5 DDE4 DDE3 DDE2 DDE1 DDEO I DDRE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

ATMEL 2

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

12.4.16 PINE - Port E Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x0C (0x2C) I PINE7 | PINE6 PINE5S PINE4 PINE3 PINE2 PINE1 PINEO I PINE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

12.4.17 PORTF - Port F Data Register

Bit 7 6 5 4 3 2 1 0
0x11 (0x31) I PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO I PORTF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

12.4.18 DDRF - Port F Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x10(0x30) | DDF7 | DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 | DDRF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

12.4.19 PINF - Port F Input Pins Address

Bit 7 6 5 4 3 2 1 0

O0xOF (0x2F) I PINF7 | PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO I PINF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

12.4.20 PORTG - Port G Data Register

Bit 7 6 5 4 3 2 1 0
0x14 (0x34) | - - PORTG5 | PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTGO | PORTG
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.21 DDRG - Port G Data Direction Register
Bit 7 6 5 4 3 2 1 0
0x13 (0x33) | - | - DDG5 DDG4 DDG3 DDG2 DDG1 DDGO | DDRG
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
12.4.22 PING - Port G Input Pins Address
Bit 7 6 5 4 3 2 1 0
0x12 (0x32) | - | - PING5 PING4 PING3 PING2 PING1 PINGO | PING
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 N/A N/A N/A N/A N/A

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

13. 8-bit Timer/Counter0 with PWM

13.1 Features

¢ Single Compare Unit Counter

* Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Frequency Generator

¢ External Event Counter

* 10-bit Clock Prescaler

¢ Overflow and Compare Match Interrupt Sources (TOVO and OCFQA)
13.2 Overview

Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simpli-
fied block diagram of the 8-bit Timer/Counter is shown in Figure 13-1. For the actual placement
of 1/0 pins, refer to “Pinout ATmega165P” on page 2. CPU accessible I/O Registers, including
I/0 bits and 1/O pins, are shown in bold. The device-specific /0 Register and bit locations are
listed in the “Register Description” on page 93.

Figure 13-1. 8-bit Timer/Counter Block Diagram
A

.
-

TCCRn |

\

count » TOVn
clear = (Int.Req.)
Control Logic
direction 9 clkrp Clock Select
Edge i
A Detector Tn
BOTTOM
wn Yvy (From Prescaler)
) Timer/Counter
m 4-+| TCNTn |
|<£ I_ZO—I = pOCn
g ? (Int.Req.)
\ /
—] Waveform .
— Generation »| OCn
7 3
| OCRn |

13.2.1 Registers

The Timer/Counter (TCNTO) and Output Compare Register (OCROA) are 8-bit registers. Inter-
rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt
Flag Register (TIFRO). All interrupts are individually masked with the Timer Interrupt Mask Reg-
ister (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkg).

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

13.2.2 Definitions

The double buffered Output Compare Register (OCROA) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OCOA). See “Output
Compare Unit” on page 84. for details. The compare match event will also set the Compare Flag
(OCFOA) which can be used to generate an Output Compare interrupt request.

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare unit number, in this case unit A. However, when using the register or bit defines in a
program, the precise form must be used, that is, TCNTO for accessing Timer/Counter0 counter
value and so on.

The definitions in Table 13-1 are also used extensively throughout the document.
Table 13-1. Timer/Counter Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCROA Register. The assignment is dependent
on the mode of operation.

13.3 Timer/Counter Clock Sources

13.4 Counter Unit

8019K-AVR-11/10

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCROA). For details on clock sources and pres-
caler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 126.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

TOVn
< DATA BUS - > (intReq)
¢ Clock Select
count Edge
TCNTn :& Control Logic ‘cIan Detector |~ i
direction
(From Prescaler)
bottom T Ttop

ATMEL .

EE——————————————————————————————— A Tmega165P

Signal description (internal signals):

count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).

clkq, Timer/Counter clock, referred to as clky in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky). clkyg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in
the Timer/Counter Control Register (TCCROA). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OCOA. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 87.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO01:0 bits. TOVO can be used for generating a CPU interrupt.

13.5 Output Compare Unit

The 8-bit comparator continuously compares TCNTO with the Output Compare Register
(OCROA). Whenever TCNTO equals OCROA, the comparator signals a match. A match will set
the Output Compare Flag (OCFO0A) at the next timer clock cycle. If enabled (OCIEOA = 1 and
Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare
interrupt. The OCFOA Flag is automatically cleared when the interrupt is executed. Alternatively,
the OCFOA Flag can be cleared by software by writing a logical one to its I/O bit location. The
Waveform Generator uses the match signal to generate an output according to operating mode
set by the WGMO1:0 bits and Compare Output mode (COMOA1:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme values
in some modes of operation. See “Modes of Operation” on page 87.

Figure 13-3 on page 85 shows a block diagram of the Output Compare unit.

ATMEL z

8019K-AVR-11/10

ATmegal65P

Figure 13-3. Output Compare Unit, Block Diagram

- DATA BUS >

OCRnNx TCNTn

Iy iy

= (8-bit Comparator)

OCFnx (Int.Req.)
>

Y
top —
bottom] Waveform Generator L »| OCnx
FOCn S

1]

WGMn1:0 COMnNx1:0

The OCROA Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCR0 Compare Register
to either top or bottom of the counting sequence. The synchronization prevents the occurrence
of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROA Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCROA Buffer Register, and if double buffering is
disabled the CPU will access the OCROA directly.

13.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCOA) bit. Forcing compare match will not set the
OCFOA Flag or reload/clear the timer, but the OCOA pin will be updated as if a real compare
match had occurred (the COMOA1:0 bits settings define whether the OCOA pin is set, cleared or
toggled).

13.5.2 Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCROA to be initial-
ized to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

ATMEL L

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

13.5.3 Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTO when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNTO
equals the OCROA value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
downcounting.

The setup of the OCOA should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCOA value is to use the Force Output Com-
pare (FOCOA) strobe bits in Normal mode. The OCOA Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMOA1:0 bits are not double buffered together with the compare value.
Changing the COMOA1:0 bits will take effect immediately.

13.6 Compare Match Output Unit

The Compare Output mode (COMOA1:0) bits have two functions. The Waveform Generator
uses the COMOA1:0 bits for defining the Output Compare (OCOA) state at the next compare
match. Also, the COMOA1:0 bits control the OCOA pin output source. Figure 13-4 shows a sim-
plified schematic of the logic affected by the COMOA1:0 bit setting. The I/O Registers, 1/O bits,
and /O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COMOA1:0 bits are shown. When referring to the
OCOA state, the reference is for the internal OCOA Register, not the OCOA pin. If a System
Reset occur, the OCOA Register is reset to “0”.

Figure 13-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
D Q
FOCn Generator
— 1
OCn
OCnx 0 Pin
A
»D Q
% [
m PORT
<
ke
a »D Q
4 DDR
clk,q

The general I/O port function is overridden by the Output Compare (OCOA) from the Waveform
Generator if either of the COMOA1:0 bits are set. However, the OCOA pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCOA pin (DDR_OCO0A) must be set as output before the OCOA value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The design of the Output Compare pin logic allows initialization of the OCOA state before the
output is enabled. Note that some COMOA1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 93.

13.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOAT1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COMOA1:0 = 0 tells the Waveform Generator that no action on
the OCOA Register is to be performed on the next compare match. For compare output actions
in the non-PWM modes refer to Table 13-3 on page 94. For fast PWM mode, refer to Table 13-4
on page 94, and for phase correct PWM refer to Table 13-5 on page 94.

A change of the COMOA1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCOA strobe bits.

13.7 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGMO01:0) and Compare Out-
put mode (COMOAT1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COMOA1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COMOA1:0 bits control whether the output should be set, cleared, or toggled at
a compare match. See “Compare Match Output Unit” on page 86.

For detailed timing information refer to Figure 13-8 on page 91, Figure 13-9 on page 92, Figure
13-10 on page 92 and Figure 13-11 on page 92 in “Timer/Counter Timing Diagrams” on page
91.

13.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO0) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

13.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCROA Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNTO) matches the OCROA. The OCROA defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

ATMEL o

8019K-AVR-11/10

ATmegal65P

The timing diagram for the CTC mode is shown in Figure 13-5. The counter value (TCNTO)
increases until a compare match occurs between TCNTO and OCROA, and then counter
(TCNTO) is cleared.

Figure 13-5. CTC Mode, Timing Diagram

o SV

OCn -
(Toggle) L1 L

OCnx Interrupt Flag Set

--d

(COMnx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFOA Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCROA is lower than the current
value of TCNTO, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMOA1:0 = 1). The OCOA value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fyqy =
fax 1o/2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following
equation:

_ fei o
OCnx ™ 2N (1 + OCRnXx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

13.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare
match between TCNTO and OCROA, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 13-6. The TCNTO value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent compare
matches between OCROA and TCNTO.

Figure 13-6. Fast PWM Mode, Timing Diagram

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

P w——
P R—
-
-
P R—
P R—

N /]
TCNTn / /

Y
OCn (COMnNx1:0 = 2)

OCn m m (COMnNx1:0 = 3)
S S P S A NN S R

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOA pin.
Setting the COMOA1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMOA1:0 to three (see Table 13-4 on page 94). The actual
OCOA value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OCOA Register at the compare
match between OCROA and TCNTO, and clearing (or setting) the OCOA Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

fok 1o

fOCnxPWM - N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COMO0A1:0
bits).

ATMEL L

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCOA to toggle its logical level on each compare match (COMOA1:0 = 1). The waveform
generated will have a maximum frequency of foco = fo ,0/2 when OCROA is set to zero. This
feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

13.7.4 Phase Correct PWM Mode

8019K-AVR-11/10

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare match
between TCNTO and OCROA while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNTO value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-7.
The TCNTO value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNTO slopes represent compare matches between OCROA and TCNTO.

Figure 13-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

NN

OCn I_l |_ (COMnNx1:0 = 2)
OCn |—| |—| |— (COMnXx1:0 = 3)

Period I 1 ~I 2 ~I 3 ~I

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM

ATMEL s

EE——————————————————————————————— A Tmega165P

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCOA pin. Setting the COMOA1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COMO0A1:0 to three (see Table 13-5 on page 94).
The actual OCOA value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OCOA Register at the
compare match between OCROA and TCNTO when the counter increments, and setting (or
clearing) the OCOA Register at compare match between OCROA and TCNTO when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

fo 1o

focnxpcpwm = N. 6_310

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 13-7 on page 90 OCn has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

* OCROA changes its value from MAX, like in Figure 13-7 on page 90. When the OCROA value
is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.

* The timer starts counting from a value higher than the one in OCROA, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way

up.

13.8 Timer/Counter Timing Diagrams

8019K-AVR-11/10

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 13-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 13-8. Timer/Counter Timing Diagram, no Prescaling

w 0 1 L1 [

clk;,
(clk, /1)

TCNTn >< MAX -1 MAX BOTTOM >< BOTTOM + 1

TOVn

ATMEL o

Figure 13-9 shows the same timing data, but with the prescaler enabled.

Figure 13-9. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

clkyo

clk,

(clk,0/8)

TCNTn

TOVn

] [

uuuuuuybuuuuu

-

LUUuuuuL

-

ATmegal65P

LUUTUUL

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 13-10 shows the setting of OCFOA in all modes except CTC mode.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCFOA, with Prescaler (f ,,0/8)

clk,o

clkg,
(clk,/8)

TCNTn

OCRnx

OCFnx

] [

UL

-

UUUUUUUL

-

LUUIDIL

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnx Value

Figure 13-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode.

Figure 13-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-

clk,q

clky,
(clkyo/8)

TCNTn
(CTC)

OCRnx

OCFnx

8019K-AVR-11/10

caler (fo_10/8)

] [

UL

-

UUUUUUL

-

LUUIDIL

TOP - 1

TOP

BOTTOM

BOTTOM + 1

TOP

ATMEL

92

EE——————————————————————————————— A Tmega165P

13.9 Register Description

13.9.1 TCCROA - Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0
0x24 (0x44) | FOCOA | WGMOO | COMOA1 | COMOAO | WGMO1 CS02 CSo1 cso0 | TCCRoA
Read/Write w R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A

The FOCOA bit is only active when the WGMOO bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCROA is written
when operating in PWM mode. When writing a logical one to the FOCOA bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OCOA output is changed according
to its COMOAT1:0 bits setting. Note that the FOCOA bit is implemented as a strobe. Therefore it is
the value present in the COMOA1:0 bits that determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROA as TOP.

The FOCOA bit is always read as zero.

¢ Bit 6,3 — WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 13-2 and “Modes of Operation”
on page 87.

Table 13-2. Waveform Generation Mode Bit Description!

WGMO1 WGMO00 | Timer/Counter Mode Update of TOVO Flag Set
Mode (CTCO) (PWMO0) | of Operation TOP OCROA at on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCROA | Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 - COMO0A1:0: Compare Match Output Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COM0A1:0
bits are set, the OCOA output overrides the normal port functionality of the 1/0 pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the
WGMO01:0 bit setting.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 13-3 shows the COMOA1:0 bit functionality when the WGMO1:0 bits are set to a normal or
CTC mode (non-PWM).

Table 13-3. Compare Output Mode, non-PWM Mode
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on compare match
1 0 Clear OCOA on compare match
1 1 Set OCOA on compare match

Table 13-4 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to fast PWM

mode.
Table 13-4. Compare Output Mode, Fast PWM Mode("
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear' OCOA on compare match, set OCOA at BOTTOM
(non-inverting mode)
1 1 Set OQOA on compare match, clear OCOA at BOTTOM
(inverting mode)
Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on

page 88 for more details.
Table 13-5 shows the COMOA1:0 bit functionality when the WGMO01:0 bits are set to phase cor-
rect PWM mode.

Table 13-5. Compare Output Mode, Phase Correct PWM Mode!"
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match V\(hen up-counting. Set OCOA on
compare match when downcounting.
1 1 Set OCOA on compare match whgn up-counting. Clear OCOA on
compare match when downcounting.
Note: 1. A special case occurs when OCROA equals TOP and COMOAT1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 90 for more details.

ATMEL o

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

* Bit 2:0 - CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 13-6. Clock Select Bit Description

CS02 CSo1 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk,,o/(No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clkyo/256 (From prescaler)
1 0 1 clky0/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

13.9.2 TCNTO - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
0x26 (0x46) | TCNTO[7:0] | TCNTO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a compare match between TCNTO and the OCROA Register.

13.9.3 OCROA - Output Compare Register A

Bit 7 6 5 4 3 2 1 0
ox27 (0x47) | OCROA[7:0] | ocroa
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

ATMEL s

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

13.9.4 TIMSKO - Timer/Counter 0 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

(OX6E) | = | = | = | = = OCIEOA TOIEO | TIMSKO
Read/Write R R R R R R RIW R/IW

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter0O occurs, that is, when the OCFOA bit is set in the
Timer/Counter O Interrupt Flag Register — TIFRO.

e Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, that is, when the TOVO bit is set in the Timer/Counter O Inter-
rupt Flag Register — TIFRO.

13.9.5 TIFRO - Timer/Counter 0 Interrupt Flag Register

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) | = | = | = = = OCFOA TOVO | TIFRO
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCFOA: Output Compare Flag 0 A

The OCFOA bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCROA — Output Compare Register0. OCFOA is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCFOA is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIEOQA (Timer/Counter0 Compare match Interrupt
Enable), and OCFOA are set (one), the Timer/Counter0 Compare match Interrupt is executed.

e Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Inter-
rupt Enable), and TOVO are set (one), the Timer/Counter0 Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at
0x00.

ATMEL L

EE——————————————————————————————— A Tmega165P

14. 16-bit Timer/Counteri

14.1 Features

¢ True 16-bit Design (that is, allows 16-bit PWM)

* Two independent Output Compare Units

* Double Buffered Output Compare Registers

¢ One Input Capture Unit

¢ Input Capture Noise Canceler

¢ Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)
¢ Variable PWM Period

* Frequency Generator

¢ External Event Counter

* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

14.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
number. However, when using the register or bit defines in a program, the precise form must be
used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 14-1 on page 98. For
the actual placement of I/O pins, refer to “Pinout ATmega165P” on page 2. CPU accessible 1/0
Registers, including I/0 bits and I/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “Register Description” on page 119.

The PRTIM1 bit in “PRR — Power Reduction Register” on page 41 must be written to zero to
enable Timer/Counter1 module.

ATMEL o

8019K-AVR-11/10

ATmegal65P

Figure 14-1. 16-bit Timer/Counter Block Diagram‘"

Count TOVn
e
Clear (Int.Req.)
Control Logic
Direction g clky, Clock Select
Edge
A A Detector Tn

TOP | BOTTOM

AR YARRN

Y Y (From Prescaler)
A Timer/Counter
TCNTn
| = =
? [} * OCnA
. F(mmeq.)
|
|$_ [o| Waveform -
= [} Generation OCnA
OCRnA 2 ;
‘ .] (]
) [Fxed _p.0CnB
0 ' TOP (Int.Req.)
) | Values Wavef
|£_ N aveform
= . I
;-)é ‘ I Generation OcCnB
=]
< |
o OCRnB : (From Analog
l . Comparator Ouput)
1 ICFn (Int.Req.)
}4—:—[
' .
Edge Noise
<—>| |C::*" H Detector [Canceler
4 0 ICPn
| TCCRnA | | TCCRnB |

Note: 1. Refer to Figure 1-1 on page 2 and “Alternate Port Functions” on page 67 for Timer/Counter1
pin placement and description.

14.21 Registers

The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Regis-
ter (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section “Accessing 16-bit Registers” on
page 100. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See “Out-

ATMEL L

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.2.2

14.2.3

Definitions

Compatibility

8019K-AVR-11/10

put Compare Units” on page 106. The compare match event will also set the Compare Match
Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins. See “AC
- Analog Comparator” on page 200. The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

The following definitions are used extensively throughout the section:

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0OXx00FF, OxO1FF,
or Ox03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is
dependent of the mode of operation.

TOP

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit

AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version

regarding:

¢ All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt
Registers.

* Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.

¢ |nterrupt Vectors.

The following control bits have changed name, but have same functionality and register location:

* PWM10 is changed to WGM10.

* PWM11 is changed to WGM11.

* CTC1 is changed to WGM12.

The following bits are added to the 16-bit Timer/Counter Control Registers:

e FOC1A and FOC1B are added to TCCR1C.
* WGM13 is added to TCCR1B.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

ATMEL o

EE——————————————————————————————— A Tmega165P

14.3 Accessing 16-bit Registers

The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16-
bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Assembly Code Examples™"

; Set TCNT1l to OxO01FF
1dirl7,0x01

1di rl6, OXFF

out TCNTI1H, r17

out TCNT1L,rl6

; Read TCNT1 into rl7:rlé6
in rl6,TCNTI1L

in rl17,TCNT1H

C Code Examples("

unsigned int i;

/* Set TCNT1l to O0xO01FF */
TCNT1 = Ox1FF;

/* Read TCNT1 into 1 */

i = TCNT1;

Note: 1. See “About Code Examples” on page 8.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both

AImEl@ 100

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example("

TIM16_ReadTCNT1:
; Save global interrupt flag
in r18, SREG
; Disable interrupts
cli
; Read TCNT1 into rl7:rlé6
in rlé,TCNT1L
in rl17,TCNT1H
; Restore global interrupt flag
out SREG, rl8

ret
C Code Example"
unsigned int TIM16_ReadTCNT1(void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_ disable_interrupt () ;

/* Read TCNT1 into 1 */

i = TCNT1;

/* Restore global interrupt flag */
SREG = sreg;

return 1i;

Note: 1. See “About Code Examples” on page 8.

The assembly code example returns the TCNT1 value in the r17:r16 register pair.

AImEl@ 101

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example("

TIM16_WriteTCNT1:
; Save global interrupt flag
in rl18, SREG
; Disable interrupts
cli
; Set TCNT1l to rl7:rlé6
out TCNTI1H, r17
out TCNTI1L,rl6
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example("

void TIM16_WriteTCNT1(unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_ disable_interrupt () ;
/* Set TCNT1l to i */
TCNT1 = 1i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See “About Code Examples” on page 8.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
tento TCNT1.

14.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

14.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS1[2:0]) bits
located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and
prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 126.

AImEl@ 102

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

- DATA BUS (s-bit) > N
n
t (Int.Req.)
[TEMP (i) |
¢ Clock Select
Count Edge > ™
| TCNTnH (8-bit) | TCNTNL (8-bit) Clear | ok, Detector
- Control Logic |
TCNTRn (16-bit Counter) ¢ 2reetion
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNT1 by 1.
Direction Select between increment and decrement.
Clear Clear TCNT1 (set all bits to zero).
clkq, Timer/Counter clock.
TOP Signalize that TCNT1 has reached maximum value.
BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) con-
taining the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight
bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNT1H value when the TCNT1L is read, and
TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNT1 Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky;). The clky; can be generated from an external or internal clock source,
selected by the Clock Select bits (CS1[2:0]). When no clock source is selected (CS1[2:0] = 0)
the timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM1[3:0]) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 109.

AImEl@ 103

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by
the WGM1[3:0] bits. TOV1 can be used for generating a CPU interrupt.

14.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 14-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 14-3. Input Capture Unit Block Diagram
- t x DATA BUS (s-bit) >

[TEMP(8-bit) |

A

v

| icRnH(8-bi) | ICRnL (8bit) | [TonTnH(8bi) [TONTRL 8bit) |

WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

| s |

* Aco* Acic* ICNC ICES
p Analog - ¢ ¢
Comparator .
Noise . Edge _
Canceler Detector » ICFn (Int.Req.)
ICPn

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at
the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically
cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software
by writing a logical one to its 1/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will
access the TEMP Register.

AImEl@ 104

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter's TOP value. In these cases the Waveform Genera-
tion mode (WGM1[3:0]) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H 1/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 100.

14.6.1 Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 15-1 on page 126). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

14.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B(TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

14.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1

AImEl@ 105

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the 1/O bit location). For measuring frequency only,
the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

14.7 Output Compare Units

8019K-AVR-11/10

The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1Xx). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared
when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writ-
ing a logical one to its 1/0O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation. See “Modes of Operation” on page 109.

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that
is, counter resolution). In addition to the counter resolution, the TOP value defines the period
time for waveforms generated by the Waveform Generator.

Figure 14-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates Output
Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output
Compare unit are gray shaded.

Figure 14-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit)
<
A A A t
[TEMP(@8bi) |
T
— ¥ ¥
[OCRnxH But. (8-bit) | OCRnxL Buf. (8-bit) | [TCNTnH (8-bi) [TCNTAL (8-bit
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
|
L+ g
OCRnxH (8-bit) | OCRnxL (8-bit) |
OCRnx (16-bit Register)

J L

| = (16-bit Comparator)

—— OCFnx (Int.Req.)
A

Waveform Generator p»{ OCnx

o

WGMn3:0 COMnx1:0

TOP —>
BOTTOM ———p»

AImEl@ 106

EE——————————————————————————————— A Tmega165P

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be
written first. When the high byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 100.

14.71 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the
OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare
match had occurred (the COMx1:0 bits settings define whether the OC1x pin is set, cleared or
toggled).

14.7.2 Compare Match Blocking by TCNT1 Write

All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the
same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled.

14.7.3 Using the Output Compare Unit

Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT1 when using any of the Output Compare
units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1
equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform
generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The
compare match for the TOP will be ignored and the counter will continue to OXxFFFF. Similarly,
do not write the TCNT1 value equal to BOTTOM when the counter is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM1x[1:0] bits are not double buffered together with the compare value.
Changing the COM1x[1:0] bits will take effect immediately.

AImEl@ 107

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.8 Compare Match Output Unit

8019K-AVR-11/10

The Compare Output mode (COM1x[1:0]) bits have two functions. The Waveform Generator
uses the COM1x[1:0] bits for defining the Output Compare (OC1x) state at the next compare
match. Secondly the COM1x[1:0] bits control the OC1x pin output source. Figure 14-5 shows a
simplified schematic of the logic affected by the COM1x[1:0] bit setting. The I/O Registers, 1/0
bits, and 1/O pins in the figure are shown in bold. Only the parts of the general 1/0O Port Control
Registers (DDR and PORT) that are affected by the COM1x[1:0] bits are shown. When referring
to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system
reset occur, the OC1x Register is reset to “0”.

Figure 14-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnNx0 Waveform
D Q
FOChx Generator
b
| OCnx
A OCnx 0 I/ Pin
=D Q
4
m PORT
<C
ke
a »D Q
 / DDR
clkyo

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x[1:0] bits are set. However, the OC1x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 14-1 on page 119, Table 14-2 on page 119
and Table 14-3 on page 120 for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the out-
put is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 119.

The COM1x[1:0] bits have no effect on the Input Capture unit.

AImEl@ 108

EE——————————————————————————————— A Tmega165P

14.8.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM1x[1:0] bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x[1:0] = 0 tells the Waveform Generator that no action
on the OC1x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 14-1 on page 119. For fast PWM mode refer to
Table 14-2 on page 119, and for phase correct and phase and frequency correct PWM refer to
Table 14-3 on page 120.

A change of the COM1x[1:0] bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC1x strobe bits.

14.9 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM1[3:0]) and Compare
Output mode (COM1x[1:0]) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM1x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM1x[1:0] bits control whether the output should be set, cleared or toggle at
a compare match. See “Compare Match Output Unit” on page 108.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 117.

14.9.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM1[3:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

14.9.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM1[3:0] = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM1[3:0] = 4) or the ICR1
(WGM1[3:0] = 12). The OCR1A or ICR1 define the top value for the counter, hence also its res-
olution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

AImEl@ 109

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.

Figure 14-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

P

o —
oo —
P —

1
1
1
[T——

TCNTn 11

OCnA —
(Toggle)

Period I~ 1 =I~ 2—+—3—+—4—>|

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCR1A or ICR1 is lower than the current value of
TCNT1, the counter will miss the compare match. The counter will then have to count to its max-
imum value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCR1A for defining TOP (WGM1[3:0] = 15) since the OCR1A then will be double buffered.

(COMNnA1:0=1)

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A[1:0] = 1). The OC1A value will not be visible on the port pin unless the data direction
for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum fre-
quency of fogia = ok 110o/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

(. foi_1o
OCnA ™ 2N - (1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

AImEl@ 110

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.9.3 Fast PWM Mode

8019K-AVR-11/10

The fast Pulse Width Modulation or fast PWM mode (WGM1[3:0] = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared
on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-
rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1
or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

R _ log(TOP +1)
FPWM = T 59(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values Ox00FF, Ox01FF, or OXx03FF (WGM1[3:0] = 5, 6, or 7), the value in ICR1
(WGM1[3:0] = 14), or the value in OCR1A (WGM1[3:0] = 15). The counter is then cleared at the
following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-7.
The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the single-slope operation.
The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks
on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x
Interrupt Flag will be set when a compare match occurs.

Figure 14-7. Fast PWM Mode, Timing Diagram

OCRNnx/TOP Update
and TOVn Interrupt Flag
. Set and OCnA Interrupt
v Flag Set or ICFn
Interrupt Flag Set
(Interrupt on TOP)

TCNTn

‘LT (COMnx1:0 = 2)
OCnx F 1T UL || (COMnX1:0 = 3)
Period Ff1—+f2—+—3—+—4—+5<6-|<—7—+—8—>‘

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition
the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A

AImEl@ 111

OCnx

EE——————————————————————————————— A Tmega165P

or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP
value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICR1 value written is lower than the current value of TCNT1. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location
to be written anytime. When the OCR1A 1/O location is written the value written will be put into
the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done
at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM1x1:0 to three (see Table on page 119). The actual
OC1x value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at
the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ __ faxwo
OCnxPWM N - (1 + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COM1x1:0 bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A[1:0] = 1). This applies only
if OCR1A is used to define the TOP value (WGM1[3:0] = 15). The waveform generated will have
a maximum frequency of fogi4 = fo 10/2 when OCR1A is set to zero (0x0000). This feature is
similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

AImEl@ 112

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

1494 Phase Correct PWM Mode

8019K-AVR-11/10

The phase correct Pulse Width Modulation or phase correct PWM mode (WGM1[3:0] =1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set
to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM reso-
lution in bits can be calculated by using the following equation:

R _ log(TOP+1)
PCPWM — |Og(2)

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, Ox01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM1[3:0] = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-8. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Inter-
rupt Flag will be set when a compare match occurs.

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

, N
e TINDING N4

OCnx (COMNx1:0 = 2)

oo _ [) I

Period I 1 ~I 2 ~I 3 ~I 4 ~I

AImEl@ 113

[(comnxt:0=3)

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accord-
ingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 14-8 on page 113 illustrates,
changing the TOP actively while the Timer/Counter is running in the phase correct mode can
result in an unsymmetrical output. The reason for this can be found in the time of update of the
OCR1x Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at
TOP. This implies that the length of the falling slope is determined by the previous TOP value,
while the length of the rising slope is determined by the new TOP value. When these two values
differ the two slopes of the period will differ in length. The difference in length gives the unsym-
metrical result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x[1:0] bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COM1x1:0 to three (see Table 14-3 on page 120).
The actual OC1x value will only be visible on the port pin if the data direction for the port pin is
set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x
Register at the compare match between OCR1x and TCNT1 when the counter increments, and
clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

¢ __fao
OCnxPCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM1[3:0] = 11) and COM1A[1:0] = 1, the OC1A out-
put will toggle with a 50% duty cycle.

AImEl@ 114

EE——————————————————————————————— A Tmega165P

14.9.5 Phase and Frequency Correct PWM Mode

8019K-AVR-11/10

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGM1[3:0] = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, see Figure 14-8
on page 113 and Figure 14-9 on page 116.

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and
the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can
be calculated using the following equation:

. _ log(TOP +1)
PFCPWM — Iog(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM1[3:0] = 8), or the value in OCR1A (WGM1[3:0] = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 14-9 on page 116. The figure shows phase and fre-
quency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in
the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1
slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will
be set when a compare match occurs.

AImEl@ 115

EE——————————————————————————————— A Tmega165P

Figure 14-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRNx/TOP Updateand
¥ TOVn Interrupt Flag Set
(Interrupt on Bottom)

/\ ¥
TCNTn

OCnx (COMnx1:0 = 2)
OCnx (COMnx1:0 = 3)
Period I 1 I 2 I 3 | 4 |

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1
is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 14-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OC1x pins. Setting the COM1x[1:0] bits to two will produce a non-inverted PWM
and an inverted PWM output can be generated by setting the COM1x1:0 to three (see Table 14-
3 on page 120). The actual OC1x value will only be visible on the port pin if the data direction for
the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clear-
ing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter
increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

¢ __faco
OCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

AImEl@ 116

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The extreme values for the OCR1x Register represents special cases when generating a PWM
waveform output in the phase and frequency correct PWM mode. If the OCR1x is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be set to
high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic val-
ues. If OCR1A is used to define the TOP value (WGM1[3:0] = 9) and COM1A[1:0] = 1, the OC1A
output will toggle with a 50% duty cycle.

14.10 Timer/Counter Timing Diagrams

8019K-AVR-11/10

The Timer/Counter is a synchronous design and the timer clock (clk4) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering).

Figure 14-10 shows a timing diagram for the setting of OCF1x.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling

clk

/10

clkq,
(clk,5/1)

TCNTn X OCRnx - 1 OCRnx OCRnx + 1 X OCRnx + 2

OCRnx OCRnx Value

OCFnx

Figure 14-11 shows the same timing data, but with the prescaler enabled.

Figure 14-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (f ,0/8)

oo T AT
o F F F F

TCNTn X OCRnx - 1 X OCRnNx OCRnx + 1 X OCRnx + 2
OCRnNx OCRnNx Value
OCFnx

AImEl@ 117

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Figure 14-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 14-12. Timer/Counter Timing Diagram, no Prescaling

clk,q

clkq,
(clk,o/1)

TCNTn T
(CTC and FPWM)

TOP - 1 TOP

BOTTOM

BOTTOM + 1

TCNTn T
(PC and PFC PWM)

TOP - 1 TOP

TOP -1 TOP -2

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnNx
(Update at TOP)

Old OCRnx Value

New OCRnx Value

Figure 14-13 shows the same timing data, but with the prescaler enabled.

Figure 14-13. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

w I

clk, (‘
(cIlﬁC{S)

-

TR

-

LULUIL

-

[ALRERRATL

TCNTn '_X

(CTC and FPWM) _|

TCNTn
(PC and PFC PWM)

TOVn(FPWM)
and ICF n(if used

TOP - 1 TOP

BOTTOM BOTTOM + 1

X TOP - 1 TOP

TOP - 1 TOP -2

as TOP)

OCRnx
(Update at TOP)

Old OCRnx Value

New OCRnx Value

ATMEL

118

EE——————————————————————————————— A Tmega165P

14.11 Register Description

14.11.1 TCCR1A - Timer/Counteri Control Register A

Bit 7 6 5 4 3 2 1 0
(0x80) | comiai | comiao | comii | comiBo - - WGM11 | WGM10 | TCCR1A
Read/Write RW RW R/W RW R R RW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 —- COM1A[1:0]: Compare Output Mode for Unit A

e Bit 5:4 — COM1B[1:0]: Compare Output Mode for Unit B

The COM1A[1:0] and COM1B[1:0] control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A[1:0] bits are written to one, the OC1A output
overrides the normal port functionality of the 1/O pin it is connected to. If one or both of the
COM1B[1:0] bit are written to one, the OC1B output overrides the normal port functionality of the
I/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x[1:0] bits is depen-
dent of the WGM1[3:0] bits setting. Table 14-1 shows the COM1x[1:0] bit functionality when the
WGM1[3:0] bits are set to a Normal or a CTC mode (non-PWM).

Table 14-1. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0O | Description
0 0 Normal port operation, OC1A/OC1B disconnected.
0 1 Toggle OC1A/OC1B on Compare Match.
1 0 Clear OC1A/OC1B on Compare Match (Set output to
low level).
1 1 Set OC1A/OC1B on Compare Match (Set output to
high level).

Table 14-2 shows the COM1x1:0 bit functionality when the WGM1[3:0] bits are set to the fast
PWM mode.
Table 14-2. Compare Output Mode, Fast PWM(")
COM1A1/COM1B1 COM1A0/COM1B0O Description
0 0 Normal port operation, OC1A/OC1B disconnected.

WGM1[3:0] = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).

0 1 For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match, set
OC1A/OC1B at BOTTOM (non-inverting mode)

1 1 Set OC1A/OC1B on Compare Match, clear

OC1A/OC1B at BOTTOM (non-inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM See “Fast
PWM Mode” on page 111. for more details.

AImEl@ 119

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Table 14-3 shows the COM1x[1:0] bit functionality when the WGM1[3:0] bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Table 14-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM™
COM1A1/COM1B1 COM1A0/COM1B0 | Description
0 0 Normal port operation, OC1A/OC1B disconnected.

WGM1[3:0] = 9 or 11: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

Clear OC1A/OC1B on Compare Match when up-
1 0 counting. Set OC1A/OC1B on Compare Match when
downcounting.

Set OC1A/OC1B on Compare Match when up-
1 1 counting. Clear OC1A/OC1B on Compare Match
when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See
“Phase Correct PWM Mode” on page 113. for more details.

e Bit 1:0 - WGM1[1:0]: Waveform Generation Mode

Combined with the WGM1[3:2] bits found in the TCCR1B Register, these bits control the count-
ing sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 14-4 on page 121. Modes of operation supported by
the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC)
mode, and three types of Pulse Width Modulation (PWM) modes. See “Modes of Operation” on
page 109.

AImEl@ 120

EE——————————————————————————————— A Tmega165P

Table 14-4. Waveform Generation Mode Bit Description("
WGM12 WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 (CTC1) (PWM11) | (PWM10) | Operation TOP OCR1Xx at Set on

0 0 0 0 0 Normal OxFFFF Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit O0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit O0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF BOTTOM TOP

8 1 0 0 0 Z\(/)\:pg,cf’hase and Frequency | |opy BOTTOM | BOTTOM
9 1 0 0 1 z\c’)\fr\g’cfhase and Frequency | nopia | BOTTOM | BOTTOM
10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM
12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Note: 1. The CTC1 and PWM1[1:0] bit definition names are obsolete. Use the WGM1[2:0] definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

14.11.2 TCCR1B - Timer/Counter1 Control Register B

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1
(0x81) | icNct | icest | - WGM13 | WGM12 Ccs12 cs11 cs1o | TccriB
Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0

e Bit 7 - ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four
successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

e Bit 6 — ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the
Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

ATMEL

121

EE——————————————————————————————— A Tmega165P

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Cap-
ture function is disabled.

¢ Bit 5 — Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCR1B is written.

e Bit 4:3 - WGM1[3:2]: Waveform Generation Mode
See TCCR1A Register description.

e Bit 2:0 - CS1[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
14-10 on page 117 and Figure 14-11 on page 117.

Table 14-5. Clock Select Bit Description

CS12 CS11 CSs10 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

14.11.3 TCCR1C - Timer/Counter1 Control Register C

Bit 7 6 5 4 3 2 1 0
(0x82) | Focia | FociB | - - | Tceric
Read/Write R/W R/W

Initial Value 0 0 0 0 0

e Bit 7 - FOC1A: Force Output Compare for Unit A

¢ Bit 6 — FOC1B: Force Output Compare for Unit B

The FOC1A/FOC1B bits are only active when the WGM1[3:0] bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCR1A is written when operating in a PWM mode. When writing a logical one to the
FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit.
The OC1A/OC1B output is changed according to its COM1x[1:0] bits setting. Note that the
FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the
COM1x[1:0] bits that determine the effect of the forced compare.

AImEl@ 122

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.
14.11.4 TCNT1H and TCNT1L - Timer/Counter1

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H
(0x84) TCNT1[7:0] TCNTIL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/0 locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 100.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a com-
pare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock
for all compare units.

14.11.5 OCR1AH and OCR1AL - Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH
(0x88) OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.11.6 OCR1BH and OCR1BL - Output Compare Register 1 B

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH
(Ox8A) OCR1BI[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See “Accessing 16-bit Registers” on page 100.

AImEl@ 123

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.11.7 ICR1H and ICR1L - Input Capture Register 1

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H
(0x86) ICR1[7:0] ICRIL
Read/Write RW R/W R/W RW R/W R/W RW R/W

Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 100.

14.11.8 TIMSK1 - Timer/Counter1 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

(Ox6F) | - | - | ICIE1 | - - OCIE1B | OCIE1A TOIE1 | TIMSK1
Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — ICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 52) is executed when the ICF1 Flag, located in TIFR1, is set.

e Bit 2 - OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1B Flag, located in
TIFR1, is set.

e Bit 1 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 52) is executed when the OCF1A Flag, located in
TIFR1, is set.

e Bit 0 — TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(see “Interrupts” on page 52) is executed when the TOV1 Flag, located in TIFR1, is set.

AImEl@ 124

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

14.11.9 TIFR1 - Timer/Counter1 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
0x16 (0x36) | = | = | ICF1 = = OCF1B OCF1A TOVi | TIFR1
Read/Write R R R/W R R RW R/IW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 5 - ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM1[3:0] to be used as the TOP value, the ICF1 Flag is set when the
counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

e Bit 2 - OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

e Bit 1 — OCF1A: Timer/Counter1, Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

e Bit 0 — TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM1[3:0] bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 14-4 on page 121 for the TOV1
Flag behavior when using another WGM1[3:0] bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

AImEl@ 125

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

15. Timer/Counter0 and Timer/Counter1 Prescalers

15.1 Overview

Timer/Counter1 and Timer/CounterQ share the same prescaler module, but the Timer/Counters
can have different prescaler settings. The description below applies to both Timer/Counter1 and
Timer/Counter0.

15.2 Prescaler Reset

The prescaler is free running, that is, operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0Q. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implications
for situations where a prescaled clock is used. One example of prescaling artifacts occurs when
the timer is enabled and clocked by the prescaler (6 > CSn[2:0] > 1). The number of system
clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 sys-
tem clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

15.3 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn[2:0] = 1).
This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to
system clock frequency (fc « 0)- Alternatively, one of four taps from the prescaler can be used
as a clock source. The prescaled clock has a frequency of either fg « ,0/8, fo Lk 110/64,
foLk 110/256, or fo k 11o/1024.

15.4 External Clock Source

An external clock source applied to the T1/TO pin can be used as Timer/Counter clock
(clkr4/clkyp). The T1/TO pin is sampled once every system clock cycle by the pin synchronization
logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 15-1
shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector
logic. The registers are clocked at the positive edge of the internal system clock (clk,). The latch
is transparent in the high period of the internal system clock.

The edge detector generates one clkyq/clky, pulse for each positive (CSn[2:0] = 7) or negative
(CSn[2:0] = 6) edge it detects.

Figure 15-1. T1/T0 Pin Sampling

Tn D Q D Q l: D Q) . (TT':J—ém‘;
Select Logic)
i |
clk

110
Synchronization Edge Detector

AImEl@ 126

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T1/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least
one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (fecik < foik 10/2) given a 50/50% duty cycle. Since the edge detector uses
sampling, the maximum frequency of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f, ,0/2.5.

An external clock source can not be prescaled.

Figure 15-2. Prescaler for Timer/Counter0 and Timer/Counter1(!)

clkyo ® > 10-BIT T/C PRESCALER
Clear
5 g Z 3 3
o > S e
O I3} >
PSR10 (@)
L 4
L 4
L 4
To TTTTTTTTTTTTTTTA hd
» Synchronization ! T
L DC
i Synchronization | 0 0
VY V YV Y Y A + Y l Y V.V V. VY VYV VY
CS10 ;A CS00
Cs11 > CS01
CS12 r\ CS02
TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTERO CLOCK SOURCE
clky, clky,

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 15-1 on page 126.

AImEl@ 127

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

15.5 Register Description

15.5.1 GTCCR - General Timer/Counter Control Register

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
ox23(0x43) | TSM | - | -] - PSR2 | PSR10 | GTCcCR
Read/Write RIW R R R R R RW RW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding pres-
caler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and
can be configured to the same value without the risk of one of them advancing during configura-
tion. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware,
and the Timer/Counters start counting simultaneously.

* Bit 0 — PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.

AImEl@ 128

EE——————————————————————————————— A Tmega165P

16. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

16.1 Features

¢ Single Compare Unit Counter

* Clear Timer on Compare Match (Auto Reload)

¢ Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Frequency Generator

¢ 10-bit Clock Prescaler

¢ Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)

¢ Allows Clocking from External 32 kHz Watch Crystal Independent of the 1/0 Clock

16.2 Overview

Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simpli-
fied block diagram of the 8-bit Timer/Counter is shown in Figure 16-1. For the actual placement
of 1/0 pins, refer to “Pinout ATmega165P” on page 2. CPU accessible I/O Registers, including
I/0 bits and 1/O pins, are shown in bold. The device-specific /0 Register and bit locations are
listed in the “Register Description” on page 143.

Figure 16-1. 8-bit Timer/Counter Block Diagram
'y

-} >| TCCRnx

count g Tovn

clear (Int.Req.)
Control Logic
direction clkr,
A le—| TOSC1
BOTTOM TOP .
Prescaler Oscillator
y Vv

—» TOSC2

Timer/Counter A
TCNTn | I—zm ——=

(Int.Req.)
\
|:=_| Waveform 0Cnx
A

OCnx clkyo

"] Generation

<->| OCRnx

9]
2
m
<
|_
<
(m)

— clk,

Synchronized Status flags
Synchronization Unit
* —clk,gy
Status flags
J ASSRn 4
asynchronous mode
select (ASn)
v< >

AImEl@ 129

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

16.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkrs).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See“Output
Compare Unit” on page 131 for details. The compare match event will also set the Compare
Flag (OCF2A) which can be used to generate an Output Compare interrupt request.

16.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, that is, TCNT2 for accessing
Timer/Counter2 counter value and so on.

The definitions in Table 16-1 are also used extensively throughout the section.

Table 16-1. Timer/Counter Definitions

BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2A Register. The assignment is dependent
on the mode of operation.

16.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clky, is by default equal to the MCU clock, clk,,o. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR
— Asynchronous Status Register” on page 146. For details on clock sources and prescaler, see
“Timer/Counter Prescaler” on page 142.

16.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
16-2 on page 131 shows a block diagram of the counter and its surrounding environment.

AImEl@ 130

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 16-2. Counter Unit Block Diagram

TOVn

—
(Int.Req.)
-< DAT; BUS -
¢ TOSC1
—
TCNTn - Control Logic [« L Prescaler Oscillator
< direction »| Tosc2
bottom T Ttop dkl/o
Signal description (internal signals):
count Increment or decrement TCNT2 by 1.
direction Selects between increment and decrement.
clear Clear TCNT2 (set all bits to zero).
clky, Timer/Counter clock.
top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clkr, can be generated from an external or internal clock source,
selected by the Clock Select bits (CS2[2:0]). When no clock source is selected (CS2[2:0] = 0)
the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2A. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 134.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM2[1:0] bits. TOV2 can be used for generating a CPU interrupt.

16.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set
the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF2A Flag is automatically
cleared when the interrupt is executed. Alternatively, the OCF2A Flag can be cleared by soft-
ware by writing a logical one to its I/O bit location. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the WGM2[1:0] bits and Com-
pare Output mode (COM2A[1:0]) bits. The max and bottom signals are used by the Waveform
Generator for handling the special cases of the extreme values in some modes of operation (see
“Modes of Operation” on page 134).

Figure 16-3 on page 132 shows a block diagram of the Output Compare unit.

AImEl@ 131

8019K-AVR-11/10

ATmegal65P

Figure 16-3. Output Compare Unit, Block Diagram
DATA BUS

OCRnNx TCNTn

JL <L

| = (8-bit Comparator) I

OCFnx (Int.Req.)

top »

bottom _____] Waveform Generator

1]

WGMn1:0 COMnx1:0

| OCnx

FOCn >

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is
disabled the CPU will access the OCR2A directly.

16.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the
OCF2A Flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare
match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or
toggled).

16.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

16.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare unit,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is

downcounting.
I)

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The setup of the OC2A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-
pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2A[1:0] bits are not double buffered together with the compare value.
Changing the COM2A[1:0] bits will take effect immediately.

16.6 Compare Match Output Unit

The Compare Output mode (COM2A[1:0]) bits have two functions. The Waveform Generator
uses the COM2A[1:0] bits for defining the Output Compare (OC2A) state at the next compare
match. Also, the COM2A[1:0] bits control the OC2A pin output source. Figure 16-4 shows a sim-
plified schematic of the logic affected by the COM2A[1:0] bit setting. The 1/O Registers, 1/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/0O Port Control Regis-
ters (DDR and PORT) that are affected by the COM2A[1:0] bits are shown. When referring to the
OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.

Figure 16-4. Compare Match Output Unit, Schematic

—D

COMnx1
COMnNx0 Waveform
D Q
FOCnx Generator
1
| OCnx
A OCnx 0 I/ Pin
»D Q
2
m PORT
<
=
o »D Q
 J DDR
clk,o

The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform
Generator if either of the COM2A[1:0] bits are set. However, the OC2A pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direc-
tion Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is
visible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the
output is enabled. Note that some COM2A[1:0] bit settings are reserved for certain modes of
operation. See “Register Description” on page 143.

AImEl@ 133

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

16.6.1

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2A[1:0] bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM2A[1:0] = 0 tells the Waveform Generator that no action
on the OC2A Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 16-3 on page 144. For fast PWM mode, refer to
Table 16-4 on page 144, and for phase correct PWM refer to Table 16-5 on page 144.

A change of the COM2A[1:0] bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC2A strobe bits.

16.7 Modes of Operation

16.7.1

16.7.2

Normal Mode

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGMZ2[1:0]) and Compare
Output mode (COM2A[1:0]) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM2A[1:0] bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM2A[1:0] bits control whether the output should be set, cleared, or toggled
at a compare match. See “Compare Match Output Unit” on page 133.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 138.

The simplest mode of operation is the Normal mode (WGM2[1:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

8019K-AVR-11/10

In Clear Timer on Compare or CTC mode (WGM2[1:0] = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 16-5 on page 135. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then coun-
ter (TCNT2) is cleared.

AImEl@ 134

ATmegal65P

Figure 16-5. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

Y

o V1V N

OCnx —
(Toggle) 1 L

(COMnx1:0=1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is
running with none or a low prescaler value must be done with care since the CTC mode does
not have the double buffering feature. If the new value written to OCR2A is lower than the cur-
rent value of TCNT2, the counter will miss the compare match. The counter will then have to
count to its maximum value (OxFF) and wrap around starting at 0x00 before the compare match
can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A[1:0] = 1). The OC2A value will not be visible on the port pin unless the data direction
for the pin is set to output. The waveform generated will have a maximum frequency of fooop =
fak 1o/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

(. fen o
OCnx' ™ 2N . (1 + OCRnXx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

16.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMZ2[1:0] = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare
match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

AImEl@ 135

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

PWM mode is shown in Figure 16-6. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2A and TCNT2.

Figure 16-6. Fast PWM Mode, Timing Diagram

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

[——

T AN y
4%
OCnx (COMNx1:0 = 2)

OCnx |_| |_| (COMnXx1:0 = 3)
Period |<—1 ~I 2 ~I 3 ~I 4 ;I 5 ;I 6 ;I 7_,|

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin.
Setting the COM2A[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM2A[1:0] to three (see Table 16-4 on page 144). The
actual OC2A value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by setting (or clearing) the OC2A Register at the com-
pare match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the
timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

¢ _ fowo
OCnxPWM — N - 256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A[1:0]
bits).

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2A to toggle its logical level on each compare match (COM2A[1:0] = 1). The waveform
generated will have a maximum frequency of f,., = f. ,0/2 when OCR2A is set to zero. This fea-
ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

AImEl@ 136

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

16.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM2[1:0] = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match
between TCNT2 and OCR2A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 16-7.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

Figure 16-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

NN

OCnx u | l |_ (COMnNx1:0 = 2)
OCnx m m [— (COMnx1:0 = 3)

Period I< 1 =I< 2 :I‘ 3 :I

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A[1:0] bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM2A[1:0] to three (see Table 16-5 on page
144). The actual OC2A value will only be visible on the port pin if the data direction for the port

AImEl@ 137

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register
at the compare match between OCR2A and TCNT2 when the counter increments, and setting
(or clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the coun-
ter decrements. The PWM frequency for the output when using phase correct PWM can be
calculated by the following equation:

¢ _ few o
OCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 16-7 on page 137 OCn has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

* OCR2A changes its value from MAX, like in Figure 16-7 on page 137. When the OCR2A value
is MAX the OCn pin value is the same as the result of a down-counting compare match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.

* The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way
up.

16.8 Timer/Counter Timing Diagrams

8019K-AVR-11/10

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky,)
is therefore shown as a clock enable signal. In asynchronous mode, clk,q should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 16-8 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 16-8. Timer/Counter Timing Diagram, no Prescaling

clk,q

clk;,,

(clk, /1)

TCNTn X MAX -1

—

MAX BOTTOM X BOTTOM + 1

TOVn

Figure 16-9 on page 139 shows the same timing data, but with the prescaler enabled.

AImEl@ 138

ATmegal65P

Figure 16-9. Timer/Counter Timing Diagram, with Prescaler (f, ,,0/8)

o TS A ATATA
(cﬂ.},(;/%) F F F F

TCNTn X MAX -1

—

MAX BOTTOM X BOTTOM + 1

TOVn

Figure 16-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 16-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (f, ,,0/8)

o ISR A
(5&.‘2/”8) F F F F

TCNTn X OCRnx - 1

—

OCRNx OCRnx + 1 OCRnx + 2

OCRnx OCRnx Value

OCFnx

Figure 16-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 16-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fey_yo/8)

T
(C?lﬁgf& F ’7 F F

TCNTn |
(©TC) _X TOP - 1 TOP BOTTOM X BOTTOM + 1

OCRnx TOP

OCFnx

AImEl@ 139

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

16.9 Asynchronous operation of the Timer/Counter

16.9.1 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

8019K-AVR-11/10

Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2A, and TCCR2A might be corrupted. A
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.
Select clock source by setting AS2 as appropriate.
Write new values to TCNT2, OCR2A, and TCCR2A.
To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.
Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.
The CPU main clock frequency must be more than four times the Oscillator frequency.
When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not write
a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that, for example, writing to TCNT2 does not disturb an OCR2A write in progress.
To detect that a transfer to the destination register has taken place, the Asynchronous Status
Register — ASSR has been implemented.

®ao0m

When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,
OCR2A, or TCCR2A, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare?2 interrupt
is used to wake up the device, since the Output Compare function is disabled during writing to
OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the
OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the
MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device
will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or
ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that
one TOSC1 cycle has elapsed:

a. Write a value to TCCR2A, TCNT2, or OCR2A.
b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is
always running, except in Power-down and Standby modes. After a Power-up Reset or wake-
up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator
might take as long as one second to stabilize. The user is advised to wait for at least one
second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby
mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up

AImEl@ 140

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

from Power-down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or ADC Noise Reduction mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at least one
before the processor can read the counter value. After wake-up, the MCU is halted for four
cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be
done through a register synchronized to the internal I/0 clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the 1/O clock
(clk,0) again becomes active, TCNT2 will read as the previous value (before entering sleep)
until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-
save mode is essentially unpredictable, as it depends on the wake-up time. The recommended
procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2A or TCCR2A.
b. Wait for the corresponding Update Busy Flag to be cleared.
c. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of
the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.

AImEl@ 141

EE——————————————————————————————— A Tmega165P

16.10 Timer/Counter Prescaler

Figure 16-12. Prescaler for Timer/Counter2

cIkVO —> olkp g
Clear 10-BIT T/C PRESCALER

TOSC1 —» A © o < © © <
~ ® © Y re} Q
] g S % % g
E = 1= & |8 g
AS2 3] 3] =
| o

PSR2 0

i F YYVYYVYYVYY

CS20
CS21
CS22

TIMER/COUNTER2 CLOCK SOURCE
clk.

T2

The clock source for Timer/Counter2 is named clky,g. Clkyog is by default connected to the main
system I/O clock clk,,. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. If
applying an external clock on TOSC1, the EXCLK bit in ASSR must be set.

For Timer/Counter2, the possible prescaled selections are: clk,5/8, Clk,5/32, Clkyo5/64,
clkyog/128, clk,5/256, and clkr,g/1024. Additionally, clk.g as well as 0 (stop) may be selected.
Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-
dictable prescaler.

AImEl@ 142

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

16.11 Register Description

16.11.1 TCCR2A - Timer/Counter Control Register A
Bit 7 6 5 4 3 2 1 0
(0xBO) I FOC2A | WGM20 COM2A1 COM2A0 WGM21 CSs22 Ccs21 CS20 I TCCR2A
Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2A[1:0] bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2A[1:0] bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

e Bit 6, 3 - WGM2[1:0]: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 16-2 and “Modes of Operation”

on page 134.
Table 16-2. Waveform Generation Mode Bit Description("
WGM21 WGM20 | Timer/Counter Mode of Update of TOV2 Flag
Mode (CTC2) (PWM2) | Operation TOP OCR2A at Set on
0 0 0 Normal OxFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2A | Immediate | MAX
3 1 1 Fast PWM OxFF BOTTOM MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM2[1:0] definitions.

However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit 5:4 — COM2A[1:0]: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A[1:0]
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be
set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A[1:0] bits depends on the
WGM2[1:0] bit setting.

143

ATMEL

8019K-AVR-11/10

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 16-3 shows the COM2A[1:0] bit functionality when the WGM2[1:0] bits are set to a normal
or CTC mode (non-PWM).

Table 16-3. Compare Output Mode, non-PWM Mode
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on compare match.
1 0 Clear OC2A on compare match.
1 1 Set OC2A on compare match.

Table 16-4 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.
Table 16-4. Compare Output Mode, Fast PWM Mode("
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear. OCZA on compare match, set OC2A at BOTTOM
(non-inverting mode)
1 1 Set OC_)2A on compare match, clear OC2A at BOTTOM
(inverting mode)
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 135
for more details.

Table 16-5 shows the COM2A[1:0] bit functionality when the WGM2[1:0] bits are set to phase
correct PWM mode.

Table 16-5. Compare Output Mode, Phase Correct PWM Mode!"
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match V\(hen up-counting. Set OC2A on
compare match when downcounting.
1 1 Set OC2A on compare match wh<_en up-counting. Clear OC2A on
compare match when downcounting.
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 137 for more details.

ATMEL

144

EE——————————————————————————————— A Tmega165P

e Bit 2:0 - CS2[2:0]: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
16-6.

Table 16-6. Clock Select Bit Description

CS22 CS21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkyos/(No prescaling)
0 1 0 clkro5/8 (From prescaler)
0 1 1 clkro5/32 (From prescaler)
1 0 0 clkyog/64 (From prescaler)
1 0 1 clkyog/128 (From prescaler)
1 1 0 clkyo5/256 (From prescaler)
1 1 1 clkyo5/1024 (From prescaler)

16.11.2 TCNT2 - Timer/Counter Register

Bit 7 6 5 4 3 2 1 0
(0xB2) | TCNT2[7:0]] Tont2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

16.11.3 OCR2A - Output Compare Register A

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0xB3) | OCR2A[7:0] | OCR2A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

AImEl@ 145

EE——————————————————————————————— A Tmega165P

16.11.4 TIMSK2 - Timer/Counter2 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

(0x70) | - | = | = | = OCIE2A TOIE2 | TIMsk2
Read/Write R R R R R R R/W RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the
Timer/Counter 2 Interrupt Flag Register — TIFR2.

¢ Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Inter-
rupt Flag Register — TIFR2.

16.11.5 TIFR2 - Timer/Counter2 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) | - | - | - - - OCF2A ToV2 | TIFR2
Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

¢ Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

16.11.6 ASSR - Asynchronous Status Register

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0xB6) I - = = EXCLK AS2 TCN2UB | OCR2UB | TCR2UB | ASsSR
Read/Write R R R R/W R/W R R R
Initial Value 0 0 0 0 0 0 0 0

AImEl@ 146

EE——————————————————————————————— A Tmega165P

e Bit 4 - EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-
fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a
32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.
Note that the crystal Oscillator will only run when this bit is zero.

e Bit 3 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the 1/O clock, clk,o. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, and
TCCR2A might be corrupted.

e Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

e Bit 1 — OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

e Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading
TCNTZ2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

16.11.7 GTCCR - General Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0
0x23 (0x43) | TSM | - | | - PSR2 PSR10 | GTCCR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 — TSM: Timer/Counter Syn-
chronization Mode” on page 128 for a description of the Timer/Counter Synchronization mode.

AImEl@ 147

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

17. SPI - Serial Peripheral Interface

17.1 Features

¢ Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation

* LSB First or MSB First Data Transfer

¢ Seven Programmable Bit Rates

¢ End of Transmission Interrupt Flag

¢ Write Collision Flag Protection

¢ Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

17.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega165P and peripheral devices or between several AVR devices.

The PRSPI bit in “PRR — Power Reduction Register” on page 41 must be written to zero to
enable SPI module.

Figure 17-1. SPI Block Diagram‘"

T s
MISO
y =
M MOSI
XTAL MSB LSB < (t_;
l | 8 BIT SHIFT REGISTER “re e
READ DATA BUFFER 3
DIVIDER 7
/2/4/8/16/32/64/128 , E
A 4 o
O
A A A A C Z
SPI CLOCK (MASTER CLOCK T
SELECT * CLOCK |« S SCK
LOGIC o M
ﬁ‘E E‘ 'y 'y y 55
ool o
7] 0| n
x [m)]
=l ow| X
2 5 8
<MSTR
SPI CONTROL +SPE
) [a)] e - <€ ~ o
o
5 O P 8 AR A
o = o | o o = O O o ®
A A 4 ‘(n
| SPI STATUS REGISTER | | SPI CONTROL REGISTER
. 8 8,
A
v v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Referto Figure 1-1 on page 2, and Table 12-3 on page 69 for SPI pin placement.

AImEl@ 148

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The interconnection between Master and Slave CPUs with SPI is shown in Figure 17-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In
— Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 17-2. SPI Master-slave Interconnection
MSB MASTER LSB iMISO MlSO§ MSB SLAVE LSB

A

8 BIT SHIFT REGISTER <+ 8BIT SHIFT REGISTER‘—l

MOSI_MOSI;

»
»

v

SHIFT
ENABLE

SPI %SCK SCK?
CLOCK GENERATOR ‘

Y
4

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

AImEl@ 149

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 17-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 67.

Table 17-1. SPI Pin Overrides!"

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 69 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. For example, if MOSI is placed on pin PB5, replace
DD_MOSI with DDB5 and DDR_SPI with DDRB.

AImEl@ 150

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Assembly Code Example!"

SPI_MasterInit:
; Set MOSI and SCK output, all others input

1di rl17, (1<<DD_MOSI) | (1<<DD_SCK)

out DDR_SPI,rl7

; Enable SPI, Master, set clock rate fck/1l6

1di 117, (1<<SPE) | (1<<MSTR) | (1<<SPRO)

out SPCR,rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rlé6)
out SPDR,rl6

Wait_Transmit:

; Wait for transmission complete
sbis SPSR, SPIF

rjmp Wait_Transmit

ret

C Code Example"

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI_MasterTransmit (char cData)
{
/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. “About Code Examples” on page 8.

ATMEL

151

EE——————————————————————————————— A Tmega165P

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example("

SPI_SlaveInit:
; Set MISO output, all others input

1di r17, (1<<DD_MISO)

out DDR_SPI,rl7

; Enable SPI

1di 117, (1<<SPE)

out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete

sbis SPSR, SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in rl6,SPDR

ret

C Code Example!"

void SPI_SlaveInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE) ;

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return Data Register */

return SPDR;

Note: 1. “About Code Examples” on page 8.

AImEl@ 152

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

17.3 SS Pin Functionality

17.3.1 Slave Mode

17.3.2 Master Mode

8019K-AVR-11/10

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

AImEl@ 153

EE——————————————————————————————— A Tmega165P

17.4 Data Modes

8019K-AVR-11/10

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
17-3 and Figure 17-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-
nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 17-3 on page 155 and Table 17-4 on page 155, as done below:

Table 17-2. CPOL Functionality
Leading Edge Trailing eDge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

Figure 17-3. SPI Transfer Format with CPHA =0

o | L) L L L) L L L
e) L L LD L

SAMPLE |
MOSI/MISO

CHANGE 0 \ >_< >_<
MOSI PIN

CHANGE 0 _< >_< >_<
MISO PIN

(s 0\

MSB first (DORD = 0) MSB Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit6 MSB

Ao A KA
Ao A KA

Lo T

Figure 17-4. SPI Transfer Format with CPHA = 1

mode 1
SCK (CPOL = 1) —
| mode 3
[SAMPLE |
| MOSI/MISO
oo OO OO OO A
MOSI PIN
e OO
L MISO PIN
I /
MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB
AIMEL 154
Y)

EE——————————————————————————————— A Tmega165P

17.5 Register Description

17.5.1 SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) I SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO I SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

¢ Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

e Bit 5 — DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

¢ Bit 4 —- MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

e Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 17-3 on page 154 and Figure 17-4 on page 154 for an example. The
CPOL functionality is summarized below:

Table 17-3. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

e Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 17-3 on page 154 and Figure 17-4 on page 154 for an
example. The CPOL functionality is summarized below:

Table 17-4. CPHA Functionality

8019K-AVR-11/10

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

ATMEL

155

EE——————————————————————————————— A Tmega165P

17.5.2

8019K-AVR-11/10

e Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f, is
shown in the following table:

Table 17-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency

0 0 0 fosc/d

0 0 1 f.o/16

0 1 0 foec/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 f.o/64

SPSR - SPI Status Register

Bit 7 6 5 4 3 2 1 0
0x2D (0x4D) | SPIF wCOL - - - - SPI2X | SPSR
Read/Write R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

e Bit5..1 — Res: Reserved Bits
These bits are reserved and will always read as zero.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 17-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f /4
or lower.

The SPI interface on the ATmega165P is also used for program memory and EEPROM down-
loading or uploading. See page 279 for serial programming and verification.

AImEl@ 156

EE——————————————————————————————— A Tmega165P

17.5.3 SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0

Ox2E (0x4E) | MSB LsB | sPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

AImEl@ 157

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18. USART

18.1 Features

8019K-AVR-11/10

¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)
¢ Asynchronous or Synchronous Operation

* Master or Slave Clocked Synchronous Operation

* High Resolution Baud Rate Generator

* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

* Odd or Even Parity Generation and Parity Check Supported by Hardware

¢ Data OverRun Detection

* Framing Error Detection

* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
¢ Multi-processor Communication Mode

¢ Double Speed Asynchronous Communication Mode

The PRUSARTO bit in “PRR — Power Reduction Register” on page 41 must be written to zero to
enable USARTO module.

AImEl@ 158

EE——————————————————————————————— A Tmega165P

18.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. A simplified block diagram of the USART Transmit-
ter is shown in Figure 18-1. CPU accessible 1/0 Registers and I/O pins are shown in bold.

Figure 18-1. USART Block Diagram‘"

. T T T T T "_____________T:lo_cFGEnEraTor‘l
I UBRR[H:L] |
| osc |
| v |
| |
| BAUD RATE GENERATOR -t |
| v |
' e oscle— e |1,
| v »| conTroL [XCK
| |
Frt———— — — ==y —————— === = —
| 1 Transmitter I
| UDR (Transmit) COI\-lr'I>'<ROL |
I * PARITY I
ol | ™| cenERATOR |
of | PIN |
m | 4:D_> TRANSMIT SHIFT REGISTER - CONTROL | 1 TxD
< >
> L A |
<DE r Receiver |
I > cLock RX |
| RECOVERY CONTROL |
| |
. L .
| ;:D_» RECEIVE SHIFT REGISTER — REgg-I\—/AERY - COE‘II',\I‘ROL - { RxD
| |
| UDR (Receive) cE{AEFéIIIgR |
| |
[r- -)
UCSRA UCSRB UCSRC
Note: 1. Refer to Figure 1-1 on page 2 and “Alternate Port Functions” on page 67 for USART pin

placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCK (Transfer Clock) pin is only
used by synchronous transfer mode. The Transmitter consists of a single write buffer, a serial
Shift Register, Parity Generator and Control logic for handling different serial frame formats. The
write buffer allows a continuous transfer of data without any delay between frames. The
Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

AI“IE'.@ 159

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.2.1 AVR USART vs. AVR UART — Compatibility

The USART is fully compatible with the AVR UART regarding:

¢ Bit locations inside all USART Registers.

* Baud Rate Generation.

¢ Transmitter Operation.

* Transmit Buffer Functionality.

¢ Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some
special cases:

¢ A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO
buffer. Therefore the UDRn must only be read once for each incoming data! More important is
the fact that the Error Flags (FEn and DORnN) and the ninth data bit (RXB8n) are buffered with
the data in the receive buffer. Therefore the status bits must always be read before the UDRn
Register is read. Otherwise the error status will be lost since the buffer state is lost.

* The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Figure 18-1 on page 159) if the Buffer
Registers are full, until a new start bit is detected. The USART is therefore more resistant to
Data OverRun (DORN) error conditions.

The following control bits have changed name, but have same functionality and register location:

* CHR9 is changed to UCSZn2.
* OR is changed to DORn.

18.3 Clock Generation

8019K-AVR-11/10

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELnN bit in USART
Control and Status Register C (UCSRnNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRNA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCK pin (DDR_XCK) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCK pin is only active when using synchronous mode.

Figure 18-2 on page 161 shows a block diagram of the clock generation logic.

AImEl@ 160

EE——————————————————————————————— A Tmega165P

18.3.1

8019K-AVR-11/10

Figure 18-2. Clock Generation Logic, Block Diagram

[UBRR | Uax

* fosc
Prescaling UBRR+1 | - - o
Down-Counter o RE o S > 2 o
\
OsSC — txclk
DDR_
y v
Sync o Edge o
xcki |_> Register 7| Detector o
XCK yy UMSEL
Pin | <K° y .
DDR_XCK UCPOL
rxclk
Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcki Input from XCK pin (internal Signal). Used for synchronous slave
operation.
xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.
fosc XTAL pin frequency (System Clock).

Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 18-2.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRR value each time the counter has counted down to zero or when
the UBRRnNL Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= f,./(UBRR+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCK bits.

Table 18-1 on page 162 contains equations for calculating the baud rate (in bits per second) and
for calculating the UBRR value for each mode of operation using an internally generated clock
source.

AImEl@ 161

Table 18-1.

EE——————————————————————————————— A Tmega165P

Equations for Calculating Baud Rate Register Setting

Operating Mode

Equation for Calculating Baud
Rate("

Equation for Calculating UBRR
Value

Asynchronous Normal
mode (U2Xn = 0)

f
BAUD = — 0OSC
16(UBRR + 1)

f
UBRR = —©°SC_ _
16BAUD

Asynchronous Double
Speed mode (U2Xn = 1)

fOSC

BAUD = — 98¢
8(UBRR +1)

fOSC

UBRR = -
8BAUD

Synchronous Master
mode

fOSC

BAUD = — OS¢
2(UBRR+1)

fOSC
2BAUD

UBRR

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps)

System Oscillator clock frequency

Contents of the UBRRnH and UBRRnL Registers, (0-4095)

fOSC
UBRR

Some examples of UBRR values for some system clock frequencies are found in Table 18-4 on
page 179.

18.3.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

18.3.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 18-2 on page 161 for details.

External clock input from the XCK pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCK clock frequency
is limited by the following equation:

f
osc
fxek <=3

Note that f .. depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

AImEl@ 162

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.3.4 Synchronous Clock Operation

When synchronous mode is used (UMSELnN = 1), the XCK pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxD) is sampled at the
opposite XCK clock edge of the edge the data output (TxD) is changed.

Figure 18-3. Synchronous Mode XCK Timing.

UCPOL=1 XCK m

womo X Y Y Y

f— Sample

UCPOL =0 XCK

womo Y Y Y Y

Sample

The UCPOLN bit in UCSRNC selects which XCK clock edge is used for data sampling and which
is used for data change. As Figure 18-3 shows, when UCPOLn is zero the data will be changed
at rising XCK edge and sampled at falling XCK edge. If UCPOLn is set, the data will be changed
at falling XCK edge and sampled at rising XCK edge.

18.4 Frame Formats

8019K-AVR-11/10

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

* 1 start bit

* 5,6, 7,8, or 9 data bits
* no, even or odd parity bit
¢ 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 18-4 on page 164 illustrates the possible combinations of the frame formats. Bits inside
brackets are optional.

AImEl@ 163

EE——————————————————————————————— A Tmega165P

Figure 18-4. Frame Formats
l

[FRAME: |

(IDLE) \ St/ 0 X 1 X 2 X 3 X 4 X[5] X [6] X Yl X [S]X[P] /Sp1 [sz]\ (St/IDLE)

St Start bit, always low.

(n) Data bits (0 to 8)

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be high.

The frame format used by the USART is set by the UCSZn2:0, UPM1n:0 and USBSn bits in
UCSRnNnB and UCSRNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPM1n:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FEn (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

18.4.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:
PeVen = dn—1 @ - ®d3®d2®d1 @do('Bo
Peven Parity bit using even parity
podd Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

AImEl@ 164

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.5 USART Initialization

8019K-AVR-11/10

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXCn Flag can be used to
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.

AImEl@ 165

EE——————————————————————————————— A Tmega165P

For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Assembly Code Example("

USART_Init:
; Set baud rate
sts UBRROH, rl7
sts UBRROL, rlé6
; Enable receiver and transmitter
1di 116, (1<<RXENO) | (1<<TXENO)
sts UCSROB,rlé6
; Set frame format: 8data, 2stop bit
1di rl6, (1<<USBSO) | (3<<UCSZ00)
sts UCSROC,rlé6

ret

C Code Example("

#define FOSC 1843200// Clock Speed
#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main(wvoid)

{

USART_Init (MYUBRR) ;

}
void USART Init(unsigned int ubrr)
{
/* Set baud rate */
UBRROH = (unsigned char) (ubrr>>8);
UBRROL = (unsigned char)ubrr;

/* Enable receiver and transmitter */

UCSROB = (1<<RXENO) | (1<<TXENO) ;
/* Set frame format: 8data, 2stop bit */
UCSROC = (1<<USBSO0) | (3<<UCSZ00) ;

Note: 1. See “About Code Examples” on page 8.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

AImEl@ 166

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.6 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXENN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxD pin is overrid-
den by the USART and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-
chronous operation is used, the clock on the XCK pin will be overridden and used as
transmission clock.

18.6.1 Sending Frames with 5 to 8 Data Bit

8019K-AVR-11/10

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCK depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREN) Flag. When using frames with less than eight bits, the most sig-
nificant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16.

Assembly Code Example("

USART Transmit:
; Wait for empty transmit buffer
sbis UCSROA, UDREO
rjmp USART_Transmit
; Put data (rl6) into buffer, sends the data
sts UDRO,rlé6

ret

C Code Example"

void USART Transmit (unsigned char data)

{
/* Wait for empty transmit buffer */
while (! (UCSROA & (1<<UDREO)))
/* Put data into buffer, sends the data */
UDRO = data;

Note: 1. See “About Code Examples” on page 8.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

AImEl@ 167

EE——————————————————————————————— A Tmega165P

18.6.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8n bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

Assembly Code Example("®

USART Transmit:
; Wait for empty transmit buffer
sbis UCSROA, UDREO
rjmp USART_Transmit
; Copy 9th bit from rl7 to TXB8O0
cbi UCSROB, TXB80
sbrec rl7,0
sbi UCSROB, TXB80
; Put LSB data (rl6é) into buffer, sends the data
sts UDRO,rlé6

ret

C Code Example("®

void USART Transmit(unsigned int data)

{
/* Wait for empty transmit buffer */
while (! (UCSROA & (1<<UDREO))))

7

/* Copy 9th bit to TXB80 */

UCSROB &= ~(1<<TXBS80) ;
if (data & 0x0100)
UCSROB |= (1<<TXB80) ;

/* Put data into buffer, sends the data */
UDRO = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.

2. See “About Code Examples” on page 8.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

AImEl@ 168

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.6.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDRERN) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRERn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREN or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

18.6.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPM1n = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

18.6.5 Disabling the Transmitter

8019K-AVR-11/10

The disabling of the Transmitter (setting the TXENnN to zero) will not become effective until ongo-
ing and pending transmissions are completed, that is, when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxD pin.

AImEl@ 169

EE——————————————————————————————— A Tmega165P

18.7 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENnN) bit in the UCSRnB
Register to one. When the Receiver is enabled, the normal pin operation of the RxD pin is over-
ridden by the USART and given the function as the Receiver’s serial input. The baud rate, mode
of operation and frame format must be set up once before any serial reception can be done. If
synchronous operation is used, the clock on the XCK pin will be used as transfer clock.

18.7.1 Receiving Frames with 5 to 8 Data Bits

8019K-AVR-11/10

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until
the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver. When
the first stop bit is received, that is, a complete serial frame is present in the Receive Shift Regis-
ter, the contents of the Shift Register will be moved into the receive buffer. The receive buffer
can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

Assembly Code Example("

USART_Receive:
; Wait for data to be received
sbis UCSRO0A, RXCO
rjmp USART_Receive
; Get and return received data from buffer
in rlé6, UDRO

ret

C Code Example!")

unsigned char USART_Receive(void)
{
/* Wait for data to be received */
while (! (UCSROA & (1<<RXCO0)))
/* Get and return received data from buffer */

return UDRO;

Note: 1. See “About Code Examples” on page 8.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

AIMEL 170

EE——————————————————————————————— A Tmega165P

18.7.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8n bit in UCSRnB
before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn Sta-
tus Flags as well. Read status from UCSRnA, then data from UDRn. Reading the UDRn I/O
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORnN and UPEnN bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

AImEl@ 171

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Assembly Code Example("

USART_ Receive:
; Wait for data to be received
sbis UCSR0A, RXCO
rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in rl8, UCSROA
in rl7, UCSROB
in rlé6, UDRO
; If error, return -1
andi r18, (1<<FEO0) | (1<<DORO) | (1<<UPEOQ)
breq USART_ReceiveNoError
1di rl17, HIGH(-1)
1di rle6, LOwW(-1)
USART ReceiveNoError:
; Filter the 9th bit, then return
lsr 17
andi rl7, 0x01

ret

C Code Example!")

unsigned int USART_Receive(void)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSROA & (1<<RXCO)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSROA;
resh = UCSROB;
resl = UDRO;
/* If error, return -1 */
if (status & (1<<FEOQ) | (1<<DORO) | (1<<UPEO)
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

)

Note: 1. “About Code Examples” on page 8.

The receive function example reads all the I/0 Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will

be free to accept new data as early as possible.

ATMEL

172

EE——————————————————————————————— A Tmega165P

18.7.3 Receive Compete Flag and Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn =
0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

18.7.4 Receiver Error Flags

8019K-AVR-11/10

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRnN 1/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnNA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRNC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORnN) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRnN. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 164 and “Parity Checker” on page 174.

AIMEL 173

EE——————————————————————————————— A Tmega165P

18.7.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPM1n) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMOn bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
with the received data and stop bits. The Parity Error (UPER) Flag can then be read by software
to check if the frame had a Parity Error.

The UPERn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPM1n = 1). This bit is
valid until the receive buffer (UDRn) is read.

18.7.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver
will no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost.

18.7.7 Flushing the Receive Buffer

8019K-AVR-11/10

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Assembly Code Example"

USART_Flush:
sbis UCSROA, RXCO
ret
in rl6, UDRO
rjmp USART_Flush

C Code Example!")

void USART Flush(wvoid)
{
unsigned char dummy;
while (UCSROA & (1<<RXCO)) dummy = UDRO;

Note: 1. See “About Code Examples” on page 8.

AImEl@ 174

EE——————————————————————————————— A Tmega165P

18.8 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxD pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

18.8.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 18-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxD line is idle (that is, no communication activity).

Figure 18-5. Start Bit Sampling

RxD IDLE START BIT O

sarpie| 1 T it 1

(U2x =0)

0
Sample T |‘_T_>|
0

(U2x=1)

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

18.8.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 18-6 on page 176 shows the sampling of the
data bits and the parity bit. Each of the samples is given a number that is equal to the state of
the recovery unit.

AImEl@ 175

8019K-AVR-11/10

ATmegal65P

Figure 18-6. Sampling of Data and Parity Bit

RxD >< BITn ><
S IREREE P
(U2X =0) 1 2 3 4 5 6 7[8]9J1wo]u 122 13 14 15 16 1
e = = ot
(U2x=1) 1 2 3 7 8 1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxD pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 18-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP 1 (A (B) (©)
Sttt
(U2X =0) 1 2 3 4 5 6 7 [8]J]9J1o]or o1 on
spe [ot 11 !
(U2x=1) 1 2 3 0/1

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 18-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

18.8.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 18-2 on page 177) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.

AIMEL 176

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

R, =_(D+DS R - _(D+2)s
slow ™ s _1+D-S+Sg fast = (D+1)S+5,,
D Sum of character size and parity size (D =5 to 10 bit).
Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.
Se First sample number used for majority voting. S = 8 for normal speed and Sg = 4
for Double Speed mode.
Sy Middle sample number used for majority voting. Sy, = 9 for normal speed and
Sy = 5 for Double Speed mode.
Rsiow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 18-2 and Table 18-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

Table 18-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn = 0)

D Recommended Max
(Data+Parity Bit) Rsiow (%) Riast (%) Max Total Error (%) Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 +3.0

6 94.12 105.79 +5.79/-5.88 +2.5

7 94.81 105.11 +5.11/-5.19 +2.0

8 95.36 104.58 +4.58/-4.54 +2.0

9 95.81 104.14 +4.14/-4.19 +1.5

10 96.17 103.78 +3.78/-3.83 +1.5

Table 18-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(U2Xn =1)

D Recommended Max
(Data+Parity Bit) Rgiow (%) Riast (%) Max Total Error (%) Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 +2.5

6 94.92 104.92 +4.92/-5.08 +2.0

7 95.52 104,35 +4.35/-4.48 +1.5

8 96.00 103.90 +3.90/-4.00 +1.5

9 96.39 103.53 +3.53/-3.61 +1.5

10 96.70 103.23 +3.23/-3.30 +1.0

| AImEl 177
Y ©)

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’'s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

18.9 Multi-processor Communication Mode

18.9.1 Using MPCMn

8019K-AVR-11/10

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZ = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXBn = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit charac-
ter frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRNA is
set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRNnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

AIMEL 178

EE——————————————————————————————— A Tmega165P

5. When the last data frame is received by the addressed MCU, the addressed MCU sets

the MPCMn bit and waits for a new address frame from master. The process then

repeats from 2.
Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5-bit to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same 1/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.

18.10 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 18-4. UBRR values
which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold in the
table. Higher error ratings are acceptable, but the Receiver will have less noise resistance when
the error ratings are high, especially for large serial frames (see “Asynchronous Operational
Range” on page 176). The error values are calculated using the following equation:

BaUdRateCIosest Match
BaudRate

Error[%] = (1) «100%

Table 18-4. Examples of UBRR Settings for Commonly Used Oscillator Frequencies
fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

g:;’ed U2Xn =0 u2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max. (" 62.5 Kbps 125 Kbps 115.2 Kbps 230.4 Kbps 125 Kbps 250 Kbps

1.

UBRR =0, Error = 0.0%

8019K-AVR-11/10

AIMEL 179

EE——————————————————————————————— A Tmega165P

Table 18-5. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864 MHz f,sc = 4.0000 MHz fosc = 7.3728 MHz

g:;’ed U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn = 1 U2Xn =0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max. (" 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps

1. UBRR = 0, Error = 0.0%

AImEl@ 180

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 18-6. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

f,.. = 8.0000 MHz f,.. = 11.0592 MHz f,.. = 14.7456 MHz
g:;’ed U2Xn = 0 U2Xn = 1 U2Xn = 0 u2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 | 02% | 416 | -01% | 287 | 00% | 575 | 00% | 383 | 00% | 767 | 0.0%
4800 103 | 02% | 207 | 02% | 143 | 00% | 287 | 00% | 191 | 0.0% | 383 | 0.0%
9600 51 02% | 103 | 02% | 71 00% | 143 | 00% | 95 | 00% | 191 | 00%
14.4K 34 | 08% | 68 | 06% | 47 | 00% | 95 | 00% | 63 | 00% | 127 | 00%
19.2k 25 | 02% | 51 02% | 35 | 00% | 71 00% | 47 | 00% | 95 | 0.0%
28.8k 16 | 21% | 34 | -08% | 23 | 00% | 47 | 00% | 31 00% | 63 | 0.0%
38.4k 12 | 02% | 25 | 02% 17 | 00% | 35 | 00% | 23 | 00% | 47 | 00%
57.6k 8 35% | 16 | 21% 11 00% | 23 | 00% 15 | 00% | 31 0.0%
76.8k 6 70% | 12 | 02% 8 0.0% 17 | 0.0% 11 00% | 23 | 0.0%
115.2k 3 8.5% 8 3.5% 5 0.0% 11 0.0% 7 0.0% 15 | 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 7.8% 5 7.8% 3 7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 7.8% 1 7.8% 3 7.8%
1M - - 0 0.0% - - - - 0 7.8% 1 7.8%
Max.) 0.5 Mbps 1 Mbps 691.2 Kbps 1.3824 Mbps 921.6 Kbps 1.8432 Mbps
1, UBRR = 0, Error = 0.0%

AImEl@ 181

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 18-7. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

f,sc = 16.0000 MHz f o = 18.4320 MHz f,sc = 20.0000 MHz
g:;’ed U2Xn = 0 U2Xn = 1 U2Xn = 0 u2Xn = 1 U2Xn = 0 U2Xn = 1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - - - -
Max. (" 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR =0, Error = 0.0%

AImEl@ 182

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

18.11 Register Description

18.11.1 UDRn - USART I/O Data Register n

Bit 7 6 5 4 3 2 1 0
RXBn([7:0] UDRn (Read)
(0xCe))
TXBn[7:0] UDRn (Write)
Read/Write R/W RW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same |/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXBn) will be the destination for data written to the UDRn Register location. Reading the
UDRnN Register location will return the contents of the Receive Data Buffer Register (RXBn).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and
set to zero by the Receiver.

The transmit buffer can only be written when the UDREnN Flag in the UCSRnA Register is set.
Data written to UDRn when the UDRERN Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

18.11.2 UCSRNA - USART Control and Status Register n A

Bit 7 6 5 4 3 2 1 0
(0xCO) | RXCn | TXCn | UDREn | FEn DORn UPEn u2Xn MPCMn | UCSRnA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

e Bit 7 — RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 — TXCn: USART Transmit Complete n

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

AImEl@ 183

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit 5 - UDREn: USART Data Register Empty n

The UDREN Flag indicates if the transmit buffer (UDRN) is ready to receive new data. If UDREnN
is one, the buffer is empty, and therefore ready to be written. The UDREnN Flag can generate a
Data Register Empty interrupt (see description of the UDRIEnR bit).

UDRERN is set after a reset to indicate that the Transmitter is ready.

e Bit4 — FEn: Frame Error n

This bit is set if the next character in the receive buffer had a Frame Error when received, that is,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

e Bit 3 — DORn: Data OverRun n

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

e Bit 2 — UPEn: USART Parity Error n

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPM1n = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

¢ Bit 1 — U2Xn: Double the USART Transmission Speed n
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

¢ Bit 0 — MPCMn: Multi-processor Communication Mode n

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see “Multi-processor Communication Mode” on page 178.

18.11.3 UCSRNB - USART Control and Status Register B

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0xC1) | RXCIEn | TXCIEn | UDRIEn | RXENn TXENn | UCSZn2 | RXB8n TXB8n | UCSRnB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

AImEl@ 184

EE——————————————————————————————— A Tmega165P

e Bit 6 — TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRNA is set.

¢ Bit 5 — UDRIEn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will
be generated only if the UDRIEnN bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRNA is set.

¢ Bit 4 — RXENn: Receiver Enable n
Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-

ation for the RxD pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

¢ Bit 3 — TXENn: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxD pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, that is,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxD port.

e Bit 2 - UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZ1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

¢ Bit 1 — RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

* Bit 0 — TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

18.11.4 UCSRnNC - USART Control and Status Register n C

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0xC2) | - | UMSELn | UPMn1 | UPMn0O USBSn | UCSZn1 | UCSZn0 | UCPOLn | UCSRnC
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 1 1 0

* Bit 6 - UMSELn: USART Mode Select
This bit selects between asynchronous and synchronous mode of operation.

Table 18-8. UMSELn Bit Settings

UMSELN Mode
0 Asynchronous Operation
1 Synchronous Operation

AImEl@ 185

EE——————————————————————————————— A Tmega165P

¢ Bit 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMOn setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Table 18-9. UPM Bits Settings

UPM1n UPMOn Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

e Bit 3 - USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores

this setting.
Table 18-10. USBSnh Bit Settings
USBSn Stop Bit(s)
0 1-bit
1 2-bit

e Bit 2:1 — UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

Table 18-11. UCSZ Bits Settings

UCSZn2 UCSZn1 UCSZno Character Size
0 0 0 5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

AImEl@ 186

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit 0 — UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLnN bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCK).

Table 18-12. UCPOLn Bit Settings

Transmitted Data Changed Received Data Sampled
UCPOLn | (Output of TxD Pin) (Input on RxD Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

18.11.5 UBRRnL and UBRRnH - USART Baud Rate Registers

Bit 15 14 13 12 11 10 9 8
(0xC5) - | - | - | - | UBRRnN[11:8] UBRRnH
(0xC4) UBRRN[7:0] UBRRnL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0

¢ Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnNH is written.

e Bit 11:0 — UBRR11:0: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnNL contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

AImEl@ 187

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

19. USI - Universal Serial Interface

19.1 Features

19.2 Overview

8019K-AVR-11/10

* Two-wire Synchronous Data Transfer (Master or Slave)

* Three-wire Synchronous Data Transfer (Master or Slave)

* Data Received Interrupt

¢ Wakeup from Idle Mode

¢ In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
Two-wire Start Condition Detector with Interrupt Capability

The Universal Serial Interface, or USI, provides the basic hardware resources needed for serial
communication. Combined with a minimum of control software, the USI allows significantly
higher transfer rates and uses less code space than solutions based on software only. Interrupts
are included to minimize the processor load.

A simplified block diagram of the USI is shown on Figure 19-1. For the actual placement of I1/O
pins, refer to “Pinout ATmega165P” on page 2. CPU accessible I/O Registers, including 1/O bits
and /O pins, are shown in bold. The device-specific /0 Register and bit locations are listed in
the “Register Descriptions” on page 196.

Figure 19-1. Universal Serial Interface, Block Diagram

*— »lpO (Output only)

D Q
4D)*LE4»\—\—>

DI/SDA (Input/Open Drain)

Bit7
Bit0

<
<

i

USIDR -t

TIMO COMP

IY

4 L=

~ uscksscL | (Input/Open Drain)
1 >

CLOCK
\AA HOLD

14

4-bit Counter j-

I

< USISR) p

YW

USIOIF

USISIF
uUsIDC

USIPF

-
1
¥
1

[Two-wire Clock|
Control Unit

DATA BUS
3
/

USIOIE
uUsICS1
usICso
USICLK

USIwmM1
USIWMO

USISIE

> USICR

The 8-bit Shift Register is directly accessible via the data bus and contains the incoming and
outgoing data. The register has no buffering so the data must be read as quickly as possible to
ensure that no data is lost. The most significant bit is connected to one of two output pins
depending of the wire mode configuration. A transparent latch is inserted between the Serial
Register Output and output pin, which delays the change of data output to the opposite clock
edge of the data input sampling. The serial input is always sampled from the Data Input (DI) pin
independent of the configuration.

AImEl@ 188

EE——————————————————————————————— A Tmega165P

The 4-bit counter can be both read and written via the data bus, and can generate an overflow
interrupt. Both the Serial Register and the counter are clocked simultaneously by the same clock
source. This allows the counter to count the number of bits received or transmitted and generate
an interrupt when the transfer is complete. Note that when an external clock source is selected
the counter counts both clock edges. In this case the counter counts the number of edges, and
not the number of bits. The clock can be selected from three different sources: The USCK pin,
Timer/Counter0 Compare Match or from software.

The Two-wire clock control unit can generate an interrupt when a start condition is detected on
the Two-wire bus. It can also generate wait states by holding the clock pin low after a start con-
dition is detected, or after the counter overflows.

19.3 Functional Descriptions
19.3.1 Three-wire Mode

The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI1) mode 0 and 1, but
does not have the slave select (SS) pin functionality. However, this feature can be implemented
in software if necessary. Pin names used by this mode are: DI, DO, and USCK.

Figure 19-2. Three-wire Mode Operation, Simplified Diagram

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

A

USCK [

SLAVE

Y

DO

A

DI |

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

A

USCK

PORTxn j

MASTER

Figure 19-2 shows two USI units operating in Three-wire mode, one as Master and one as
Slave. The two Shift Registers are interconnected in such way that after eight USCK clocks, the
data in each register are interchanged. The same clock also increments the USI’s 4-bit counter.
The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used to determine when a
transfer is completed. The clock is generated by the Master device software by toggling the
USCK pin via the PORT Register or by writing a one to the USITC bit in USICR.

AImEl@ 189

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 19-3. Three-wire Mode, Timing Diagram

CYCLE (Rowems) [+ [2 [35 [& [s [& [7+ [s |
usck SN TN NN
USCK

DO X mMsB X 6 X 5 X a4 3 2 X 1 X s X

The Three-wire mode timing is shown in Figure 19-3. At the top of the figure is a USCK cycle ref-
erence. One bit is shifted into the USI Shift Register (USIDR) for each of these cycles. The
USCK timing is shown for both external clock modes. In External Clock mode 0 (USICSO = 0), DI
is sampled at positive edges, and DO is changed (Data Register is shifted by one) at negative
edges. External Clock mode 1 (USICSO0 = 1) uses the opposite edges versus mode 0, that is,
samples data at negative and changes the output at positive edges. The USI clock modes corre-
sponds to the SPI data mode 0 and 1.

Referring to the timing diagram (Figure 19-3), a bus transfer involves the following steps:

1. The Slave device and Master device sets up its data output and, depending on the proto-
col used, enables its output driver (mark A and B). The output is set up by writing the
data to be transmitted to the Serial Data Register. Enabling of the output is done by set-
ting the corresponding bit in the port Data Direction Register. Note that point A and B
does not have any specific order, but both must be at least one half USCK cycle before
point C where the data is sampled. This must be done to ensure that the data setup
requirement is satisfied. The 4-bit counter is reset to zero.

2. The Master generates a clock pulse by software toggling the USCK line twice (C and D).
The bit value on the slave and master’s data input (DI) pin is sampled by the USI on the
first edge (C), and the data output is changed on the opposite edge (D). The 4-bit counter
will count both edges.

3. Step 2. is repeated eight times for a complete register (byte) transfer.

4. After eight clock pulses (that is, 16 clock edges) the counter will overflow and indicate
that the transfer is completed. The data bytes transferred must now be processed before
a new transfer can be initiated. The overflow interrupt will wake up the processor if it is
set to Idle mode. Depending of the protocol used the slave device can now set its output
to high impedance.

19.3.2 SPI Master Operation Example

The following code demonstrates how to use the USI module as a SPI Master:

SPITransfer:

sts USIDR,rl6

1di rl6, (1<<USIOIF)

sts USISR,rl6

ldi rl6, (1<<USIWMO) | (1<<USICS1) | (1<<USICLK) | (1<<USITC)
SPITransfer_loop:

sts USICR,rl6

1ds rl6, USISR

sbrs rl6, USIOIF

AImEl@ 190

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

rjmp SPITransfer_loop

1ds r16,USIDR

ret
The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO and USCK pins are enabled as output in the DDRE Register. The value stored in register
r16 prior to the function is called is transferred to the Slave device, and when the transfer is com-
pleted the data received from the Slave is stored back into the r16 Register.

The second and third instructions clears the US| Counter Overflow Flag and the USI counter
value. The fourth and fifth instruction set Three-wire mode, positive edge Shift Register clock,
count at USITC strobe, and toggle USCK. The loop is repeated 16 times.

The following code demonstrates how to use the USI module as a SPI Master with maximum
speed (fsck = fck/4):

SPITransfer Fast:

sts USIDR,rl6
1di rl6, (1<<USIWMO) | (0<<USICSO) | (1<<USITC)
1di rl7, (1<<USIWMO) | (0<<USICSO0) | (1<<USITC) | (1<<USICLK)

sts USICR,rl6 ; MSB
sts USICR,rl7
sts USICR,rl6
sts USICR,rl7
sts USICR,rl6
sts USICR,r1l7
sts USICR,rl6
sts USICR,rl7
sts USICR,rl6
sts USICR,rl7
sts USICR,rl6
sts USICR,rl7
sts USICR,rl6
sts USICR,rl7
sts USICR,rl6 ; LSB
sts USICR,rl7

lds rlé6,USIDR

ret

AImEl@ 191

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

19.3.3 SPI Slave Operation Example

The following code demonstrates how to use the USI module as a SPI Slave:
init:
1di rl6, (1<<USIWMO) | (1<<USICS1)
sts USICR, rlé6

SlaveSPITransfer:
sts USIDR,rl6
1di rl6, (1<<USIOIF)
sts USISR,rl6
SlaveSPITransfer_loop:
1ds rl6, USISR
sbrs rl6, USIOIF
rjmp SlaveSPITransfer_loop
1lds rl6,USIDR
ret
The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO is configured as output and USCK pin is configured as input in the DDR Register. The
value stored in register r16 prior to the function is called is transferred to the master device, and
when the transfer is completed the data received from the Master is stored back into the r16
Register.

Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge Shift Register clock. The loop
is repeated until the USI Counter Overflow Flag is set.

AImEl@ 192

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

19.3.4

8019K-AVR-11/10

Two-wire Mode

The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-
iting on outputs and input noise filtering. Pin names used by this mode are SCL and SDA.

Figure 19-4. Two-wire Mode Operation, Simplified Diagram
VCC

Y

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0 jt

A

HOLD
y SCL

Yy

[Two-wire Clock
Control Unit

SLAVE

Y

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0 jet

A

PORTxn j

MASTER

Figure 19-4 shows two USI units operating in Two-wire mode, one as Master and one as Slave.
It is only the physical layer that is shown since the system operation is highly dependent of the
communication scheme used. The main differences between the Master and Slave operation at
this level, is the serial clock generation which is always done by the Master, and only the Slave
uses the clock control unit. Clock generation must be implemented in software, but the shift
operation is done automatically by both devices. Note that only clocking on negative edge for
shifting data is of practical use in this mode. The slave can insert wait states at start or end of
transfer by forcing the SCL clock low. This means that the Master must always check if the SCL
line was actually released after it has generated a positive edge.

Since the clock also increments the counter, a counter overflow can be used to indicate that the
transfer is completed. The clock is generated by the master by toggling the USCK pin via the
PORT Register.

The data direction is not given by the physical layer. A protocol, like the one used by the TWI-
bus, must be implemented to control the data flow.

AImEl@ 193

EE——————————————————————————————— A Tmega165P

Figure 19-5. Two-wire Mode, Typical Timing Diagram

SDA N/ _ _ __ X
SCL 1-7 M 1-8 W 1-8 9

- [GE—— - —J - [— - -
ADDRESS R/W ACK DATA ACK DATA ACK P

0 A G !

Referring to the timing diagram (Figure 19-5), a bus transfer involves the following steps:

1.

The a start condition is generated by the Master by forcing the SDA low line while the
SCL line is high (A). SDA can be forced low either by writing a zero to bit 7 of the Shift
Register, or by setting the corresponding bit in the PORT Register to zero. Note that the
Data Direction Register bit must be set to one for the output to be enabled. The slave
device’s start detector logic (Figure 19-6) detects the start condition and sets the USISIF
Flag. The flag can generate an interrupt if necessary.

In addition, the start detector will hold the SCL line low after the Master has forced an
negative edge on this line (B). This allows the Slave to wake up from sleep or complete
its other tasks before setting up the Shift Register to receive the address. This is done by
clearing the start condition flag and reset the counter.

The Master set the first bit to be transferred and releases the SCL line (C). The Slave
samples the data and shift it into the Serial Register at the positive edge of the SCL
clock.

After eight bits are transferred containing slave address and data direction (read or
write), the Slave counter overflows and the SCL line is forced low (D). If the slave is not
the one the Master has addressed, it releases the SCL line and waits for a new start
condition.

If the Slave is addressed it holds the SDA line low during the acknowledgment cycle
before holding the SCL line low again (that is, the Counter Register must be set to 14
before releasing SCL at (D)). Depending of the R/W bit the Master or Slave enables its
output. If the bit is set, a master read operation is in progress (that is, the slave drives the
SDA line) The slave can hold the SCL line low after the acknowledge (E).

Multiple bytes can now be transmitted, all in same direction, until a stop condition is given
by the Master (F). Or a new start condition is given.

If the Slave is not able to receive more data it does not acknowledge the data byte it has last
received. When the Master does a read operation it must terminate the operation by force the
acknowledge bit low after the last byte transmitted.

Figure 19-6. Start Condition Detector, Logic Diagram

8019K-AVR-11/10

» USISIF

CLOCK
:Z> D Q D Q— voip

CLR CLR

Q
SCL T
Write(USISIF)

)

SDA — —

AImEl@ 194

EE——————————————————————————————— A Tmega165P

19.3.5

19.3.6

Start Condition Detector

The start condition detector is shown in Figure 19-6 on page 194. The SDA line is delayed (in
the range of 50 to 300 ns) to ensure valid sampling of the SCL line. The start condition detector
is only enabled in Two-wire mode.

The start condition detector is working asynchronously and can therefore wake up the processor
from the Power-down sleep mode. However, the protocol used might have restrictions on the
SCL hold time. Therefore, when using this feature in this case the Oscillator start-up time set by
the CKSEL Fuses (see “Clock Systems and their Distribution” on page 26) must also be taken
into the consideration. Refer to the USISIF bit description on page 196 for further details.

Clock speed considerations

Maximum frequency for SCL and SCK is fok/4. This is also the maximum data transmit and
receieve rate in both two- and three-wire mode. In two-wire slave mode the Two-wire Clock Con-
trol Unit will hold the SCL low until the slave is ready to receive more data. This may reduce the
actual data rate in two-wire mode.

19.4 Alternative USI Usage

19.4.1

19.4.2

19.4.3

19.4.4

19.4.5

8019K-AVR-11/10

When the USI unit is not used for serial communication, it can be set up to do alternative tasks
due to its flexible design.

Half-duplex Asynchronous Data Transfer

By utilizing the Shift Register in Three-wire mode, it is possible to implement a more compact
and higher performance UART than by software only.

4-bit Counter

The 4-bit counter can be used as a stand-alone counter with overflow interrupt. Note that if the
counter is clocked externally, both clock edges will generate an increment.

12-bit Timer/Counter

Combining the USI 4-bit counter and Timer/Counter0 allows them to be used as a 12-bit
counter.

Edge Triggered External Interrupt

By setting the counter to maximum value (F) it can function as an additional external interrupt.
The Overflow Flag and Interrupt Enable bit are then used for the external interrupt. This feature
is selected by the USICS1 bit.

Software Interrupt

The counter overflow interrupt can be used as a software interrupt triggered by a clock strobe.

AImEl@ 195

EE——————————————————————————————— A Tmega165P

19.5 Register Descriptions

19.5.1 USIDR - USI Data Register

Bit 7 6 5 4 3 2 1 0
(0XBA) | wss LSB | USIDR
Read/Write R/W R/W R/W R/IW R/W R/IW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The USI uses no buffering of the Serial Register, that is, when accessing the Data Register
(USIDR) the Serial Register is accessed directly. If a serial clock occurs at the same cycle the
register is written, the register will contain the value written and no shift is performed. A (left) shift
operation is performed depending of the USICS1..0 bits setting. The shift operation can be con-
trolled by an external clock edge, by a Timer/Counter0 Compare Match, or directly by software
using the USICLK strobe bit. Note that even when no wire mode is selected (USIWM1..0 = 0)
both the external data input (DI/SDA) and the external clock input (USCK/SCL) can still be used
by the Shift Register.

The output pin in use, DO or SDA depending on the wire mode, is connected via the output latch
to the most significant bit (bit 7) of the Data Register. The output latch is open (transparent) dur-
ing the first half of a serial clock cycle when an external clock source is selected (USICS1 = 1),
and constantly open when an internal clock source is used (USICS1 = 0). The output will be
changed immediately when a new MSB written as long as the latch is open. The latch ensures
that data input is sampled and data output is changed on opposite clock edges.

Note that the corresponding Data Direction Register to the pin must be set to one for enabling
data output from the Shift Register.

19.5.2 USISR - USI Status Register

Bit 7 6 5 4 3 2 1 0
(0xB9) I USISIF USIOIF USIPF usibc USICNT3 USICNT2 USICNT1 USICNTO I USISR
Read/Write R/W R/W R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Status Register contains Interrupt Flags, line Status Flags and the counter value.

¢ Bit 7 — USISIF: Start Condition Interrupt Flag

When Two-wire mode is selected, the USISIF Flag is set (to one) when a start condition is
detected. When output disable mode or Three-wire mode is selected and (USICSx = 0b11 &
USICLK = 0) or (USICS = 0b10 & USICLK = 0), any edge on the SCK pin sets the flag.

An interrupt will be generated when the flag is set while the USISIE bit in USICR and the Global
Interrupt Enable Flag are set. The flag will only be cleared by writing a logical one to the USISIF
bit. Clearing this bit will release the start detection hold of USCL in Two-wire mode.

A start condition interrupt will wakeup the processor from all sleep modes.

¢ Bit 6 — USIOIF: Counter Overflow Interrupt Flag

This flag is set (one) when the 4-bit counter overflows (that is, at the transition from 15 to 0). An
interrupt will be generated when the flag is set while the USIOIE bit in USICR and the Global

Interrupt Enable Flag are set. The flag will only be cleared if a one is written to the USIOIF bit.
Clearing this bit will release the counter overflow hold of SCL in Two-wire mode.

A counter overflow interrupt will wakeup the processor from Idle sleep mode.

AImEl@ 196

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

* Bit 5 — USIPF: Stop Condition Flag

When Two-wire mode is selected, the USIPF Flag is set (one) when a stop condition is detected.
The flag is cleared by writing a one to this bit. Note that this is not an Interrupt Flag. This signal is
useful when implementing Two-wire bus master arbitration.

e Bit 4 — USIDC: Data Output Collision

This bit is logical one when bit 7 in the Shift Register differs from the physical pin value. The flag
is only valid when Two-wire mode is used. This signal is useful when implementing Two-wire
bus master arbitration.

¢ Bits 3..0 - USICNT3:0: Counter Value
These bits reflect the current 4-bit counter value. The 4-bit counter value can directly be read or
written by the CPU.

The 4-bit counter increments by one for each clock generated either by the external clock edge
detector, by a Timer/Counter0 Compare Match, or by software using USICLK or USITC strobe
bits. The clock source depends of the setting of the USICS1:0 bits. For external clock operation
a special feature is added that allows the clock to be generated by writing to the USITC strobe
bit. This feature is enabled by write a one to the USICLK bit while setting an external clock
source (USICS1 =1).

Note that even when no wire mode is selected (USIWM1..0 = 0) the external clock input
(USCK/SCL) are can still be used by the counter.

19.5.3 USICR - USI Control Register

Bit 7 6 5 4 3 2 1 0
(0xB8) I USISIE USIOIE usiwm1 USIWMOo usics1 UsICso USICLK usITC I USICR
Read/Write R/W R/W R/W R/W R/W R/W W W
Initial Value 0 0 0 0 0 0 0 0

The Control Register includes interrupt enable control, wire mode setting, Clock Select setting,
and clock strobe.

e Bit 7 — USISIE: Start Condition Interrupt Enable

Setting this bit to one enables the Start Condition detector interrupt. If there is a pending inter-
rupt when the USISIE and the Global Interrupt Enable Flag is set to one, this will immediately be
executed. Refer to the USISIF bit description on page 196 for further details.

¢ Bit 6 — USIOIE: Counter Overflow Interrupt Enable

Setting this bit to one enables the Counter Overflow interrupt. If there is a pending interrupt when
the USIOIE and the Global Interrupt Enable Flag is set to one, this will immediately be executed.
Refer to the USIOIF bit description on page 196 for further details.

e Bit5..4 — USIWM1:0: Wire Mode

These bits set the type of wire mode to be used. Basically only the function of the outputs are
affected by these bits. Data and clock inputs are not affected by the mode selected and will
always have the same function. The counter and Shift Register can therefore be clocked exter-
nally, and data input sampled, even when outputs are disabled. The relations between
USIWM1..0 and the USI operation is summarized in Table 19-1 on page 198.

AImEl@ 197

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 19-1. Relations between USIWM1..0 and the USI Operation
USIWM1 USIWMO | Description

Outputs, clock hold, and start detector disabled. Port pins operates as
normal.

Three-wire mode. Uses DO, DI, and USCK pins.
The Data Output (DO) pin overrides the corresponding bit in the PORT
Register in this mode. However, the corresponding DDR bit still controls the

data direction. When the port pin is set as input the pins pull-up is controlled
0 1 by the PORT bit.

The Data Input (D) and Serial Clock (USCK) pins do not affect the normal
port operation. When operating as master, clock pulses are software

generated by toggling the PORT Register, while the data direction is set to
output. The USITC bit in the USICR Register can be used for this purpose.

Two-wire mode. Uses SDA (DI) and SCL (USCK) pins‘").

The Serial Data (SDA) and the Serial Clock (SCL) pins are bi-directional and
uses open-collector output drives. The output drivers are enabled by setting
the corresponding bit for SDA and SCL in the DDR Register.

When the output driver is enabled for the SDA pin, the output driver will force
the line SDA low if the output of the Shift Register or the corresponding bit in
1 0 the PORT Register is zero. Otherwise the SDA line will not be driven (that is, it
is released). When the SCL pin output driver is enabled the SCL line will be
forced low if the corresponding bit in the PORT Register is zero, or by the start
detector. Otherwise the SCL line will not be driven.

The SCL line is held low when a start detector detects a start condition and
the output is enabled. Clearing the Start Condition Flag (USISIF) releases the
line. The SDA and SCL pin inputs is not affected by enabling this mode. Pull-
ups on the SDA and SCL port pin are disabled in Two-wire mode.

0 0

Two-wire mode. Uses SDA and SCL pins.
1 1 Same operation as for the Two-wire mode described above, except that the

SCL line is also held low when a counter overflow occurs, and is held low until
the Counter Overflow Flag (USIOIF) is cleared.

Note: 1. The DI and USCK pins are renamed to Serial Data (SDA) and Serial Clock (SCL) respectively
to avoid confusion between the modes of operation.

¢ Bit 3:2 — USICS1:0: Clock Source Select

These bits set the clock source for the Shift Register and counter. The data output latch ensures
that the output is changed at the opposite edge of the sampling of the data input (DI/SDA) when
using external clock source (USCK/SCL). When software strobe or Timer/Counter0 Compare
Match clock option is selected, the output latch is transparent and therefore the output is
changed immediately. Clearing the USICS1..0 bits enables software strobe option. When using
this option, writing a one to the USICLK bit clocks both the Shift Register and the counter. For
external clock source (USICS1 = 1), the USICLK bit is no longer used as a strobe, but selects
between external clocking and software clocking by the USITC strobe bit.

AImEl@ 198

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 19-2 shows the relationship between the USICS1..0 and USICLK setting and clock source
used for the Shift Register and the 4-bit counter.

Table 19-2. Relations between the USICS1..0 and USICLK Setting
USICS1 USICSO0 USICLK | Shift Register Clock Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1 Software clock strobe Software clock strobe
(USICLK) (USICLK)

0 1 X Timer/Counter0 Compare Timer/Counter0 Compare
Match Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)

8019K-AVR-11/10

* Bit 1 - USICLK: Clock Strobe

Writing a one to this bit location strobes the Shift Register to shift one step and the counter to
increment by one, provided that the USICS1..0 bits are set to zero and by doing so the software
clock strobe option is selected. The output will change immediately when the clock strobe is exe-
cuted, that is, in the same instruction cycle. The value shifted into the Shift Register is sampled
the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 19-2).

* Bit 0 — USITC: Toggle Clock Port Pin

Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDRE4 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of
when the transfer is done when operating as a master device.

AImEl@ 199

EE——————————————————————————————— A Tmega165P

20. AC - Analog Comparator

8019K-AVR-11/10

The Analog Comparator compares the input values on the positive pin AINO and negative pin
AIN1. When the voltage on the positive pin AINO is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 20-1.

The Power Reduction ADC bit, PRADC, in “PRR — Power Reduction Register’ on page 41 must
be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 20-1. Analog Comparator Block Diagram®

BANDGAP
REFERENCE VCC
ACBG l
ACD —>»
ACIE
AINO

A L | ANALOG
| INTERRUPT COMPARATOR
SELECT IRQ

/ T T L > Ac
ACIS1 ACISO AcCIC
—
TO T/C1 CAPTURE
TRIGGER MUX
ADC MULTIPLEXER ACO >

OUTPUT(

P
Notes: 1. See Table 20-1 on page 201.

2. Refer to Figure 1-1 on page 2 and Section 12.3 “Alternate Port Functions” on page 67 for Ana-
log Comparator pin placement.

AImEl@ 200

EE——————————————————————————————— A Tmega165P

20.1 Analog Comparator Multiplexed Input

8019K-AVR-11/10

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
20-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the Analog
Comparator.

Table 20-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADCB6
1 0 111 ADC7

AImEl@ 201

EE——————————————————————————————— A Tmega165P

20.2 Register Description

20.2.1 ADCSRB - ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0
(0x7B) | = | ACME | = = = ADTS2 ADTS1 ADTSO | ADCSRB
Read/Write R RIW R R R RIW R/W RW

Initial Value 0 0 0 0 0 0 0 0

e Bit 6 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 201.

20.2.2 ACSR - Analog Comparator Control and Status Register

Bit 7 6 5 4 3 2 1 0
ox30(0xs0) | Acb | AcBG | AcO | Ac ACIE ACIC ACIS1 Aciso | Acsr
Read/Write R/W R/W R R/W R/W R/W RIW R/W

Initial Value 0 0 N/A 0 0 0 0 0

e Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

¢ Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Compar-
ator. See “Internal Voltage Reference” on page 47.

e Bit 5 - ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

* Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACISO0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACl is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, AClI is cleared by writing a logic one to the flag.

e Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

AImEl@ 202

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

e Bit 2 — ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
Input Capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the Input Capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

e Bits 1,0 - ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 20-2.

Table 20-2. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

20.2.3 DIDR1 - Digital Input Disable Register 1

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0X7F) | = | = | = = = AIN1D AINOD | DIDR1
Read/Write R R R R R R R/IW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1, 0 — AIN1D, AINOD: AIN1, AINO Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

AImEl@ 203

EE——————————————————————————————— A Tmega165P

21. ADC - Analog to Digital Converter

21.1 Features

¢ 10-bit Resolution

¢ 0.5 LSB Integral Non-linearity

* +2 | SB Absolute Accuracy

* 13 ps - 260 ps Conversion Time (50 kHz to 1 MHz ADC clock)
¢ Up to 15 kSPS at Maximum Resolution (200 kHz ADC clock)
¢ Eight Multiplexed Single Ended Input Channels

¢ Optional Left Adjustment for ADC Result Readout

* 0-V.c ADC Input Voltage Range

¢ Selectable 1.1V ADC Reference Voltage

* Free Running or Single Conversion Mode

* ADC Start Conversion by Auto Triggering on Interrupt Sources
¢ Interrupt on ADC Conversion Complete

¢ Sleep Mode Noise Canceler

21.2 Overview

The ATmega165P features a 10-bit successive approximation ADC. The ADC is connected to
an 8-channel Analog Multiplexer which allows eight single-ended voltage inputs constructed
from the pins of Port F. The single-ended voltage inputs refer to OV (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 21-1
on page 205.

The ADC has a separate analog supply voltage pin, AVCC. AV must not differ more than
+0.3V from V.. See the paragraph “ADC Noise Canceler’ on page 211 on how to connect this

pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise performance.

The Power Reduction ADC bit, PRADC, in “PRR — Power Reduction Register” on page 41 must
be written to zero to enable the ADC module.

AImEl@ 204

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.3 Operation

8019K-AVR-11/10

Figure 21-1. Analog to Digital Converter Block Schematic

COMPLETE IRQ
INTERRUPT
FLAGS

ADTS[2:0]
o 8-BIT DATA BUS
<
15 T 0

Y

¥ v

ADIF
ADIE

ADC MULTIPLEXER ADC CTRL, & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
Bl Eg == =* 99829 §¢932 g
>| TRIGGER g
»| SELECT 2
Y

START

MUX DECODER YYY
PRESCALER |€¢——

CONVERSION LOGIC

CHANNEL SELECTION

Y
INTERNAL
REFERENCE v SAMPLE & HOLD
COMPARATOR
AREF > 10-BIT DAC

it

BANDGAP
REFERENCE
ADC757
N

SINGLE ENDED/DIFFERENTIAL SELECTION

ADC6 Di

POS. ADC MULTIPLEXER
ADCS INPUT *>—— —> OUTPUT

MUX
ADC4 Di v
ADC3 Di DIFFERENTIAL

N AVPLIFIER —
ADC2 |
ADC1
ADCO |
L £
NEG.

INPUT
MUX

\

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage may be con-
nected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC input
pins, as well as GND and a fixed bandgap voltage reference, can be selected as single ended
inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Volt-
age reference and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the ADC
before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

AImEl@ 205

EE——————————————————————————————— A Tmega165P

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

21.4 Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

Figure 21-2. ADC Auto Trigger Logic

ADTS[2:0]
—— P PRESCALER
START CLK pc
ADIF — ADATE
SOURCE1 — L
----- f)- CONVERSION
_____ LOGIC
----- EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

AImEl@ 206

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

A conversion can also be started by using the ADC noise canseler. This feature will enable con-
version during the ADC Noise Reduction sleep mode and IDLE sleep mode. For details, see
“ADC Noise Canceler’ on page 211.

21.5 Prescaling and Conversion Timing

Figure 21-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK —>
[ee]
N4 ISR Eav] v JVd v
O| O] O] ©| ©| Y| ©
YY VY VY VYN
ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place two ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic. When using Differential mode, along

AImEl@ 207

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

with Auto triggering from a source other than the ADC Conversion Complete, each conversion
will require 25 ADC clocks. This is because the ADC must be disabled and re-enabled after
every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 21-1 on page
209.

Figure 21-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

Cycle Number | 1] 2 | |12 | 13| fa| 15| 16| 17| 18] 19| 20| 21| 22| 23| 24| 25 | 1]2 |3
I I I
mccok & LT T LTY L L LU L L L L L L LA L L
I ‘ | I I I
ADEN I ‘ ‘ I I I
I I I I
ADSC W/ ‘ | ! V7
I ‘ ‘ I I |
ADIF ! ! I
I ! ‘ 1 I 1
ADCH / / | { '/ <_Sign and MSB of Result
1] 1 I 1
apcL /i 1‘ YT, /, JI1TTTTT777DC " LsB ot Resuit
! | ! ! !
\ MUX and REFS 4\ Conversion /’ \ MUX and REFS
Update Sample & Hold Complete Update
Figure 21-5. ADC Timing Diagram, Single Conversion
One Conversion Next Conversion
1 1 1 1
Cycle Number | 1 | 2| 3| 4| 5| 6| 7| s| 9| 1o| 11| 12| 13| | 1 | 2| 3

ADC Clock $ * Lll_ll—ll—ll—lHul—ll—l

ADSC e [e
I I I I
ADIF | . ETE—
| 1 I 1
ADCH // 1/// / // // // /DX __Sign and MSB of Result
ADCL 77 1777 7 7] 7/ 777777 LSB of Resul
T T] T
\ “—_ Sample & Hold Conversion /-) \ MUX and REFS
MUX and REFS Complete Update
Update

AImEl@ 208

EE——————————————————————————————— A Tmega165P

Figure 21-6. ADC Timing Diagram, Auto Triggered Conversion

One Conversion

Next Conversion

1
Cycle Number |

ADC Clock 2222222222222221 $ 1 %2222222222

Trigger

Source 4/ I I W
[1 1 1
aoae _/ o ! I I
[1
ADIF L \ |
ADCH t -// 4 // // // ’/ // // // b‘(Sign and MSB of Result
T T 1 T
ADCL V/r/ i/// 7/ 7/ / // 7/ 14 L5B of Result
o 1 1 1
_/) (—\ Sample & Conversion /-) <\ Prescaler
Prescaler Hold Complete Reset
Reset
MUX and REFS
Update

Figure 21-7. ADC Timing Diagram, Free Running Conversion

One Conversion

Next Conversion

Cycle Number

ADC Clock $ *

ADSC

ADIF

|

ADCH

|
111177777 DK Sign and MSB of Result

ADCL

/> \ \ Sample & Hold
MUX and REFS

Conversion
Complete
Update
Table 21-1. ADC Conversion Time
Sample & Hold (Cycles from
Condition Start of Conversion) Conversion Time (Cycles)
First conversion 13.5 25
Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 13.5

21.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in

8019K-AVR-11/10

ATMEL

209

EE——————————————————————————————— A Tmega165P

ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.
b. During conversion, minimum one ADC clock cycle after the trigger event.
c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

21.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

21.6.2 ADC Voltage Reference

The reference voltage for the ADC (Vggr) indicates the conversion range for the ADC. Single
ended channels that exceed Vg will result in codes close to 0x3FF. Vi can be selected as
either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-
ated from the internal bandgap reference (Vgg) through an internal buffer. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. Vgge can
also be measured at the AREF pin with a high impedant voltmeter. Note that Vg is a high
impedant source, and only a capacitive load should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 1.1V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

AImEl@ 210

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
mode must be selected and the ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption.

21.71 Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated in Figure 21-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kQ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

Signal components higher than the Nyquist frequency (fopc/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 21-8. Analog Input Circuitry

1..100 kQ

ADCn ' AN l

CS/H= 14 pF

AImEl@ 211

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

b. The AVCC pin on the device should be connected to the digital Vs supply voltage
via an LC network as shown in Figure 21-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 21-9. ADC Power Connections

PAO [51]

VCC @

(ADC7) PF7 [54]
(ADC6) PF6 [55)
(ADC5) PF5 [56|
(ADC4) PF4 [57|
(ADC3) PF3 [58|
(ADC2) PF2 [59)
(ADC1) PF1 60|
(ADCO) PFO [61]

10 uH AREF [62)
GND e
Il AVCC
l100 nF
I ,

Ground Plane ‘<

2

AI“IE'.@ 212

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.7.3 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and Vggr in 2" steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:

¢ Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at
0.5 LSB). Ideal value: 0 LSB.

Figure 21-10. Offset Error
Output Codeh

————— Ideal ADC
Actual ADC

Offset
< Error”

[

Vgeg Input Voltage

¢ Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (Ox3FE to Ox3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB.

Figure 21-11. Gain Error

Output Code 4 Gain
Error

————— Ideal ADC

Actual ADC

o

Vger Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum

deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

AImEl@ 213

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 21-12. Integral Non-linearity (INL)
Output Code &

INI

————— Ideal ADC

Actual ADC

[

VREFV Input Voltage

« Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 21-13. Differential Non-linearity (DNL)

Output Code A
O0x3FF

| ’—|
_tsel
| “on
0x000

0 Vger Input Voltage

¢ Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a
range of input voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.

¢ Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of offset, gain error, differential
error, non-linearity, and quantization error. Ideal value: +0.5 LSB.

AImEl@ 214

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.8 ADC Conversion Result

8019K-AVR-11/10

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is

V- 1024
ADC = _IN_""~

REF

where V, is the voltage on the selected input pin and Vg the selected voltage reference (see
Table 21-3 on page 217 and Table 21-4 on page 218). 0x000 represents analog ground, and
O0x3FF represents the selected reference voltage minus one LSB.

(Vpos— Vnes) 912
VRer

ADC =

Figure 21-14. Differential Measurement Range

A

Output Code

Ox1FF

)
((
]

[I I I I T T T T T T T T I >
-V <(0 ((Vv Differential Input
REF O0x3FF REF
- Voltage (Volts)

)
((

0x200

AImEl@ 215

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Table 21-2. Correlation Between Input Voltage and Output Codes

Vaben Read Code Corresponding Decimal Value
Vaocm + VRer Ox1FF 511

Vaoem + 2 s1o Veer Ox1FF 511

Vaoem + 2510 Veer Ox1FE 510

Vaocm + /512 Vaer 0x001 1

Vapcm 0x000 0

Vaocm = 512 Vrer Ox3FF -1

Vaocm - > stz Vaer 0x201 -511

Vaocm - VRer 0x200 -512

ADMUX = 0xFB (ADCS3 - ADC2, 1.1V reference, left adjusted result).

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
ADCR =512 x (300 - 500) / 1100 = -93 = Ox3A3.

ADCL will thus read 0xCO, and ADCH will read 0xD8. Writing zero to ADLAR right adjusts the
result: ADCL = 0xA3, ADCH = 0x03.

ATMEL

216

EE——————————————————————————————— A Tmega165P

21.9 Register Description

21.91 ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0
(0x7C) | reFs1 | REFSO | ADLAR MUX4 MUX3 MUX2 MUX1 Muxo | Abmux
Read/Write R/W R/W R/W R/IW R/W RIW R/IW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 21-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Table 21-3. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin

e Bit 5— ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see “ADCL and ADCH — ADC Data Register” on
page 220.

¢ Bits 4:0 — MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the ADC.
See Table 21-4 on page 218 for details. If these bits are changed during a conversion, the
change will not go in effect until this conversion is complete (ADIF in ADCSRA is set).

AImEl@ 217

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 21-4. Input Channel Selections

MUX4..0 Single Ended Input Positive Differential Input Negative Differential Input
00000 ADCO
00001 ADC1
00010 ADC2
00011 ADC3
00100 ADCA4
00101 ADC5
00110 ADC6
00111 ADC7

N/A
01000
01001
01010
01011
01100
01101
01110
01111
10000 ADCO ADC1
10001 ADCH1 ADC1
10010 N/A ADC2 ADCH1
10011 ADC3 ADC1
10100 ADC4 ADC1
10101 ADC5 ADCA1
10110 ADC6 ADC1
10111 ADC7 ADC1
11000 ADCO ADC2
11001 ADC1 ADC2
11010 ADC2 ADC2
11011 ADC3 ADC2
11100 ADC4 ADC2
11101 ADC5 ADC2
11110 1.1V (Vgg) N/A
11111 0V (GND)

AImEl@ 218

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.9.2 ADCSRA - ADC Control and Status Register A

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
(0x7A) | AbEN | ADscC | ADATE | ADIF ADIE ADPS2 | ADPS1 ADPSO | ADCSRA
Read/Write R/W R/IW R/W R/W RW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

e Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

e Bit 5 - ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

* Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

e Bit 3 — ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

e Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the
ADC.

AImEl@ 219

EE——————————————————————————————— A Tmega165P

2193 ADCL and ADCH - ADC Data Register

21.9.3.1 ADLAR =0

21.9.3.2 ADLAR =1

8019K-AVR-11/10

Table 21-5. ADC Prescaler Selections
ADPS2 ADPS1 ADPSO Division Factor
0 0 2
0 0 2
0 1 4
0 1 8
1 0 16
1 0 32
1 1 64
1 1 128
Bit 15 14 13 12 11 10 9 8
(0x79) - - - - - - ADC9 ADCS ADCH
(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH1 ADCO ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
ADC9 ADCS8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADCO - - - - - - ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers.When ADCL is
read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result is left
adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

e ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result’” on

page 215.

ATMEL

220

EE——————————————————————————————— A Tmega165P

2194 ADCSRB - ADC Control and Status Register B
Bit 7 6 5 4 3 2 1 0
(0x7B) - | ACME | - | - ADTS2 ADTS1 ADTS0 | ADCSRB
Read/Write R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
¢ Bit 7 — Res: Reserved Bit
This bit is reserved for future use. To ensure compatibility with future devices, this bit must be
written to zero when ADCSRB is written.
e Bit2:0 - ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion
will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a trig-
ger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.
Table 21-6. ADC Auto Trigger Source Selections
ADTS2 ADTS1 ADTSO Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request 0
0 1 1 Timer/Counter0 Compare Match
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event
21.9.5 DIDRO - Digital Input Disable Register 0
Bit 7 6 5 4 3 2 1 0
(0X7E) | Abc7p | ADceD | ADCsD | ADCaD | ADC3D | ADC2D | ADCID | ADCOD | DIDRo
Read/Write R/W RW RW RIW RW RW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit7:0 - ADC7D:ADCOD: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

8019K-AVR-11/10

221

ATMEL

EE——————————————————————————————— A Tmega165P

22. JTAG Interface and On-chip Debug System

22.0.1 Features

JTAG (IEEE std. 1149.1 Compliant) Interface
¢ Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:

— All Internal Peripheral Units

— Internal and External RAM

— The Internal Register File

— Program Counter

— EEPROM and Flash Memories
* Extensive On-chip Debug Support for Break Conditions, Including

— AVR Break Instruction

— Break on Change of Program Memory Flow

— Single Step Break

— Program Memory Break Points on Single Address or Address Range

— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
On-chip Debugging Supported by AVR Studio®

221 Overview

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

* Testing PCBs by using the JTAG Boundary-scan capability.

* Programming the non-volatile memories, Fuses and Lock bits.

* On-chip debugging.

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections “Program-
ming via the JTAG Interface” on page 284 and “IEEE 1149.1 (JTAG) Boundary-scan” on page

229, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 22-1 on page 224 shows a block diagram of the JTAG interface and the On-chip Debug
system. The TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP
Controller selects either the JTAG Instruction Register or one of several Data Registers as the
scan chain (Shift Register) between the TDI — input and TDO — output. The Instruction Register
holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

AImEl@ 222

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

22.2 TAP - Test Access Port

8019K-AVR-11/10

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port — TAP. These pins are:

* TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.

¢ TCK: Test Clock. JTAG operation is synchronous to TCK.

¢ TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

¢ TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not
provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the
TAP controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP
pins are internally pulled high and the JTAG is enabled for Boundary-scan and programming.
The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

AImEl@ 223

EE——————————————————————————————— A Tmega165P

— Analog inputs

Figure 22-1. Block Diagram
1/0 PORT 0 o o o
A
DEVICE BOUNDARY Y
r{ BOUNDARY SCAN CHAIN
m
DO < > - JTAG PROGRAMMING
=] TAP INTERFACE
TCK —F—»| ' CONTROLLER
™S > A
| v AVR CPU
INTERNAL
FLASH Address [<€— SCAN <€ PC
INSTRUCTION MEMORY Data [—» CHAIN)
REGISTER Instruction
|
D
REGISTER BREAKPOINT < >
M UNIT FLOW CONTROL[>
BYPASS
u A UNIT
X REGISTER DIGITAL
ANALOG
< PERPIEAL PERIPHERIAL
< UNITS
BREAKPOINT
SCAN CHAIN
JTAG/AVR CORE
A COMMUNICATION
OCD STATUS INTERFACE
>
AND CONTROL ”
|
A
Y
o o o
1/0 PORT n

8019K-AVR-11/10

ATMEL

- Control & Clock lines

224

EE——————————————————————————————— A Tmega165P

Figure 22-2. TAP Controller State Diagram

1 C; Test-Logic-Reset

0

0 C; Run-Test/Idle L Select-DR Scan L Select-IR Scan L
0 0
1 1
— Capture-DR — Capture-IR
0 0
b Shift-DR D 0 p Shift-IR D 0
1 1
A
. Exit1-DR L . Exit1-IR !
0 0
Pause-DR D 0 Pause-IR D 0
1 1
A v
0 Exit2-DR 0 Exit2-IR
1 1
Update-DR Update-IR <

J 1 0 1 0

22.3 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 22-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

* At the TMS input, apply the sequence 1, 1, 0, O at the rising edges of TCK to enter the Shift
Instruction Register — Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. While
the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the
TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and
TDO and controls the circuitry surrounding the selected Data Register.

AImEl@ 225

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

¢ Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.

¢ At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register — Shift-DR state. While in this state, upload the selected Data Register (selected by
the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising
edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during
input of all bits except the MSB. The MSB of the data is shifted in when this state is left by
setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

¢ Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibliography”
on page 228.

22.4 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section “IEEE 1149.1
(JTAG) Boundary-scan” on page 229.

22.5 Using the On-chip Debug System

As shown in Figure 22-1 on page 224, the hardware support for On-chip Debugging consists
mainly of:

* A scan chain on the interface between the internal AVR CPU and the internal peripheral units.
* Break Point unit.

¢ Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an 1/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

* 4 single Program Memory Break Points.

¢ 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

* 2 single Program Memory Break Points + 2 single Data Memory Break Points.

* 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

* 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break

Point”).
AImEl@ 226

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Specific JTAG
Instructions” on page 227.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000, Windows NT® and Windows XP®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

22.6 On-chip Debug Specific JTAG Instructions

22.6.1

22.6.2

22.6.3

22.6.4

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

PRIVATEO; 0x8

Private JTAG instruction for accessing On-chip debug system.

PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

PRIVATES; 0xB

Private JTAG instruction for accessing On-chip debug system.

22.7 Using the JTAG Programming Capabilities

8019K-AVR-11/10

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port. See “Register Description” on page 249.

AImEl@ 227

EE——————————————————————————————— A Tmega165P

22.8 Bibliography

The JTAG programming capability supports:
* Flash programming and verifying.

* EEPROM programming and verifying.

* Fuse programming and verifying.

* Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section “Programming via the JTAG Interface” on page 284.

For more information about general Boundary-scan, the following literature can be consulted:

* |[EEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

¢ Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992.

22.9 Register Description

22.9.1 OCDR - On-chip Debug Register

8019K-AVR-11/10

Bit 7 6 5 4 3 2 1 0
0x31 (0x51) | wsB/iDRD LsB | OCDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty — IDRD — is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard 1/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

AImEl@ 228

EE——————————————————————————————— A Tmega165P

23. IEEE 1149.1 (JTAG) Boundary-scan

23.1 Features

JTAG (IEEE std. 1149.1 compliant) Interface

* Boundary-scan Capabilities According to the JTAG Standard

* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
¢ Supports the Optional IDCODE Instruction

¢ Additional Public AVR_RESET Instruction to Reset the AVR

23.2 System Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal 1/0O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.

AImEl@ 229

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

23.3 Data Registers

23.31

23.3.2

23.3.2.1

23322

23.3.2.3

23.3.3

8019K-AVR-11/10

The Data Registers relevant for Boundary-scan operations are:

* Bypass Register.

 Device ldentification Register.

* Reset Register.

¢ Boundary-scan Chain.
Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

Device Identification Register

Figure 23-1 shows the structure of the Device Identification Register.

Figure 23-1. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 1 1 0
Device ID | Version Part Number Manufacturer ID 1 |
4 bits 16 bits 11 bits 1-bit

Version

Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

Part Number

The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmegal165P is listed in Table 25-6 on page 269.

Manufacturer ID

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 25-6 on page 269.

Reset Register

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to “Clock
Sources” on page 27) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 23-2 on page 231.

AImEl@ 230

EE——————————————————————————————— A Tmega165P

Figure 23-2. Reset Register

To
TDO

From Other Internal and
External Reset Sources

From ﬁ)—» Internal reset
—1ID Q

TDI

ClockDR - AVR_RESET
23.34 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital 1/0 pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See “Boundary-scan Chain” on page 232 for a complete description.

23.4 Boundary-scan Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction
is not implemented, but all outputs with tri-state capability can be set in high-impedant state by
using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

23.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
¢ Shift-DR: The Internal Scan Chain is shifted by the TCK input.
e Update-DR: Data from the scan chain is applied to output pins.

AImEl@ 231

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

23.4.2

23.4.3

23.4.4

23.4.5

IDCODE; 0x1

Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-Register
consists of a version number, a device number and the manufacturer code chosen by JEDEC.
This is the default instruction after power-up.

The active states are:

» Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.
* Shift-DR: The IDCODE scan chain is shifted by the TCK input.

SAMPLE_PRELOAD; 0x2

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

* Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
¢ Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

» Update-DR: Data from the Boundary-scan chain is applied to the output latches. However, the
output latches are not connected to the pins.

AVR_RESET; 0xC

BYPASS; OxF

The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

» Shift-DR: The Reset Register is shifted by the TCK input.

Mandatory JTAG instruction selecting the Bypass Register for Data Register.
The active states are:

¢ Capture-DR: Loads a logic “0” into the Bypass Register.
* Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

23.5 Boundary-scan Chain

23.5.1

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/0 pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connection.

Scanning the Digital Port Pins

8019K-AVR-11/10

Figure 23-3 on page 233 shows the Boundary-scan Cell for a bi-directional port pin with pull-up
function. The cell consists of a standard Boundary-scan cell for the Pull-up Enable — PUExn —
function, and a bi-directional pin cell that combines the three signals Output Control — OCxn,
Output Data — ODxn, and Input Data — IDxn, into only a two-stage Shift Register. The port and
pin indexes are not used in the following description.

AImEl@ 232

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

The Boundary-scan logic is not included in the figures in the datasheet. Figure 23-4 on page 234
shows a simple digital port pin as described in the section “I/O-Ports” on page 61. The Bound-
ary-scan details from Figure 23-3 replaces the dashed box in Figure 23-4 on page 234.

When no alternate port function is present, the Input Data — ID — corresponds to the PINxn Reg-
ister value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction — DD Register, and the Pull-up Enable — PUExn — cor-
responds to logic expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 23-4 on page 234
to make the scan chain read the actual pin value. For Analog function, there is a direct connec-
tion from the external pin to the analog circuit, and a scan chain is inserted on the interface
between the digital logic and the analog circuitry.

Figure 23-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

ShiftDR To Next Cell EXTEST Vce
A
Pullup Enable (PUE) 0
FF2 LD2 1 E E
0
D Q Q
1
— —]G
Output Control (OC)
FF1 LD1 0
0
D Q D Q 1
1
>—| — G
Output Data (OD)
<
X
0 FFO LDO 0 ~ 0 <
0 £
1 D Q D Q y - £
1 &
>—| — G
Input Data (ID)
From Last Cell ClockDR UpdateDR

AImEl@ 233

ATmegal65P

Figure 23-4. General Port Pin Schematic Diagram
See Boundary-scan Description for Details!

- T T~ |
| :} i PUExn b PUD
I —
| : Q D |g
I | Y
| REISET WD
| | OCxn
> e
| 3 | RDx
<
| | L @
| = | m
Pxn \I <
| | = 1 £
- ——— - - —_—_—- - — — — — — — —_ PORTXn
IDxn ODxn 5. d [m)
I
RESET ‘ - P
X
p————— SLEEP r RRx WRx
l/
SYNCHRONIZER
| —————— RPx
e —
| ’7 L g "> o] :
|______I ClKyo
PUD: PULLUP DISABLE WDx: WRITE DDRx
PUExn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OCxn: OQUTPUT CONTROL for pin Pxn WRXx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pin Pxn RPx: READ PORTx PIN
SLEEP: SLEEP CONTROL WPx: WRITE PINx REGISTER

CLKyo: 110 CLOCK

AI“]EL@ 234

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

23.5.2

23.5.3

Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 23-5 is
inserted both for the 5V reset signal; RSTT, and the 12V reset signal; RSTHV.

Figure 23-5. Observe-only Cell

To
Next
ShiftDR Cell
From System Pin 4 (I > To System Logic
FF1
D Q

From ClockDR
Previous
Cell

Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscilla-
tor, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and
Ceramic Resonator.

Figure 23-6 shows how each Oscillator with external connection is supported in the scan chain.
The Enable signal is supported with a general Boundary-scan cell, while the Oscillator/clock out-
put is attached to an observe-only cell. In addition to the main clock, the timer Oscillator is
scanned in the same way. The output from the internal RC Oscillator is not scanned, as this
Oscillator does not have external connections.

Figure 23-6. Boundary-scan Cells for Oscillators and Clock Options
XTAL1/TOSC1 XTAL2/TOSC2

ShiftDR

From Digital Logic

Next
Cell

EXTEST

T

From ClockDR
Previous
Cell

8019K-AVR-11/10

UpdateDR

ATMEL

Oscillator
ShiftDR

To
Next
Cell

1

ENABLE OUTPUT

FF1

J To System Logic

7

From ClockDR
Previous
Cell

235

EE——————————————————————————————— A Tmega165P

Table 23-1 summaries the scan registers for the external clock pin XTAL1, oscillators with
XTAL1/XTAL2 connections as well as 32 kHz Timer Oscillator.

Table 23-1. Scan Signals for the Oscillator"®©)
Scanned Scanned Clock Line
Enable Signal Clock Line Clock Option when not Used
EXTCLKEN EXTCLK (XTALT) External Clock 0
E I I
OSCON 0SCCK xterna Crysta_ 1
External Ceramic Resonator
OSC32EN 0OSC32CK Low Freq. External Crystal 1

Notes: 1. Do not enable more than one clock source as main clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between
the internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is
preferred.

3. The clock configuration is programmed by fuses. As a fuse is not changed run-time, the clock
configuration is considered fixed for a given application. The user is advised to scan the same
clock option as to be used in the final system. The enable signals are supported in the scan
chain because the system logic can disable clock options in sleep modes, thereby disconnect-
ing the Oscillator pins from the scan path if not provided.

23.54 Scanning the Analog Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 23-7. The
Boundary-scan cell from Figure 23-8 on page 237 is attached to each of these signals. The sig-
nals are described in Table 23-2 on page 237.

The Comparator need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

Figure 23-7. Analog Comparator

ACME—

ADCEN —q

BANDGAP P
REFERENCE vce
ACBG
ACD —»
AINO ,
ACO
AIN1 —%-—4.
AC_IDLE
ADC MULTIPLEXER
OUTPUT kg
P
AllllEl. 236
Y)

8019K-AVR-11/10

8019K-AVR-11/10

ATmegal65P

Figure 23-8. General Boundary-scan cell Used for Signals for Comparator and ADC

To
Next
ShiftDR Cell EXTEST
I A
From Digital Logic/ * 0
From Analog Ciruitry To Analog Circuitry/
1 To Digital Logic
0
D Q Q
1
— G
A
From ClockDR UpdateDR
Previous
Cell
Table 23-2. Boundary-scan Signals for the Analog Comparator
Direction as Recommended Output Values when
Signal Seen from the Input when Not Recommended Inputs
Name Comparator Description in Use are Used
Turns off Analog
AC_IDLE input Comparator when 1 Depends upon LC code
true being executed

Will become input

Analog Comparator to uC code being

ACO output

enable

Output executed
Uses output signal Depends upon LC code
ACME input from ADC mux when | O P pon H
being executed
true
ACBG input Bandgap Reference 0 Depends upon uC code

being executed

ATMEL

237

EE——————————————————————————————— A Tmega165P

23.5.5 Scanning the ADC

Figure 23-9 shows a block diagram of the ADC with all relevant control and observe signals. The
Boundary-scan cell from Figure 23-5 on page 235 is attached to each of these signals. The ADC
need not be used for pure connectivity testing, since all analog inputs are shared with a digital
port pin as well.

Figure 23-9. Analog to Digital Converter

r

VCCREN), N

AREF

IREFEN,

» To Comparator

MUXEN_7

PASSEN

ADC_7) j
MUXEN_6
abc e, Y
MUXEN_5

ADC?SZ PN

MUXEN_4 soTEST ADCBGEN
ADC_4 e ’j
EXTCH 3 PRECH PRECH e

MUXEN_3 rer
Abc 3,V

MUXEN_2 | DACOUT,
ADC_2 :j/ DAC_9..0

MUXEN 1 , : 101 DAC . >%COMP
ADC 1: s - |-

MUXEN_0 ADCEN L
abc o, h ACTEN > '

NEGSEL 2 1x L

oz ,HOLD -
NEGSEL_1
:DJCJ y GNDEN
sT —

The signals are described briefly in Table 23-3 on page 239.

AImEl@ 238

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-3. Boundary-scan Signals for the ADC")
Direction Recommen- Output Values when
as Seen ded Input Recommended Inputs

Signal from the when not in are Used, and CPU is

Name ADC Description Use not Using the ADC

COMP Output Comparator Output 0 0
Clock signal to
differential amplifier

ACLK Input implemented as Switch- 0 0
cap filters
Enable path from

ACTEN Input differential amplifier to 0 0
the comparator
Enable Band-gap

ADCBGEN Input reference as negative 0 0
input to comparator
Power-on signal to the

ADCEN Input ADC 0 0
Power-on signal to the

AMPEN Input differential amplifier 0 0
Bit 9 of digital value to

DAC_9 Input DAC 1 1
Bit 8 of digital value to

DAC_8 Input DAC 0 0
Bit 7 of digital value to

DAC_7 Input DAC 0 0
Bit 6 of digital value to

DAC_6 Input DAC 0 0
Bit 5 of digital value to

DAC_5 Input DAC 0 0
Bit 4 of digital value to

DAC_4 Input DAC 0 0
Bit 3 of digital value to

DAC_3 Input DAC 0 0
Bit 2 of digital value to

DAC_2 Input DAC 0 0
Bit 1 of digital value to

DAC_1 Input DAC 0 0
Bit O of digital value to

DAC_0 Input DAC 0 0
Connect ADC channels 0

EXTCH Input - 3 1o by-pass path 1 1

P around differential

amplifier
Ground the negative

GNDEN Input input to comparator when 0 0
true

AImEl@ 239

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-3. Boundary-scan Signals for the ADC!") (Continued)

Direction Recommen- Output Values when

as Seen ded Input Recommended Inputs
Signal from the when not in are Used, and CPU is
Name ADC Description Use not Using the ADC

Sample & Hold signal.
Sample analog signal
when low. Hold signal
HOLD Input when high. If differential 1 1
amplifier is used, this
signal must go active
when ACLK is high

Enables Band-gap

IREFEN Input reference as AREF 0 0
signal to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0
MUXEN_1 Input Input Mux bit 1 0 0
MUXEN_O Input Input Mux bit 0 1 1
Input Mux for negative
NEGSEL_2 Input input for differential 0 0
signal, bit 2
Input Mux for negative
NEGSEL_1 Input input for differential 0 0
signal, bit 1
Input Mux for negative
NEGSEL_0 Input input for differential 0 0
signal, bit 0
Enable pass-gate of
PASSEN Input differential amplifier 1 1
PRECH Input Precharge outpu.t latch of 1 1
comparator. (Active low)
Switch-cap TEST enable.
SCTEST Input Outp.u.t frgm differential 0 0
amplifier is sent out to
Port Pin having ADC_4
Output of differential
amplifier will settle faster
ST Input if this signal is high first 0 0
two ACLK periods after
AMPEN goes high
VCCREN Input Selects Vcc as the ACC 0 0

reference voltage

AImEl@ 240

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Note: 1. Incorrect setting of the switches in Figure 23-9 on page 238 will make signal contention and
may damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in Figure 23-9 on page 238. Make sure only one path is
selected from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 23-3 on
page 239 should be used. The user is recommended not to use the Differential Amplifier during
scan. Switch-Cap based differential amplifier requires fast operation and accurate timing which
is difficult to obtain when used in a scan chain. Details concerning operations of the differential
amplifier is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 23-9 on page 238 with a succes-
sive approximation algorithm implemented in the digital logic. When used in Boundary-scan, the
problem is usually to ensure that an applied analog voltage is measured within some limits. This
can easily be done without running a successive approximation algorithm: apply the lower limit
on the digital DAC[9:0] lines, make sure the output from the comparator is low, then apply the
upper limit on the digital DAC[9:0] lines, and verify the output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with
a digital port pin as well.

When using the ADC, remember the following:

* The port pin for the ADC channel in use must be configured to be an input with pull-up disabled
to avoid signal contention.

* In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed when
enabling the ADC. The user is advised to wait at least 200 ns after enabling the ADC before
controlling/observing any ADC signal, or perform a dummy conversion before using the first
result.

* The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low
(Sample mode).

As an example, consider the task of verifying a 1.5V +5% input signal at ADC channel 3 when
the power supply is 5.0V and AREF is externally connected to V.

The lower limit is: [1024 - 1.5V -0,95/5V] = 291 = 0x123
The upper limitis: [1024 - 1.5V -1.05/5V | = 323 = 0x143

The recommended values from Table 23-3 on page 239 are used unless other values are given
in the algorithm in Table 23-4 on page 242. Only the DAC and port pin values of the Scan Chain
are shown. The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done on the
data scanned out when scanning in the data on the same row in the table.

AImEl@ 241

EE——————————————————————————————— A Tmega165P

Table 23-4. Algorithm for Using the ADC

PA3.
PA3. PA3. Pull-up_
Step Actions ADCEN DAC MUXEN HOLD PRECH Data Control Enable
SAMPLE_P
1 RELOAD 1 0x200 0x08 1 1 0 0 0
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
5 1 0x123 0x08 1 0 0 0 0
Verify the
6 COMP bit 1 0x200 | 008 1 1 0 0 0
scanned out
tobe 0
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
Verify the
19 | COMPbit 1 0x200 | 008 1 1 0 0 0
scanned out
to be 1

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock fre-
quency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at
least five times the number of scan bits divided by the maximum hold time, t;,4 max

23.6 ATmega165P Boundary-scan Order

Table 23-5 shows the Scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The
scan order follows the pin-out order as far as possible. Therefore, the bits of Port A is scanned in
the opposite bit order of the other ports. Exceptions from the rules are the Scan chains for the
analog circuits, which constitute the most significant bits of the scan chain regardless of which
physical pin they are connected to. In Figure 23-3 on page 233, PXn. Data corresponds to FFO,
PXn. Control corresponds to FF1, and PXn. Pull-up_enable corresponds to FF2. Bit 4, bit 5, bit
6, and bit 7 of Port F is not in the scan chain, since these pins constitute the TAP pins when the
JTAG is enabled.

Table 23-5. ATmega165P Boundary-scan Order

Bit Number Signal Name Module
197 AC_IDLE
196 ACO

Comparator
195 ACME
194 AINBG

AImEl@ 242

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Table 23-5. ATmegal165P Boundary-scan Order
Bit Number Signal Name Module
193 COMP
192 ACLK
191 ACTEN
190 PRIVATE_SIGNAL1("

189 ADCBGEN
188 ADCEN
187 AMPEN
186 DAC_9

185 DAC_8

184 DAC_7

183 DAC_6

182 DAC_5

181 DAC_4 ADC
180 DAC_3

179 DAC_2

178 DAC_1

177 DAC_0

176 EXTCH
175 GNDEN
174 HOLD

173 IREFEN
172 MUXEN_7
171 MUXEN_6
170 MUXEN_5
169 MUXEN_4
168 MUXEN_3
167 MUXEN_2
166 MUXEN_1
165 MUXEN_0
164 NEGSEL_2
163 NEGSEL_1 ADC
162 NEGSEL_O
161 PASSEN
160 PRECH
159 ST

158 VCCREN

ATMEL

243

EE——————————————————————————————— A Tmega165P

Table 23-5. ATmegal165P Boundary-scan Order

Bit Number Signal Name Module
157 PEO.Data
156 PEO.Control
155 PEO.Pull-up_Enable
154 PE1.Data
153 PE1.Control
152 PE1.Pull-up_Enable
151 PE2.Data
150 PE2.Control
149 PE2.Pull-up_Enable
148 PE3.Data
147 PE3.Control
146 PES3.Pull-up_Enable
Port E
145 PE4.Data
144 PE4.Control
143 PE4.Pull-up_Enable
142 PE5.Data
141 PE5.Control
140 PES5.Pull-up_Enable
139 PE6.Data
138 PES6.Control
137 PE6.Pull-up_Enable
136 PE7.Data
135 PE7.Control
134 PE7.Pull-up_Enable
133 PBO.Data Port B

AImEl@ 244

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-5. ATmegal165P Boundary-scan Order

Bit Number Signal Name Module
132 PBO0.Control
131 PBO.Pull-up_Enable
130 PB1.Data
129 PB1.Control
128 PB1.Pull-up_Enable
127 PB2.Data
126 PB2.Control
125 PB2.Pull-up_Enable
124 PB3.Data
123 PB3.Control
122 PB3.Pull-up_Enable
121 PB4.Data Port B
120 PB4.Control
119 PB4.Pull-up_Enable
118 PB5.Data
117 PB5.Control
116 PB5.Pull-up_Enable
115 PB6.Data
114 PB6.Control
113 PB6.Pull-up_Enable
112 PB7.Data
111 PB7.Control
110 PB7.Pull-up_Enable
109 PG3.Data
108 PG3.Control
107 PG3.Pull-up_Enable
Port G
106 PG4.Data
105 PG4.Control
104 PG4.Pull-up_Enable
103 PG5 (Observe Only)
102 RSTT Reset Logic
101 RSTHV (Observe-only)
100 EXTCLKEN
99 OSCON
98 RCOSCEN Enable signals for main Clock/Oscillators
97 OSC32EN

AI“IE'.@ 245

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-5. ATmegal165P Boundary-scan Order

Bit Number Signal Name Module
96 EXTCLK (XTALT)
95 OSCCK Clock input and Oscillators for the main clock
94 RCCK (Observe-only)
93 0OSC32CK
92 PDO0.Data
91 PDO0.Control
90 PDO.Pull-up_Enable
89 PD1.Data
88 PD1.Control
87 PD1.Pull-up_Enable
86 PD2.Data
85 PD2.Control
84 PD2.Pull-up_Enable
83 PD3.Data
82 PD3.Control
81 PD3.Pull-up_Enable
Port D
80 PD4.Data
79 PD4.Control
78 PD4.Pull-up_Enable
77 PD5.Data
76 PD5.Control
75 PD5.Pull-up_Enable
74 PD6.Data
73 PD6.Control
72 PD6.Pull-up_Enable
71 PD7.Data
70 PD7.Control
69 PD7.Pull-up_Enable
68 PGO0.Data
67 PGO0.Control
66 PGO.Pull-up_Enable
65 PG1.Data Port @
64 PG1.Control
63 PG1.Pull-up_Enable
62 PCO0.Data
61 PCO0.Control Port C

AImEl@ 246

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-5. ATmegal165P Boundary-scan Order

Bit Number Signal Name Module
60 PCO.Pull-up_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pull-up_Enable

56 PC2.Data

55 PC2.Control

54 PC2.Pull-up_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pull-up_Enable

50 PC4.Data

49 PC4.Control Port G
48 PC4.Pull-up_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pull-up_Enable

44 PC6.Data

43 PCé6.Control

42 PC6.Pull-up_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pull-up_Enable

38 PG2.Data

37 PG2.Control Port G
36 PG2.Pull-up_Enable

35 PA7.Data

34 PA7.Control

33 PA7.Pull-up_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pull-up_Enable Port A
29 PA5.Data

28 PA5.Control

27 PA5.Pull-up_Enable

26 PA4.Data

25 PA4.Control

AImEl@ 247

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 23-5. ATmegal165P Boundary-scan Order

Bit Number Signal Name Module
24 PA4.Pull-up_Enable
23 PA3.Data
22 PA3.Control
21 PAS3.Pull-up_Enable
20 PA2.Data
19 PA2.Control
18 PA2.Pull-up_Enable Port A
17 PA1.Data
16 PA1.Control
15 PA1.Pull-up_Enable
14 PAQ.Data
13 PAOQ.Control
12 PAO.Pull-up_Enable
11 PF3.Data
10 PF3.Control
9 PF3.Pull-up_Enable
8 PF2.Data
7 PF2.Control
6 PF2.Pull-up_Enable
Port F
5 PF1.Data
4 PF1.Control
3 PF1.Pull-up_Enable
2 PFO0.Data
1 PFO0.Control
0 PFO.Pull-up_Enable

Note: 1. PRIVATE_SIGNAL1 should always be scanned in as zero.
23.7 Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. A BSDL file for ATmega165P
is available.

AImEl@ 248

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

23.8 Register Description
23.8.1 MCUCR - MCU Control Register

The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0

0x35 (0X55) | oo | - | - | PUD | | - | IVSEL IVCE | McucR
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value. Note
that this bit must not be altered when using the On-chip Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to
one. The reason for this is to avoid static current at the TDO pin in the JTAG interface.

23.8.2 MCUSR - MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) | = | = | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

* Bit 4 — JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

AImEl@ 249

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

24. Boot Loader Support — Read-While-Write Self-Programming

24.1 Features

¢ Read-While-Write Self-Programming

* Flexible Boot Memory Size

* High Security (Separate Boot Lock Bits for a Flexible Protection)
¢ Separate Fuse to Select Reset Vector

* Optimized Page!” Size

¢ Code Efficient Algorithm

¢ Efficient Read-Modify-Write Support

Note: 1. Apage is a section in the Flash consisting of several bytes (see Table 25-7 on page 269) used
during programming. The page organization does not affect normal operation.

24.2 Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.

24.3 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 24-2 on page 253). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 24-6 on page 262 and Figure 24-2 on page 253. These
two sections can have different level of protection since they have different sets of Lock bits.

24.31 Application Section

The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 24-2 on page 254. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

24.3.2 BLS - Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 24-3 on page 254.

AImEl@ 250

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

24.4 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 24-
7 on page 263 and Figure 24-2 on page 253. The main difference between the two sections is:

* When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

* When erasing or writing a page located inside the NRWW section, the CPU is halted during the
entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

24.41 RWW - Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (that is, by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section Busy
bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will be read
as logical one as long as the RWW section is blocked for reading. After a programming is com-
pleted, the RWWSB must be cleared by software before reading code located in the RWW
section. See “SPMCSR - Store Program Memory Control and Status Register” on page 264 for
details on how to clear RWWSB.

24.4.2 NRWW - No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 24-1. Read-While-Write Features
Which Section does the Z-pointer Which Section Can be Is the Read-While-Write
Address During the Programming? Read During Programming? CPU halted? Supported?
RWW Section NRWW Section No Yes
NRWW Section None Yes No

8019K-AVR-11/10

AImEl@ 251

EE——————————————————————————————— A Tmega165P

Figure 24-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

- - - - - - — - Z-pointer
Addresses NRWW
Z-pointer Section
Addresses RWW No Read-While-Write
Section (NRWW) Section
CPU is Halted
f During the Operation
Code Located in
NRWW Section

Can be Read During
the Operation

AI“]EL@ 252

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 24-2. Memory Sections

Program Memory

BOOTSZ ="'11'
c
S
©
jo3
»
%, Application Flash Section
=
°
<
5
o
©
jo
i
C /
e — — — - — —
2=
Jod
»n
£ Application Flash Section
=
k)
z
2
§ Boot Loader Flash Section
o L—
o
=
Program Memory
BOOTSZ ='01'
c
k<]
©
Jod
»n
-'05’ Application Flash Section
2
2
<
3
el
©
Q
o
C /
s - - - - - -
2 =
Jod
ﬁ Application Flash Section
=
2
<=
3. Boot Loader Flash Section
K
jo
o L—
o
z
Note: 1.

8019K-AVR-11/10

0x0000

End RWW
Start NRWW

End Application
Start Boot Loader
Flashend

0x0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

ATMEL

Read-While-Write Section

No Read-While-Write Section

Read-While-Write Section

No Read-While-Write Section

Program Memory
BOOTSZ ='10'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ ='00'

Application Flash Section

Boot Loader Flash Section

0x0000

End RWW
Start NRWW

End Application
Start Boot Loader

Flashend

0x0000

End RWW, End Application

| Start NRWW, Start Boot Loader

Flashend

The parameters in the figure above are given in Table 24-6 on page 262.

253

EE——————————————————————————————— A Tmega165P

24.5 Boot Loader Lock Bits

8019K-AVR-11/10

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

* To protect the entire Flash from a software update by the MCU.

* To protect only the Boot Loader Flash section from a software update by the MCU.
¢ To protect only the Application Flash section from a software update by the MCU.
* Allow software update in the entire Flash.

See Table 24-2 and Table 24-3 for further details. The Boot Lock bits and general Lock bits can
be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-
gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Table 24-2. Boot Lock Bit0 Protection Modes (Application Section)"
BLBO Mode BLBO02 BLBO1 | Protection

No restrictions for SPM or LPM accessing the Application

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read

3 0 0 from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 24-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)"
BLB1 Mode BLB12 BLB11 | Protection

No restrictions for SPM or LPM accessing the Boot Loader
section.

1 1 1

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read

3 0 0 from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed

AImEl@ 254

EE——————————————————————————————— A Tmega165P

24.6 Entering the Boot Loader Program

8019K-AVR-11/10

Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Table 24-4. Boot Reset Fuse(!)
BOOTRST Reset Address
1 Reset Vector = Application Reset (address 0x0000)
0 Reset Vector = Boot Loader Reset (see Table 24-6 on page 262)

Note: 1. “1” means unprogrammed, “0” means programmed.

AImEl@ 255

EE——————————————————————————————— A Tmega165P

24.7 Addressing the Flash During Self-Programming

8019K-AVR-11/10

The Z-pointer is used to address the SPM commands.

Bit 15 14 13 12 11 10 9 8
ZH (R31) Z15 Z14 Z13 Z12 Z1 Z10 Z9 4:)
ZL (R30) z7 Z6 z5 zZ4 Z3 z2 z1 Z0

7 6 5 4 3 2 1 0

Since the Flash is organized in pages (see Table 25-7 on page 269), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 24-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses the
Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Figure 24-3. Addressing the Flash During SPM™

BIT 15 ZPCMSB ZPAGEMSB 1 0
Z-REGISTER | 0|
PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSBI0]:
PAGE S INSTRUCTION WORD 00
k 01
\
! 02
\
< \

Note:

1.

PAGEEND

The different variables used in Figure 24-3 are listed in Table 24-8 on page 263.
2. PCPAGE and PCWORD are listed in Table 25-7 on page 269.

ATMEL

256

EE——————————————————————————————— A Tmega165P

24.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

* Fill temporary page buffer

¢ Perform a Page Erase

* Perform a Page Write

Alternative 2, fill the buffer after Page Erase

* Perform a Page Erase
* Fill temporary page buffer
* Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same
page. See “Boot Loader: Simple Assembly Code Example” on page 261 for an assembly code
example.

24.8.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR(). The data in R1 and RO is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

* Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
* Page Erase to the NRWW section: The CPU is halted during the operation.

Note: 1. If an interrupt occurs in the timed sequence the four cycle access cannot be guaranteed. In
order to ensure atomic operation you must disable interrupes before writing to SPMCSR.

24.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

AImEl@ 257

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

24.8.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR("), the data in R1 and RO is ignored.
The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

* Page Write to the RWW section: The NRWW section can be read during the Page Write.
* Page Write to the NRWW section: The CPU is halted during the operation.

Note: 1. If aninterrupt occurs in the timed seqence the four cycle access cannot be guaranteed. In
order to ensure atomic operation disable interrupts before writing to SPMCSR.

24.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in “Interrupts” on page 52.

24.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

24.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in “Interrupts” on page 52, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See “Boot Loader: Simple Assembly Code Example” on
page 261 for an example.

24.8.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits and general Lock bits, write the desired data to RO, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

Bit 7 6 5 4 3 2 1 0
RO | 1 | 1 | BLB12 | BLB11 | BLB02 | BLBO1 | LB2 | LB1 |

See Table 24-2 on page 254 and Table 24-3 on page 254 for how the different settings of the
Boot Loader bits affect the Flash access.

If bits 5..0 in RO are cleared (zero), the corresponding Lock bit will be programmed if an SPM
instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR. The Z-
pointer is don’t care during this operation, but for future compatibility it is recommended to load
the Z-pointer with 0x0001 (same as used for reading the Lock bits). For future compatibility it is
also recommended to set bit 7 and bit 6 in RO to “1” when writing the Lock bits. When program-
ming the Lock bits the entire Flash can be read during the operation.

AImEl@ 258

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

24.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEWE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

24.8.9 Reading the Fuse and Lock Bits from Software

8019K-AVR-11/10

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruc-
tion is executed within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCSR,
the value of the Lock bits will be loaded in the destination register. The BLBSET and SPMEN
bits will auto-clear upon completion of reading the Lock bits or if no LPM instruction is executed
within three CPU cycles or no SPM instruction is executed within four CPU cycles. When BLB-
SET and SPMEN are cleared, LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0
Rd | - | - | BLB12 | BLB11 | BLB02 | BLBO1 | LB2 | LB1 |

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to Table 25-5 on page 268 for a
detailed description and mapping of the Fuse Low byte.

Bit 7 6 5 4 3 2 1 0
Rd | FLB7 | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FLB1 | FLBO |

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to Table 25-4 on page 268 for detailed description and mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0
Rd | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.
Refer to Table 25-3 on page 267 for detailed description and mapping of the Extended Fuse
byte.

Bit 7 6 5 4 3 2 1 0

Rd | - | - | - | - | EFB3 | EFB2 | EFB1 | EFB0 |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

AImEl@ 259

EE——————————————————————————————— A Tmega165P

24.8.10 Preventing Flash Corruption

During periods of low V¢, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Ifthere is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low V¢ reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low V. This will pre-

vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

24.8.11 Programming Time for Flash when Using SPM

8019K-AVR-11/10

The calibrated RC Oscillator is used to time Flash accesses. Table 24-5 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 24-5. SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and

write Lock bits by SPM) 3.7.ms 4.5ms

Note: 1. Minimum and maximum programming times is per individual operation.

AImEl@ 260

EE——————————————————————————————— A Tmega165P

24.8.12 Boot Loader: Simple Assembly Code Example

;-the routine writes one page of data from RAM to Flash

; the first data location in RAM is pointed to by the Y pointer

; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included

;—the routine must be placed inside the Boot space

; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),

; loophi (r25), spmcrval (r20)

storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size

;-It is assumed that either the interrupt table is moved to the Boot
loader section or that the interrupts are disabled.

7

’

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.0org SMALLBOOTSTART
Write_page:

; Page Erase

1di spmcrval, (1<<PGERS) | (1<<SPMEN)

call Do_spm
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)

call Do_spm

adiw ZH:2L, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write

subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcrval, (1<<PGWRT) | (l<<SPMEN)

call Do_spm
; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

; read back and check, optional

1di looplo, low(PAGESIZEB) ;init loop variable
1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high (PAGESIZEB)
Rdloop:

lpm r0, Z+
1d rl, Y+
cpse r0, ril
jmp Error

AImEl@ 261

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

sbiw loophi:looplo,

brne Rdloop

; return to RWW section

1

;use subi for PAGESIZEB<=256

; verify that RWW section is safe to read

Return:
in templ, SPMCSR
sbrs templ, RWWSB

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

call Do_spm

rjmp Return
Do_spm:

; check for previous SPM complete
Wait_spm:

in templ, SPMCSR

sbrc templ, SPMEN

ret

7

If RWWSB is set,

; re-enable the RWW section

rjmp Wait_spm

; input:

; disable interrupts if enabled,

in temp2,
cli

SREG

spmcrval determines SPM action
store status

; check that no EEPROM write access is present
Wait_ee:

sbic EECR, EEWE

rjmp Wait_ee

; SPM timed sequence
spmcrval

out SPMCSR,
spm

; restore SREG
out SREG,

ret

(to enable interrupts if originally enabled)

temp2

24.8.13 ATmega165P Boot Loader Parameters

the RWW section is not ready yet

In Table 24-6 through Table 24-8 on page 263, the parameters used in the description of the
Self-Programming are given.

Table 24-6. Boot Size Configuration")
Boot Reset
ﬁ ﬁ 2 Address
= = “”_ @ Boot Loader End (Start Boot
8 8 8 | Application Flash Flash Application Loader
o o o o | Section Section Section Section)
128
1 1 2 0x0000 - Ox1F7F 0x1F80 - Ox1FFF Ox1F7F 0x1F80
words
256
1 0 words 4 0x0000 - Ox1EFF 0x1F00 - Ox1FFF Ox1EFF 0x1F00
0 1 mi;35 8 0x0000 - Ox1DFF 0x1EQO0 - Ox1FFF 0x1DFF 0x1E00
1024
0 0 words 16 0x0000 - Ox1BFF 0x1CO00 - Ox1FFF Ox1BFF 0x1C00

Note:

1. The different BOOTSZ Fuse configurations are shown in Figure 24-2 on page 253.

8019K-AVR-11/10

ATMEL

262

EE——————————————————————————————— A Tmega165P

Table 24-7. Read-While-Write Limit("

Section Pages Address
Read-While-Write section (RWW) 112 0x0000 - Ox1BFF
No Read-While-Write section (NRWW) 16 0x1CO00 - Ox1FFF

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on page
251 and “RWW — Read-While-Write Section” on page 251.

Table 24-8. Explanation of different variables used in Figure 24-3 on page 256 and the map-
ping to the Z-pointer("

Corresponding

Variable Z-value Description

Most significant bit in the Program Counter. (The
PCMSB 12 Program Counter is 13 bits PC[12:0])

Most significant bit which is used to address the words
PAGEMSB 5 within one page (64 words in a page requires six bits PC

[5:0)).

Bit in Z-register that is mapped to PCMSB. Because Z0
ZPCMSB Z13 is not used, the ZPCMSB equals PCMSB + 1.

Bit in Z-register that is mapped to PAGEMSB. Because
ZPAGEMSB Z6 Z0 is not used, the ZPAGEMSB equals PAGEMSB + 1.
PCPAGE PC[12:6] 713:77 Program Counter page address: Page select, for Page

Erase and Page Write

Program Counter word address: Word select, for filling
PCWORD PCI[5:0] 26:Z1 temporary buffer (must be zero during Page Write

operation)

Note: 1. Z15:Z14: always ignored.
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 256 for details about the use of
Z-pointer during Self-Programming.

AImEl@ 263

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

24.9 Register Description
24.91 SPMCSR - Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

Bit 7 6 5 4 3 2 1 0
0x37 (0x57) | SPMIE | RWWSB | - RWWSRE BLBSET | PGWRT PGERS SPMEN | SPMCSR
Read/Write R/W R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

¢ Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

* Bit 5 — Res: Reserved Bit
This bit is a reserved bit in the ATmega165P and always read as zero.

¢ Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

e Bit 3 — BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits and general Lock bits, according to the data in RO. The data in R1 and
the address in the Z-pointer are ignored. The BLBSET bit will automatically be cleared upon
completion of the Lock bit set, or if no SPM instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR Reg-
ister, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See “Reading the Fuse and Lock Bits from Software” on page 259 for
details.

AImEl@ 264

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

e Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and RO are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

* Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and RO are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

* Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

AImEl@ 265

EE——————————————————————————————— A Tmega165P

25. Memory Programming

25.1 Program And Data Memory Lock Bits

The ATmega165P provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 25-2. The Lock bits can only be
erased to “1” with the Chip Erase command.

Table 25-1. Lock Bit Byte("

Lock Bit Byte Bit No Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)
BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLBO1 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed.

Table 25-2. Lock Bit Protection Modes"®

Memory Lock Bits Protection Type
LB Mode LB2 LB1
1 1 1 No memory lock features enabled.

Further programming of the Flash and EEPROM is disabled in
2 1 0 Parallel and Serial Programming mode. The Fuse bits are
locked in both Serial and Parallel Programming mode.(")

Further programming and verification of the Flash and EEPROM
is disabled in Parallel and Serial Programming mode. The Boot
Lock bits and Fuse bits are locked in both Serial and Parallel
Programming mode. ("

BLBO Mode BLB02 | BLBO1

No restrictions for SPM or LPM accessing the Application

1 1 1 .
section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM
executing from the Boot Loader section is not allowed to read

3 0 0 from the Application section. If Interrupt Vectors are placed in
the Boot Loader section, interrupts are disabled while executing
from the Application section.

LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

AImEl@ 266

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 25-2. Lock Bit Protection Modes"® (Continued)

Memory Lock Bits

Protection Type

BLB1 Mode

BLB12

BLB11

1

1

No restrictions for SPM or LPM accessing the Boot Loader
section.

1

0

SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read
from the Boot Loader section. If Interrupt Vectors are placed in
the Application section, interrupts are disabled while executing
from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed.

25.2 Fuse Bits

The ATmega165P has three Fuse bytes. Table 25-3 to Table 25-5 on page 268 describe briefly
the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that the
fuses are read as logical zero, “0”, if they are programmed.

Table 25-3. Extended Fuse Byte

Fuse Low Byte Bit No | Description Default Value

- 7 - 1

- 6 | - 1

- 5 |- 1

- 4 - 1

BODLEVEL2(" 3 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVEL1(" 2 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVELO" 1 Brown-out Detector trigger level 1 (unprogrammed)
RSTDISBL® 0 External Reset Disable 1 (unprogrammed)

Notes: 1. See Table 26-5 on page 302 for BODLEVEL Fuse decoding.
2. Port G, PG5 is input only. Pull-up is always on. See “Alternate Functions of Port G” on page

77.

8019K-AVR-11/10

AImEl@ 267

EE——————————————————————————————— A Tmega165P

Table 25-4. Fuse High Byte
Fuse High Byte Bit No | Description Default Value
OCDEN® 7 Enable OCD 1 (unprogrammed, OCD disabled)
JTAGEN® 6 Enable JTAG 0 (programmed, JTAG enabled)
) Enable Serial Program and Data 0 (programmed, SPI prog.
SPIEN 5 :
Downloading enabled)
WDTON®) 4 Watchdog Timer always on 1 (unprogrammed)
EEPROM memory is preserved 1 (unprogrammed, EEPROM not
EESAVE 3 .
through the Chip Erase preserved)
Select Boot Size (see Table 24-6 @
BOOTSZ1 2 on page 262 for details) 0 (programmed)
Select Boot Size (see Table 24-6 @
BOOTSZ0 1 on page 262 for details) 0 (programmed)
BOOTRST 0 Select Reset Vector 1 (unprogrammed)
Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 24-6 on page 262
for details.

3. See “WDTCR — Watchdog Timer Control Register” on page 50 for details.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits
and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This
to avoid static current at the TDO pin in the JTAG interface.

Table 25-5. Fuse Low Byte
Fuse Low Byte Bit No | Description Default Value
CKDIV8® 7 Divide clock by 8 0 (programmed)
CkouT® 6 Clock output 1 (unprogrammed)
SUTH1 5 Select start-up time 1 (unprogrammed)")
SUTO 4 Select start-up time 0 (programmed)"
CKSEL3 3 Select Clock source 0 (programmed)®
CKSEL2 2 Select Clock source 0 (programmed)®
CKSELA1 1 Select Clock source 1 (unprogrammed)®
CKSELO 0 Select Clock source 0 (programmed)®

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.

2.

3.

4.

See Table 26-4 on page 302 for details.

The default setting of CKSELS..0 results in internal RC Oscillator @ 8 MHz. See Table 7-9 on
page 31 for details.

The CKOUT Fuse allow the system clock to be output on PORTE7?. See “Clock Output Buffer”
on page 33 for details.

See “System Clock Prescaler” on page 33 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

8019K-AVR-11/10

268

ATMEL

EE——————————————————————————————— A Tmega165P

25.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

25.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space. The signature bytes are given in Table 25-6.

Table 25-6. Device and JTAG ID
Signature Bytes Address JTAG
Part 0x000 0x001 0x002 Part Number Manufacture ID
ATmega165P Ox1E 0x94 0x07 9407 Ox1F

25.4 Calibration Byte

The ATmega165P has a byte calibration value for the internal RC Oscillator. This byte resides in
the high byte of address 0x000 in the signature address space. During reset, this byte is auto-
matically written into the OSCCAL Register to ensure correct frequency of the calibrated RC

Oscillator.
25.5 Page Size
Table 25-7. No. of Words in a Page and No. of Pages in the Flash
Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB
8K words (16 Kbytes) 64 words PCI[5:0] 128 PC[12:6] 12
Table 25-8. No. of Words in a Page and No. of Pages in the EEPROM
EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB
512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

25.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega165P. Pulses are assumed to be

at least 250 ns unless otherwise noted.

25.6.1 Signal Names

In this section, some pins of the ATmega165P are referenced by signal names describing their
functionality during parallel programming, see Figure 25-1 on page 270 and Table 25-9 on page
270. Pins not described in the following table are referenced by pin names.

The XA1/XAO pins determine the action executed when the XTAL1 pin is given a positive pulse.

The bit coding is shown in Table 25-11 on page 271.

ATMEL

8019K-AVR-11/10

269

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

When pulsing WR or OE, the comman

d loaded determines the action executed. The different

Commands are shown in Table 25-12 on page 271.

Figure 25-1. Parallel Programming

+5V

RDY/BSY «—
OE ——>

WR ———>

BS1 ———>»]
XAQ ———»

XA1 ——>
PAGEL ——»
+12V ——p

BS2 ———»]

L —

PD1
vCcC

PD2 +5V

PD3 AVCC

PD4

PD5 PB7 - PBO [«——>» DATA
PD6

PD7

RESET
PAO
XTAL1

GND

L

Table 25-9. Pin Name Mapping

Signal Name
in Programming Mode | Pin Name | I/O | Function
RDY/BSY PD1 o 0: Device is busy programming, 1: Device is ready for
new command.
OE PD2 I | Output Enable (Active low).
WR PD3 I | Write Pulse (Active low).
BS1 PD4 | Byte Select 1 (“0” selects low byte, “1” selects high
byte).
XAO0 PD5 | XTAL Action Bit 0
XA1 PD6 | XTAL Action Bit 1
PAGEL PD7 | Program Memory and EEPROM data Page Load.
BS2 PAO | Byte Select 2 (“0” selects low byte, “1” selects 2'nd high
byte).
DATA PB7-0 /0 | Bi-directional Data bus (Output when OE is low).

Table 25-10. Pin Values Used to Enter Programming Mode

Pin Symbol Value
PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XA0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

ATMEL

270

EE——————————————————————————————— A Tmega165P

Table 25-11. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed
0 0 Load Flash or EEPROM Address (High or low address byte determined by
BS1).
0 1 Load Data (High or Low data byte for Flash determined by BS1).
1 0 Load Command
1 1 No Action, Idle

Table 25-12. Command Byte Bit Coding

Command Byte Command Executed
1000 0000 Chip Erase
0100 0000 Write Fuse bits
0010 0000 Write Lock bits
0001 0000 Write Flash
0001 0001 Write EEPROM
0000 1000 Read Signature Bytes and Calibration byte
0000 0100 Read Fuse and Lock bits
0000 0010 Read Flash
0000 0011 Read EEPROM

AImEl@ 271

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.7 Parallel Programming
25.7.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Apply 4.5V - 5.5V between Vs and GND.
2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 25-10 on page 270 to “0000” and wait at least
100 ns.

4. Apply 11.5V - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after
+12V has been applied to RESET, will cause the device to fail entering programming
mode.

5. Wait at least 50 ps before sending a new command.
25.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

* The command needs only be loaded once when writing or reading multiple memory locations.
 Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

¢ Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

25.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM") memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.
Load Command “Chip Erase”

Set XA1, XAO to “10”. This enables command loading.

Set BS1 to “0".

Set DATA to “1000 0000”. This is the command for Chip Erase.

Give XTAL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

o0~ 0bd =

AImEl@ 272

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.7.4 Programming the Flash

The Flash is organized in pages, see Table 25-7 on page 269. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

Set XA1, XAO to “10”. This enables command loading.
Set BS1 to “0”.
Set DATA to “0001 0000”. This is the command for Write Flash.
Give XTAL1 a positive pulse. This loads the command.
. Load Address Low byte

1. Set XA1, XAO0 to “00”. This enables address loading.
2. SetBS1to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - OxFF).
4
C

R

. Give XTAL1 a positive pulse. This loads the address low byte.
. Load Data Low Byte

1. Set XA1, XAO0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - OxFF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XAO to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the data byte.
E. Latch Data

—

Set BS1 to “1”. This selects high data byte.

Give PAGEL a positive pulse. This latches the data bytes. See Figure 25-3 on page 275
for signal waveforms.

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

A

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 25-2 on page 274. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte

Set XA1, XAO to “00”. This enables address loading.

Set BS1 to “1”. This selects high address.

Set DATA = Address high byte (0x00 - OxFF).

Give XTAL1 a positive pulse. This loads the address high byte.

PoODbd -

AIMEL 273

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

2. Wait until RDY/BSY goes high (see Figure 25-3 on page 275 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

—_

1. Set XA1, XAO to “10”. This enables command loading.
Set DATA to “0000 0000”. This is the command for No Operation.

Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

wn

Figure 25-2. Addressing the Flash Which is Organized in Pages'"

e PCMSB PAGEMSB
PROGRAM
ek PCPAGE | PCWORD |
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE PCWORD[PAGEMSB:0]:
PAGE B INSTRUCTION WORD 00
\
. o1
\
\ 02
\
\ >

\ PAGEEND

Note: 1. PCPAGE and PCWORD are listed in Table 25-7 on page 269.

AImEl@ 274

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 25-3. Programming the Flash Waveforms"

F

' "~ Y
A B Cc D E B Cc D E G H
DATA :X ox10_ XAppR. Low X pATA Low X DATAHIGH X xx_ X_ADDR. LOWX DATA LOW X DATAHIGH X xx X ADDR. HIGHX XX
XA1 _/—\
o/ n__/ \
BS1 /—\—/ \
w7 N/ /\
wR _/
RDY/BSY \—/_
RESET +12V
OF
PAGEL /\ / \

BS2

Note: 1. “XX”is don’t care. The letters refer to the programming description above.

25.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 25-8 on page 269. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 273 for details on Command, Address and
Data loading):

A: Load Command “0001 0001”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

C: Load Data (0x00 - OxFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

PoODd -

1. SetBS to “0".
2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page. See Figure 25-4 on
page 276 for signal waveforms.

AImEl@ 275

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 25-4. Programming the EEPROM Waveforms

K

A G B (o3 E B C E L
DATA X_oxi1 XpDR. HIGH X ADDR.LOWY DATA X" xx X ApDR.LowX DATA X XX
xat —/ \
XAO / __ / \

BS1 7 \
we /N /S ____/ _/\
wR __/
RDY/BSY \—/—

RESET +12Vv

OF
PAGEL / \ / \

BS2

25.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 273 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - OxFF).

3. B: Load Address Low Byte (0x00 - OxFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

25.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to “Programming the Flash”
on page 273 for details on Command and Address loading):

A: Load Command “0000 0011”.

G: Load Address High Byte (0x00 - OxFF).

B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
5. Set OE to “1”.
25.7.8 Programming the Fuse Low Bits

PO b -

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the Flash”
on page 273 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

AIMEL 276

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Data loading):
1. A: Load Command “0100 0000”.
2. C:Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1 to “1” and BS2 to “0”. This selects high fuse byte.
4. Give WR a negative pulse and wait for RDY/BSY to go high.
5. Set BS1 to “0”. This selects low data byte.
25.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming the
Flash” on page 273 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “0” and BS2 to “1”. This selects extended fuse byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2 to “0”. This selects low data byte.

ok wn =

Figure 25-5. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte Write Extended Fuse byte
A Cc /_/% A Cc /_/% A Cc /_H
DATA :X oo Y o N xx X oo Y oam Y xx MDD
w0\ [\ [\
x#0 [\ [\ [\
Bt [\
Bs2 /L
xmn [\ \ JARNVAR SN
WA \/ \/ _/
RDY/BSY _/ _/ J

RESET +12V

OE

PAGEL

25.7.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 273 for details on Command and Data loading):
1. A: Load Command “0010 0000”.

2. C:Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.
The Lock bits can only be cleared by executing Chip Erase.

AImEl@ 277

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the Flash”
on page 273 for details on Command loading):

—_

A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can now
be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read at
DATA (“0” means programmed).
6. Set OE to “1”.

Figure 25-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

I Fuse Low Byte H 0

I Extended Fuse Byte

BS2 —>

I Lock Bits 0

I Fuse High Byte 1 BL‘I_/

BS2

25.7.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash” on
page 273 for details on Command and Address loading):
1. A: Load Command “0000 1000”.
2. B:Load Address Low Byte (0x00 - 0x02).
3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.
4. Set OE to “1”.
25.7.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash” on
page 273 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B:Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

AIMEL 278

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.7.15 Parallel Programming Characteristics

For characteristics of the parallel programming see “Parallel Programming Characteristics” on
page 304.

25.8 Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (out-
put). After RESET is set low, the Programming Enable instruction needs to be executed first
before program/erase operations can be executed. NOTE, in Table 25-13 on page 279, the pin
mapping for SPI programming is listed. Not all parts use the SPI pins dedicated for the internal
SPl interface.

25.8.1 Serial Programming Pin Mapping

Table 25-13. Pin Mapping Serial Programming

Symbol Pins /0 Description
MOSI PB2 | Serial Data in
MISO PB3 o Serial Data out
SCK PB1 I Serial Clock

Figure 25-7. Serial Programming and Verify!")
+1.8V - 5.5V

VCC

+1.8V-55V®

MOS| ———»
AVCC
MISO €+—

SCK ———]

——» XTAL1

—

L

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.
2. Vgc - 0.3V < AVCC < Vi + 0.3V, however, AVCC should always be within 1.8V - 5.5V.
When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into OxFF.

RESET

GND

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: >2 CPU clock cycles for fy < 12 MHz, 3 CPU clock cycles for fy >= 12 MHz
High: > 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for fy >= 12 MHz

AIMEL 279

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.8.2 Serial Programming Algorithm

When writing serial data to the ATmega165P, data is clocked on the rising edge of SCK.

When reading data from the ATmega165P, data is clocked on the falling edge of SCK. See Fig-
ure 25-8 on page 281 for timing details.

To program and verify the ATmega165P in the serial programming mode, the following
sequence is recommended (see four byte instruction formats in Table 25-15 on page 282):

1. Power-up sequence:
Apply power between V- and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The page size is found in Table 25-7 on
page 269. The memory page is loaded one byte at a time by supplying the 6 LSB of the
address and data together with the Load Program Memory Page instruction. To ensure
correct loading of the page, the data low byte must be loaded before data high byte is
applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 7 MSB of the address. If polling (RDY/BSY) is
not used, the user must wait at least ty,n r asy before issuing the next page (see Table
25-14 on page 281). Accessing the serial programming interface before the Flash write
operation completes can result in incorrect programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling (RDY/BSY) is not used, the
user must wait at least typ geprom before issuing the next byte (see Table 25-14 on page
281). In a chip erased device, no OxFFs in the data file(s) need to be programmed.

B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 2 LSB of the address and data together with the Load
EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading
the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using
EEPROM page access only byte locations loaded with the Load EEPROM Memory Page
instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is
not used, the user must wait at least t,y, geprom before issuing the next page (see Table
25-14 on page 281). In a chip erased device, no OxFF in the data file(s) need to be
programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO.

7. Atthe end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn V¢ power off.

AImEl@ 280

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 25-14. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
twp Fuse 4.5 ms
twp FLASH 4.5 ms
twp_eeprOM 3.6 ms
twp_ERAsE 9.0 ms

Figure 25-8. Serial Programming Waveforms

sewomipgr /) XXX OC OGN
serun. oaTA ouTeuT />< X XX s\
ssweeerigy [11T ML

RS S A N N A

LSB

AImEl@ 281

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.8.3 Serial Programming Instruction set
Table 25-15 and Figure 25-9 on page 283 describes the Instruction set.

Table 25-15. Serial Programming Instruction Set

Instruction Format
Instruction/Operation Byte 1 Byte 2 Byte 3 Byte 4
Programming Enable $AC $53 $00 $00
Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00
Poll RDY/BSY $FO $00 $00 data byte out
Load Instructions
Load Extended Address byte(" $4D $00 Extended adr $00
Load Program Memory Page, High byte $48 $00 adr LSB high data byte in
Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in
Load EEPROM Memory Page (page access) $CH $00 0000 00aa data byte in
Read Instructions
Read Program Memory, High byte $28 adr MSB adr LSB high data byte out
Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out
Read EEPROM Memory $A0 0000 O0aa aaaa aaaa data byte out
Read Lock bits $58 $00 $00 data byte out
Read Signature Byte $30 $00 0000 00aa data byte out
Read Fuse bits $50 $00 $00 data byte out
Read Fuse High bits $58 $08 $00 data byte out
Read Extended Fuse Bits $50 $08 $00 data byte out
Read Calibration Byte $38 $00 $00 data byte out
Write Instructions®
Write Program Memory Page $4C adr MSB adr LSB $00
Write EEPROM Memory $COo 0000 00aa aaaa aaaa data byte in
Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00
Write Lock bits $AC $EO $00 data byte in
Write Fuse bits $AC $A0 $00 data byte in
Write Fuse High bits $AC $A8 $00 data byte in
Write Extended Fuse Bits $AC $A4 $00 data byte in

Notes:
a = address.

Nooakrwh~

Not all instructions are applicable for all parts.

Bits are programmed ‘0’, unprogrammed ‘1’
To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1) .
Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and Page size.

Instructions accessing program memory use a word address. This address may be random within the page range.
See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1, a programming operation is still pending. Wait until

this bit returns ‘0’ before the next instruction is carried out.

ATMEL

8019K-AVR-11/10

282

EE——————————————————————————————— A Tmega165P

Within the same page, the low data byte must be loaded prior to the high data byte.
After data is loaded to the page buffer, program the EEPROM page, see Figure 25-9.

Figure 25-9. Serial Programming Instruction example

Serial Programming Instruction

Load Program Memory Page (High/Low Byte)/ Write Program Memory Page/
Load EEPROM Memory Page (page access) Write EEPROM Memory Page
Byte 1 Byte 2 Byte 3 Byte 4 Byte 1 Byte 2 Byte 3 Byte 4
AdriiSB Adr LSB | | Adr MSB AdiL3B
Bit 15 B 0 Bit 15 B 0
H_/ H_/
I Page Buffer
Page Offset J\/L

Page 0

Page 1

Page 2

Page Number
Page N-1

Program Memory/
EEPROM Memory

25.8.4 SPI Serial Programming Characteristics

For characteristics of the SPI module, see “SPI Timing Characteristics” on page 306.

ATMEL

8019K-AVR-11/10

283

EE——————————————————————————————— A Tmega165P

25.9 Programming via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

25.9.1 Programming Specific JTAG Instructions

8019K-AVR-11/10

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 25-10 on page 285.

AImEl@ 284

EE——————————————————————————————— A Tmega165P

Figure 25-10. State Machine Sequence for Changing the Instruction Word

1 ;Test-Logic-ResetEA --
io
v .
OC Run-Test/Idle ! - P1 Select-DR Scan ! 1 Select-IR Scan A
‘o 0
____________) A \ 4
1 Capture-DR i Capture-IR
‘o 0
............ b A A
-------- P Shift-DR 0 > Shift-IR :) 0
1 1
v
. 1
Exit1-IR
0
A
Pause-IR DO
1
\ 4
Exit2-IR
1
v
Update-IR <
1 0

2592 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as Data Register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

» Shift-DR: The Reset Register is shifted by the TCK input.
25.9.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as Data Register. The active states are the

following:
» Shift-DR: The programming enable signature is shifted into the Data Register.

* Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

AImEl@ 285

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.94 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

* Capture-DR: The result of the previous command is loaded into the Data Register.

 Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

¢ Update-DR: The programming command is applied to the Flash inputs.

¢ Run-Test/Idle: One clock cycle is generated, executing the applied command (not always
required, see Table 25-16 on page 289).

25.9.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

* Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

» Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A
write sequence is initiated that within 11 TCK cycles loads the content of the temporary
register into the Flash page buffer. The AVR automatically alternates between writing the low
and the high byte for each new Update-DR state, starting with the low byte for the first Update-
DR encountered after entering the PROG_PAGELOAD command. The Program Counter is
pre-incremented before writing the low byte, except for the first written byte. This ensures that
the first data is written to the address set up by PROG_COMMANDS, and loading the last
location in the page buffer does not make the program counter increment into the next page.

25.9.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

» Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte
Register. The AVR automatically alternates between reading the low and the high byte for each
new Capture-DR state, starting with the low byte for the first Capture-DR encountered after
entering the PROG_PAGEREAD command. The Program Counter is post-incremented after
reading each high byte, including the first read byte. This ensures that the first data is captured
from the first address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

 Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

AImEl@ 286

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.9.7

25.9.8

25.9.9

Data Registers

The Data Registers are selected by the JTAG instruction registers described in section “Pro-
gramming Specific JTAG Instructions” on page 284. The Data Registers relevant for
programming operations are:

* Reset Register.

* Programming Enable Register.

* Programming Command Register.

* Flash Data Byte Register.

Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to “Clock
Sources” on page 27) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 23-2 on page 231.

Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 25-11. Programming Enable Register

TDI

|

0xA370

—» Programming Enable

»
L

> - >0
o
9]

ClockDR & PROG_ENABLE

|

TDO

25.9.10 Programming Command Register

8019K-AVR-11/10

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 25-16 on page 289. The state sequence
when shifting in the programming commands is illustrated in Figure 25-13 on page 292.

AImEl@ 287

EE——————————————————————————————— A Tmega165P

Figure 25-12. Programming Command Register

TDI

I

S
T
R
0 >
B
E
S
Flash
EEPROM
A Fuses
0 Lock Bits
R
E
s |
. >
/
D
A
T
A

TDO

AImEl@ 288

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 25-16. JTAG Programming Instruction

Set a=address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
0100011_10000000 XXXXXXX_ XXXXXXXX
1a. Chib Erase 0110001_10000000 XXXXXXX_XXXXXXXX
' P 0110011_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX
1b. Poll for Chip Erase Complete 0110011_10000000 XXXXXOX_XXXXXXXX (2)
2a. Enter Flash Write 0100011_00010000 XXXXXXX_XXXXXXXX
2b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX 9)
2c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
2d. Load Data Low Byte 0010011 _iiiiiiii XXXXXXX_XXXXXXXX
2e. Load Data High Byte 0010111 _iiiiiiii XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
2f. Latch Data 1110111_00000000 XXXXXXX_XXXXXXXX (1)
0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
0110101_00000000 XXXXXXX_XXXXXXXX
2g. Write Flash P - - 1
g. yrite Flash Fage 0110111_00000000 XXXXXXX_ XXXXXXXX (1)
0110111_00000000 XXXXXXX_XXXXXXXX
2h. Poll for Page Write Complete 0110111_00000000 XXXXXOX_ XXXXXXXX @)
3a. Enter Flash Read 0100011_00000010 XXXXXXX_XXXXXXXX
3b. Load Address High Byte 0000111_aaaaaaaa XXXXXXX_XXXXXXXX 9)
3c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX
0110010_00000000 XXXXXXX_XXXXXXXX
3d. Read Data Low and High Byte 0110110_00000000 XXXXXXX_00000000 Low byte
0110111_00000000 XXXXXXX_00000000 High byte

4a. Enter EEPROM Write

0100011_00010001

XXXXXXX _XXXXXXXX

4b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX _XXXXXXXX

9)

4c. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

4d. Load Data Byte

XXXXXXX_XXXXXXXX

4e. Latch Data

0110111_00000000
1110111_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

M

4f. Write EEPROM Page

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX _XXXXXXXX

(1)

4q. Poll for Page Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

5a. Enter EEPROM Read

0100011_00000011

XXXXXXX_XXXXXXXX

5b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

)

8019K-AVR-11/10

ATMEL

289

EE——————————————————————————————— A Tmega165P

Table 25-16. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x

Instruction

TDI Sequence

TDO Sequence

Notes

5c. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

5d. Read Data Byte

0110011_bbbbbbbb
0110010_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_00000000

6a. Enter Fuse Write

0100011_01000000

XXXXXXX _XXXXXXXX

6b. Load Data Low Byte®

XXXXXXX _XXXXXXXX

®)

6c. Write Fuse Extended Byte

0111011_00000000
0111001_00000000
0111011_00000000
0111011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX

M

6d. Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

@)

6e. Load Data Low Byte!”

XXXXXXX _XXXXXXXX

@)

6f. Write Fuse High Byte

0110111_00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX

M

6g. Poll for Fuse Write Complete

0110111_00000000

XXXXXOX_XXXXXXXX

@)

6h. Load Data Low Byte!”

XXXXXXX _XXXXXXXX

@)

6i. Write Fuse Low Byte

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX

M

6j. Poll for Fuse Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

7a. Enter Lock Bit Write

0100011_00100000

XXXXXXX _XXXXXXXX

7b. Load Data Byte®

XXXXXXX _XXXXXXXX

(4)

7c¢. Write Lock Bits

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX

(1)

7d. Poll for Lock Bit Write complete

0110011_00000000

XXXXXOX_XXXXXXXX

(2)

8a. Enter Fuse/Lock Bit Read

0100011_00000100

XXXXXXX _XXXXXXXX

8b. Read Extended Fuse Byte(®

0111010_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8c. Read Fuse High Byte(”

0111110_00000000
0111111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8d. Read Fuse Low Byte®

0110010_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_00000000

8e. Read Lock Bits®

0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_XX000000

(5)

8019K-AVR-11/10

ATMEL

290

EE——————————————————————————————— A Tmega165P

Table 25-16. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x

Instruction

TDI Sequence

TDO Sequence

Notes

8f. Read Fuses and Lock Bits

0111010_00000000
0111110_00000000
0110010_00000000
0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX

XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000

®)

Fuse Ext. byte
Fuse High byte
Fuse Low byte
Lock bits

9a. Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

9c. Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX _XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX _XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX _XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX _XXXXXXXX
XXXXXXX _XXXXXXXX

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is

normally the case).
Repeat until 0 = “1”.

Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
“0” = programmed, “1” = unprogrammed.

The bit mapping for Fuses Extended byte is listed in Table 25-3 on page 267.

The bit mapping for Fuses High byte is listed in Table 25-4 on page 268.

The bit mapping for Fuses Low byte is listed in Table 25-5 on page 268.

The bit mapping for Lock bits byte is listed in Table 25-1 on page 266.

10 Address bits exceeding PCMSB and EEAMSB (Table 25-7 and Table 25-8) are don’t care.
11. All TDI and TDO sequences are represented by binary digits (0b...).

CoONOALDN

ATMEL

8019K-AVR-11/10

291

EE——————————————————————————————— A Tmega165P

Figure 25-13. State Machine Sequence for Changing/Reading the Data Word

1 ;Test-Logic-Reset 4 --
i o
A ———— :
OC Run-Test/Idle L X P Select-DR Scan S } Select-IR Scan 1
0 io
Y b AR
] Capture-DR | - Capture-IR
0 io
¥) AU
. i H 4‘
> Shift-DR 0 e » Shift-IR 0
1 i1
A4 S), ANS—
L » Exitt-DR | S N TS| J L
0 ‘o
v O, b SRR
: : <,
Pause-DR 0 : H Pause-IR i 20
\ 4 L e b A
Ol Exit2DR | | e %f Exite-R
1 i1
vy |) AN
Update-DR 4 Update-IR L EECERRH
1 0 TR 0

25.9.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the
temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next

page.
During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte

Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

AImEl@ 292

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 25-14. Flash Data Byte Register

STROBES

State

o1 Machine
ADDRESS

Flash
EEPROM
Fuses
Lock Bits

> - >0

TDO

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

25.9.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 25-16 on page 289.

25.9.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enterinstruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

25.9.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.

3. Enterinstruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

AImEl@ 293

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

25.9.15 Performing Chip Erase

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.
Start Chip Erase using programming instruction 1a.

Poll for Chip Erase complete using programming instruction 1b, or wait for ty, gy ce (refer
to Table 26-7 on page 305).

25.9.16 Programming the Flash

Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”

on page 294.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for t, gy (refer to

9.

Table 26-7 on page 305).
Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

8019K-AVR-11/10

Enter JTAG instruction PROG_COMMANDS.
Enable Flash write using programming instruction 2a.

Load the page address using programming instructions 2b and 2c. PCWORD (refer to
Table 25-7 on page 269) is used to address within one page and must be written as 0.
Enter JTAG instruction PROG_PAGELOAD.

Load the entire page by shifting in all instruction words in the page byte-by-byte, starting
with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Reg-
ister into the Flash page location and to auto-increment the Program Counter before
each new word.

Enter JTAG instruction PROG_COMMANDS.
Write the page using programming instruction 2g.

Poll for Flash write complete using programming instruction 2h, or wait for t, gy (refer to
Table 26-7 on page 305).

Repeat steps 3 to 8 until all data have been programmed.

AImEl@ 294

EE——————————————————————————————— A Tmega165P

25.9.17 Reading the Flash

1
2
3.
4.
5
A

1.
2.
3.

6.
7.

Enter JTAG instruction PROG_COMMANDS.

Enable Flash read using programming instruction 3a.
Load address using programming instructions 3b and 3c.
Read data using programming instruction 3d.

Repeat steps 3 and 4 until all data have been read.

more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.

Load the page address using programming instructions 3b and 3c. PCWORD (refer to
Table 25-7 on page 269) is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGEREAD.

Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

Enter JTAG instruction PROG_COMMANDS.
Repeat steps 3 to 6 until all data have been read.

25.9.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 294.

© N ook DNd =

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.
Load address High byte using programming instruction 4b.
Load address Low byte using programming instruction 4c.
Load data using programming instructions 4d and 4e.
Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for ty, gy
(refer to Table 26-7 on page 305).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.
25.9.19 Reading the EEPROM

ok wd =

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

8019K-AVR-11/10

AImEl@ 295

EE——————————————————————————————— A Tmega165P

25.9.20 Programming the Fuses

1.
2.
3.

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse write using programming instruction 6a.

Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

Write Fuse High byte using programming instruction 6c¢.

Poll for Fuse write complete using programming instruction 6d, or wait for t, gy (refer to
Table 26-7 on page 305).

Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

Write Fuse low byte using programming instruction 6f.

Poll for Fuse write complete using programming instruction 6g, or wait for t,y, g (refer to
Table 26-7 on page 305).

25.9.21 Programming the Lock Bits

Enter JTAG instruction PROG_COMMANDS.
Enable Lock bit write using programming instruction 7a.

Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

Write Lock bits using programming instruction 7c.

Poll for Lock bit write complete using programming instruction 7d, or wait for ty, gy (refer
to Table 26-7 on page 305).

25.9.22 Reading the Fuses and Lock Bits

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse/Lock bit read using programming instruction 8a.

To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.

To only read Lock bits, use programming instruction 8d.

25.9.23 Reading the Signature Bytes

ok wn=

Enter JTAG instruction PROG_COMMANDS.

Enable Signature byte read using programming instruction 9a.
Load address 0x00 using programming instruction 9b.

Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

25.9.24 Reading the Calibration Byte

O p =

8019K-AVR-11/10

Enter JTAG instruction PROG_COMMANDS.

Enable Calibration byte read using programming instruction 10a.
Load address 0x00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.

AImEl@ 296

EE——————————————————————————————— A Tmega165P

26. Electrical Characteristics

26.1 Absolute Maximum Ratings*
Operating Temperature..........c.ccoeveueveeernrnnes -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
Storage Temperature...........cccooceeevcieeeeieeeenne -65°C to +150°C age to the device. This is a stress rating only and
functional operation of the device at these or
Voltage on any Pin except RESET other conditions beyond those indicated in the
with respect to Groundcccoceeiienieennenne -0.5V to V+0.5V operational sections of this specification is not
implied. Exposure to absolute maximum rating
Voltage on RESET with respect to Ground......-0.5V to +13.0V conditions for extended periods may affect
device reliability.
Maximum Operating Voltageccccceveveieeieeniiiieeeee 6.0V
DC Current per /O Pinccoovviiiiiieieecieee e 40.0 mA
DC Current Vo and GND Pins.......c.cccovciiiiinns 400.0 mA
26.2 DC Characteristics
T, =-40-C to 85-C, Vo = 1.8V to 5.5V (unless otherwise noted)
Symbol | Parameter Condition Min. Typ. Max. Units
Y Input Low Voltage except | Voo = 1.8V - 2.4V -0.5 0.2V
I XTAL1 and RESET pins | Vg =24V - 5.5V -0.5 0.3V
v Input High Voltage except | Vo = 1.8V - 2.4V 0.7Vc® Vg + 0.5
IH XTAL1 and RESET pins | Vgo =24V -55V 0.6Vc® Ve + 0.5
Input Low Voltage, _) i)
Vi1 XTALA pins Ve = 1.8V -5.5V 0.5 0.1V
Y Input High Voltage, Ve = 1.8V -2.4V 0.8Vc@ Ve + 0.5
IH1 XTAL1 pin Vgg =24V - 5.5V 0.7Vec® Vee + 0.5
Input Low Voltage, _)) 0.1V
Vi RESET pins Voo =1.8V-55V 0.5 0.2V " .
Input High Voltage,
Vi RESET%MS 9 Ve = 1.8V - 5.5V 0.9Vc? Vg + 0.5
v Output Low Voltage®), loL = 10 MA, Vg =5V 0.7
oL PortA,C,D,E, F G loL =5 MA, Vg =3V 0.5
v Output Low Voltage®), loL =20 MA, Vg =5V 0.7
OLt Port B lo. =10 MA, Vg = 3V 0.5
Y Output High Voltage®), lop =-10 MA, Ve = 5V 4.2
OH PortA,C, D, E, F G loy = -5 MA, Vg = 3V 2.3
y Output High Voltage®), lon = -20 MA, Vg = 5V 4.2
OH1 Port B loy =-10 MA, Voo =3V 2.3
| Input Leakage Ve = 5.5V, pin low 1
I Current I/O Pin (absolute value) A
H
| Input Leakage Vce = 5.5V, pin high 1
IH Current I/0 Pin (absolute value)
Rgst Reset Pull-up Resistor 30 60 ‘
Q
Rpy I/O Pin Pull-up Resistor 20 50
AIMEL 207
I)

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

T, =-40-C to 85-C, V¢ = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol | Parameter Condition Min. Typ. Max. Units
Active 1 MHz, Vo =2V 0.35 0.44
Active 4 MHz, Vo =3V 23 25
Active 8 MHz, V¢ = 5V 8.4 9.5
Power Supply Current® mA
Idle 1 MHz, V¢ =2V 0.1 0.2
Idle 4 MHz, V¢ = 3V 0.7 0.8
lec Idle 8 MHz, V¢ = 5V 3.0 3.3
2 kHz TOSC bled
3 z TOSC enabled, 0.55 16
Power-save mode®
32 kHz TOSC enabled, 0.8 26
Vo =3V ' : HA
WDT enabled, Vo =3V 6 10
Power-down mode®
WDT disabled, V¢ = 3V 0.2 2
Analog Comparator Ve =5V
Vacio Input Offset Voltage Vin = Vo2 <10 40 mv
Analog Comparator Voo =5V i
acLk Input Leakage Current Vi, = Vo2 50 50 nA
t Analog Comparator Vec =27V 750 ns
ACPD Propagation Delay Vee = 4.0V 500
Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.

3. Although each I/O port can sink more than the test conditions (20 mA at Vo =5V, 10 mA at V¢ = 3V for Port B and 10 mA
at Voo =5V, 5 mA at V= 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:

TQFP and QFN/MLF Package:

1] The sum of all IOL, for all ports, should not exceed 400 mA.

2] The sum of all IOL, for ports AO - A7, C4 - C7, G2 should not exceed 100 mA.

3] The sum of all IOL, for ports BO - B7, EO - E7, G3 - G5 should not exceed 100 mA.

4] The sum of all IOL, for ports DO - D7, CO - C3, GO - G1 should not exceed 100 mA.

5] The sum of all IOL, for ports FO - F7, should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Voo =5V, 10 mA at Vo= 3V for Port B and 10mA
at Voo =5V, 5 mA at V= 3V for all other ports) under steady state conditions (non-transient), the following must be
observed:

TQFP and QFN/MLF Package:

1] The sum of all IOH, for all ports, should not exceed 400 mA.

2] The sum of all IOH, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA.

3] The sum of all IOH, for ports BO - B7, EO - E7, G3 - G5 should not exceed 100 mA.

4] The sum of all IOH, for ports DO - D7, CO - C3, GO - G1 should not exceed 100 mA.

5] The sum of all IOH, for ports FO - F7, should not exceed 100 mA.

If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. All bits set in the “Power Reduction Register” on page 34.

6. Typical values at 25 -C. Maximum values are characterized values and not test limits in production.

8019K-AVR-11/10

AImEl@ 298

EE——————————————————————————————— A Tmega165P

26.3 Speed Grades

Maximum frequency is depending on V- As shown in Figure 26-1 and Figure 26-2 on page
300, the Maximum Frequency vs. V¢ curve is linear between 1.8V < V¢ < 4.5V. To calculate
the maximum frequency at a given voltage in this interval, use this equation:

Frequency = ae (V-VX)+Fy

To calculate required voltage for a given frequency, use this equation::
Voltage = be (F-Fy)+Vx

Table 26-1. Constants used to calculate maximum speed vs. V¢

Voltage and Frequency range a b Vx Fy
27<Vgc<450r8<Frg<16 2.7 8
8/1.8 1.8/8
1.8<Vgc<270r4<Frq<8 1.8 4
At 3 Volt, this gives:Frequency = % e (3-27)+8 = 9.33

Thus, when V¢ = 3V, maximum frequency will be 9.33 MHz.
At 6 MHz this gives:Voltage = 1§§ e (6-4)+18 =225

Thus, a maximum frequency of 6 MHz requires V¢ = 2.25V.

Figure 26-1. Maximum Frequency vs. Vo, ATmegal165PV

8 MHz

Safe Operating Area

4 MHz

L 4

1.8V 2.7V 5.5V

AImEl@ 299

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 26-2. Maximum Frequency vs. Vs, ATmega165P
A

16 MHz

8 MHz

Safe Operating Area

v

2.7V 4.5V 5.5V

AI“"E',® 300

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

26.4 Clock Characteristics

26.4.1 Calibrated Internal RC Oscillator Accuracy
Table 26-2. Calibration Accuracy of Internal RC Oscillator
Frequency Vee Temperature Calibration Accuracy
Factory Calibration 8.0 MHz 3V 25°C +10%
N 1.8V - 5.5V . . o
User Calibration 7.3 MHz - 8.1 MHz 27V - 5.5V -40°C - 85°C +1%
Notes: 1. Voltage range for ATmegai65PV.
2. Voltage range for ATmega165P.
26.4.2 External Clock Drive Waveforms
Figure 26-3. External Clock Drive Waveforms
tCHCX
teren — *— tcheL
N] N
< tolex —
M teroL >
26.4.3 External Clock Drive
Table 26-3. External Clock Drive
Vee=1.8V-5.5V | Vo =27V-55V | Voo =4.5V-5.5V
Symbol Parameter Min. Max. Min. Max. Min. Max. Units
Oscillator
Mool Frequency 0 1 0 8 0 16 MHz
toLoL Clock Period 1000 125 62.5
toHex High Time 400 50 25 ns
toLex Low Time 400 50 25
teLcH Rise Time 2.0 1.6 0.5
us
toHeoL Fall Time 2.0 1.6 0.5
Change in period
Atoi oL from one clock 2 2 2 %
cycle to the next
AIMEL 301
I)

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

26.5 System and Reset Characteristics

Table 26-4. Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol | Parameter Condition Min Typ Max Units
ng_ver-on Reset Threshold Voltage T, = -40°C to 85°C 07 10 14
(rising)
Veor Power-on Reset Threshold Voltage Y
veron 9¢ | 1,=-40°Cto 85°C 0.05 0.9 13
(falling)
Vpbsr Power-on Slope Rate 0.01 4.5 V/ms
VRsT RESET Pin Threshold Voltage Voo =3V 0.2 Ve 0.9 Vo \
trsT Minimum pulse width on RESET Pin | Ve =3V 25 Us
Vhyst Brown-out Detector Hysteresis 50 mV
t Min Pulse Width on Brown-out 5 s
BOD Reset H
Vig Bandgap reference voltage Vee =27V, Ty=25°C 1.0 1.1 1.2 \Y
tsg Bandgap reference start-up time Voo =2.7V, Ty=25°C 40 70 ps
Bandgap reference current _ _ oro
Isg consumption Voo =2.7V, Ty =25°C 15 pA

Note: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqr (falling).

Table 26-5. BODLEVEL Fuse Coding'"

BODLEVEL 2..0 Fuses Min Vgor Typ Vgor Max Vgor Units
111 BOD Disabled
110 1.7 1.8 2.0
101 25 2.7 2.9 \
100 41 4.3 45
011
010
Reserved
001
000

Note: 1. Vggr may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is
tested down to V¢ = Vgor during the production test. This guarantees that a Brown-Out Reset will occur before Vo drops to
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 110 for ATmega165P.

AI“"E',® 302

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

26.6 ADC Characteristics — Preliminary Data

Table 26-6. ADC Characteristics
Symbol | Parameter Condition Min Typ Max Units

Single Ended Conversion 10
Resolution Bits
Differential Conversion 8

Single Ended Conversion
VREF = 4V, VCC = 4V, 2 25
ADC clock = 200 kHz

Single Ended Conversion
Vger =4V, Vo =4V, 4.5
Absolute accuracy ADC clock = 1 MHz
(Including INL, DNL, Single Ended Conversion
quantization error, gain and Vieg = 4V, Voo = 4V,
offset error) ADC clock = 200 kHz
Noise Reduction Mode

Single Ended Conversion
Vger = 4V, Ve =4V,
ADC clock =1 MHz
Noise Reduction Mode

4.5
LSB

Single Ended Conversion
Integral Non-Linearity (INL) Vger =4V, Ve =4V, 0.5
ADC clock = 200 kHz

Single Ended Conversion
Differential Non-Linearity (DNL) Vier =4V, Vg =4Y, 0.25
ADC clock = 200 kHz

Single Ended Conversion
Gain Error Vieg = 4V, Voo = 4V, 2
ADC clock = 200 kHz

Single Ended Conversion
Offset Error Vger = 4V, Ve = 4V, 2
ADC clock = 200 kHz

Conversion Time Free Running Conversion 13 260 ys

Clock Frequency Single Ended Conversion 50 1000 kHz
AVCC Analog Supply Voltage Vee - 0.3 Ve +0.3
Single Ended Conversion 1.0 AVCC

Differential Conversion 1.0 AVCC-0.5
Single Ended Channels GND VRer \Y
Differential Channels GND AVCC
Single Ended Channels GND VRee
Differential Channels'") -0.85VRer VRer
Single Ended Channels 38,5

Input Bandwidth kHz
Differential Channels 4

VREF Reference Voltage

Pin Input Voltage

Input Range

AI“"E',® 303

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 26-6. ADC Characteristics

Symbol | Parameter Condition Min Typ Max Units
VinT Internal Voltage Reference 1.0 1.1 1.2 \
RRer Reference Input Resistance 32 kQ
Ran Analog Input Resistance 100 MQ

Note: 1. Voltage difference between channels.

26.7 Parallel Programming Characteristics

Figure 26-4. Parallel Programming Timing, Including some General Timing Requirements

TxLwL
XTAL1 Exxe a
tbvxH txLDx
Data & Contol —— o
(DATA, XA0/1, BS1, BS2) / -
tsveH | | tPLBx| IBVWL twLex
PAGEL tonpL .
L twiwH -
WR thLwi
WLRL
L LA N -
RDY/BSY
twiLrH

Figure 26-5. Parallel Programming Timing, Loading Sequence with Timing Requirements(!)

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
— — — — —

t
ty xH XLPH

tpLxH
XTAL1 / AN / ‘I: ;|’ ‘l: m

BS1

PAGEL V N

DATA X ADDRO (Low Byte) >< DATA (Low Byte) >< DATA (High Byte) >< ADDR1 (Low Byte)

XAO

XA1

Note: 1. The timing requirements shown in Figure 26-4 (that is, tpyxp, txHxr, @nd ty px) also apply to
loading operation.

AI“"E',® 304

8019K-AVR-11/10

ATmegal65P

Figure 26-6. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements("

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
— — " ~ —— ~ —
txLoL
-
XTAL1 / N
tsvbv
-
BS1
toLpbv
-
OE
tonpz
R
DATA —< ADDRO (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)

XAO

XA1

Note: 1. The timing requirements shown in Figure 26-4 on page 304 (that is, tpyxp, txHxy, @nd ty px)
also apply to reading operation.

Table 26-7. Parallel Programming Characteristics, Vo = 5V +10%

Symbol Parameter Min Typ Max Units
Vpp Programming Enable Voltage 11.5 12.5 \Y%
Ipp Programming Enable Current 250 pA
tovxH Data and Control Valid before XTAL1 High 67

tyixH XTAL1 Low to XTAL1 High 200

tyhxL XTAL1 Pulse Width High 150

txLDx Data and Control Hold after XTAL1 Low 67

tyowL XTAL1 Low to WR Low 0

tyLpH XTAL1 Low to PAGEL high 0

tpLxH PAGEL low to XTAL1 high 150

tavpH BS1 Valid before PAGEL High 67 "
tppL PAGEL Pulse Width High 150

tpLBX BS1 Hold after PAGEL Low 67

twiex BS2/1 Hold after WR Low 67

tpLwL PAGEL Low to WR Low 67

tavwL BS1 Valid to WR Low 67

twiwi WR Pulse Width Low 150

twLRL WR Low to RDY/BSY Low 0 1 us
tWLRH WR Low to RDY/BSY High(" 3.7 4.5
twern ce | WR Low to RDY/BSY High for Chip Erase® 7.5 9 me

AI“"E',® 305

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table 26-7. Parallel Programming Characteristics, Vo = 5V £10% (Continued)

Symbol Parameter Min Typ Max Units
tyi oL XTAL1 Low to OE Low 0
tgvpv BS1 Valid to DATA valid 0 250
toLpy OE Low to DATA Valid 250 "
tonpz OE High to DATA Tri-stated 250
Notes: 1. ty, gy is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. twipH_ceis valid for the Chip Erase command.
26.8 SPI Timing Characteristics
See Figure 26-7 on page 307 and Figure 26-8 on page 307 for details.

Table 26-8. SPI Timing Parameters

Description Mode Min Typ Max
1 SCK period Master See Table 17-5
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5 ¢ t5 ns
7 SCK to out Master 10
8 SCK to out high Master 10
9 | SSlow toout Slave 15
10 | SCK period Slave 4oty
11 | SCK high/low" Slave 20ty
12 | Rise/Fall time Slave 1.6 ps
13 | Setup Slave 10
14 | Hold Slave tox
15 | SCKto out Slave 15
16 | SCK to SS high Slave 20 e
17 | SS high to tri-state Slave 10
18 | SSlow to SCK Slave 20 oty

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
-2t o for fox < 12 MHz
- 3t o for fok > 12 MHz

AI“"E',® 306

8019K-AVR-11/10

ATmegal65P

Figure 26-7. SPI Interface Timing Requirements (Master Mode)

SS

SCK
(CPOL =0)

SCK
(CPOL = 1)

MISO

(Data Input)

MOSI
(Data Output)

Figure 26-8. SPI Interface Timing Requirements (Slave Mode)

- i/
ss
. N - 10 16
la— - !
SCK — b
(CPOL = 0) Y \ - / o
SCK™ |] A |
(CPOL = 1) \ X 7
12
MOSI
e) D
17
Mso ¥ N
(Data Output) M8 y >< Hs8 >< X

AIMEL 307

8019K-AVR-11/10 EEE— ©

EE——————————————————————————————— A Tmega165P

27. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR register
set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is dis-
abled during these measurements. Table 27-1 on page 313 and Table 27-2 on page 313 show
the additional current consumption compared to I Active and I Idle for every /0O module con-
trolled by the Power Reduction Register. See “Power Reduction Register” on page 38 for details.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of 1/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C, *V.*f where
C, = load capacitance, V. = operating voltage and f = average switching frequency of 1/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

27.1 Active Supply Current

8019K-AVR-11/10

Figure 27-1. Active Supply Current vs. Frequency (0.1 MHz - 1.0 MHz)

b 5.5V
h T 5.0V
* 7 4.5V
: 0.; | aov
8] 1 {33V
Zj / — 1 1 [—ew
. /é é///// 1.8V
0 éé// i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

AI“"E',® 308

8019K-AVR-11/10

Figure 27-2. Active Supply Current vs. Frequency (1 MHz - 20 MHz)

25

ATmegal65P

20

5.0V

P 5.5V
] — 4.5V

/
1

<
E
8 s 4.0V

10 —

//
] _— % —1 —13av
/__
P 2/ 2.7V
. 1.8V
0 2 4 6 8 0 12 14 16 18 20

Frequency (MHz)

Figure 27-3. Active Supply Current vs. V¢ (Internal RC Oscillator, 8 MHz

10 +

9

85°C
/ 2500

~_~| -40°C

f =

Icc (MA)
o

\

ATMEL

309

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Figure 27-4. Active Supply Current vs. V¢ (Internal RC Oscillator, 1 MHz)

Icc (MA)

lec (HA)

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

85°C
25°C
// -40°C
15 25 3 3.5 4.5 5.5
Vee (V)
Figure 27-5. Active Supply Current vs. V¢ (32 kHz Watch Crystal)
25°C
1.5 25 3 35 4.5 5.5
Vec (V)

ATMEL

310

EE——————————————————————————————— A Tmega165P

27.2 Idle Supply Current

Figure 27-6. Idle Supply Current vs. Frequency (0.1 MHz - 1.0 MHz)

0.5 1
0.45 4 5.5V
04 — 5.0V
0.35
4.5V
03
< 4.0V
E o025
Q
~ 02 L 3.3v
/
0.15 2.7V
0.1 — — T | 1.8V
0.05
6 —— T T |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (MHz)
Figure 27-7. Idle Supply Current vs. Frequency (1 MHz - 20 MHz)
10 -
9
6 _ 55V
. 5.0V
6 4.5V
<
E 5
8 L1 _4.0v
, A — 3.3V
1 o
/
. % 18V

0 2 4 6 8 10 12 14 16 18 20
Frequency (MHz)

AImEl@ 311

8019K-AVR-11/10

8019K-AVR-11/10

Figure 27-8. Idle Supply Current vs. V. (Internal RC Oscillator, 8 MHz)

4,

_ 85°C

3.5

25°C
) -40°C

3

\

\

Figure 27-9. Idle Supply Current vs. V. (Internal RC Oscillator, 1 MHz)

0.7

5.5

85°C
~ 25°C

0.6

/ -40°C

0.5

/

0.4

lcc (MA)

\

0.3

0.1

1.5 2 25 3 3.5 4 4.5 5

ATMEL

5.5

ATmegal65P

312

ATmegal65P

Figure 27-10. Idle Supply Current vs. V¢ (32 kHz Watch Crystal)

14

25°C

12

10

/

lec (MA)

1.5

27.3 Supply Current of /0 modules

4 4.5 5

5.5

The tables and formulas below can be used to calculate the additional current consumption for
the different 1/0 modules in Active and Idle mode. The enabling or disabling of the 1/0O modules
are controlled by the Power Reduction Register. See “Power Reduction Register” on page 38 for

details.
Table 27-1. Additional Current Consumption for the different I/O modules (absolute values)
PRR bit Typical numbers
Voo =2V, F =1 MHz Ve =3V, F = 4 MHz Ve =5V, F = 8 MHz
PRADC 18 uA 116 pA 495 pA
PRUSARTO 11 pA 79 pA 313 YA
PRSPI 10 pA 72 pA 283 YA
PRTIM1 19 pA 117 pA 481 pA
Table 27-2. Additional Current Consumption (percentage) in Active and ldle mode
Additional Current consumption Additional Current consumption
compared to Active with external clock | compared to Idle with external clock
(see Figure 27-1 on page 308 and (see Figure 27-6 on page 311 and
PRR bit Figure 27-2 on page 309) Figure 27-7 on page 311)
PRADC 5.6% 18.7%
PRUSARTO 3.7% 12.4%
PRSPI 3.2% 10.8%
PRTIM1 5.6% 18.6%

It is possible to calculate the typical current consumption based on the numbers from Table 27-2
on page 313 for other V¢ and frequency settings than listed in Table 27-1 on page 313.

8019K-AVR-11/10

ATMEL

313

EE——————————————————————————————— A Tmega165P

27.3.0.1 Example 1

Calculate the expected current consumption in idle mode with USARTO, TIMER1, and SPI
enabled at V; = 3.0V and F = 1 MHz. From Table 27-2 on page 313, second column, we see
that we need to add 12.4% for the USARTO, 10.8% for the SPI, and 18.6% for the TIMER1 mod-
ule. Reading from Figure 27-6 on page 311, we find that the idle current consumption is ~0.18
mA at V¢ = 3.0V and F = 1 MHz. The total current consumption in idle mode with USARTO,
TIMERT1, and SPI enabled, gives:

ICCtotal # 0.18mA o (1 + 0.124 + 0.108 + 0.186) ~ 0.26mA

27.4 Power-down Supply Current

Figure 27-11. Power-down Supply Current vs. V¢ (Watchdog Timer Disabled)

1.60

1.40 85°C

1.20

1.00
-40°C

0.80 25°C

lec (MA)

0.60

0.40 —

0.20

0.00 \
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

AImEl@ 314

8019K-AVR-11/10

ATmegal65P

Figure 27-12. Power-down Supply Current vs. V¢ (Watchdog Timer Enabled)
20

18 85°C
-40°C
16 25°C

Icc (MA)

. /

1.5
Vee (V)

27.5 Power-save Supply Current

Figure 27-13. Power-save Supply Current vs. V¢ (Watchdog Timer Disabled)

3.50 -

3.00 85°C

2.50 / /
g 2.00 gg:g
3
\é 1.50 /
215

/

1.00 — | _—]

0.50 —

0.00 ‘

1.5 2.0 25 3.0 35 4.0 45 5.0 5.5

Ve (V)

The differential current consumption between Power-save with WD disabled and 32 kHz TOSC
represents the current drawn by Timer/Counter2.

AI“"E',® 315

8019K-AVR-11/10

ATmegal65P

27.6 Standby Supply Current

Figure 27-14. Standby Supply Current vs. V (32 kHz Watch Crystal, Watchdog Timer

Disabled)
2.50
85°C
2.00 25°C
/ -40°C
150 /‘
E]
1.00
_
/
/-//
|
0.50
0.00 |
1.5 2.0 2.5 3.0 35 4.0 45 5.0 5.5
Vee (V)

Figure 27-15. Standby Supply Current vs. V¢ (455 kHz Resonator, Watchdog Timer Disabled)

70

60

50

40

lcc (HA)

30

20

AI“"E',® 316

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-16. Standby Supply Current vs. V¢ (1 MHz Resonator, Watchdog Timer Disabled)

60

50

40

30

lcc (MA)

20

10

15 2 2.5 3 3.5 4 4.5 5 5.5

Figure 27-17. Standby Supply Current vs. V¢ (2 MHz Resonator, Watchdog Timer Disabled)

90

80

70

60

< 50

Iec (u

40

30

20

10

0

AIMEL 317

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-18. Standby Supply Current vs. V¢ (2 MHz Xtal, Watchdog Timer Disabled)

80

70

60
50

40 L —

lcc (HA)

30

20

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Figure 27-19. Standby Supply Current vs. V¢ (4 MHz Resonator, Watchdog Timer Disabled)

140

120 /

100

} /

60 |

lcc (HA)

40

20

1.5 2 25 3 3.5 4 4.5 5 5.5

AI“"E',® 318

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-20. Standby Supply Current vs. V¢ (4 MHz Xtal, Watchdog Timer Disabled)

140

120

100

80

lcc (WA)

60

40

20

Figure 27-21. Standby Supply Current vs. V. (6 MHz Resonator, Watchdog Timer Disabled)

160

140

120

100

80

lcc (LA)

60

40

20

AI“"E',® 319

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-22. Standby Supply Current vs. V¢ (6 MHz Xtal, Watchdog Timer Disabled)

180

160

140

120

100

lcc (MA)

80
60
40
20

0

27.7 Pin Pull-up

Figure 27-23. 1/0O Pin Pull-up Resistor Current vs. Input Voltage (V¢ = 5V)

160
85°C

140

120

100

80

lo (MA)

60

40

20

8019K-AVR-11/10

15 2 25 3 35
Ve (V)

5.5

-40°C

25°C

o

N
w

Vio (V)

ATMEL

320

ATmegal65P

Figure 27-24. I/O Pin Pull-up Resistor Current vs. Input Voltage (V¢ = 2.7V)

90

80
85°C 25°C

70

-40°C
60
) \

40

lio (HA)

30

20

Figure 27-25. I/O Pin Pull-up Resistor Current vs. Input Voltage (Vo = 1.8V)

60

50
85°C \25°c
40

lop(LA)

30

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Vor (V)

AImEl@ 321

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-26. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 5V)

120
-40°C
25°C
100
85°C
80
<
T 60
40
) \\

0 1 2 3 4 5 6
Vaeser (V)

Figure 27-27. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 2.7V)

70

60
-40°C

25°C

50

85°C

N
o

w
o

IreseT (MA)

20

0 05 1 15 2 25 3
VRESET (V)

AImEl@ 322

8019K-AVR-11/10

ATmegal65P

Figure 27-28. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V¢ = 1.8V)

40

-40°C
35

25°C
30

85°C

n
[&)]

N
o

IreseT (MA)

/

—_
[&,] o

27.8 Pin Driver Strength

Figure 27-29. 1/0O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (Vgc = 5Y)

70
60
-40°C
%0 25°C
85°C
< 40
3
53

TZ N\

Vor (V)

AI“"E',® 323

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-30. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (V¢ =2.7V)

25
-40°C
20 25°C
85°C
15
<
E
3
10
5
0
0 05 1 15 2 25 3

Von (V)

Figure 27-31. /O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (Vc = 1.8V)

-40°C

85°C

AI“]EL@ 324

8019K-AVR-11/10

ATmegal65P

Figure 27-32. I/O Pin Source Current vs. Output Voltage, Port B (Vo= 5V)

80

70

-40°C

60

s \
ZNNN

50

40

loH (mA)

30

20

N\

Figure 27-33. I/O Pin Source Current vs. Output Voltage, Port B (V¢ = 2.7V)

35
30
-40°C
25 25°C
85°C
< 20
£
3

)
)/

15

AN

10

8019K-AVR-11/10

ATMEL

2.5 3

325

EE——————————————————————————————— A Tmega165P

Figure 27-34. I/O Pin Source Current vs. Output Voltage, Port B (Vg = 1.8V)

-40°C
25°C [
8 %\

85°C T

IOH (mA)
(&3]

Figure 27-35. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (Vg¢ = 5V)

50
. /
40

35

-40°C

25°C
85°C

30

25

|OL (mA)

20

AN
\

8019K-AVR-11/10

8019K-AVR-11/10

Figure 27-36. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (Vg =2.7V)

|o|_ (mA)

50

45

40

35

30

25

20

/
/
/
/
/
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Vo (V)

-40°C

25°C
85°C

Figure 27-37. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (V¢ = 1.8V)

loL (MA)

7

0.2

ATMEL

0.8

Vo (V)

1.2

-40°C

25°C
85°C

ATmegal65P

327

EE——————————————————————————————— A Tmega165P

Figure 27-38. 1/0O Pin Sink Current vs. Output Voltage, Port B (V¢ = 5V)

90

80 -40°C
70

25°C
85°C

60

50

loL (MA)

40

30

20

10

Figure 27-39. I/O Pin Sink Current vs. Output Voltage, Port B (Vo =2.7V)
35

-40°C

30

25°C
85°C

25

20

|o|_ (mA)

Vo (V)

AI“"E',® 328

8019K-AVR-11/10

ATmegal65P

Figure 27-40. I/O Pin Sink Current vs. Output Voltage, Port B (Vo= 1.8V)

12
-40°C
10
25°C
8 85°C
< /
E 6
2
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Vo (V)
27.9 Pin Thresholds and Hysteresis
Figure 27-41. 1/0O Pin Input Threshold Voltage vs. V¢ (V|y, /O Pin Read as “17)
3 85°C

25°C
-40°C
25

=
ke, /
215 ==
[7]
i
£
= /
1
0.5

1.5 2 25 3 35 4 4.5 5 5.5

AI“"E',® 329

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-42. 1/O Pin Input Threshold Voltage vs. V¢ (V, /O Pin Read as “0”)

3
85°C
25
25°C
-40°C
2
s
D
215
¢
e
=
1
05
0
15 2 25 3 35 4 45 5 55
Vee (V)
Figure 27-43. 1/O Pin Input Hysteresis vs. V¢
0.6
-40°C
0 |\
25°C
0.4 \
S . \
- 85°C /
203
5 ~—
2
T
5 02
Q.
£
0.1
0
15 2 25 3 35 4 45 5 55

AI“]EL@ 330

8019K-AVR-11/10

ATmegal65P

Figure 27-44. Reset Input Threshold Voltage vs. V¢ (V\4,Reset Pin Read as “1”)

25

2 /

/
/%
_4ooc/’%
250(://

1 00 CU

Threshold (V)

0.5

1.5 2 25 3 3.5 4 4.5 5 5.5

Figure 27-45. Reset Input Threshold Voltage vs. V¢ (V, ,Reset Pin Read as “0”)

25 85°C
25°C
/ -40°C
2 /
//
S 15
°
2
[7]
4
=
=
0.5
0
1.5 2 25 3 3.5 4 4.5 5 55

Vee (V)

AI“"E',® 331

8019K-AVR-11/10

ATmegal65P

Figure 27-46. Reset Input Pin Hysteresis vs. V¢

0.7

06 |-40°C
0.5

25°C

85°C \

o
~

Input Hysteresis (V)
o
w

0.2

0.1

1.5 2 25 3 3.5 4 4.5 5 5.5

27.10 BOD Thresholds and Analog Comparator Offset

Figure 27-47. BOD Thresholds vs. Temperature (BOD Level is 4.3V)

4.6

4. -
° Rising Vcc

4.4

Falling V¢
4.3

Threshold (V)

4.2

4.1

50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 8 9 100
Temperature (°C)

AI“"E',® 332

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-48. BOD Thresholds vs. Temperature (BOD Level is 2.7V)
3

2.9

Rising Ve

2.8

57 Falling|Vec

Threshold (V)

2.6

2.5

2.4
-50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 8 9 100

Temperature (°C)

Figure 27-49. BOD Thresholds vs. Temperature (BOD Level is 1.8V)

2.1

V)

Rising Ve

1.8 l::qlllng V(,(,

Threshold (

-50 -40 -30 -20 -10 O 10 20 30 40 5 60 70 8 9 100

Temperature (°C)

AI“"E',® 333

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-50. Bandgap Voltage vs. V¢
1.14

85°C
1.11 25°C

11 — -40°C

Bandgap Voltage (V)

1.09

1.08
1.5 2 25 3 3.5 4 4.5 5 55
Vee (V)

Figure 27-51. Analog Comparator Offset Voltage vs. Common Mode Voltage (Vq; = 5V)
0.008

85°C
0.006 25°C

//]

Ll

-0.002

(V)

Comparator Offset Voltage

-0.004

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Common Mode Voltage (V)

AI“"E',® 334

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Figure 27-52. Analog Comparator Offset Voltage vs. Common Mode Voltage (V¢ = 2.7V)

0.003
85°C

0.002
/ - 25°C
0.001

-40°C

Comparator Offset Voltage (V)

-0.002 ' , f
-0.003

-0.004

0 0.5 1 1.5 2 25 3
Common Mode Voltage (V)

27.11 Internal Oscillator Speed

Figure 27-53. Oscillator Current vs. V¢ (32 kHz Watch Crystal)
1.00

0.90 85°C
—— 25°C
0.50 | _— |

0.40

0.80

0.70

lcc (MA)

0.30

0.20

0.10

0.00 1
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Vee (V)

AI“"E',® 335

8019K-AVR-11/10

8019K-AVR-11/10

Figure 27-54. Watchdog Oscillator Frequency vs. V¢
WATCHDOG OSCILLATOR FREQUENCY vs. V¢

ATmegal65P

1200

1150

1100

-40°C
25°C
85°C

L\

1050

1000

Frc (kHz)

A
\

950

900

850

800

25 3

3.5 4

Vee (V)

45 5 5.5

Figure 27-55. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

8.8

8.6

8.4

8.2

8

Fre (M Hz)

7.8

7.6

7.4

7.2

A\

\

2.7V

1.8V/

\

4.0V
5.5V

-60

ATMEL

T2 (°C)

100

336

EE——————————————————————————————— A Tmega165P

Figure 27-56. Calibrated 8 MHz RC Oscillator Frequency vs. V¢

10
9.5
9
8.5 85°C
~
I
S g — 25°C
2
'
7.
5 -40°C
7
6.5
6
15 2 25 3 35 4 45 5 5.5

Figure 27-57. Calibrated 8 MHz RC Oscillator Frequency vs. Osccal Value

16
85°C
14 / 25°C
-40°C
A
12
_ /
) Y
> Z2
& % %/
8 / = =
/
>
6 /
_—=F
—
4 1
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL VALUE

AI“"E',® 337

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

27.12 Current Consumption of Peripheral Units

Figure 27-58. Brownout Detector Current vs. V¢

30

25

20

A)

15

lec (b

10

350

300

250

~ 200

lec (A

150

100

50

15

-40°C
85°C
—————— o5
T 25°C
i —
|
2 25 3 35 4 45 5 5.5
Ve (V)
Figure 27-59. ADC Current vs. V¢ (AREF = AVCC)

-40°C
25°C
85°C

/
——
2 25 3 35 4 45 5 55
Vee (V)

8019K-AVR-11/10

ATMEL

338

8019K-AVR-11/10

Figure 27-60. AREF External Reference Current vs. V¢

160 85°C
25°C
140 / -40°C
120 /
100
<
=
. 80
60
40
20
0
1.5 2 2.5 3 3.5 4 4.5 5 55

ATmegal65P

The differential current consumption between Power-save with WD disabled and 32 kHz TOSC

represents the current drawn by Timer/Counter2.

Figure 27-61. Watchdog Timer Current vs. V¢

<
2 3
Q
Re)

1.5 2 25 3 3.5 4 45 5 55
Vee (V)

ATMEL

85°C
25°C
-40°C

339

ATmegal65P

Figure 27-62. Analog Comparator Current vs. V¢

120
100 -40°C
80 25°C
— — &C
<
= 60
8 —
—
40
20
0
1.5 2 2.5 3 3.5 4 4.5 5 5.5

Figure 27-63. Programming Current vs. V¢

25
-40°C
20
25°C
15
t 85°C
3
10 \/
0
1.5 2 2.5 3 3.5 4 4.5 5 55

Vee (V)

AI“"E',® 340

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

27.13 Current Consumption in Reset and Reset Pulsewidth

Figure 27-64. Reset Supply Current vs. V¢ (0.1 MHz - 1.0 MHz, Excluding Current Through
The Reset Pull-up)

0.18
0.16 / 55V
0.14 5.0V
0.12 4.5V

X //// 4.0V

% 0.08 /?// 3.3V
0.06 :

—
0.04 Z?// 18V
/ /
0.02 éé//
— T
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

Figure 27-65. Reset Supply Current vs. V¢ (1 MHz - 20 MHz, Excluding Current Through The
Reset Pull-up)

3.5

3 5.5V

25 5.0V

4.5V

z 2
E

1 = / 3av

0.5 —1

——T 2.7V
1.8V
0
0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

AImEl@ 341

8019K-AVR-11/10

ATmegal65P

Figure 27-66. Minimum Reset Pulse Width vs. V¢

2500 -
2000
2 1500
Ky
kel
s
Q
®
5 1000
———— 25°C
-40°C
0 T T T T T 1
15 2 25 3 35 4 45 5 55

AImEl@ 342

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

28. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(OXFF) Reserved — — - = = - - _
(OXFE) Reserved — - - = = — - —
(0xFD) Reserved — — - = = - - _
(0xFC) Reserved — - - = = — - —
(OxFB) Reserved — - - - = = - —
(OxFA) Reserved — - - = = — - —
(0xF9) Reserved — - - = = — - —
(0xF8) Reserved — — - = = - - _
(0xF7) Reserved — - - = = — - —
(0xF6) Reserved — - - - = = - —
(0OxF5) Reserved — - - = = — - —
(0xF4) Reserved — - - - = = - —
(0xF3) Reserved — — - = = - - _
(0xF2) Reserved — - - = = — - —
(0xF1) Reserved — — - = = - - _
(0xFO) Reserved — - - = = — - —
(OXEF) Reserved — - - - = = - —
(OXEE) Reserved — - - = = — - —
(OXED) Reserved — - - = = — - —
(0XEC) Reserved — — - = = - - _
(OxEB) Reserved — - - = = — - —
(OxEA) Reserved — - - - = = - —
(OxE9) Reserved — - - = = — - —
(0xE8) Reserved — - - - = = - —
(0XE7) Reserved — — - = = - - _
[(23=9)] Reserved — - - = = — - —
(0xE5) Reserved — - - - = = - —
(OxE4) Reserved — - - = = — - —
(0xER) Reserved — - - - = = - —
(OxE2) Reserved — — - = = - - _
(0xE1) Reserved — - - = = — - —
(0xEQ) Reserved - - - - = = - -
(0xDF) Reserved — - - = = — - —
(0xDE) Reserved — - - - = = - —
(0xDD) Reserved — - - = = — - —
(0xDC) Reserved — — — — = = — _
(0xDB) Reserved — — - = = - - _
(0xDA) Reserved — - - = = — - —
(0xD9) Reserved — - - - = = - —
(0xD8) Reserved — - - = = — - —
(0xD7) Reserved — - - - = = - —
(0xD6) Reserved — — - = = - - _
(0xD5) Reserved — - - = = — - —
(0xD4) Reserved — — - = = - - _
(0xD3) Reserved — - - = = — - —
(0xD2) Reserved — - - - = = - —
(0xD1) Reserved — - - = = — - —
(0xDO) Reserved — - - = = — - —
(0xCF) Reserved — — - = = - - _
(0xCE) Reserved — - - = = — - —
(0xCD) Reserved — — — - = = - —
(0xCC) Reserved — - - = = — - —
(0xCB) Reserved — - - - = = - —
(0xCA) Reserved — — - = = - - _
(0xC9) Reserved — - - = = — - —
(0xC8) Reserved — — - = = - - _
(0xC7) Reserved — - - = = — - —
(0xC6) UDRO USARTO I/O Data Register 183
(0xC5) UBRROH | USARTO Baud Rate Register High 187
(0xC4) UBRROL USARTO Baud Rate Register Low 187
(0xC3) Reserved — — - = = - - _
(0xC2) UCSROC - UMSELO UPMO1 UPMO00 USBS0 UCSZ01 UCSZ00 UCPOLO 183
(0xC1) UCSRO0B RXCIEO TXCIEO UDRIEO RXENO TXENO UCSZ02 RXB80 TXB80 183
(0xCO0) UCSROA RXCO TXCO UDREOQ FEO DORO UPEO U2X0 MPCMO 183

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xBF) Reserved — — - = = — — _
(OxBE) Reserved — - - = = — - —
(0xBD) Reserved — — - = = - - _
(0xBC) Reserved — - - = = — - —
(0xBB) Reserved — - - - = = - —
(0xBA) USIDR USI Data Register 196
(0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNTO 196
(0xB8) USICR USISIE USIOIE USIWM1 UsIwMo USICS1 USICS0 USICLK UsITC 197
(0xB7) Reserved — - = = — - —
(0xB6) ASSR = = = EXCLK AS2 TCN2UB OCR2UB TCR2UB 146
(0xB5) Reserved — — — - = = — —
(0xB4) Reserved — - - - = = - —
(0xB3) OCR2A Timer/Counter2 Output Compare Register A 145
(0xB2) TCNT2 Timer/Counter2 (8-bit) 145
(0xB1) Reserved — — - = = - - _
(0xBO) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 Cs22 Ccs21 Cs20 143
(OXAF) Reserved — - - - = = - —
(OXAE) Reserved — - - = = — - —
(0XAD) Reserved — - - = = — - —
(0xAC) Reserved — — - = = - - _
(0xAB) Reserved — - - = = — - —
(0xAA) Reserved — - - - = = - —
(0xA9) Reserved — - - = = — - —
(0xA8) Reserved — - - - = = - —
(0xA7) Reserved — — - = = - - _
(0xAB) Reserved — - - = = — - —
(0xA5) Reserved — — - = = - - _
(0xA4) Reserved — - - = = — - —
(0xA3) Reserved — - - - = = - —
(0xA2) Reserved — - - = = — - —
(0xA1) Reserved — - - = = — - —
(0xA0) Reserved — — - = = - - _
(0x9F) Reserved — - - = = — - —
(0x9E) Reserved — - - - = = - —
(0x9D) Reserved — — — - = = — —
(0x9C) Reserved — — — - = = - —
(0x9B) Reserved — — - = = - - _
(0x9A) Reserved — - - = = — - —
(0x99) Reserved — — - = = - - _
(0x98) Reserved — - - = = — - —
(0x97) Reserved — - - - = = - —
(0x96) Reserved — — - = = - - _
(0x95) Reserved — - - = = — - —
(0x94) Reserved — — - = = - - _
(0x93) Reserved — - - = = — - —
(0x92) Reserved — - - - = = - —
(0x91) Reserved — — — - = = — —
(0x90) Reserved — - - = = — - —
(0x8F) Reserved — — - = = - - _
(0x8E) Reserved — - - = = — - —
(0x8D) Reserved — — — - = = - —
(0x8C) Reserved — = = — — _ _ _
(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 123
(0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 123
(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 123
(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 123
(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 124
(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 124
(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 123
(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 123
(0x83) Reserved - - - - = = - -
(0x82) TCCR1C FOC1A FOC1B - - - = = = 122
(0x81) TCCR1B ICNC1 ICES1 = WGM13 WGM12 Cs12 CS11 CS10 121
(0x80) TCCR1A COM1A1 COM1AQ COM1BH1 COM1B0 - - WGM11 WGM10 119
(0x7F) DIDR1 = = = = = = AIN1D AINOD 203
(OX7E) DIDRO ADC7D ADC6D ADCS5D ADC4D ADC3D ADC2D ADC1D ADCOD 221

8019K-AVR-11/10

ATMEL

344

EE——————————————————————————————— A Tmega165P

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0x7D) Reserved — — — — — — — —
(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUXA1 MUX0 217
(0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTSO 202, 221
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0O 219
(0x79) ADCH ADC Data Register High byte 220
(0x78) ADCL ADC Data Register Low byte 220
(0x77) Reserved — — — — — — — —
(0x76) Reserved — — — — — — — —
(0x75) Reserved — — — — — — — —
(0x74) Reserved — — — — — — — —
(0x73) Reserved — — — — — — — —
(0x72) Reserved — — — — — — — —
(0x71) Reserved — — — — — — — —
(0x70) TIMSK2 - - - - - - OCIE2A TOIE2 146
(Ox6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 124
(Ox6E) TIMSKO = - = - - - OCIEOA TOIEQ 96
(0x6D) Reserved — — — — — — — —
(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 59
(0x6B) PCMSKO PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINTO 60
(0x6A) Reserved — — — — — — — —
(0x69) EICRA - - - - - - 1SCO1 1ISC00 58
(0x68) Reserved — — — — — — — —
(0x67) Reserved — — — — — — — —
(0x66) OSCCAL Oscillator Calibration Register 34
(0x65) Reserved — — — — — — — —
(0x64) PRR - - - - PRTIMA1 PRSPI PRUSARTO PRADC 4
(0x63) Reserved — — — — — — — —
(0x62) Reserved — — — — — — — —
(0x61) CLKPR CLKPCE = = = CLKPS3 CLKPS2 CLKPSH CLKPSO 34
(0x60) WDTCR - - - WDCE WDE WDP2 WDP1 WDPO 50
0x3F (0x5F) SREG T H S \ N Y4 C 14
Ox3E (0x5E) SPH - - - = = SP10 SP9 SP8 10
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO 10
0x3C (0x5C) Reserved
0x3B (0x5B) Reserved
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN 264
0x36 (0x56) Reserved — — — — — — — —
0x35 (0x55) MCUCR JTD = = PUD = = IVSEL IVCE 56, 79, 249
0x34 (0x54) MCUSR = - = JTRF WDRF BORF EXTRF PORF 249
0x33 (0x53) SMCR - - - - SM2 SM1 SMo SE 4
0x32 (0x52) Reserved — — — — — — — —
0x31 (0x51) OCDR IDRD/OCD OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDRO 228
0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO 202
O0x2F (0x4F) Reserved — — — — — — — —
0x2E (0x4E) SPDR SPI Data Register 157
0x2D (0x4D) SPSR SPIF WCOL - - - - - SPI2X 156
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO 155
0x2B (0x4B) GPIOR2 General Purpose I/0 Register 2 25
O0x2A (0x4A) GPIOR1 General Purpose 1/0 Register 1 25
0x29 (0x49) Reserved — — — — — — — —
0x28 (0x48) Reserved — — — — — — — —
0x27 (0x47) OCROA Timer/Counter0 Output Compare Register A 95
0x26 (0x46) TCNTO Timer/Counter0 (8 Bit) 95
0x25 (0x45) Reserved — — — — — — — —
0x24 (0x44) TCCROA FOCO0A WGMO00 COMOA1 COMOAQ WGMO1 CS02 CSo1 CS00 93
0x23 (0x43) GTCCR TSM — — — — — PSR2 PSR10 128, 147
0x22 (0x42) EEARH - - - - - - - EEAR8 24
0x21 (0x41) EEARL EEPROM Address Register Low Byte 24
0x20 (0x40) EEDR EEPROM Data Register 24
0x1F (0x3F) EECR = = = = l EERIE EEMWE EEWE EERE 24
O0x1E (0x3E) GPIORO General Purpose 1/0 Register 0 25
0x1D (0x3D) EIMSK PCIEA PCIEO = = = = = INTO 58
0x1C (0x3C) EIFR PCIF1 PCIFO — — — — — INTFO 59

AI“"E',® 345

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x1B (0x3B) Reserved — — — — — — — —

0x1A (0x3A) Reserved — — — — — — — —

0x19 (0x39) Reserved — — — — — — — —

0x18 (0x38) Reserved — — — — — — — —

0x17 (0x37) TIFR2 = = = = = = OCF2A TOV2 146
0x16 (0x36) TIFR1 — — ICF1 — — OCF1B OCF1A TOV1 125
0x15 (0x35) TIFRO - - - - - - OCFO0A TOVO 96
0x14 (0x34) PORTG = - PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTGO 81
0x13 (0x33) DDRG - - DDG5 DDG4 DDG3 DDG2 DDGH1 DDGO 81
0x12 (0x32) PING = = PING5 PING4 PING3 PING2 PING1 PINGO 81
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO 81
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFO 81
0xOF (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO 81
OxOE (0x2E) PORTE PORTE7 PORTE6 PORTE5S PORTE4 PORTE3 PORTE2 PORTEA PORTEO 80
0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDEO 80
0x0C (0x2C) PINE PINE7 PINE6 PINE5S PINE4 PINE3 PINE2 PINE1 PINEO 81
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO 80
Ox0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO 80
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO 80
0x08 (0x28) PORTC PORTC?7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO 80
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO 80
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO 80
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTBH1 PORTBO 79
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO 79
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO 79
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO 79
0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO 79
0x00 ‘Oxzo) PINA PINA7 PINAS) PINA;S PINA4 PINA& PINAE PINA1 PINA‘) 79

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /O memory addresses
should never be written.

2. 1/0O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing 1/0
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165P is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

AI“"E',® 346

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

29. Instruction Set Summary

Mnemonics | Operands | Description Operation | Flags | #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd < Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl «- Rdh:Rdl + K ZCNV,S 2
SUB Rd, Rr Subtract two Registers Rd « Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd < Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd < Rd-Rr-C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl «— Rdh:Rdl - K ZCNV,S 2
AND Rd, Rr Logical AND Registers Rd < Rd « Rr ZN,V 1
ANDI Rd, K Logical AND Register and Constant Rd <~ Rd e K ZN\V 1
OR Rd, Rr Logical OR Registers Rd « Rd v Rr ZNV 1
ORI Rd, K Logical OR Register and Constant Rd « Rdv K ZN\V 1
EOR Rd, Rr Exclusive OR Registers Rd < Rd ® Rr Z NV 1
COM Rd One’s Complement Rd « OxFF — Rd Z,CNV 1
NEG Rd Two’s Complement Rd « 0x00 — Rd Z,CN,\V,H 1
SBR Rd,K Set Bit(s) in Register Rd « Rdv K ZNV 1
CBR Rd,K Clear Bit(s) in Register Rd « Rd e (OXFF - K) ZN\V 1
INC Rd Increment Rd < Rd + 1 ZNV 1
DEC Rd Decrement Rd « Rd -1 Z NNV 1
TST Rd Test for Zero or Minus Rd < Rd « Rd ZNV 1
CLR Rd Clear Register Rd « Rd ® Rd ZNV 1
SER Rd Set Register Rd « OxFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 « Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 «~ Rd x Rr ZC 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 « Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 « (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 « (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multielx Signed with Unsigned R1:R0 < (Rd x Rr) << 1 50 2
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC« PC+k +1 None 2
IJMP Indirect Jump to (Z) PC «Z None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC« PC+k+1 None 3
ICALL Indirect Call to (Z) PC«Z None 3
CALL k Direct Subroutine Call PC « k None 4
RET Subroutine Return PC « STACK None 4
RETI Interrupt Return PC « STACK | 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr) PC« PC+2o0r3 None 1/2/3
CP Rd,Rr Compare Rd - Rr Z,N,V,CH 1
CPC Rd,Rr Compare with Carry Rd-Rr-C Z,N,V,CH 1
CPI Rd,K Compare Register with Immediate Rd - K Z,N,V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC < PC +2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC« PC +2o0r3 None 1/2/3
SBIC P,b Skip if Bit in I/O Register Cleared if (P(b)=0) PC < PC+2o0r3 None 1/2/3
SBIS P,b Skip if Bit in I/O Register is Set if (P(b)=1) PC« PC+20r3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC«—PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC«-PC+k + 1 None 1/2
BREQ k Branch if Equal if (Z=1)then PC« PC+k+1 None 1/2
BRNE k Branch if Not Equal if (Z=0) then PC <« PC +k + 1 None 1/2
BRCS k Branch if Carry Set if (C=1)then PC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if (C=0)then PC« PC+k+1 None 1/2
BRSH k Branch if Same or Higher if (C=0)then PC« PC +k + 1 None 1/2
BRLO k Branch if Lower if (C=1)then PC« PC+k+1 None 1/2
BRMI k Branch if Minus if (N=1)thenPC« PC+k+1 None 1/2
BRPL k Branch if Plus if (N =0) then PC« PC +k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N® V=0)then PC <« PC+k +1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N® V=1)then PC« PC+k +1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H=1)then PC« PC+k+1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC« PC +k + 1 None 1/2
BRTS k Branch if T Flag Set if (T=1)then PC« PC+k +1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0) then PC <« PC +k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V=1)then PC« PC+k+ 1 None 1/2
ATMEL 347
Y ©)

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Mnemonics Operands Description Operation Flags #Clocks
_BRVC Kk Branch if Overflow Flag is Cleared if (V =0) thgn PC < PC .+ k41 N% 1/2
BRIE k Branch if Interrupt Enabled if (I=1)then PC« PC +k+ 1 None 1/2
BRID k Bra_nch if Interruet Disabled if (1=0)then PC <~ PC + k + 1 None 1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register 1/0(P,b) «— 1 None 2
CBI P,b Clear Bit in I/0 Register 1/O(P,b) < 0 None 2
LSL Rd Logical Shift Left Rd(n+1) <— Rd(n), Rd(0) «- 0 ZCNV 1
LSR Rd Logical Shift Right Rd(n) « Rd(n+1), Rd(7) «- 0 ZCNV 1
ROL Rd Rotate Left Through Carry Rd(0)«-C,Rd(n+1)« Rd(n),C«-Rd(7) Z,CNV 1
ROR Rd Rotate Right Through Carry Rd(7)«-C,Rd(n)<— Rd(n+1),C«-Rd(0) Z,C,NV 1
ASR Rd Arithmetic Shift Right Rd(n) « Rd(n+1), n=0..6 Z,CNV 1
SWAP Rd Swap Nibbles Rd(3..0)«<-Rd(7..4),Rd(7..4)«Rd(3..0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) 1
BCLR s Flag Clear SREG(s) « 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T « Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry C«1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z«1 Y4 1
CLZ Clear Zero Flag Z<« 0 z 1
SEI Global Interrupt Enable |1 | 1
CLI Gilobal Interrupt Disable 1< 0 | 1
SES Set Signed Test Flag S« 1 S 1
CLS Clear Signed Test Flag S«<0 S 1
SEV Set Twos Complement Overflow. V1 \ 1
CLV Clear Twos Complement Overflow V<0 \4 1
SET Set T in SREG T 1 T 1
CLT Clear T in SREG T<0 T 1
SEH Set Half Carry Flag in SREG He1 H 1
CLH Clear Half Carry Flag in SREG H<« 0 H 1
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd « Rr None 1
MOvVW Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd <« K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X < X +1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd <« (Y),Y<«< Y +1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y« Y-1,Rd<« (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y + q) None 2
LD Rd, Z Load Indirect Rd « (2) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (2), Z « Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z«Z-1,Rd« (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd « (Z+q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) « Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) « Rr, X« X +1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X« X-1,(X) < Rr None 2
ST Y, Rr Store Indirect (Y) <« Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y)<Rr,Y«<Y+1 None 2
ST -Y, Rr Store Indirect and Pre-Dec. Y<Y-1,(Y)«<Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y+q) < Rr None 2
ST Z, Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)«Rr,Z«Z+1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z«Z-1,(Z)« Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+q) < Rr None 2
STS k, Rr Store Direct to SRAM (k) « Rr None 2
LPM Load Program Memory RO « (2) None 3
LPM Rd, Z Load Program Memory Rd « (2) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd < (2), Z < Z+1 None 3
SPM Store Program Memory (Z) « R1:RO None -
IN Rd, P In Port Rd « P None 1
ouTt P, Rr Out Port P < Rr None 1

8019K-AVR-11/10

ATMEL

348

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

Mnemonics Operands Description Operation Flags #Clocks
&H Rr Push Register on Stack STA&K < Rr Nﬁ 2

POP Rd Pop Regﬂer from Sta_ck Rd <~ STACK None 2

MCU CONTROL INSTRUCTIONS

NOP None 1

SLEEP (see specific descr. for Sleep function) None 1

WDR (see specific descr. for WDR/timer) None 1

BREAK For On-chip Debug Only None N/A
ATMEL 349
Y ©)

EE——————————————————————————————— A Tmega165P

30. Ordering Information

Speed (MHz)® Power Supply Ordering Code® Package!" Operation Range
AT 165PV-8Al 4A i
8 1.8V -55V mega165PV-8AU 6 Ir:dustrlalo
ATmega165PV-8MU 64M1 (-40°C to 85°C)
ATmegal165P-16AU 64A Industrial
1 2.7V - 5.5V
6 55 ATmega165P-16MU 64M1 (-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. For Speed vs. V, see Figure 26-1 on page 299 and Figure 26-2 on page 300.

Package Type
64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
64M1 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

AI“"E',® 350

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

31. Packaging Information

31.1 64A
U TIRTATERAITEARARETAARY
PIN 1 — = B
e } § PIN 1 IDENTIFIER %X
i = = "E1l E
R AR
D1
D
C 0°~7° v
%%f i o
™ A1JA tA
| | L
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL| MIN NOM MAX | NOTE
A - - 1.20
A1l 0.05 - 0.15
A2 0.95 1.00 1.05
D 15.75 16.00 16.25
D1 13.90 14.00 14.10 | Note 2
E 15.75 16.00 16.25
Notes:
1.This package conforms to JEDEC reference MS-026, Variation AEB. E1 13.90 14.00 14.10 | Note 2
2. Dimensions D1 and E1 do not include mold protrusion. Allowable B 0.30 — 0.45
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum c 0.09 020
plastic body size dimensions including mold mismatch. . - .
3. Lead coplanarity is 0.10 mm maximum. L 0.45 - 0.75
e 0.80TYP
2010-10-20
2395 Orch Park TITLE DRAWING NO. |REV.
‘ImEI, S?;nsJo;Z %rg 9a5r1 ev’v1ay 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 64A c
—— ’ 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

ATMEL

8019K-AVR-11/10

351

EE——————————————————————————————— A Tmega165P

31.2 64M1
-< @ >
O o
N '
Marked Pin# 1 ID :
L
L
L
L
o
L
L
L
L
L
L
T SEATING PLANE
TOP VIEW ™
.
- K o
- -TT~q Pin #1 Corner SIDE VIEW
/ \
] \
L L |
1 —]1 ! OptionA Pinil
— \ — Triangle
' A ~N] 3 /7
— N — COMMON DIMENSIONS
~
= - - (Unit of Measure = mm)
— [a—
— p— SYMBOL| MIN NOM | MAX | NOTE
— = OptionB b 44 A 0.80 0.90 1.00
— — %S%F A1 - 0.02 0.05
— [am—
=" — b 0.18 025 | 0.30
— — D 8.90 9.00 9.10
AnnNNNNNNANAAANN | D2 | 520 | 540 | 560
4 L_@ 4 N E 8.90 900 | 9.10
(0.20 R)
E2 5.20 5.40 5.60
BOTTOM VIEW 0.50 BSC
0.35 0.40 0.45
Notes: K 1.25 1.40 1.55
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
2010-10-19
TITLE DRAWING NO. (REV.
AIMEL 2325J0rch:ca:r: I;:;rr;ay 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 64M1 H
Em——c oan Jose, 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)

AI“IE'.@ 352

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

32. Errata
32.1 ATmega165P Rev. G

No known errata.

32.2 ATmegal65P Rev. Ato F

Not sampled.

AI“]EL@ 353

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

33. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.

33.1 Rev.K11/10

1. Removed “Not recommended for new designs” from the front page.
2. Updated the last page according to the new Atmel Brand Style Guide.

33.2 Rev.J 08/10

1. Removed Reference to LCD Controller in Table 8-1 on page 36.

2. Updated “Performing a Page Write” on page 258.

3. Minimum wait delay for tWD_EEPROM, in Table 25-14, “Minimum Wait Delay Before
Writing the Next Flash or EEPROM Location,” on page 281, has been changed to
3.6ms.

4. Updated according to Atmel document standard.

33.3 Rev. 108/07

Updated “Features” on page 1.

Updated bit description in “SREG - AVR Status Register” on page 14.
Updated “Starting a Conversion” on page 206.

Updated Table 21-6 on page 221.

Updated “System and Reset Characteristics” on page 302.

Updated representation of bit fields, that is, from WGM13:0 to WGM1[3:0].

2B

33.4 Rev. H 11/06

1. Updated “Low-frequency Crystal Oscillator” on page 30.
2. Updated Table 26-6 on page 303.
3. Updated note in Table 26-6 on page 303.

33.5 Rev. G 09/06

1. Updated “Calibrated Internal RC Oscillator” on page 28.
2. Updated “System Control and Reset” on page 43.
3. Updated Table 7-9 on page 31 and Table 7-10 on page 31.

AImEl@ 354

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

4. Added note for Table 25-15 on page 282.
Updated “Parallel Programming Characteristics” on page 279.
6. Updated “Electrical Characteristics” on page 297.

o

33.6 Rev. F 08/06

1. Updated Table 12-12 on page 76.
2. Updated “DC Characteristics” on page 297.

33.7 Rev. E 08/06

Updated “Low-frequency Crystal Oscillator” on page 30.
Updated “Device Identification Register” on page 230.
Updated “Signature Bytes” on page 269.

Added Table 25-6 on page 269.

Hob =~

33.8 Rev. D 07/06

Updated “Register Description” on page 79.

Updated “Fast PWM Mode” on page 88.

Updated “Fast PWM Mode” on page 111.

Updated Features in “USI — Universal Serial Interface” on page 188.

Added “Clock speed considerations” on page 195.

Updated Table 13-2 on page 93, Table 13-4 on page 94, Table 14-2 on page 119,Table
14-3 on page 120, Table 14-4 on page 121, Table 16-2 on page 143 and Table 16-4 on
page 144.

7. Updated “UCSRnC — USART Control and Status Register n C” on page 185.

8. Updated “Register Summary” on page 343.

ook wn =

33.9 Rev. C 06/06

Updated typos.

Updated “Calibrated Internal RC Oscillator” on page 28.

Updated “OSCCAL — Oscillator Calibration Register” on page 34.
Added Table 26-2 on page 301.

b~

33.10 Rev. B 04/06

1. Updated “Calibrated Internal RC Oscillator” on page 28.
1. Updated “Sleep Modes” on page 36.

AImEl@ 355

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

33.11 Rev. A 03/06

1. Initial revision.

AI“"E',® 356

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

Table of Contents

8019K-AVR-11/10

L= 1 = L 1
Pin CONfiQUIALIONSceeeeiecciisemeesicssssssseenssssssssssn e e ssssssssss s e s snsssssssnensssssssan 2
O T 1T =Y o = SRR 2
(0= V- U 3
2.1 BIOCK DIGQIaMeiieiiiiiiiieiie ettt e e e e e e e e s e e e e e as 3
P2 T T I L= o o] (o) o 1= 5
RESOUICES ...ccccsisssssssssssssssnsennnnnnnnsnsssssssssssssssssssssssssssssssssnsnnnnnnnnnnnnssnmmmmmmnes 7
About Code EXAMPIESccceesuuueemmeeenennnnnssssssssssssssssssssssssssssssssnnnnnnnsnnnns 8
AVR CPU COFE ...t 9
B.1 OVEIVIEW .ottt ettt e et e s r e e anr e s ne e e s ann e e s nneeennneeeane 9
5.2 ALU — Arithmetic LOGIC UNItoiiiiiiiiiiie e 10
5.3 StACK POINTET ... 10
5.4 Instruction EXeCUtion TiMINGcoeeiiiiiiiiiiiiiiii e e 11
5.5 Reset and Interrupt HaNdliNgcoooviiiiiiiiiii e 12
5.6 StAtUS REGISIEN ..oiiiiieiie e 14
5.7 General Purpose Register File ... 15

L N T4 =1 Lo 4 =T S 17
6.1 In-System Reprogrammable Flash Program Memoryccccovvieeiiiiiiieeenininennn. 17
6.2 SRAM Data MEMOIY ...cccoiie et e e e e e e e s e e e e e e e e e e e e nnnenaeees 18
6.3 EEPROM Data MEMOTYueiiiiiieiiiee ettt ettt 19
B.4 1/O IMBMOIY ..ottt ettt b e st e s b et e e e e ebe e e e e nne e enr e e e aane e e enneas 23
6.5 General Purpose 1/0 RegiSIErscooiiiiiiiiie i 24
6.6 Register DESCIIPIONoiiiiieie e 24

7 System Clock and CIOCK OPLIONSccovvvemmmmmmmmmemmmmmmmmmsmmssssssssssssssssas 26
7.1 Clock Systems and their Distributionccooceiiiiiiiii e, 26
7.2 CIOCK SOUICES ...ceeiiiieiiiie ittt ettt sttt s bt e s e e sbe e e e aane e e nr e e e anneeesnneas 27
7.3 Default ClOCK SOUICEccocuiiiiiiie ittt 28
7.4 Calibrated Internal RC OSCillatorccoiuiiiiiiiiiiiiee e 28
7.5 Crystal OSCillAtOrocuiiiiiiieiiiie et nr e e 29
7.6 Low-frequency Crystal OSCillatorc.cooiuiiiiiiiieiiieeciee e 30
7.7 EXTEINAI ClOCK ...eiiiiiiiiieie ittt e s b e s 32
7.8 Timer/Counter OSCIllatOrccoiiiiiiiiieie e 33

ATMEL |

8

9

10

11

12

13

ATMEL

7.9 CIOCK OULPUE BUFFEI .. e 33
7.10 System CIOCK PreSCalerc.cooiiiiiiiiieiiie e 33
7.11 Register DeSCHPLONoiciiiiii e 34
Power Management and Sleep MOdEeScocemeeeeeersmmmmsscssssssnnnnnnns 36
S IS ==Y o /Lo 1= SR 36
8.2 1018 MOTE ...t 37
8.3 ADC Noise Reduction MOGEccceeiiiiiiiiiiiiiii et 37
8.4 POWEIr-AOWN MOTEooiiiiiiiiiie et 37
8.5 POWEI-SaVE MOEooiiiiiiiiiie e 38
8.6 StANADY MOGE ..ot 38
8.7 Power Reduction REGISIErccoiiuiiiii it 38
8.8 Minimizing Power CONSUMPLIONccoiiiiiiiiiiiiiienieee e 39
8.9 Register DESCIIPONciiiiiiiiie e 41
System Control aNd RESELcemmmiicciieeeennssccssameeessscsssssmneesssssesan 43
9.1 Resetting the AVR ... s 43
9.2 RESEE SOUIMCES ..ottt ettt sttt e e st e e nr e s br e e s aabe e e enneas 43
9.3 Internal Voltage ReferenCeoooieiiiiiiiiiii s 47
9.4 WatChdOg TIMET ...t e s e e s 47
9.5 Register DESCIIPONcoiiiiiiiie e 50
a1 0=] g 7] o N 52
10.1 Interrupt Vectors in ATMEgaTB5P ... 52
10.2 Moving Interrupts Between Application and Boot Spaceccccccceveveciieeeeenen. 55
10.3 Register DeSCHIPHONcoiiiiiiiiie e 56
EXIernal INTEITUPIESeeecceeeeeieseeeeeemmmmesss s ssssss s s s s s e n e m s s 57
11.1 Pin Change Interrupt TIMINGcoooiiiiiiii e e 57
11.2 Register DeSCHIPHONcoiiiiiieii e 58
0 oo T . 61
T2.1 OVEIIEW ettt ettt b e st e e s b e e e s be e e s anee e e nreesnreeennns 61
12.2 Ports as General Digital I/Ocoouiiiiiiiiiiee e 62
12.3 Alternate Port FUNCLIONSoooiiiiiiiiiie e 67
12.4 Register DESCIIPHONcoiiiiiiiii e 79
8-bit Timer/CounterQ With PWIMeeemmmeeeeceeeeeeecccsemeee s s 82
131 FRATUIES . e e 82
13.2 OVEIVIEW ..ttt e e et e e e bb e e st e e e sn b e e e saneesaneeeesaneeenee 82

ATmegal65P me————ss————————————————

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

13.3 Timer/Counter CIOCK SOUICEScueiiiiiieiiiieiiiee ettt e e 83
13.4 CoUNTEr UNIE it e re e snn e 83
13.5 Output CompPare UNItoocuiiiiiiiiiiee e e 84
13.6 Compare Match Output Unitooceiiiiiiie e 86
LRIV A\ FoTo [=Y=] @ oT=T = o] o [RS 87
13.8 Timer/Counter Timing DIiagramsccccoiiiiiiiiieeiiee e 91
13.9 Register DESCIIPHONcoiiiiiiiii e 93
14 16-Dit TIMEI/COUNTIEIT ...t e s e s s ssmm e s s ssmmn e e 97
141 FEATUIES ..o e e 97
T4.2 OVEIVIEW ...ttt ettt e e e st e e bt e e s be e e s b b e e e aaneeeanreeesaneeenee 97
14.3 Accessing 16-bit RegiSters ... 100
14.4 Timer/Counter CIOCK SOUICEScueiiiiiiaiiiieiieee ettt ettt e e 102
14.5 CoUNTEr UNIE et re e rnne e 103
14.6 INput Capture UNiteeiieiiiiee et e s e e e eennes 104
14.7 Output Compare UNILSccueiiiiiiiiiiie et e e e 106
14.8 Compare Match Output Unitccuiiiiiiiiiee e 108
e 1Y FoTe [T] @] o =T = o] o H P RPR 109
14.10 Timer/Counter Timing DIagramscooceieiieieiiieie e eseee e 117
14.11 Register DeSCrPLONoociiiiiiiiieie e 119
15 Timer/Counter0 and Timer/Counter1 Prescalersccoeceevvuunennnn. 126
15,1 OVEIVIEW ..ttt s e et e st st e e e s br e e s be e e s aneeeennneeea 126
15.2 Prescaler RESel ...t 126
15.3 INternal CIOCK SOUICEooiuiiiiiiiieiiie ettt e e 126
15.4 External ClOCK SOUICEc.uiiiiiiiiiiiii ettt 126
15.5 Register DESCHIPHONccoiiiiiieie e 128
16 8-bit Timer/Counter2 with PWM and Asynchronous Operation 129
18.1 FEATUIES .o 129
1B.2 OVEIVIEW ..ttt ettt et e st e e e st et e st e e e sabe e e ebreesneeesaneeeeanneeeas 129
16.3 Timer/Counter CIOCK SOUICEScueiiiieiiiiiieiieie ettt e e 130
16.4 CoUNTEr UNIE et re e e nnne e 130
16.5 Output Compare UNitcoeiiiiiiiiiee e 131
16.6 Compare Match Output Unitoceiiiiiiiiiiee e 133
16.7 MOdeS Of OPEIatioNccciiiiiiiiiiiiiiiie e e e e e e e 134
16.8 Timer/Counter Timing DIiagramsccccoiiiiieniieiiee e 138
16.9 Asynchronous operation of the Timer/Counterc.ccccovviiiiiiiii i 140

AImEl@ i

8019K-AVR-11/10

ATMEL

16.10 Timer/Counter PreSCalerooiiieiiiiiiiiiie et 142

16.11 Register DeSCrPLONoociiiiiiiieiee e 143

17 SPI — Serial Peripheral INterfacecccuueeeveevvvvvvssssssssssssssssnnnnnnnnnns 148
171 FEAUIES .o 148

17.2 OVEIVIEW ..ttt ettt e e s st e e e st e e e st et e e breesbeeesaneeeeanneeans 148

17.3 SS Pin FUNCHONANIYoovivvcvcececicieee et 153

17.4 Data MOAES ... e 154

17.5 Register DESCHIPHONccoiiiiiiieiiiiee e 155

T8 US AR .ottt ettt s st s s s s s s s s s s s s s s e e e nnmmmmmmsssssssssssssssssssnsnnnnnnnnnnnnnnn 158
18.1 FRATUIES .o e 158

18.2 OVEIVIEW ..ttt ettt et e et e st e e e st e e e breesbeeesanreeeanneeeas 159

18.3 ClOCK GENEIAtIONcoiiiiiiiiiie et 160

18.4 Frame FOrMALScooiiiiiiiiiiie e e 163

18.5 USART INItIAliZatiONoooieiiiiiieieee e 165

18.6 Data Transmission — The USART Transmittercccccviiiiiiiiniiieeiieee e 167

18.7 Data Reception — The USART RECEIVETccvviviiiiiiiie e 170

18.8 Asynchronous Data Receptionoccoviiiiiiiie e 175

18.9 Multi-processor Communication MOdEoccueiiiiiiiiiiei e 178

18.10 Examples of Baud Rate Settingcccooceiiiiiiiiiii e 179

18.11 Register DeSCrPLONocieiiiiiiiiie e 183

19 USI - Universal Serial INterfaceouueeeeeeevsmmmmsriviiseennnsscsssssnnnnns 188
19,1 FRATUIES .o 188

1.2 OVEIVIEW ..ttt ettt et e e s et e st e e e st e e e s breesbeeesaneeeeanneeans 188

19.3 Functional DeSCHPLIONSoooiiiiiiiiieie et 189

19.4 ARRErNAtive UST USAQJEcoocveiiiiiiiiiiee ettt s 195

19.5 Register DESCIIPHONScoicuiiiieiictieie e 196

20 AC - Analog COMPALALOLccceeeessnmeeeiccsisssammenssssssssssmnessssssssssnnnsssssssas 200
20.1 Analog Comparator Multiplexed INPULoocuieieiiiiiiie e 201

20.2 Register DesCrPONociiiii e e 202

21 ADC - Analog to Digital CONVEITEreemeeeericcciemeeeescscsssmenennseaas 204
211 FEALUIES ot 204

21,2 OVEIVIBW .ttt ettt ettt s et e s be e e st e e e sabr e e e nreesbee e e snneeenee 204

P2 T @ o =T = 1o) o [RS 205

21.4 Starting @ CONVEISIONccueiiiiiieiiiee ettt nne e 206

iv ATmega165P m—————————————

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

21.5 Prescaling and Conversion TiMINGccoceeeiiieeonieeerieee e s 207
21.6 Changing Channel or Reference Selectionccccooeiiiiiiiiii e 209
21.7 ADC NOISE CANCEIETcciuieiiiiie ettt 211
21.8 ADC Conversion RESUIEoiiiiiiiiiie e 215
21.9 Register DesCrPONooocuiiiii e 217
22 JTAG Interface and On-chip Debug SyStemcccoeeevvvviscmennsscncnns 222
22.1 OVEIVIBW .ttt ettt ettt ettt e et s b e e e s be e e st e e e sanr e e e anreesbbeeesnneeenee 222
22.2 TAP —Test ACCESS POIToeiiiiieiie e 223
22.3 TAP CONIOIIET ettt nre e 225
22.4 Using the Boundary-scan Chaincooeeiriiiieiiee e 226
22.5 Using the On-chip Debug SYSteMccoiiiiiiiiiiiiiiie e 226
22.6 On-chip Debug Specific JTAG INSIrUCHONScocoiiiiiiiiiiiiiiee e 227
22.7 Using the JTAG Programming Capabilitiesccoccveeriiiiiiiiieniee e 227
22.8 BIDlIOGraphyeeiiiiieiee e 228
22.9 Register DeSCHPONooociiiii e e 228
23 IEEE 1149.1 (JTAG) Boundary-SCanccoeeeeemmmmmmemmmssssssssmsssssssssas 229
23,1 FEALUIES oot 229
23.2 SYSIEM OVEIVIEW ...eiiiiiiiiiii ettt e b e s nn e eeee 229
23.3 Data REgISIErScooiieeiei e 230
23.4 Boundary-scan Specific JTAG INStruCtionsccoieeiiieiinieee e 231
23.5 Boundary-scan Chainccoocueiiiiiie e 232
23.6 ATmega165P Boundary-sCan Ordercccoceeeiiiieiiiieeniee e 242
23.7 Boundary-scan Description Language Filescccocoiviiiieiiiniiiiee e 248
23.8 Register DesCrPONocciiiiiieie e e 249
24 Boot Loader Support — Read-While-Write Self-Programming 250
241 FEALUIES .ottt 250
24.2 OVEIVIEBW ..ttt ettt ettt et e et e bt s bt e e s be e e sabe e e sanre e e anreesbbe e e anneeenee 250
24.3 Application and Boot Loader Flash Sectionsccccccevviiieiiiniiiien e 250
24.4 Read-While-Write and No Read-While-Write Flash Sectionsccccoevveennee 251
24.5 Boot Loader LOCK BitSceviiiiiiiieiieiee e 254
24.6 Entering the Boot Loader Program ... e 255
24.7 Addressing the Flash During Self-Programmingcccocceeriiieinieenieee e 256
24.8 Self-Programming the FIash ..o 257
24.9 Register DeSCrPONocciiiii e 264
25 Memory Programmingeeeeeemmmmmmmmmmmsssssssssssssssssssssssssssssssssssmmmmns 266

ATMEL v

8019K-AVR-11/10

ATMEL

25.1 Program And Data Memory LOCK BitScccoeeiiiiiiie e 266

25.2 FUSE BIS .oiiiiieiie ittt 267

25.3 Signature BYLESoooiuiiiiiiiieiee ettt 269

25.4 Calibration BYLeccceiiiiiiiiiiie et 269

25.5 PAJE SIZE ..ottt 269

25.6 Parallel Programming Parameters, Pin Mapping, and Commands 269

25.7 Parallel Programmingc..eeoooiimeieeiieeee e e s 272

25.8 Serial DOWNIOAAINGeiiiiieiiiiie ettt nr e s 279

25.9 Programming via the JTAG Interfaceccoocvviiiiiiiiieic e 284

26 Electrical CharacCteriStiCSccouueoomeemrcrrsssmmenssssssssssmenssssssssssnsnsssssssas 297
26.1 Absolute Maximum RatingS™cooiiiiiiiiee e e 297

26.2 DC CharacteriStiCScciiuiiiiiieiiiie et 297

P2 ST o 1=Y =Y €T - To [RS 299

26.4 CIOCK CharacteriStiCSueiirieeiriieieiiie et 301

26.5 System and Reset CharacterisStiCsccccvviieiiiiiiiieee e 302

26.6 ADC Characteristics — Preliminary Dataccccoooeiiiiiiinii e 303

26.7 Parallel Programming CharacteristiCsccocveiiiiiiiiiiiinieeeee e 304

26.8 SPI Timing CharacteristiCsccuiiiiiiiiiiieiee e 306

27 Typical CRAracteriStiCsccucureemmmrrrsssssummnnsssssssssmnnssssssssssnnnnnsssssssas 308
27.1 Active SUPPIY CUITENT ..ot e e 308

27.2 1dIe SUPPIY CUITENT ...eeiieiiiiiiee ettt e e e e e e e e e nreee e e e ennees 311

27.3 Supply Current of I/O MOAUIESccceiiiuiiiieiiiiiiie e 313

27.4 Power-down SUPPly CUITENTeuiiiiiiiiee et e e e 314

27.5 Power-save SUPPly CUITENTuiiiiiiiiiiie e e e e e 315

27.6 Standby SUpPly CUITENTooiiiiiiiee e e 316

27.7 PINPUIFUD .ottt en e n s, 320

27.8 Pin Driver STreNGthoooiiiiiie et 323

27.9 Pin Thresholds and HYSIEresis ..o 329

27.10 BOD Thresholds and Analog Comparator Offsetc.ccceviiiiiiee e 332

27.11 Internal OSCIllator SPEEAoeiiiiiiiiiie e 335

27.12 Current Consumption of Peripheral Unitsccccccciieiiiiiiii e 338

27.13 Current Consumption in Reset and Reset Pulsewidthcccccoeiiiienennnee. 341

28 ReQgiSter SUMMAIYcccoovemeeericiissamnnsssssssssmenssssssssssnssssssssssssnnnsssssssssns 343
29 Instruction Set SUMMAIYccoeeeemeeiiciiismmeessscssssssmsenssssssssnsnesssssas 347
vi ATmega165P m—————————————

8019K-AVR-11/10

EE——————————————————————————————— A Tmega165P

8019K-AVR-11/10

30
31

32

33

(0o (=Yg TaTe [l [] (T g 11T 11 Lo o HR S 350
Packaging INfOrmationceeemmmmeeeusssssssssssssssssssssmsmmmsssssssssssssssssnns 351
B1.1 BAA oottt a bt 351
BT.2 BAMT oottt 352
] - 1 N 353
32.1 ATMEQGATB5P REV. G ...ooiiiiiiiiie ittt s 353
32.2 ATmegalB5P Rev. ATOF .o 353
Datasheet ReViSion HiSTOIYcouvvmvcvrsssssssssssssssssnnnnnnnnennnsssssssssssns 354
83,1 REV. J 08/10 .oviviiiiiieeeeete ettt 354
83,2 REV. 1 08/07 ...ttt 354
83.3 REV. H T1/0B ..o 354
83.4 REV. G 09/06vviiriiieeeeeieieie ettt sttt 354
83.5 REV. F 08/06 ...ttt b ettt 355
83.6 REV. E 08/06ovveiiriiieieieieie ettt 355
83.7 REV. D 07/06 ..ottt 355
83.8 REV. C 06/06vvevirieiieiieeeieieietete ettt b et s s s s st 355
83.9 REV. B 04/06 ...ttt 355
83,10 REV. A 03/06 ...ttt sttt 356
Table Of CONEENTS...........eueeeeeeeeeeeeeeeeeesesssssssssssssssssssssssssnsmmnnnnnnnnnnsnnssnssssnens i

AImEl@ vii

AIMEL

Y (5

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
JAPAN

Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581

Fax: (+852) 2722-1369

© 2010 Atmel Corporation. All rights reserved. / Rev. CORP072610

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

8019K-AVR-11/10

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

ATMEGA165PV-8AU ATMEGA165P-16AU ATMEGA165P-16MU ATMEGA165PV-8MU ATMEGA165PV-8AUR
ATMEGA165PV-8MUR ATMEGA165P-16AUR ATMEGA165P-16ANR ATMEGA165P-16MNR ATMEGA165P-16MUR
ATMEGA165PV-8ANR ATMEGA165PV-8MNR ATMEGA165P-16MN ATMEGA165P-16AN ATMEGA165PV-8AN

ATMEGA165PV-8MN

https://www.mouser.com/atmel
https://www.mouser.com/access/?pn=ATMEGA165PV-8AU
https://www.mouser.com/access/?pn=ATMEGA165P-16AU
https://www.mouser.com/access/?pn=ATMEGA165P-16MU
https://www.mouser.com/access/?pn=ATMEGA165PV-8MU
https://www.mouser.com/access/?pn=ATMEGA165PV-8AUR
https://www.mouser.com/access/?pn=ATMEGA165PV-8MUR
https://www.mouser.com/access/?pn=ATMEGA165P-16AUR
https://www.mouser.com/access/?pn=ATMEGA165P-16ANR
https://www.mouser.com/access/?pn=ATMEGA165P-16MNR
https://www.mouser.com/access/?pn=ATMEGA165P-16MUR
https://www.mouser.com/access/?pn=ATMEGA165PV-8ANR
https://www.mouser.com/access/?pn=ATMEGA165PV-8MNR
https://www.mouser.com/access/?pn=ATMEGA165P-16MN
https://www.mouser.com/access/?pn=ATMEGA165P-16AN
https://www.mouser.com/access/?pn=ATMEGA165PV-8AN
https://www.mouser.com/access/?pn=ATMEGA165PV-8MN

OCEAN CHIPS

OxreaH INeKTPOHMUKM
MocTaBKa 3ﬂeKTp0HHbIX KOMMOHEHTOB

Komnanusa «OkeaH DNEKTPOHMKM> MpEeAaraeT 3aK/Il04EHUE JONTOCPOYHbIX OTHOLLIEHMM NpU
MOCTaBKaX MMMOPTHbIX 3/1EKTPOHHbIX KOMMOHEHTOB HA B3aMMOBbIrOZHbIX YC10BMAX!

Hawwu npeumyliectsa:

- NlocTaBKa OpMrMHaIbHbIX UMMNOPTHbBIX 3/IEKTPOHHbIX KOMMOHEHTOB HanNpAMYy C NPOM3BOACTB AMEPUKM,
EBponbl M A3uK, a TaK e C KpYNHEMLIMX CKIaJ0B MMPa;

- LUnMpoKas sMHeMKa NOCTaBOK aKTUBHBIX M MACCMBHBIX MMMOPTHbBIX 3/1EKTPOHHbIX KOMMOHEHTOB (6onee
30 MJIH. HAMMEHOBAHUMN);

- MocTaBKa C/IOXKHbIX, AeDUUMUTHBIX, IM60 CHATLIX C NPOM3BOACTBA NO3ULMIA;

- OnepaTMBHbIE CPOKM NOCTABKM NOA 3aKa3 (0T 5 paboumx AHEN);

- JKCnpecc JoCTaBKa B 06YH0 TOYKY Poccuu;

- Momouwb KoHcTpyKTOpCKOro OTAena 1 KOHCynbTauumu KBaMPULUUPOBAHHBIX MHXEHEPOB;

- TexHM4ecKaa nogaepkka NpoeKTa, NomMollb B NoA6ope aHanoros, NocTaBka NPOTOTUNOB;

- [locTaBKa 3/1EKTPOHHbIX KOMMOHEHTOB NoJ, KOHTposiem BIT;

- CUcTeMa MeHeaXXMeHTa KayecTBa cepTudmumpoBaHa no MexayHapogHomy ctaHgapTy 1SO 9001;

- Mp1 HEO06XOAMMOCTH BCA NPOAYKLUMA BOEHHOIO M adPOKOCMMYECKOrO Ha3HaYeHMA NPOXoAUT

MCMbITaHMA M CEPTUMhMKALMIO B TaGOPATOPMM (MO COrIACOBAHMIO C 3aKa34YMKOM);
- MocTaBKa cneumanusmMpoBaHHbIX KOMMOHEHTOB BOEHHOMO M a3POKOCMMYECKOr0 YPOBHSA KayecTBa

(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics u gp.);

KomnaHua «OkeaH JNEeKTPOHMKKU» ABNAETCA oduuMabHbIM AUCTPUOLIOTOPOM M SKCKJIHO3MBHbBIM
npesctasuteneM B Poccum ofHOrO M3 KpPYMHEMWMX MPOM3BOAMUTENIEM Pa3beEMOB BOEHHOMO W
A3pPOKOCMMYECKOro Ha3sHavyeHuMs <«JONHON», a Tak Xe oduuMaibHbiIM AUCTPUOBIOTOPOM MU
JKCK/II03MBHbIM nNpeacTaBuTenieM B Poccvn npousBoauTENA BbICOKOTEXHOIOMMYHBIX M HaAEXHbIX
peweHun ans nepeaaym CBY curHano «FORSTAR>.

«JONHON> (ocHoBsaH B 1970 T.)

PasbeMbl crneumanbHOro, BOEHHOMo M A3POKOCMHNYECKOIo
Ha3Ha4YeHHA:

JONHON (MpuMeHsOTCA B BOEHHOM, aBMALMOHHOM, a3POKOCMMYECKOM,

MOPCKOM, KeNe3HOAOPOXKHOM, TOpHO- M HedTeao6biBatoLLeN
0Tpac/AX NPOMbILLIEHHOCTH)

«FORSTAR> (ocHoBaH B 1998 r.)

BY coegmHmnTENN, KOAKCHaNbHbIE Kabenn

’) ®
KabenbHble COOPKM M MMKPOBONIHOBbIE KOMMOHEHTbI: FORS 'AR
L

(MpuMeHsaTCA B TEJIEKOMMYHMKAUMAX FPaXXAaHCKOro M
cneuManbHOrO HasHayeHus, B cpeacTBax cBA3sM, PJIC, a TaK xe
BOEHHOM, aBMALUMOHHOM M AdPOKOCMMYECKOM OTpacisx
NPOMBILLNIEHHOCTH).

TenedoH: 8 (812) 309-75-97 (MHOroKaHasbHbIN)

dakc: 8 (812) 320-03-32

DNIeKTpPOHHas noyTa: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Appec: 198099, r. CaHkT-leTepbypr, yn. KananHuHa, 4. 2, Kopn. 4, amT. A

