

Pressure transmitters without casing (voltage output)

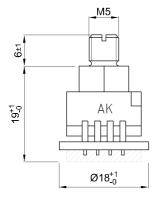
Series/Type:
Ordering code:CAU-T seriesDate:2009-08-03Version:3

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

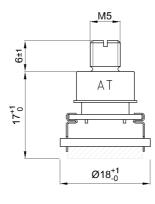
EPCOS AG is a TDK Group Company.

Pressure transmitters without casing (voltage output)

Description


- The transmitters are based on piezoresistive silicon pressure sensors from our own clean room.
- The T-series electronic compensates nonlinearity and temperature errors and supplies a precise calibrated output signal with a high immunity against electromagnetic influences (EMI).

Features


- Piezoresistive MEMS technology
- Measured media (absolute pressure): Air, non-aggressive gases (gas humidity 0 ... 85% r.h., without dew) Unsuitable for substances which react with glass, silicon, gold, aluminum, stainless steel, silicone glue or silicone gel.
- Measured media (gauge pressure): Air, non-aggressive gases (gas humidity 0 ... 100% r.h.) and non-aggressive fluids. Unsuitable for substances which react with glass, silicon, stainless steel, silicone glue ($p_r \le 10$ bar) or epoxy glue ($p_r > 10$ bar).
- Voltage output proportional to pressure: 0.5 ... 4.5 V
- Reverse supply voltage protection
- RoHS-compatible, halogen-free
- Without casing (protection IP00)

Dimensional drawings

Type KC for gauge pressure (M5 thread connection)

Type TH for absolute pressure (M5 thread connection)

All dimensions in mm

CAU-T series

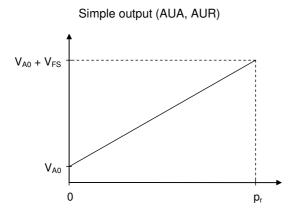
Pressure transmitters without casing (voltage output)

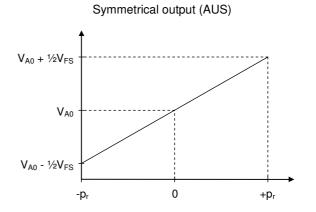
CAU-T series

Technical data

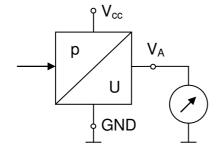
Absolute maximum ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Temperature ranges	1					I	
Storage temperature range	T _{st}	1)	-40		+105	°C	
Operating temperature range	Ta	2)	-25		+85	°C	
Compensated temperature range	T _c	3)	0		+70	°C	
Soldering temperature	T _{solder}	<5 s (no reflow soldering)			+240	°C	
Pressure ranges	1					-	
Overpressure	p _{ov}	4), 5)	1.5			pr	
Supply voltage /-current	1					-	
Supply voltage	V _{CC}	6)	4.75		5.5	V	
Supply current	Icc	$I_A = 0$			7	mA	
Signal output current	I _A	7)			2	mA	
Output signal at sensor failure	V _{ERR}				0.01	V	
DC break down voltage	V _{is}	8)	500			V	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Output signal @ T _a = 25 °C, V _{CC} =	5 V, I _A < 0.1	mA			1	l	
Offset	V _{A0}	Simple output AUA, AUR 9)	0.485	0.5	0.515	V	
		Symmetrical output AUS 9)	2.485	2.5	2.515	V	
Signal span (<u>F</u> ull <u>S</u> cale)	V _{FS}	10)	3.985	4.0	4.015	V	
Nonlinearity	L	Simple output ^{10), 11)}		±0.1	±0.25	% FS	
		Symmetrical output ^{10), 11)}		±0.25	±0.5	% FS	
Response time	t ₁₀₋₉₀	12)		1		ms	
Supply voltage rejection	SVR	10), 13)			±0.01	% FS/V	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Data in temperature range @ T _a =	-		-	- 76.	1		
Temperature hysteresis		14)		±0.1	±0.5	% FS	
Data in temperature range @ T _a =		V _{CC} = 5 V, I _A < 0.1 mA	1	-			
Temperature coefficient of offset	TCV _{A0}	p _r < 0.25 bar ¹⁵⁾		±0.015	±0.05	% FS/K	
		$p_r \ge 0.25 \text{ bar}^{15)}$		±0.015	±0.03	% FS/K	
Temperature coefficient of span	TCV _{FS}	16)		±0.015	±0.03	% FS/K	
			1				

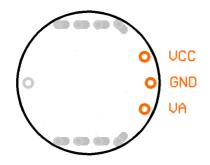



CAU-T series

Pressure sensors


Pressure transmitters without casing (voltage output)

Characteristics



Connection diagram

Electrical connection (view to soldering side)

AS SEN PD

Pressure transmitters without casing (voltage output)

CAU-T series

Rated pressures and ordering codes

Pressure measurement	Absolute			Gauge							Gauge, symmetrical						
Rated pressure p _r bar	1.000	2.500	6.000	10.00	25.00	0.100	0.250	0.400	1.000	2.500	6.000	10.00	25.00	0.100	0.250	0.400	1.000
Product type	AUA 1.000 TH V4 TN L P	AUA 2.500 TH V4 TN L P	AUA 6.000 TH V4 TN L P	AUA 10.00 TH V4 TN L P	AUA 25.00 TH V4 TN L P	AUR 0.100 KC V4 TN L P	AUR 0.250 KC V4 TN L P	AUR 0.400 KC V4 TN L P	AUR 1.000 KC V4 TN L P	AUR 2.500 KC V4 TN L P	AUR 6.000 KC V4 TN L P	AUR 10.00 KC V4 TN L P	AUR 25.00 KC V4 TN L P	AUS 0.100 KC V4 TN L P	AUS 0.250 KC V4 TN L P	AUS 0.400 KC V4 TN L P	AUS 1.000 KC V4 TN L P
Ordering code	B58620T0510A001	B58620T0510A002	B58620T0510A003	B58620T0510A004	B58620T0510A005	B58621K0510A006	B58621K0510A007	B58621K0510A008	B58621K0510A009	B58621K0510A010	B58621K0510A011	B58621K0510A012	B58621K0510A013	B58623K0510A014	B58623K0510A015	B58623K0510A016	B58623K0510A017

Other rated pressures upon request.

Pressure transmitters without casing (voltage output)

CAU-T series

Symbols and terms

¹⁾ Storage temperature range T_{st}

A storage of the pressure sensor within the temperature range $T_{st,min}$ up to $T_{st,max}$ and without applied pressure and supply voltage will not affect the performance of the pressure sensor.

²⁾ Operating temperature range T_a

An operation of the pressure sensor within the temperature range $T_{a,min}$ up to $T_{a,max}$ will not affect the performance of the pressure sensor.

³⁾ Compensated temperature range T_c

While operating the pressure sensor within the temperature range $T_{c,min}$ up to $T_{c,max}$, the deviation of the output signal from the values at 25 °C will not exceed the temperature coefficients. Out of the compensated temperature range, the deviations may increase.

⁴⁾ Rated pressure p_r

Within the rated pressure range 0 up to p_r (symmetrical output: $-p_r$ up to $+p_r$) the signal output characteristic corresponds to this specification.

⁵⁾ Overpressure p_{OV}

Pressure cycles within the pressure range 0 up to pov will not affect the performance of the pressure sensor.

⁶⁾ Supply voltage V_{CC}

V_{CC,max} is the maximum permissible supply voltage, which can be applied without damages.

V_{CC,min} is the minimum required supply voltage, which has to be applied for normal operation.

⁷⁾ Signal output current I_A

 $I_{A,\text{max}}$ is the maximum permissible sink current of the signal output.

Exceeding (e.g. short circuit) may cause irreparable damages.

⁸⁾ DC break down voltage V_{is}

The pressure sensor withstands a high voltage between the stainless steel pressure connection and the electrical connection V_{CC} , V_A and GND (all short circuited) without damage.

9) Offset V_{A0}

The offset V_{A0} is the signal output $V_A(p = 0)$ at zero pressure.

¹⁰⁾ Signal span (<u>Full Scale</u>) Simple output: $V_{FS} = FS = V_A(p_r) - V_{A0}$

Symmetrical output: $V_{FS} = FS = V_A(+p_r) - V_A(-p_r)$

¹¹⁾ Nonlinearity L (including pressure hysteresis)

The nonlinearity is the deviation of the real sensor characteristic $V_A = f(p)$ from the ideal straight line. It can be approximated by a polynomial of second order, with the maximum at $p_x = p_r / 2$. The equation to calculate the nonlinearity is:

$$L = \frac{V_{A}(p_{x}) - V_{A0}}{V_{A}(p_{r}) - V_{A0}} - \frac{p_{x}}{p_{r}}$$

¹²⁾ Response time t₁₀₋₉₀

Delay between a pressure change (10 ... 90% pr) and the corresponding signal output change (10 ... 90% FS).

¹³⁾ Supply voltage rejection SVR

While varying the supply voltage within the range $V_{CC,min}$ up to $V_{CC,max}$ at constant pressure and temperature, the signal output change will not exceed SVR_{max}.

¹⁴⁾ Temperature hysteresis

The temperature hysteresis is the change of offset, starting from the value at 25 °C after a temperature change and return to 25 °C. Determined during temperature cycles in operating temperature range (cycles with 1 K/min).

¹⁵⁾ **Temperature coefficient of offset TCV**_{A0} Offset at temperature T_x: $V_{A0}(T_x) = V_{A0}(25 \text{ °C}) + V_{FS}(25 \text{ °C}) \cdot (T_x - 25 \text{ °C}) \cdot TCV_{A0}$ Values are valid within the compensated temperature range T_{c,min} up to T_{c,max} Out of the compensated temperature range, the deviation may increase.

¹⁶⁾ Temperature coefficient of span TCV_{FS}

Span at temperature T_x : $V_{FS}(T_x) = V_{FS}(25 \text{ °C}) \cdot [1 + (T_x - 25 \text{ °C}) \cdot TCV_{FS}]$ Values are valid within the compensated temperature range $T_{c,min}$ up to $T_{c,max}$ Out of the compensated temperature range, the deviation may increase.

AS SEN PD

Pressure transmitters without casing (voltage output)

CAU-T series

Cautions and warnings

Storage (general)

All pressure sensors should be stored in their original packaging. They should not be placed in harmful environments such as corrosive gases nor exposed to heat or direct sunlight, which may cause deformations. Similar effects may result from extreme storage temperatures and climatic conditions. Avoid storing the sensor dies in an environment where condensation may form or in a location exposed to corrosive gases, which will adversely affect their performance. Plastic materials should not be used for wrapping/packing when storing or transporting these dies, as they may become charged. Pressure sensor dies should be used soon after opening their seal and packaging.

Operation (general)

Media compatibility with the pressure sensors must be ensured to prevent their failure. The use of other media can cause damage and malfunction. Never use pressure sensors in atmospheres containing explosive liquids or gases.

Ensure pressure equalization to the environment, if gauge pressure sensors are used. Avoid operating the pressure sensors in an environment where condensation may form or in a location exposed to corrosive gases. These environments adversely affect their performance.

If the operating pressure is not within the rated pressure range, it may change the output characteristics. This may also happen with pressure sensor dies if an incorrect mounting method is used. Be sure that the applicable pressure does not exceed the overpressure, as it may damage the pressure sensor.

Do not exceed the maximum rated supply voltage nor the rated storage temperature range, as it may damage the pressure sensor.

Temperature variations in both the ambient conditions and the media (liquid or gas) can affect the accuracy of the output signal from the pressure sensors. Be sure to check the operating temperature range and thermal error specification of the pressure sensors to determine their suitability for the application.

Connections must be wired in accordance with the terminal assignment specified in the data sheets. Care should be taken as reversed pin connections can damage the pressure transmitters or degrade their performance. Contact between the pressure sensor terminals and metals or other materials may cause errors in the output characteristics.

Design notes (dies)

This specification describes the mechanical, electrical and physical requirements of a piezoresistive sensor die for measuring pressure. The specified parameters are valid for the pressure sensor die with pressure application either to the front or back side of the diaphragm as described in the data sheet. Pressure application to the other side may result in differing data. Most of the parameters are influenced by assembly conditions. Hence these parameters and the reliability have to be specified for each specific application and tested over its temperature range by the customer.

Handling/Mounting (dies)

Pressure sensor dies should be handled appropriately and not be touched with bare hands. They should only be picked up manually by the sides using tweezers. Their top surface should never be touched with tweezers. Latex gloves should not be used for handling them, as this will inhibit the curing of the adhesive used to bond the die to the carrier. When handling, be careful to avoid cuts caused by the sharp-edged terminals. The sensor die must not be contaminated during manufacturing processes (gluing, soldering, silk-screen process).

The package of pressure sensor dies should not to be opened until the die is mounted and should be closed after use. The sensor die must not be cleaned. The sensor die must not be damaged during the assembly process (especially scratches on the diaphragm).

Soldering (transducers, transmitters)

The thermal capacity of pressure sensors is normally low, so steps should be taken to minimize the effects of external heat. High temperatures may lead to damage or changes in characteristics.

A non-corrosive type of flux resin should normally be used and complete removal of the flux is recommended. Avoid rapid cooling due to dipping in solvent. Note that the output signal may change if pressure is applied to the terminals during soldering.

This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.

AS SEN PD

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.

We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS / TDK: B58621K0510A018

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А