

Technical Note

ROHM Electronic Components

Stepping Motor Drivers

Low Voltage Stepping Motor Drivers

No.12009EAT01

BD6380EFV, BD6381EFV

Description

This series can drive the bipolar stepping motor used for paper feed carriages. It is a low power consumption bipolar PWM constant current-drive driver. It is suitable for the mobile devices of a battery drive by power save function. It contributes also to reduction of mounting area by ultra-thin and high heat-radiation (exposed metal type) HTSSOP package.

Feature

- 1) Low ON resistance DMOS output
- 2) PWM constant current control (self oscillation)
- 3) Built-in spike noise cancel function (external noise filter is unnecessary)
- 4) Power save function
- 5) Built-in logic input pull-down resistor
- 6) Power-on reset function
- 7) Thermal shutdown circuit (TSD)
- 8) Over current protection circuit (OCP)
- 9) Under voltage lock out circuit (UVLO)
- 10) Malfunction prevention at the time of no applied power supply (Ghost Supply Prevention)
- 11) Electrostatic discharge: 4kV (HBM specification)
- 12) Adjacent pins short protection
- 13) Microminiature, ultra-thin and high heat-radiation (exposed metal type) HTSSOP package

Application

Mini printer, Handy printer, Monitoring camera, WEB camera, Scanner, Toy, and Robot etc.

●Absolute maximum ratings(Ta=25°C)

Item	Symbol	BD6380EFV	BD6381EFV	Unit
Supply voltage VCC	V _{cc}	-0.2~+7.0	-0.2~+7.0	V
Supply voltage VM	V _M	-0.2~+15.0	-0.2~+15.0	V
Deven dissingtion	Du	1.1 ^{**1}	1.1 ^{**1}	W
Power dissipation	Pd	4.0 ^{**2}	4.0 ^{%2}	W
Input voltage for control pin	VIN	-0.2~(V _{CC} +0.3)	-0.2~(V _{CC} +0.3)	V
RNF maximum voltage	V _{RNF}	0.5	0.5	V
Maximum output current	I _{OUT}	0.8 ^{**3}	1.2 ^{**3}	A/ch
Operating temperature range	T _{opr}	-25~+75	-25~+75	°C
Storage temperature range	T _{stg}	-55~+150	-55~+150	°C
Junction temperature	T _{jmax}	150	150	°C

%1 70mm × 70mm × 1.6mm glass epoxy board. Derating in done at 8.8mW/°C for operating above Ta=25°C.

*2 4-layer recommended board. Derating in done at 32.0mW/°C for operating above Ta=25°C.

3 Do not exceed Pd, ASO and Tjmax=150°C.

This Technical Note does not guarantee the operation (function). When using this product, run a thorough evaluation and verification before use.

●Operating conditions (Ta=-25~+75°C)

Item	Symbol	BD6380EFV	BD6381EFV	Unit
Supply voltage VCC	V _{CC}	2.5~5.5	2.5~5.5	V
Supply voltage VM	V _M	4.0~13.5	6.0~13.5	V
Input voltage for control pin	V _{IN}	0~V _{CC}	0~V _{CC}	V
Output current (DC)	lout	0.5 ^{**4}	0.8 ^{**4}	A/ch

※4 Do not exceed Pd, ASO

Electrical characteristics

Applicable to BD6380EFV,BD6381EFV(Unless otherwise specified Ta=25°C, VCC=3.3V, VM=6.0V)

lto m	Currents of		Limit		Unit	Conditions	
Item	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Whole							
VCC current at standby	I _{CCST}	-	0	10	μA	PS=L	
VCC current	Icc	-	1.6	3.0	mA	PS=H, VLIMX=0.5V	
VM current at standby	I _{VMST}	-	0	10	μA	PS=L	
VM current	I _{VM}	-	0.08	0.50	mA	PS=H, VLIMX=0.5V	
Control input (PS, IN1A, IN1B, IN2A	A, IN2B)						
H level input voltage	V _{INH}	2.0	-	3.3	V		
L level input voltage	V _{INL}	0	-	0.8	V		
H level input current	linh	15	30	60	μA	V _{IN} =3V	
L level input current	I _{INL}	-10	0	-	μA	V _{IN} =0V	
Output (OUT1A, OUT1B, OUT2A, C	OUT2B)						
Output ON resistance (BD6380EFV)	R _{ON}	-	1.2	1.5	Ω	$I_{OUT} = \pm 0.3A$, VM=6V Sum of upper and lower	
Output ON resistance (BD6381EFV)	R _{ON}	-	1.0	1.25	Ω	$I_{OUT} = \pm 0.6A$, VM=7.2V Sum of upper and lower	
Output leak current	I _{LEAK}	-	-	10	μA		
Current control							
RNFX input current	I _{RNF}	-40	-20	-	μA	RNFX=0V	
SENSEX input current	ISENSE	-2.0	-0.1	-	μA	SENSEX=0V	
VLIMX input current	I _{VLIM}	-2.0	-0.1	-	μA	VLIMX=0V	
VLIMX input voltage range	V _{VLIM}	0	-	0.5	V		
Comparator offset voltage	V _{OFS}	-10	-	10	mV		
Noise cancel time	t _n	0.3	0.7	1.2	μs	R=39kΩ, C=1000pF	
VREF voltage	V _{VREF}	0.97	1.00	1.03	V	I _{VREF} =0~1mA	

● Terminal function · Block diagram · Application circuit diagram

1) BD6380EFV / BD6381EFV

Pin No. Pin name Function No. Pin name Function 1 GND Ground terminal 13 RNF2 Connection terminal of resistor for output current detection 3 VLIM1 Output current limit setting terminal 14 OUT28 H bridge output terminal 4 SENSE1 Input terminal of CR for setting 15 OUT2A H bridge output terminal 5 CR1 Connection terminal of CR for setting 17 NC Non connection 6 INTA Logic input terminal 18 IN2E Logic input terminal 7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VMI1 Power supply terminal for motor 20 CR2 Connection terminal 10 OUT1A H bridge output terminal 21 SENSE2 Input terminal 12 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current detection 24 VCC Power supply terminal 13 Output -	/	5380EFV / BD63	381EFV	Die			
2 PS Power save terminal 13 RNF2 Output current limit detection 3 VLIM1 Output current limit setting terminal 14 OUT2A H bridge output terminal 4 SENSE1 Input terminal of current limit comp. 15 OUT2A H bridge output terminal 5 CR1 Connection terminal of CR for setting 16 VM2 Power supply terminal monochrometric minal 7 IN1A Logic input terminal 18 IN2E Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VM1 Power supply terminal 21 SENSE2 Input terminal COnnection terminal of CR for setting 11 OUT1A H bridge output terminal 21 SENSE2 Input terminal of CR for setting 12 RNF1 Connection terminal of resistor for output current limit comp. 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of current limit comp. 24 VCC Power supply terminal 13 VIEW VIEW VIEW VIEW		Pin name	Function		Pin name	Function	
4 SENSE1 Input terminal of current limit comp. 15 OUT2A H bridge output terminal 5 CR1 Connection terminal of CR for setting PWM frequency 16 VM2 Power supply terminal for motor 6 IN1A Logic input terminal 18 IN2B Logic input terminal 7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VM1 Power supply terminal 21 SENSE2 Input terminal of CR for setting 10 OUT1A H bridge output terminal 21 SENSE2 Input terminal of CR for setting 12 RNF1 Connection terminal of resistor for output terminal 22 VLIM2 Output current limit setting terminal 12 RNF1 connection terminal of cestor for output terminal 24 VCC Power supply terminal 12 RNF1 connection terminal of cestor for output terminal 010F-01F/reditioner/redition 24 VCC Power supply terminal 13 Output enterminal 100F/reditioner/redition				13	RNF2		
5 CR1 Connection terminal of CR for setting PWM frequency 16 VM2 Power supply terminal for motor 6 IN1A Logic input terminal 18 IN2B Logic input terminal 7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VM1 Power supply terminal for motor 20 CR2 Connection terminal of CR for setting 10 OUT1A H bridge output terminal 21 SENSE2 Input terminal of current limit comp. 11 OUT1B H bridge output terminal 22 VLIM2 Output current limit setting terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 10 OUT1B Upt current detection 10 VCC Power supply terminal 11 Output current detection 24 VCC Power supply terminal 12 RNF1 Connection terminal of CR for setting setting Set mercing Set mercing 12 VREF Reference voltage output terminal 10 Set mercing Set mercing 10 Set mercing S	3	VLIM1	Output current limit setting terminal	14	OUT2B	H bridge output terminal	
5 CR1 POWM frequency 17 NC Non connection 6 IN1A Logic input terminal 18 IN2B Logic input terminal 7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VM1 Power supply terminal for motor 20 CR2 Connection terminal of CR for setting 10 OUT1A H bridge output terminal 21 SENSE2 Input terminal of current limit comp. 11 OUT1B H bridge output terminal 22 VLIM2 Output current limit setting terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current limit setting terminal 24 VCC Power supply terminal 13 OUT1A Herefore Information etc.) Information etc.) Reference voltage output terminal 14 Output current limit setting terminal 010-10/0 010-10/0 Information etc.) Information etc.) Information graphs Connection terminal of resistor for output terminal Information etc.) Inform	4	SENSE1	Input terminal of current limit comp.	15	OUT2A	H bridge output terminal	
5 CR1 PWM frequency 17 NC Non connection 6 IN1A Logic input terminal 18 IN2B Logic input terminal 7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting 9 VM1 Power supply terminal for motor 20 CR2 Connection terminal of current limit comp. 11 OUT1A H bridge output terminal 21 SENSE2 Input terminal of current limit setting terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current limit setting reging in the output current limit s	_		Connection terminal of CR for setting	16	VM2	Power supply terminal for motor	
7 IN1B Logic input terminal 19 IN2A Logic input terminal 8 NC Non connection 20 CR2 Connection terminal of CR for setting PWM frequency 9 VM1 Power supply terminal 21 SENSE2 Input terminal of current limit comp. 11 OUT1A H bridge output terminal 22 VLIM2 Output current limit comp. 11 OUT1B Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current detection 24 VCC Power supply terminal 14 Vu can devide the means examine the for output current detection 0.014F-0.01F(mittiger comme etc.) Resistor for output detecting. 15 Vu can devide the means examine the for output current limit detecting. 0.014F-0.01F(mittiger comme etc.) Resistor for output detecting. 0.014F-0.01F(mittiger comme etc.) 16 0.014F-0.01F(mittiger comme etc.) 0.014F-0.01F(mittiger comme etc.) Resistor for output detecting. 17.00F VILMA VILMA VILMA VILMA VILMA Resistor for output detecting. 10.00F	5	CR1	.	17	NC	Non connection	
8 NC Non connection 20 CR2 Connection terminal of CR for setting PWM frequency 9 VM1 Power supply terminal 21 SENSE2 Input terminal of current limit comp. 11 OUT1A H bridge output terminal 21 SENSE2 Input terminal of current limit comp. 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current detection 24 VCC Power supply terminal 12 RNF1 Output current detection 24 VCC Power supply terminal 13 OUT-0 tur(mattiger cennet etc.) 0 full_F-0 tur(mattiger cennet etc.) 24 VCC Power supply terminal 14 VCC Power supply terminal 0 full_F-0 tur(mattiger cennet etc.) 0 full_F-0 tur(mattiger cennet etc.) 0 full_F-0 full 18 to cupacit current limit Current Limit Comp. VM1 OUT1A Power supply terminal 19 OUT-0 full 0 full_F-0 tur(mattiger cennet etc.) String full_F-0 full_F String full_F-0 full_F String full_F-0 full_F String full_F-0	6	IN1A	Logic input terminal	18	IN2B	Logic input terminal	
9 VM1 Power supply terminal for motor 10 OUT1A H bridge output terminal 11 OUT1B H bridge output terminal 12 RNF1 Connection terminal of resistor for 12 ULV CC Power supply terminal 12 VCC Power supply terminal 12 VCC Power supply terminal 12 VCC Power supply terminal 12 VCC Power supply terminal 13 VCC Power supply terminal 14 VCC Power supply terminal 15 VCC Power supply terminal 16 or output current detection 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor and use 18 for output current integrations 10 UVC and resistor for current. detecting 10 UVC and resistor for current integrations 10 UVC and resistor for c	7	IN1B	Logic input terminal	19	IN2A	Logic input terminal	
9 VM1 Power supply terminal for motor PVMM frequency 10 OUT1A H bridge output terminal 21 SENSE2 Input terminal of current limit comp. 11 OUT18 H bridge output terminal 22 VLIM2 Output current direction terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 11 Output current detection 24 VCC Power supply terminal 12 RNF1 Connection terminal of resistor for output current detection 24 VCC Power supply terminal 10 OUT0F-0.1F/multisyer ceanse ceased or terminal of current detection 0.10 - 1.02 Resister for current detecting 11 Vulcan devide the reference voltage in the reference voltage in the reference voltage output terminal 0.10 - 1.02 Resister for current detecting 10 Vulcan devide the reference voltage in t	8	NC	Non connection	00	0.00	Connection terminal of CR for setting	
11 OUT1B H bridge output terminal 22 VLIM2 Output current limit setting terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 12 RNF1 Connection terminal of resistor for output current detection 24 VCC Power supply terminal 9 Output current find 0.010F-0.10F(multileyer ceramic etc.) Relator for current. detecting. 0.110F-0.10F 9 VILM1 VILM1 VILM1 VILM1 Relator for current. detecting. 9 VILM1 VILM1 VILM1 VILM1 VILM1 VILM1 9 VILM2 Current Limit Comp. Setting range is 0.110-10.2 Papea segestor. 9 Setting range is 0.1000F VILM2 VILM2 VILM2 Papea segestor. 9 Setting range is 0.1000F VILM2 VILM2 VILM2 Papea segestor. 9 VILM2 VILM2 VILM2 VILM2 <t< td=""><td>9</td><td>VM1</td><td>Power supply terminal for motor</td><td>20</td><td>CR2</td><td>PWM frequency</td></t<>	9	VM1	Power supply terminal for motor	20	CR2	PWM frequency	
12 RNF1 Connection terminal of resistor for output current detection 23 VREF Reference voltage output terminal 24 VCC Power supply terminal 24 VCC Power supply terminal 24 VCC Power supply terminal 24 VCC Power supply terminal 25 VCC Power supply terminal 25 VCC Power supply terminal 26 VCC Power supply terminal 27 VCC Power supply terminal 27 VCC Power supply terminal 28 VCC Power supply terminal 29 VCC Power supply terminal 20 VCC Power supply t	10	OUT1A	H bridge output terminal	21	SENSE2	Input terminal of current limit comp.	
12 RNF1 output current detection 23 VREF Reference voltage output terminal 12 RNF1 output current detection 24 VCC Power supply terminal 12 Vol can devide the reference voltage in 4.0F-470/F(electolytic) 0.01/F-0.10/F(nullisyer caramic etc.) 24 VCC Power supply terminal 13 Vol can devide the reference voltage in 4.0F-470/F(electolytic) 0.01/F-0.10/F(nullisyer caramic etc.) Resistor for current. detecting. 14 Vol can devide the reference voltage in 4.0F-0.10/F(nullisyer caramic etc.) Resistor for current. detecting. Setting range is 0.10-100/F Setting range is of R-10k 0-100k.0 VREF Resistor for current. detecting. Setting range is 0.10-100/F Setting range is 0.10-100/F Setting range is of R-10k 0-100k.0 VREF Current Limit Comp. Resistor for current. detecting. Setting range is 0.10-10k.0 VLIM1 VILION Resistor for current. detecting. Setting range is 0.00/F Setting range is 0.10-10k.0 VLIM2 Current Limit Comp. RNF1 Setting range is 0.00/F Setting range is 0.10-10k.0 VLIM2 Current Limit Comp. Setting range is 0.10-10/F Setting range is 0.10-10/F Setting range is 0.10-10/F	11	OUT1B	H bridge output terminal	22	VLIM2	Output current limit setting terminal	
Set the PWM frequency. Set th	12	RNF1		23	VREF	Reference voltage output terminal	
You can devide the reference voltage by enderson with a setting range is a				24	VCC	Power supply terminal	
Current Limit Comp. $0.1\Omega \sim 1.0\overline{\Omega}$	free Set C:4 R:1 Set th Settir C:47(quency. tring range is $170 pF \sim 4700 pF$ $10 k \Omega \sim 100 k \Omega$ The PWM frequency. In a property is $10 pF \sim 4700 pF$	VREF VREF VLIM1 VLIM1 VLIM1 VLIM1 Current Limit Current Li	Comp. edriver		Setting range is 0.1Ω~1.0Ω 1 1 1 1 1 1 1 1 1 1 1 1 1	
			Current Lim	it Comp.	SEN	ISE2 Setting range is	
			GND 1				

Fig.1 Block diagram & Application circuit diagram of BD6380EFV / BD6381EFV

Points to notice for terminal description

OPS/Power save terminal

PS can make circuit standby state and make motor output OPEN. Please be careful because there is a delay of 40μ s(max.) before it is returned from standby state to normal state and the motor output becomes ACTIVE at PS=L \rightarrow H. If you don't use power save mode, you may short PS terminal to VCC.

PS	State		
L	Standby state (RESET)		
Н	ACTIVE		

OIN1A,IN1B,IN2A,IN2B / Logic input terminal

These pins decide output state.

	Input		Output		
PS	IN1A IN2A	IN1B IN2B	OUT1A OUT2A	OUT1B OUT2B	
L	Х	Х	OPEN	OPEN	Standby state (RESET)
Н	L	L	OPEN	OPEN	Standby
Н	Н	L	Н	L	Forward
Н	L	Н	L	Н	Reverse
Н	Н	Н	L L		Brake
					Y: H or I

X: H or L

Protection Circuits

OThermal Shutdown (TSD)

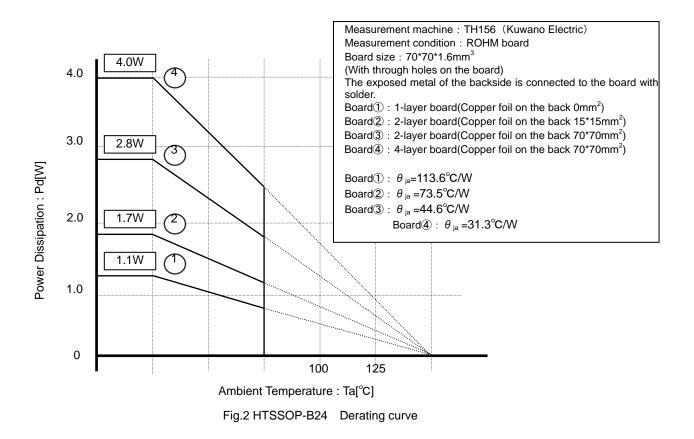
This IC has a built-in thermal shutdown circuit for thermal protection. When the IC's chip temperature rises above $175^{\circ}C$ (typ.), the motor output becomes OPEN. Also, when the temperature returns to under $150^{\circ}C$ (typ.), it automatically returns to normal operation. However, even when TSD is in operation, if heat is continued to be added externally, heat overdrive can lead to destruction.

OOver current Protection (OCP)

This IC has a built in over current protection circuit as a provision against destruction when the motor outputs are shorted each other or VCC-output or motor output-GND is shorted. This circuit latches the motor output to OPEN condition when the regulated threshold current flows for 4µs (typ.). It returns with VCC power reactivation or a reset of the PS terminal. The over current protection circuit's only aim is to prevent the destruction of the IC from irregular situations such as motor output shorts, and is not meant to be used as protection or security for the set. Therefore, sets should not be designed to take into account this circuit's functions. After OCP operating, if irregular situations continues and the return by power reactivation or a reset of the PS terminal is carried out repeatly, then OCP operates repeatly and the IC may generate heat or otherwise deteriorate. When the L value of the wiring is great due to the wiring being long, after the over current has flowed and the output terminal voltage jumps up and the absolute maximum values may be exceeded and as a result, there is a possibility of destruction. Also, when current which is over the output current rating and under the OCP detection current flows, the IC can heat up to over Tjmax=150°C and can deteriorate, so current which exceeds the output rating should not be applied.

OUnder voltage lock out (UVLO)

This IC has a built-in under voltage lock out function to prevent false operation such as IC output during power supply under voltage. When the applied voltage to the VCC terminal goes under 1.95V (typ.), the motor output is set to OPEN. This switching voltage has a 0.25V (typ.) hysteresis to prevent false operation by noise etc. Please be aware that this circuit does not operate during power save mode.


OFalse operation prevention function in no power supply (Ghost Supply Prevention)

If a logic control signal is input when there is no power supplied to this IC, there is a function which prevents the false operation by voltage supplied via the electrostatic destruction prevention diode from the logic control input terminal to the VCC, to this IC or to another IC's power supply. Therefore, there is no chance of malfunction of the circuit even when voltage is supplied to the logic control input terminal while there is no power supply.

Power dissipation

OHTSSOP-B24 Package

HTSSOP-B24 has exposed metal on the back, and it is possible to dissipate heat from a through hole in the back. Also, the back of board as well as the surfaces has large areas of copper foil heat dissipation patterns, greatly increasing power dissipation. The back metal is shorted with the back side of the IC chip, being a GND potential, therefore there is a possibility for malfunction if it is shorted with any potential other than GND, which should be avoided. Also, it is recommended that the back metal is soldered onto the GND to short. Please note that it has been assumed that this product will be used in the condition of this back metal performed heat dissipation treatment for increasing heat dissipation efficiency.

Usage Notes

(1) Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

(2) Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.

(3) Power supply Lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power supply terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.

(4) GND Potential

The potential of GND pin must be minimum potential in all operating conditions.

(5) Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. Users should be aware that BD6380EFV and BD6381EFV have been designed to expose their frames at the back of the package, and should be used with suitable heat dissipation treatment in this area to improve dissipation. As large a dissipation pattern should be taken as possible, not only on the front of the baseboard but also on the back surface.

(6) Inter-pin shorts and mounting errors

When attaching to a printed circuit board, pay close attention to the direction of the IC and displacement. Improper attachment may lead to destruction of the IC. There is also possibility of destruction from short circuits which can be caused by foreign matter entering between outputs or an output and the power supply or GND.

(7) Operation in a strong electric field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

(8) ASO

When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.

(9) Thermal shutdown circuit

The IC has a built-in thermal shutdown circuit (TSD circuit). If the chip temperature becomes Tjmax=150°C, and higher, coil output to the motor will be open. The TSD circuit is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect or indemnify peripheral equipment. Do not use the TSD function to protect peripheral equipment.

TSD ON Temperature [°C] (typ.)	Hysteresis Temperature [°C] (typ.)
175	25

(10) Inspection of the application board

During inspection of the application board, if a capacitor is connected to a pin with low impedance there is a possibility that it could cause stress to the IC, therefore an electrical discharge should be performed after each process. Also, as a measure again electrostatic discharge, it should be earthed during the assembly process and special care should be taken during transport or storage. Furthermore, when connecting to the jig during the inspection process, the power supply should first be turned off and then removed before the inspection.

(11) Input terminal of IC

This IC is a monolithic IC, and between each element there is a P+ isolation for element partition and a P substrate. This P layer and each element's N layer make up the P-N junction, and various parasitic elements are made up. For example, when the resistance and transistor are connected to the terminal as shown in figure 3,

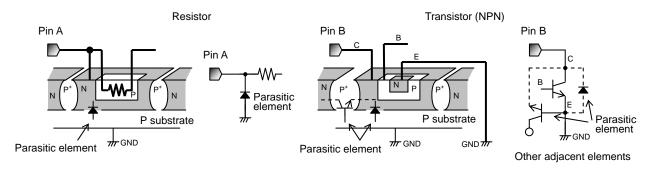
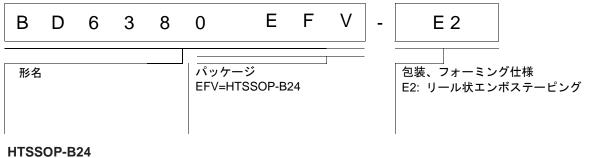
OWhen GND>(Terminal A) at the resistance and GND>(Terminal B) at the transistor (NPN),

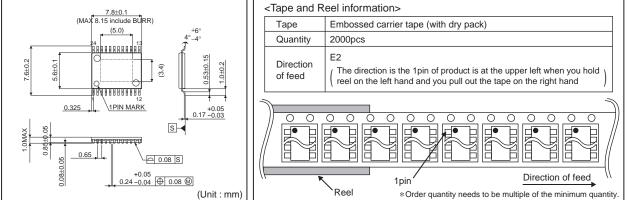
the P-N junction operates as a parasitic diode.

OAlso, when GND>(Terminal B) at the transistor (NPN)

The parasitic NPN transistor operates with the N layers of other elements close to the aforementioned parasitic diode.

Because of the IC's structure, the creation of parasitic elements is inevitable from the electrical potential relationship. The operation of parasitic elements causes interference in circuit operation, and can lead to malfunction and destruction. Therefore, be careful not to use it in a way which causes the parasitic elements to operate, such as by applying voltage that is lower than the GND (P substrate) to the input terminal.


Fig.3 Pattern Diagram of Parasitic Element

(12) Ground Wiring Patterns

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern potential of any external components, either.

Ordering part number

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ^(Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

JAPAN	USA	EU	CHINA
CLASSⅢ		CLASS II b	
CLASSⅣ	CLASSⅢ	CLASSⅢ	CLASSII

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [C] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: BD6380EFV-E2 BD6381EFV-E2

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А