

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

February 2017

FSB50550B / FSB50550BS Motion SPM[®] 5 Series

Features

- UL Certified No. E209204 (UL1557)
- · Optimized for over 10 kHz Switching Frequency
- 500 V FRFET MOSFET 3-Phase Inverter with Gate Drivers and Protection
- · Built-In Bootstrap Diodes Simplify PCB Layout
- Separate Open-Source Pins from Low-Side MOSFETs for Three-Phase Current-Sensing
- Active-HIGH Interface, Works with 3.3 / 5 V Logic, Schmitt-trigger Input
- · Optimized for Low Electromagnetic Interference
- HVIC Temperature-Sensing Built-In for Temperature Monitoring
- · HVIC for Gate Driving and Under-Voltage Protection
- Isolation Rating: 1500 V_{rms} / min.
- · RoHS Complia
- · Moisture Sensitive Level (MSL) 3 for SMD PKG

Applications

 3-Phase Inverter Driver for Small Power AC Motor Drives

Related Source

- RD-FSB50450AS Reference Design for Motion SPM 5 Series Ver.2
- AN-9082 Motion SPM5 Series Thermal Performance by Contact Pressure

General Description

The FSB50550B / FSB50550BS is an advanced Motion SPM® 5 module providing a fully-featured, highperformance inverter output stage for AC Induction, BLDC and PMSM motors. These integrate optimized gate drive of the built-in MOSFETs (FRFET® technology) to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts and thermal monitoring. The built-in high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal MOSFETs. Separate open-source MOSFET terminals are available for each phase to support the widest variety of control algorithms.

Figure 1. 3D Package Drawing

<FSB50550BS >

(Click to Activate 3D Content)

Package Marking & Ordering Information

Device	vice Device Marking Package Packing		Packing Type	Reel Size	Quantity
FSB50550B	FSB50550B	SPM5P-023	Rail	NA	15
FSB50550BS	FSB50550BS	SPM5Q-023	Tape & Reel	330mm	450

Absolute Maximum Ratings

Inverter Part (each MOSFET unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V_{DSS}	Drain-Source Voltage of Each MOSFET		500	V
*I _{D 25}	Each MOSFET Drain Current, Continuous	T _C = 25°C	3.0	Α
*I _{D 80}	Each MOSFET Drain Current, Continuous	T _C = 80°C	1.9	Α
*I _{DP}	Each MOSFET Drain Current, Peak	T _C = 25°C, PW < 100 μs	7.0	Α
*I _{DRMS}	Each MOSFET Drain Current, Rms	$T_C = 80^{\circ}C$, $F_{PWM} < 20$ kHz	1.3	A _{rms}

Control Part (each HVIC unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit	
V_{DD}	Control Supply Voltage	Applied between V _{DD} and COM	20	V	
V _{BS}	High-side Bias Voltage	Applied between V_B and V_S	20	V	
V _{IN}	Input Signal Voltage	Applied between V _{IN} and COM	-0.3 ~ V _{DD} + 0.3	V	

Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V_{RRMB}	Maximum Repetitive Reverse Voltage		500	V
* I _{FB}	Forward Current	T _C = 25°C	0.5	Α
* I _{FPB}	Forward Current (Peak)	T _C = 25°C, Under 1ms Pulse Width	2.0	Α

Thermal Resistance

Symbol	Parameter	Conditions	Rating	Unit
R _{th(j-c)Q}	Junction to Case Thermal Resistance (Note1)	Inverter MOSFET part, (Per Module)	2.2	°C/W

Total System

Symbol	Parameter	Parameter Conditions		Unit
T _J	Operating Junction Temperature		-40 ~ 150	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, 1 Minute, Connect Pins to Heat Sink Plate	1500	V _{rms}

Notes:

- 1. For the measurement point of case temperature $T_{\mbox{\scriptsize C}}$, please refer to Figure 4.
- 2. Marking " * " is calculation value or design factor.

Pin descriptions

Pin Number	Pin Name	Pin Description
1	СОМ	IC Common Supply Ground
2	V _{B(U)}	Bias Voltage for U-Phase High-Side MOSFET Driving
3	$V_{DD(U)}$	Bias Voltage for U-Phase IC and Low-Side MOSFET Driving
4	IN _(UH)	Signal Input for U-Phase High-Side
5	IN _(UL)	Signal Input for U-Phase Low-Side
6	N.C	No Connection
7	V _{B(V)}	Bias Voltage for V-Phase High Side MOSFET Driving
8	V _{DD(V)}	Bias Voltage for V-Phase IC and Low Side MOSFET Driving
9	IN _(VH)	Signal Input for V-Phase High-Side
10	IN _(VL)	Signal Input for V-Phase Low-Side
11	V _{TS}	Output for HVIC Temperature Sensing
12	V _{B(W)}	Bias Voltage for W-Phase High-Side MOSFET Driving
13	$V_{DD(W)}$	Bias Voltage for W-Phase IC and Low-Side MOSFET Driving
14	IN _(WH)	Signal Input for W-Phase High-Side
15	IN _(WL)	Signal Input for W-Phase Low-Side
16	N.C	No Connection
17	Р	Positive DC-Link Input
18	U, V _{S(U)}	Output for U-Phase & Bias Voltage Ground for High-Side MOSFET Driving
19	N _U	Negative DC-Link Input for U-Phase
20	N _V	Negative DC-Link Input for V-Phase
21	V, V _{S(V)}	Output for V-Phase & Bias Voltage Ground for High-Side MOSFET Driving
22	N _W	Negative DC-Link Input for W-Phase
23	W, V _{S(W)}	Output for W Phase & Bias Voltage Ground for High-Side MOSFET Driving

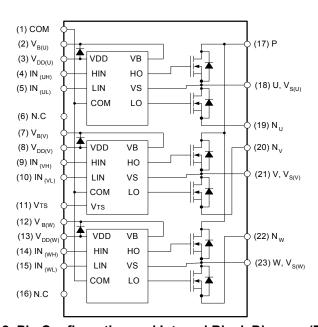


Figure 2. Pin Configuration and Internal Block Diagram (Bottom View)

Notes:

^{3.} Source terminal of each low-side MOSFET is not connected to supply ground or bias voltage ground inside Motion SPM® 5 product. External connections should be made as indicated in Figure 3.

Electrical Characteristics ($T_J = 25^{\circ}C$, $V_{DD} = V_{BS} = 15 \text{ V}$ unless otherwise specified.)

Inverter Part (each MOSFET unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain - Source Breakdown Voltage	V _{IN} = 0 V, I _D = 1 mA (Note 4)	500	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{IN} = 0 \text{ V}, V_{DS} = 500 \text{ V}$ $V_{DD} = V_{BS} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_D = 1.0 \text{ A}$		-	1	mA
R _{DS(on)}	Static Drain - Source Turn-On Resistance			2.3	3.0	Ω
V _{SD}	Drain - Source Diode Forward Voltage	V _{DD} = V _{BS} = 15V, V _{IN} = 0 V, I _D = -1.0 A	-	-	1.3	V
t _{ON}	Ţ.	V_{PN} = 300 V, V_{DD} = V_{BS} = 15 V, I_{D} = 1.0 A V_{IN} = 0 V \leftrightarrow 5 V, Inductive Load L = 3 mH High- and Low-Side MOSFET Switching	-	350	-	ns
t _{OFF}			-	500	-	ns
t _{rr}	Switching Times		-	60	-	ns
E _{ON}		(Note 5)	ı	22	-	μJ
E _{OFF}				3	-	μJ
RBSOA	Reverse Bias Safe Operating Area	V_{PN} = 400 V, V_{DD} = V_{BS} = 15 V, I_{D} = (TBD), V_{DS} = BV _{DSS} , T_{J} = 150°C High- and Low-Side MOSFET Switching (Note 6)	Full Square			

Control Part (each HVIC unless otherwise specified.)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
I _{QDD}	Quiescent V _{DD} Current	V _{DD} = 15 V, V _{IN} = 0 V	Applied between V _{DD} and COM	-	-	200	μА
I _{QBS}	Quiescent V _{BS} Current	V _{BS} = 15 V, V _{IN} = 0 V	$ \begin{array}{c} \text{Applied between V}_{B(U)} \text{ - U}, \\ \text{V}_{B(V)} \text{ - V}, \text{V}_{B(W)} \text{ - W} \end{array} $	ı	-	100	μА
I _{PDD}	Operating V _{DD} Supply Current	V _{DD} - COM	$V_{\rm DD}$ = 15 V, $f_{\rm PWM}$ = 20 kHz, duty = 50%, Applied to One PWM Signal Input for Low-Side	ı	ı	900	μА
I _{PBS}	Operating V _{BS} Supply Current	$ \begin{vmatrix} V_{B(U)} - V_{S(U)}, \ V_{B(V)} \\ - \ V_{S(V)}, \ V_{B(W)} - \\ V_{S(W)} \end{vmatrix} $	V _{DD} = V _{BS} = 15 V, f _{PWM} = 20 kHz, Duty = 50%, Applied to One PWM Signal Input for High-Side	-	-	800	μА
UV _{DDD}	Low-Side Under-Voltage		Protection Detection Level	7.4	8.0	9.4	V
UV _{DDR}	Protection (Figure 8)	V _{DD} Under-Voltage Protection Reset Level		8.0	8.9	9.8	V
UV _{BSD}	High-Side Under-Voltage	V _{BS} Under-Voltage	Protection Detection Level	7.4	8.0	9.4	V
UV _{BSR}	Protection (Figure 9)	V _{BS} Under-Voltage	Protection Reset Level	8.0	8.9	9.8	V
V _{TS}	HVIC Temperature Sensing Voltage Output V _{DD} = 15 V, T _{HVIC} =		= 25°C (Note 7)	600	790	980	mV
V _{IH}	ON Threshold Voltage	Logic HIGH Level	Applied between V and COM	-	-	2.9	V
V _{IL}	OFF Threshold Voltage	Logic LOW Level	Applied between V _{IN} and COM	8.0	-	-	V

Bootstrap Diode Part (each bootstrap diode unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{FB}	Forward Voltage	I _F = 0.1 A, T _C = 25°C (Note 8)	-	2.5	-	V
t _{rrB}	Reverse Recovery Time	I _F = 0.1 A, T _C = 25°C	-	80	-	ns

Recommended Operating Condition

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P and N	-	300	400	V
V _{DD}	Control Supply Voltage	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5	V		
V_{BS}	High-Side Bias Voltage	Applied between V_B and V_S	13.5	15.0	16.5	V
V _{IN(ON)}	Input ON Threshold Voltage	Applied between V _{IN} and COM	3.0	-	V_{DD}	V
V _{IN(OFF)}	Input OFF Threshold Voltage		0	-	0.6	V
t _{dead}	Blanking Time for Preventing Arm-Short	$V_{DD} = V_{BS} = 13.5 \sim 16.5 \text{ V}, T_{J} \le 150^{\circ}\text{C}$	1.0	-	-	μS
f _{PWM}	PWM Switching Frequency	$T_{J} \le 150^{\circ}C$	-	15	-	kHz

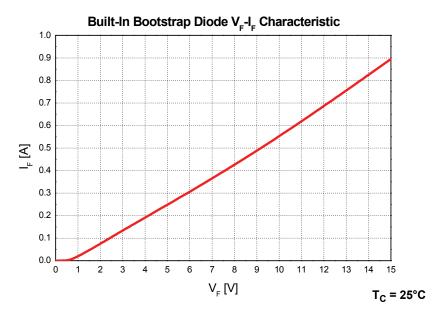


Figure 3. Built-In Bootstrap Diode Characteristics (Typical)

Notes:

- 4. BV_{DSS} is the absolute maximum voltage rating between drain and source terminal of each MOSFET inside Motion SPM[®] 5 product. V_{PN} should be sufficiently less than this value considering the effect of the stray inductance so that V_{PN} should not exceed BV_{DSS} in any case.
- 5. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.
- 6. The peak current and voltage of each MOSFET during the switching operation should be included in the Safe Operating Area (SOA). Please see Figure 7 for the RBSOA test circuit that is same as the switching test circuit.
- 7. V_{ts} is only for sensing-temperature of module and cannot shutdown MOSFETs automatically.
- 8. Built-in bootstrap diode includes around 15 Ω resistance characteristic. Please refer to Figure 2.

These values depend on PWM control algorithm

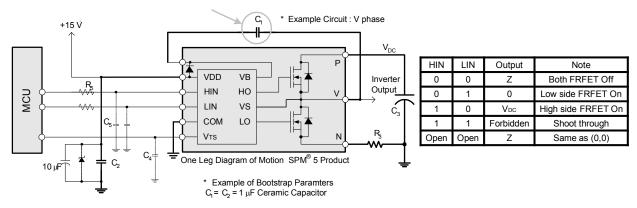
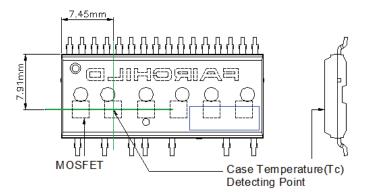



Figure 4. Recommended MCU Interface and Bootstrap Circuit with Parameters

Notes

- 9. Parameters for bootstrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above
- 10.RC-coupling (R₅ and C₅) and C₄ at each input of Motion SPM 5 product and MCU (Indicated as Dotted Lines) may be used to prevent improper signal due to surge-noise.
- 11. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge-voltage. Bypass capacitors such as C₁, C₂ and C₃ should have good high-frequency characteristics to absorb high-frequency ripple-current.

Figure 5. Case Temperature Measurement

Notes

12. Attach the thermocouple on top of the heat-sink of SPM 5 package (between SPM 5 package and heatsink if applied) to get the correct temperature measurement.

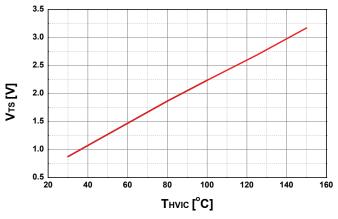


Figure 6. Temperature Profile of V_{TS} (Typical)

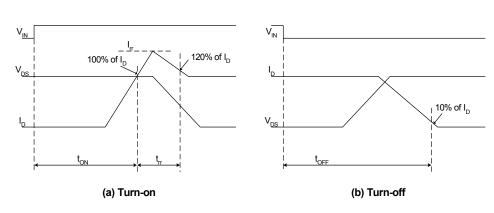


Figure 7. Switching Time Definitions

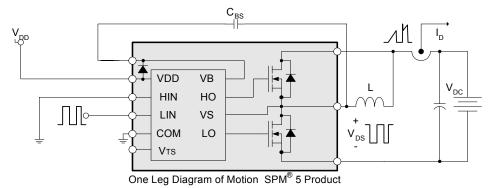


Figure 8. Switching and RBSOA (Single-Pulse) Test Circuit (Low-side)

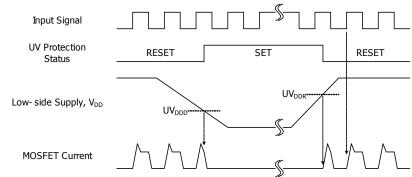


Figure 9. Under-Voltage Protection (Low-Side)

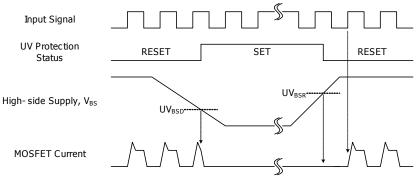
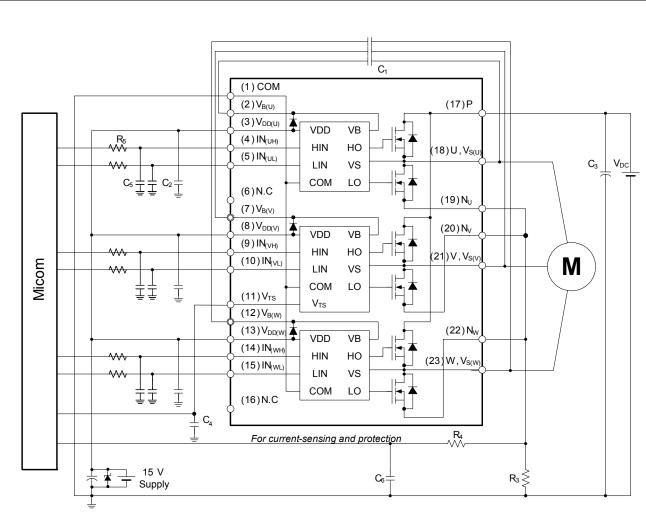
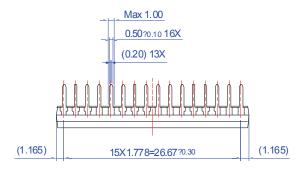
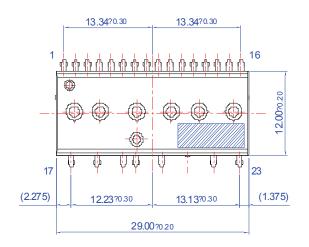
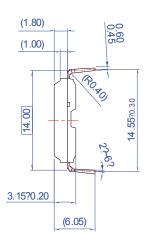
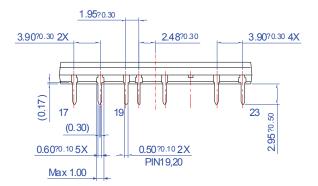


Figure 10. Under-Voltage Protection (High-Side)

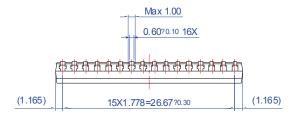



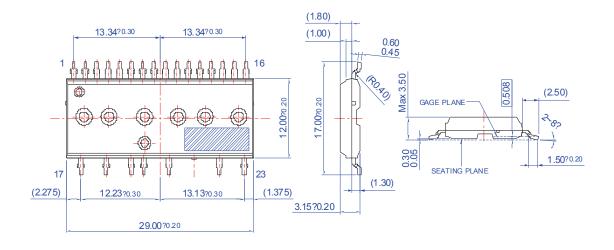

Figure 11. Example of Application Circuit

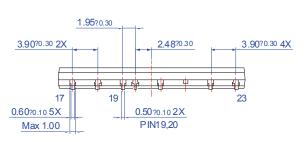

Notes


- 13. About pin position, refer to Figure 1.
- 14. RC-coupling (R₅ and C₅, R₄ and C₆) and C₄ at each input of Motion SPM[®] 5 product and MCU are useful to prevent improper input signal caused by surge-noise.
- 15. The voltage-drop across R₃ affects the low-side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low-side MOSFET. For this reason, the voltage-drop across R₃ should be less than 1 V in the steady-state.
- 16. Ground-wires and output terminals, should be thick and short in order to avoid surge-voltage and malfunction of HVIC.
- 17. All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting high-frequency ripple current.

Detailed Package Outline Drawings (FSB50550B)

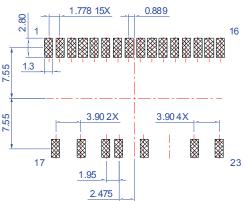






NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD B) ALL DIMENSIONS ARE IN MILLIMETERS C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D)() IS REFERENCE E) [] IS ASSY QUALITY

Detailed Package Outline Drawings (FSB50550BS)



NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
- B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D) () IS REFERENCE
- E) DRAWING FILENAME: MOD23DGREV6.0
- F) FAIRCHILD SEMICONDUCTOR

LAND PATTERN RECOMMENDATIONS

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/sle/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by

ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 3 03-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderli@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FSB50550BS

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А