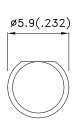


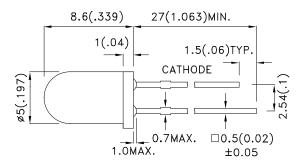
# T-1 3/4 (5mm) SOLID STATE LAMP

PRELIMINARY SPEC

Part Number: WP7113SEC/J

Hyper Orange


#### **Features**


- LOW POWER CONSUMPTION.
- POPULAR T-1 3/4 DIAMETER PACKAGE.
- GENERAL PURPOSE LEADS.
- RELIABLE AND RUGGED.
- LONG LIFE SOLID STATE RELIABILITY.
- AVAILABLE ON TAPE AND REEL.
- RoHS COMPLIANT.

### **Description**

The Super Bright device is based on light emitting diode chip made from AllnGaP.

## **Package Dimensions**





- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm 0.25(0.01")$  unless otherwise noted.
- 3. Lead spacing is measured where the leads emerge from the package.4. Specifications are subject to change without notice.





SPEC NO: DSAG0786 **REV NO: V.5 DATE: JUN/16/2007** PAGE: 1 OF 6 **APPROVED: WYNEC CHECKED: Allen Liu** DRAWN: D.M.LIU ERP: 1101021167

# **Selection Guide**

| Part No.    | Dice                   | Lens Type   | Iv (mcd) [2]<br>@ 20mA |       | Viewing<br>Angle [1] |
|-------------|------------------------|-------------|------------------------|-------|----------------------|
|             |                        |             | Min.                   | Тур.  | 2 θ 1/2              |
| WP7113SEC/J | HYPER ORANGE (AllnGaP) | WATER CLEAR | 6700                   | 12000 | 20 °                 |

- Notes:

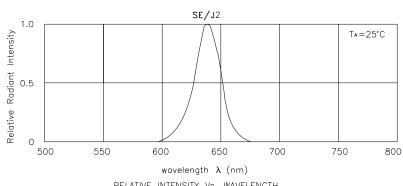
  1.  $\theta$  1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

  2. Luminous Intensity / Luminous Flux: +/-15%.

# Electrical / Optical Characteristics at Ta=25°C

| Symbol  | Parameter                | Device       | Тур. | Max. | Units | Test Conditions |
|---------|--------------------------|--------------|------|------|-------|-----------------|
| λ peak  | Peak Wavelength          | Hyper Orange | 640  |      | nm    | IF=20mA         |
| λ D [1] | Dominant Wavelength      | Hyper Orange | 630  |      | nm    | IF=20mA         |
| Δλ 1/2  | Spectral Line Half-width | Hyper Orange | 25   |      | nm    | IF=20mA         |
| С       | Capacitance              | Hyper Orange | 27   |      | pF    | VF=0V;f=1MHz    |
| VF [2]  | Forward Voltage          | Hyper Orange | 2.2  | 2.8  | V     | IF=20mA         |
| lR      | Reverse Current          | Hyper Orange |      | 10   | uA    | VR = 5V         |

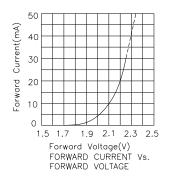
- Wavelength: +/-1nm.
   Forward Voltage: +/-0.1V.

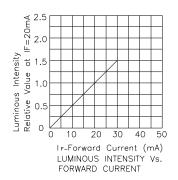

# Absolute Maximum Ratings at Ta=25°C

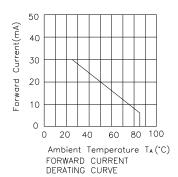
| Parameter                     | Hyper Orange        | Units               |  |  |  |
|-------------------------------|---------------------|---------------------|--|--|--|
| Power dissipation             | 84                  | mW                  |  |  |  |
| DC Forward Current            | 30                  | mA                  |  |  |  |
| Peak Forward Current [1]      | 150                 | mA                  |  |  |  |
| Reverse Voltage               | 5                   | V                   |  |  |  |
| Operating/Storage Temperature | -40°C To +85°C      |                     |  |  |  |
| Lead Solder Temperature [2]   | 260°C For 3 Seconds | 260°C For 3 Seconds |  |  |  |
| Lead Solder Temperature [3]   | 260°C For 5 Seconds | 260°C For 5 Seconds |  |  |  |

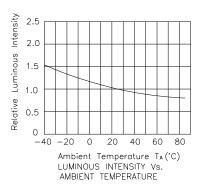
#### Notes:

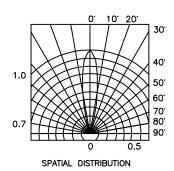
- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.
- 3. 5mm below package base.


SPEC NO: DSAG0786 **REV NO: V.5** DATE: JUN/16/2007 PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: D.M.LIU ERP: 1101021167





RELATIVE INTENSITY Vs. WAVELENGTH

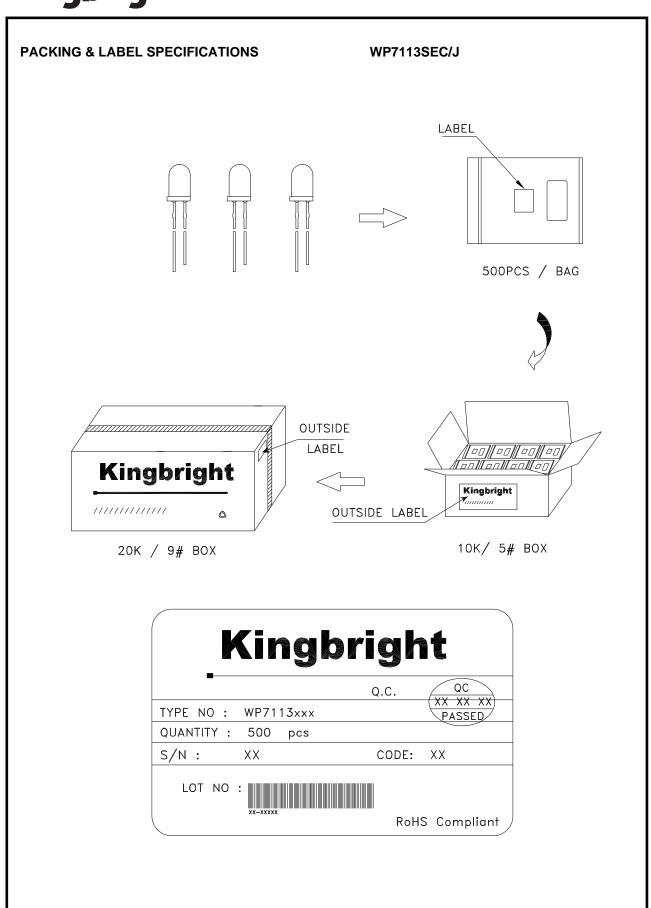

# **Hyper Orange**


### **WP7113SEC/J**





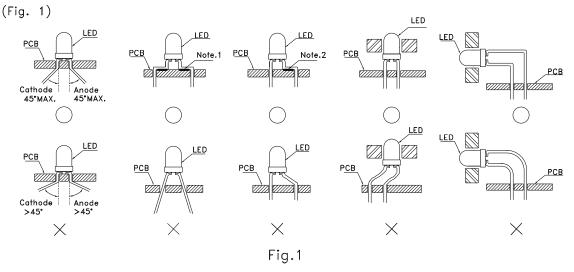






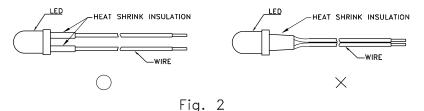

SPEC NO: DSAG0786 APPROVED: WYNEC

**REV NO: V.5 CHECKED: Allen Liu**  **DATE: JUN/16/2007** DRAWN: D.M.LIU

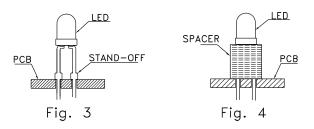

PAGE: 3 OF 6 ERP: 1101021167



SPEC NO: DSAG0786 APPROVED: WYNEC REV NO: V.5 CHECKED: Allen Liu DATE: JUN/16/2007 DRAWN: D.M.LIU PAGE: 4 OF 6 ERP: 1101021167


### LED MOUNTING METHOD

1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures.




" $\bigcirc$ " Correct mounting method " $\times$ " Incorrect mounting method Note 1-2: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits.

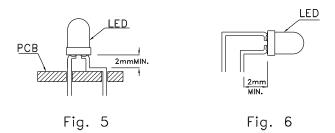
2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig. 2)



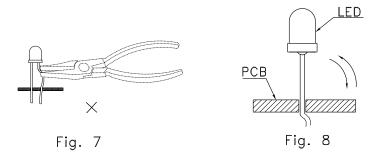
3. Use stand—offs (Fig. 3) or spacers (Fig. 4) to securely position the LED above the PCB.



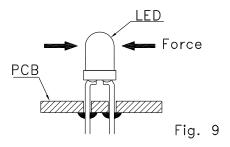
PAGE: 5 OF 6


ERP: 1101021167

SPEC NO: DSAG0786 REV NO: V.5 DATE: JUN/16/2007


APPROVED: WYNEC CHECKED: Allen Liu DRAWN: D.M.LIU

### LEAD FORMING PROCEDURES


1. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6)



- 2. Lead forming or bending must be performed before soldering, never during or after Soldering.
- 3. Do not stress the LED lens during lead—forming in order to fractures in the lens epoxy and damage the internal structures.
- 4. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7)
- 5. Do not bend the leads more than twice. (Fig. 8)



6. After soldering or other high—temperature assembly, allow the LED to cool down to 50°C before applying outside force (Fig. 9). In general, avoid placing excess force on the LED to avoid damage. For any questions please consult with Kingbright representative for proper handling procedures.



SPEC NO: DSAG0786 REV NO: V.5 DATE: JUN/16/2007 PAGE: 6 OF 6

APPROVED: WYNEC CHECKED: Allen Liu DRAWN: D.M.LIU ERP: 1101021167



Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

### Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».



**«JONHON»** (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).



Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А