

Document Number: A2I25D012N Rev. 1, 3/2015

A2I25D012NR1

A2I25D012GNR1

VRoHS

RF LDMOS Wideband Integrated Power Amplifiers

The A2I25D012N wideband integrated power amplifier is optimized to function with a single multi-band circuit usable from 2300 to 2690 MHz. This multi-stage structure is rated from 26 to 32 V operation and covers all typical cellular base station modulation formats.

• Typical Single-Carrier W-CDMA Characterization Performance: $V_{DD} = 28$ Vdc, $I_{DQ1(A+B)} = 45$ mA, $I_{DQ2(A+B)} = 110$ mA, $P_{out} = 2.2$ W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
2300 MHz	31.8	18.5	-47.8
2350 MHz	31.8	18.4	-48.7
2400 MHz	31.9	18.3	-49.3
2496 MHz	32.2	18.3	-49.8
2590 MHz	32.5	18.6	-48.3
2690 MHz	33.2	19.8	-46.8

Features

- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽²⁾
- Designed for Digital Predistortion Error Correction Systems
- Optimized for Doherty Applications

1. All data measured in fixture with device soldered to heatsink.

 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1977 or AN1987.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature Range	T _C	–40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 74°C, 2 W CW, 2500 MHz			
Stage 1, 28 Vdc, I _{DQ1(A+B)} = 45 mA		9.3	
Stage 2, 28 Vdc, I _{DQ2(A+B)} = 110 mA		3.3	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1A
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	II

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics	•	•	•	•	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	—	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—		1	μAdc
Stage 1 - On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 3 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1(A+B)} = 45 mA)	V _{GS(Q)}	_	2.0	_	Vdc
Fixture Gate Quiescent Voltage (V_{DD} = 28 Vdc, $I_{DQ1(A+B)}$ = 45 mA, Measured in Functional Test)	V _{GG(Q)}	5.3	6.7	8.0	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 2 - Off Characteristics ⁽¹⁾	•				•
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}			1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.0 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		_	1	μAdc
Stage 2 - On Characteristics					
Gate Threshold Voltage ⁽¹⁾ (V _{DS} = 10 Vdc, I _D = 10 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2(A+B)} = 110 mA)	V _{GS(Q)}		1.9	_	Vdc
Fixture Gate Quiescent Voltage $(V_{DD} = 28 \text{ Vdc}, I_{DQ2(A+B)} = 110 \text{ mA}, \text{Measured in Functional Test})$	V _{GG(Q)}	4.0	5.0	6.0	Vdc
Drain-Source On-Voltage (1) (V_{GS} = 10 Vdc, I_D = 100 mAdc)	V _{DS(on)}	0.1	0.32	1.5	Vdc
Functional Tests ^(2,3) (In Freescale Production Test Fixture, 50 ohm sys P _{out} = 2.2 W Avg., f = 2690 MHz, Single-Carrier W-CDMA, IQ Magnitude	tem) V _{DD} = 28 Clipping, Input	Vdc, I _{DQ1(A+E} Signal PAR =	₃₎ = 45 mA, I _D 9.9 dB @ 0.0	_{Q2(A+B)} = 110 1% Probability	mA, on CCDF.
Power Gain	G _{ps}	31.0	32.4	35.0	dB
Power Added Efficiency	PAE	18.0	19.7	_	%
Pout @ 1 dB Compression Point, CW	P1dB	13.5	15.5	_	W
Load Mismatch ⁽⁴⁾ (In Freescale Characterization Test Fixture, 50 ohm s	system) I _{DQ1(A+}		DQ2(A+B) = 110	0 mA, f = 269) MHz
VSWR 10:1 at 32 Vdc, 24 W CW Output Power (3 dB Input Overdrive from 13 W CW Rated Power)		No [Device Degrad	dation	
Typical Performance ⁽⁴⁾ (In Freescale Characterization Test Fixture, 50 2300–2690 MHz Bandwidth	ohm system) V	_{DD} = 28 Vdc,	$I_{DQ1(A+B)} = 45$	5 mA, I _{DQ2(A+E}	₃₎ = 110 mA,
Pout @ 3 dB Compression Point, CW (5)	P3dB	—	24	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2300–2690 MHz frequency range.)	Φ	_	-11.1		0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		160	_	MHz
	Δl _{QT}		2.77 1.83		%
Gain Flatness in 390 MHz Bandwidth @ Pout = 2.2 W Avg.	G _F	-	1.4	-	dB
Gain Variation over Temperature	٨G		0.033	_	dB/°C

Gain Flatness in 390 MHz bandwidth $@ P_{out} = 2.2 W Avg.$	GF	_	1.4	_	
Gain Variation over Temperature (–30°C to +85°C)	ΔG		0.033		d
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	—	0.006	_	d

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A2I25D012NR1	D1 Cutting 500 limits 44 mm Tana Width 10 Deal	TO-270WB-15
A2I25D012GNR1	RT Sullix = 500 Offics, 44 min Tape Width, 13-Reel	TO-270WBG-15

1. Each side of device measured separately.

2. Part internally input matched.

3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

4. All data measured in fixture with device soldered to heatsink.

- 5. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
- Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1977 or AN1987.

A2I25D012NR1 A2I25D012GNR1

B/°C

Note: All data measured in fixture with device soldered to heatsink. Production fixture does not include device soldered to heatsink.

Figure 3. A2I25D012NR	1 Characterization	Test Circuit	Component	Layout -	- 2300–2690 MHz
-----------------------	--------------------	---------------------	-----------	----------	-----------------

Part	Description	Part Number	Manufacturer
C1, C2	1.1 pF Chip Capacitors	ATC600F1R1AW250XT	ATC
C3, C4	6.8 pF Chip Capacitors	ATC600F6R8BW250XT	ATC
C5, C6	1.8 pF Chip Capacitors	ATC600F1R8AWT250XT	ATC
C7, C8	10 pF Chip Capacitors	ATC600F100JT250XT	ATC
C9, C10, C11, C12, C17, C18	4.7 μF Chip Capacitors	GRM31CR71H475KA12L	Murata
C13, C14, C19, C20	10 μF Chip Capacitors	GRM31CR61H106KA12L	Murata
C15, C16	1.0 μF Chip Capacitors	GRM31MR71H105KA88L	Murata
Q1	RF LDMOS Power Amplifier	A2I25D012NR1	Freescale
R1, R4	4.7 KΩ, 1/4 W Chip Resistors	CRCW12064K70FKEA	Vishay
R2*, R3*	2.4 KΩ, 1/4 W Chip Resistors	CRCW12062K40FKEA	Vishay
R5, R6	50 Ω, 4 W Chip Resistors	CW12010T0050GBK	ATC
Z1, Z2	2300–2900 MHz Band, 90°, 3 dB Hybrid Couplers	X3C26P1-03S	Anaren
PCB	Rogers RO4350B, 0.020", $\varepsilon_r = 3.66$	D60632	MTL

*In production fixture only.

Compression (PARC) versus Output Power

Figure 7. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power — 2496–2690 MHz

Figure 8. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power — 2300–2400 MHz

Figure 9. Broadband Frequency Response

Table 8. Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, $I_{DQ1(A)}$ = 22.5 mA, $I_{DQ2(A)}$ = 55 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Output Power							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	AM/PM (°)		
2300	20.5 + j19.7	19.8 – j20.5	9.60 – j0.52	31.3	40.3	11	54.9	-3		
2350	24.5 + j16.0	23.6 - j16.1	8.79 – j0.88	31.7	40.2	10	53.9	-3		
2400	30.8 + j8.79	29.5 – j11.3	7.87 – j1.08	32.1	40.1	10	54.1	-4		
2496	45.1 + j5.61	43.9 – j9.82	8.92 – j1.11	32.5	40.1	10	53.3	-3		
2590	52.3 + j22.1	55.9 – j21.5	8.86 – j1.91	33.1	40.2	11	55.0	-2		
2690	46.0 + j43.0	42.9 – j35.7	10.1 – j2.57	33.2	40.3	11	55.1	-3		

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	АМ/РМ (°)		
2300	20.5 + j19.7	20.6 – j21.0	10.4 – j1.17	29.0	41.2	13	55.9	6		
2350	24.5 + j16.0	24.6 – j17.1	9.88 – j1.42	29.3	41.1	13	55.1	6		
2400	30.8 + j8.79	30.6 – j13.3	9.77 – j1.59	29.6	41.1	13	55.1	-7		
2496	45.1 + j5.61	43.4 – j12.7	10.1 – j1.50	30.2	41.1	13	55.2	6		
2590	52.3 + j22.1	52.8 – j23.3	10.4 – j2.22	30.7	41.2	13	55.6	-5		
2690	46.0 + j43.0	41.0 – j35.0	11.5 – j2.97	30.9	41.2	13	56.0	5		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

Table 9. Load Pull Performance — Maximum Power Added Efficiency Tuning

 V_{DD} = 28 Vdc, $I_{DQ1(A)}$ = 22.5 mA, $I_{DQ2(A)}$ = 55 mA, Pulsed CW, 10 µsec(on), 10% Duty Cycle

			Max Power Added Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	АМ/РМ (°)		
2300	20.5 + j19.7	20.8 – j18.5	5.29 + j2.95	33.3	38.7	7	62.6	-8		
2350	24.5 + j16.0	24.8 – j13.5	5.06 + j2.20	33.7	38.8	8	61.9	-8		
2400	30.8 + j8.79	32.4 – j8.18	4.95 + j2.11	34.2	38.6	7	60.8	-8		
2496	45.1 + j5.61	50.5 – j8.00	5.25 + j1.60	34.5	38.9	8	60.6	-7		
2590	52.3 + j22.1	61.3 – j27.8	5.42 + j1.07	34.9	39.0	8	61.9	-7		
2690	46.0 + j43.0	42.1 – j41.4	5.33 – j0.09	35.2	38.8	8	62.2	-8		

			Max Power Added Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	PAE (%)	АМ/РМ (°)		
2300	20.5 + j19.7	21.2 – j19.2	5.18 + j2.83	31.3	39.4	9	63.6	-13		
2350	24.5 + j16.0	25.5 – j14.7	5.15 + j2.29	31.7	39.6	9	63.3	-12		
2400	30.8 + j8.79	32.7 – j10.3	5.16 + j2.22	32.2	39.5	9	63.0	-12		
2496	45.1 + j5.61	50.1 – j10.8	4.96 + j1.89	32.8	39.4	9	62.9	-12		
2590	52.3 + j22.1	57.9 – j27.9	5.33 + j1.26	33.0	39.7	9	63.5	-9		
2690	46.0 + j43.0	40.9 – j39.8	5.33 + j0.11	33.2	39.5	9	63.7	-10		

(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Note: Measurement made on a per side basis.

P1dB - TYPICAL LOAD PULL CONTOURS - 2590 MHz

Figure 10. P1dB Load Pull Output Power Contours (dBm)

Figure 12. P1dB Load Pull Gain Contours (dB)

P3dB - TYPICAL LOAD PULL CONTOURS - 2590 MHz

Figure 14. P3dB Load Pull Output Power Contours (dBm)

Figure 15. P3dB Load Pull Efficiency Contours (%)

Gain
 Power Added Efficiency
 Linearity
 Output Power

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00630D	REV: 0
TO-270WB-15	5	STANDAR	RD: NON-JEDEC	
			1	7 JUN 2014

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASA00630D	REV: 0
TO-270WB-15)	STANDAF	RD: NON-JEDEC	
			17	JUN 2014

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- A DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

DIMENSIONS 65 AND 51 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 55 AND 51 DIMENSIONS AT MAXIMUM MATERIAL CONDITION.

6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

 $/\overline{\Lambda}$ dimension a2 applies within zone J only.

ATCHING REPRESENTS THE EXPOSED AND SOLDERABLE AREA OF THE HEAT SLUG. DIMENSIONS M AND N REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.

9. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	IN	СН	MIL	LIMETER		INCH		MILLI	METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.099	.105	2.51	2.67	М	.600		15.24	
A1	.039	.043	0.99	1.09	Ν	.270		6.86	
A2	.040	.042	1.02	1.07	bb	.097	.103	2.46	2.62
D	.688	.692	17.48	17.58	b1	.010	.016	0.25	0.41
D1	.712	.720	18.08	18.29	c1	.007	.011	0.18	0.28
Е	.551	.559	14.00	14.20	е	.02	O BSC	0.51	BSC
E1	.353	.357	8.97	9.07	e1	.04	-0 BSC	1.02 BSC	
E2	.346	.350	8.79	8.89	e2	.253 II	NFO ONLY	6.43 INFO ONLY	
E3	.132	.140	3.35	3.56	eЗ	.12	0 BSC	3.05 BSC	
F	.025	5 BSC	0.0	64 BSC	aaa		.004	0.10	
					bbb		.008	0.	20
©	FREESCALE SI ALL RIGH	EMICONDUCTOR, HTS RESERVED.	INC.	MECHANIC	AL OU	TLINE	PRINT VEF	SION NOT	TO SCALE
TITLE:						DOCUMENT NO: 98ASA00630D REV: 0			
TO-270WB-15						STANDARD: NON-JEDEC			
								17	7 JUN 2014

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE		
TITLE:		DOCUMEN	NT NO: 98ASA00684D	REV: 0		
TO-270WBG-15			STANDARD: NON-JEDEC			
				17 JUN 2014		

DETAIL "Y"

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT T	O SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00684D	REV: 0
TO-270WBG-	STANDAR	RD: NON-JEDEC		
			17	JUN 2014

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.

A DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

DIMENSIONS 65 AND 61 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 65 AND 61 DIMENSIONS AT MAXIMUM MATERIAL CONDITION.

6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

A AND N REPRESENTS THE EXPOSED AND SOLDERABLE AREA OF THE HEAT SLUG. DIMENSIONS M AND N REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.

8. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM C. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF THE PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.

9. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	IN	СН	MIL	LIMETER			INCH		METER
DIM	MIN	MAX	MIN	MAX	DIM	MIN MAX		MIN	MAX
AA	.099	.105	2.51	2.67	М	.600		15.24	
A1	.001	.004	0.03	0.10	Ν	.270		6.86	
A2	(.1	105)		(2.67)	bb	.097	.103	2.46	2.62
D	.688	.692	17.48	17.58	b1	.010	.016	0.25	0.41
D1	.712	.720	18.08	18.29	c1	.007	.011	0.18	0.28
Е	.429	.437	10.90	11.10	е	.02	20 BSC	0.5	I BSC
E1	.353	.357	8.97	9.07	e1	.04	O BSC	1.02	2 BSC
E2	.346	.350	8.79	8.89	e2	.253 II	NFO ONLY	6.43 INFO ONLY	
E3	.132	.140	3.35	3.56	eЗ	.12	0 BSC	3.05 BSC	
L	.018	.024	0.46	0.61	t	2.	8.	2'	8'
L1	.010	BSC	0.2	25 BSC	aaa		.004	0.10	
					bbb		.008	0	.20
©	FREESCALE S ALL RIG	EMICONDUCTOR, HTS RESERVED.	INC.	MECHANIC	AL OU	TLINE	PRINT VEF	RSION NOT	TO SCALE
TITLE: DOCUME							NT NO: 98ASA	.00684D	REV: 0
TO-270WBG-15						STANDARD: NON-JEDEC			
								17	7 JUN 2014

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to Software & Tools on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Sept. 2014	Initial release of data sheet
1	Mar. 2015	 Figs. 4, 6-8: changed drain efficiency to power added efficiency for plots and axes labels, pp. 5, 6 Tables 7 and 8: changed drain efficiency to power added efficiency and added measurement made on a per side basis note, pp. 7, 8

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2014–2015 Freescale Semiconductor, Inc.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А