LV52204MU

Bi-CMOS IC

LED Boost Driver with PWM and 1-Wire Dimming

Overview

The LV52204MU is a high voltage boost driver for LED drive. LED current is set by the external resistor R1 and LED dimming can be done by changing FB voltage with PWM or 1-Wire.

Features

- Operating Voltage from 2.7V to 5.5V
- Integrated 40V MOSFET
- 1-Wire 32 level digital and PWM dimming
- 600kHz Switching Frequency

Typical Applications

• LED Display Backlight Control

ORDERING INFORMATION

See detailed ordering and shipping information on page 16 of this data sheet.

UDFN6 2 × 2, 0.65P

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	V _{CC}	5.5	V
Maximum pin voltage1	V1 max	SW	40	V
Maximum pin voltage2	V2 max	Other pin	5.5	V
Allowable power dissipation	Pd max	Ta = 25°C *1	2.05	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

*1 Mounted on a specified board: 70mm×50mm×1.2mm (4 layer glass epoxy)

Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommendation Operating Condition at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range1	V _{CC} op	V _{CC}	2.7 to 5.5	V
PWM frequency	Fpwm	PWM MODE	300 to 100k	Hz

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics Analog block at Ta = 25°C, V_{CC} = 3.6V, unless otherwise specified

Description	0			11.1		
Parameter	Symbol	Symbol Conditions		typ	max	Unit
Standby current dissipation	ICC1	SHUTDOWN		0	5	μA
DC/DC current dissipation	I _{CC} 2	V _{OUT} = 30V, I _{LED} = 20mA			1	mA
FB voltage	Vfb	PWM duty 100%	0.19	0.2	0.21	V
FB pin leak current	lfb				1	μA
OVP voltage	Vovp	SW	37	38	39	V
SWOUT ON resistance	Ron	IL = 100mA		700		mΩ
NMOS switch current limit	ILIM	Vfb = 200mV		0.7		Α
OSC frequency	Fosc			600		kHz
High level input voltage	V _{IN} H	SWIRE	1.5		V _{CC}	V
Low level input voltage	V _{IN} L	SWIRE	0		0.4	V
Under voltage lockout	Vuvlo	V _{IN} falling		2.2		V
SWIRE output voltage	Vack	Rpullup = $15k\Omega$			0.4	V
for Acknowledge						

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

D	0 set et			Ratings		
Parameter	Symbol	Symbol Conditions	min	typ	max	Unit
SWIRE setup time1	Ton1	PWM duty more than 2%,	2			μS
from shutdown		VIN≥3.3V, -30°C to 85°C *2				
SWIRE setup time2	Ton2		20			μS
from shutdown						
SWIRE mode selectable time	Tsel		1		2.2	ms
SWIRE delay time to start	Tw0		100			μs
digital mode detection						
SWIRE low time to switch to	Tw1		260			μS
digital mode						
SWIRE low time to shutdown	Toff		8.9			ms
SWIRE start time for digital	Tstart		2			μS
mode programming						
SWIRE end time for digital	Tend		2		360	μs
mode programming						
SWIRE High time of bit 0	Th0	Bit detection = 0	2		180	μS
SWIRE Low time of bit 0	TIO	Bit detection = 0	Th0 imes 2		360	μS
SWIRE High time of bit 1	Th1	Bit detection = 1	Tl1 × 2		360	μS
SWIRE Low time of bit1	TI1	Bit detection = 1	2		180	μS
DCDC startup delay	Tdel			2		ms
Delay time of Acknowledge	Tackd				2	μS
Duration of Acknowledge	Tack				512	μS

Recommended SWIRE Timing at $Ta = 25^{\circ}C$, $V_{CC} = 3.6V$, unless otherwise specified

*2 Guaranteed by design

Block Diagram

Pin Connections

Pin Function

PIN #	Pin Name	Description
1	FB	Feedback pin.
2	FCAP	Filtering capacitor terminal for PWM mode.
3	GND	Ground
4	SW	Switch pin. Drain of the internal power FET.
5	SWIRE	1-wire dimming control and PWM dimming input (active High).
6	V _{CC}	Supply voltage.
	Expose-pad	Connect to GND on PCB.

LED Current Setting

LED current is set by an external resistor connected between the FB pin and ground.

$$I_{LED} = V_{FB}/R_{FB}$$
.

The V_{FB} can be controled by two dimming modes, PWM Mode or Digital Mode.In PWM mode, PWM input is converted into a near DC current by the internal resistor R that was equivalent to $60k\Omega$ (±10%) and the external capacitor C_{FCAP} as a low pass filter with a cut-off frequency fc = $1/2\pi R_{FCAP}$. The V_{FB} can be adjusted by altering the duty cycle of the PWM signal (See Fig.1).

$$V_{FB} = 200 \text{ (mV)} \times \text{PWM Duty (\%)}$$

On the other hand, VFB can be selected one from among 32steps in Digital Mode (See Fig.2).

Fig1. VFB vs. PWM Duty (PWM mode)

Fig2. VFB vs. Data Register Value (Digital mode)

Dimming Mode Selection

Dimming Mode is selected by a specific pattern of the SWIRE within Tsel (1ms) from the startup of the device every time. In order to startup the device, the SWIRE must keep high for longer than Ton.

PWM Mode

The dimming mode is set to PWM mode when it is not recognized as a digital mode within Tsel. To enter Digital Mode, the SWIRE is required keeping in low state for Tw1 (See Fig.4). If the PWM frequency is used faster than 6.6kHz, the dimming mode is set to PWM mode only. But slower than 6.6kHz, it is necessary to avoid entering the digital mode condition, such as SWIRE keeps high for longer than Tsel. PWM is enabled after Tdel from Tsel.

Fig3. SWIRE Timing Diagram in PWM mode

Digital Mode

To enter Digital Mode, SWIRE should be taken high for more than Tw0 (100μ s) from the first rising edge and keep low state for Tw1(260μ s) before Tsel(1ms).

Fig4. SWIRE Timing Diagram in Digital mode

It is required sending the device address byte and the data byte to select V_{FB} . The bit detection is determined by the ratio of Th and Tl (See Fig6). The start condition for the bit transmission required SWIRE high for at least Tstart. The end condition is required SWIRE low for at least Tend. When data is not being transferred, SWIRE is set in the "H" state. These registers are initialized with POR (Power On Reset).

In the LV52204MU, the device address (DA7 to DA0) is specified as "01110010". D7 is setting for the acknowledge response. If the device address and the data byte are transferred on D7 = 1, the ACK signal is sent from the receive side to the send side. The acknowledge signal is issued when SWIRE on the send side is released and SWIRE on the receive side is set to low state. D6 and D5 need to send 0. D4 to D0 allow to changing the FB voltage.

	Register	BIT	Description
	DA7	7	0
	DA6	6	1
	DA5	5	1
Device	DA4	4	1
Address	DA3	3	0
	DA2	2	0
	DA1	1	1
	DA0	0	0

	Register	BIT	Description
	D7	7	0 = Acknowledge disabled 1 = Acknowledge enabled
	D6	6	0
	D5	5	0
Data	D4	4	Data bit 4
	D3	3	Data bit 3
	D2	2	Data bit 2
	D1	1	Data bit 1
	D0	0	Data bit 0

Table1. Device Address Description

Table2. Data Description

Fig6.Bit detection Diagram

	D7	D6	D5	D4	D3	D2	D1	D0	FB voltage (mV)
0	1/0	0	0	0	0	0	0	0	0
1	1/0	0	0	0	0	0	0	1	5
2	1/0	0	0	0	0	0	1	0	8
3	1/0	0	0	0	0	0	1	1	11
4	1/0	0	0	0	0	1	0	0	14
5	1/0	0	0	0	0	1	0	1	17
6	1/0	0	0	0	0	1	1	0	20
7	1/0	0	0	0	0	1	1	1	23
8	1/0	0	0	0	1	0	0	0	26
9	1/0	0	0	0	1	0	0	1	29
10	1/0	0	0	0	1	0	1	0	32
11	1/0	0	0	0	1	0	1	1	35
12	1/0	0	0	0	1	1	0	0	38
13	1/0	0	0	0	1	1	0	1	44
14	1/0	0	0	0	1	1	1	0	50
15	1/0	0	0	0	1	1	1	1	56
16	1/0	0	0	1	0	0	0	0	62
17	1/0	0	0	1	0	0	0	1	68
18	1/0	0	0	1	0	0	1	0	74
19	1/0	0	0	1	0	0	1	1	80
20	1/0	0	0	1	0	1	0	0	86
21	1/0	0	0	1	0	1	0	1	92
22	1/0	0	0	1	0	1	1	0	98
23	1/0	0	0	1	0	1	1	1	104
24	1/0	0	0	1	1	0	0	0	116
25	1/0	0	0	1	1	0	0	1	128
26	1/0	0	0	1	1	0	1	0	140
27	1/0	0	0	1	1	0	1	1	152
28	1/0	0	0	1	1	1	0	0	164
29	1/0	0	0	1	1	1	0	1	176
30	1/0	0	0	1	1	1	1	0	188
31	1/0	0	0	1	1	1	1	1	*200

Table3. Data Register vs. FB Voltage

Start up and Shutdown

The device becomes enabled when SWIRE is initially taken high. The dimming mode is determined within Tsel and the boost converter start up after Tdel. To place the device into shutdown mode, the SWIRE must be held low for Toff.

PWM MODE

Digital MODE

Fig7.Start up and shutdown diagram

Open LED Protection

If SW terminal voltage exceeds a threshold Vovp (38V typ) for 8 cycles, boost converter enters shutdown mode. In order to restart the IC, SWIRE signal is required again.

Over Current Protection

Current limit value for built-in power MOS is around 0.7A. The power MOS is turned off for each switching cycle when peak current through it exceeds the limit value.

Under Voltage Lock Out (UVLO)

UVLO operation works when VIN terminal voltage is below 2.2V.

Thermal Shutdown

When chip temperature is too high, boost converter is stopped.

Application Circuit Diagram

10LEDs

L1: VLS3012T-220M49 (TDK), VLF504015MT-220M (TDK) D1: MBR0540T1 (ON semi), NSR05F40 (ONsemi) C2: GRM21BR71H105K (Murata), C1608X5R1H105K (TDK) <u>6LEDs</u>

L1: VLS3012T-100M72 (TDK), VLF302512M-100M (TDK) D1: MBR0540T1 (ON semi), NSR05F40 (ONsemi) C2: GRM21BR71H105K (Murata), C1608X5R1H105K (TDK)

LV52204MU

Typical Characteristics (V_{IN} = 3.6V, L = 22µH, T = 25°C, unless otherwise specified)

PACKAGE DIMENSIONS

UDFN6 2x2, 0.65P CASE 517AB ISSUE C

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

LV52204MU is as follows.

MARKING DIAGRAM

T4 = Device Code

Pb-Free Package

Packing Specification of Embossed Carrier Taping

UDFN6(2.0*2.0) 3,000 pcs/reel

1.EMBOSSED CARRIER TAPING

1 - 1 .Embossed carrier tape dimensions

1 - 2 .Tape mounting direction

1-3.Reel winding start and reel winding end

P1/3

Packing Specification of Embossed Carrier Taping

UDFN6(2.0*2.0) 3,000 pcs/reel

2.TAPE STRENGTH

2 - 1 .Tensile strength of the carrier tape : Min.10N

2 - 2 .Peel strength of the top cover tape

(a)Peel angle: 165° to 180° relative to the tape adhesive surface

- (b)Peel rate : 300mm / minute
- (c)Peel of strength : 0.1N to 1.0N

3.PARTS No. ON BAR CODE LABEL

4.REEL DIMENSIONS

TYPE:P-RRM-08B UNIT:mm P2/3

Packing Specification of Embossed Carrier Taping

P3/3

UDFN6(2.0*2.0) 3,000 pcs/reel

Carrier tape type number	Package code	Maximum number of ICs contained (pcs.)		Packing form
		Reel	Inner box	Inner box. B50766P001
N22986D001	UDFN6(2.0*2.0)	3,000	30,000	10 Reels contained Dimensions:mm 190 × 136 × 186

MPN Label

RDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV52204MUTBG	UDFN6 (2×2) (Pb-Free)	3000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Oppo

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: LV52204MUGEVB

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А