KAI-01050

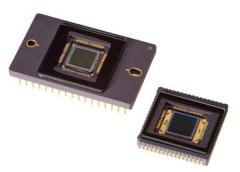
1024 (H) x 1024 (V) Interline CCD Image Sensor

Description

The KAI–01050 Image Sensor is a 1–megapixel CCD in a 1/2" optical format. Based on the TRUESENSE 5.5 micron Interline Transfer CCD Platform, the sensor features broad dynamic range, excellent imaging performance, and a flexible readout architecture that enables use of 1, 2, or 4 outputs for full resolution readout up to 120 frames per second. A vertical overflow drain structure suppresses image blooming and enables electronic shuttering for precise exposure control. Other features include low dark current, negligible lag, and low smear.

The sensor shares common pin-out and electrical configurations with other devices based on the TRUESENSE 5.5 micron Interline Transfer CCD Platform, allowing a single camera design to support multiple members of this sensor family.

Table 1.	GENERAL	SPECIFICATIO)NS
		OI LOII IOAIIG	


Table 1. GENERAL SPECIFICATIONS					
Parameter	Typical Value				
Architecture	Interline CCD, Progressive Scan				
Total Number of Pixels	1084 (H) × 1064 (V)				
Number of Effective Pixels	1040 (H) × 1040 (V)				
Number of Active Pixels	1024 (H) × 1024 (V)				
Pixel Size	5.5 μm (H) × 5.5 μm (V)				
Active Image Size	5.632 mm (H) \times 5.632 mm (V) 7.96 mm (diagonal), 1/2" Optical Format				
Aspect Ratio	1:1				
Number of Outputs	1, 2, or 4				
Charge Capacity	20,000 electrons				
Output Sensitivity	34 μV/e ⁻				
Quantum Efficiency Monochrome (–ABA) R, G, B (–FBA) R, G, B (–CBA)	44% 31%, 37%, 38% 29%, 37%, 39%				
Read Noise (f = 40 MHz)	12 e⁻ rms				
Dark Current Photodiode / VCCD	7 / 140 e [_] /s				
Dark Current Doubling Temp Photodiode / VCCD	7°C / 9°C				
Dynamic Range	64 dB				
Charge Transfer Efficiency	0.999999				
Blooming Suppression	> 300 X				
Smear	-100 dB				
Image Lag	< 10 electrons				
Maximum Pixel Clock Speed	40 MHz				
Maximum Frame Rate Quad / Dual / Single Output	120 / 60 / 30 fps				
Package	68 Pin PGA 64 Pin CLCC				
Cover Glass	AR Coated, 2-Sides				
	d at T 40°C unless athemuise noted				

NOTE: All Parameters are specified at T = 40°C unless otherwise noted.

ON Semiconductor®

www.onsemi.com

Figure 1. KAI–01050 Interline CCD Image Sensor

Features

- Color or Monochrome Configurations
- Progressive Scan Readout
- Flexible Readout Architecture
- High Frame Rate
- High Sensitivity
- Low Noise Architecture
- Excellent Smear Performance
- Package Pin Reserved for Device Identification

Applications

- Industrial Imaging
- Medical Imaging
- Security

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Standard Devices

See full datasheet for ordering information associated with devices no longer recommended for new designs.

Table 2. ORDERING INFORMATION – STANDARD DEVICES
--

Part Number	Description	Marking Code		
KAI-01050-ABA-JD-BA	Monochrome, Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade			
KAI-01050-ABA-JD-AE	KAI-01050-ABA			
KAI-01050-ABA-FD-BA Monochrome, Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Standard Grade		Serial Number		
KAI-01050-ABA-FD-AE Monochrome, Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade				
KAI-01050-FBA-JD-BA	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade			
KAI-01050-FBA-JD-AE	Gen2 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Grade	KAI-01050-FBA		
KAI-01050-FBA-FD-BA Gen2 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Standard Grade		Serial Number		
KAI-01050-FBA-FD-AE	Gen2 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade			

See the ON Semiconductor *Device Nomenclature* document (TND310/D) for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.onsemi.com.

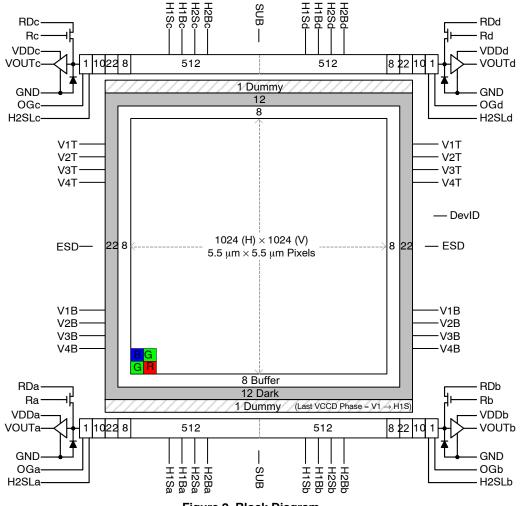

Not Recommended for New Designs

Table 3. ORDERING INFORMATION - NOT RECOMMENDED FOR NEW DESIGNS

Part Number	Description	Marking Code		
KAI-01050-CBA-JD-BA	Gen1 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Standard Grade			
KAI-01050-CBA-JD-AE Gen1 Color (Bayer RGB), Telecentric Microlens, PGA Package, Clear Cover Glass with AR Coating (Both Sides), Engineering Grade				
AI-01050-CBA-FD-BA Gen1 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Standard Grade		Serial Number		
KAI-01050-CBA-FD-AE	Gen1 Color (Bayer RGB), Telecentric Microlens, CLCC Package, Sealed Clear Cover Glass with AR Coating (Both Sides), Engineering Grade			

DEVICE DESCRIPTION

Architecture

Dark Reference Pixels

There are 12 dark reference rows at the top and 12 dark rows at the bottom of the image sensor. The dark rows are not entirely dark and so should not be used for a dark reference level. Use the 22 dark columns on the left or right side of the image sensor as a dark reference.

Under normal circumstances use only the center 20 columns of the 22 column dark reference due to potential light leakage.

Dummy Pixels

Within each horizontal shift register there are 11 leading additional shift phases. These pixels are designated as dummy pixels and should not be used to determine a dark reference level.

In addition, there is one dummy row of pixels at the top and bottom of the image.

Active Buffer Pixels

8 unshielded pixels adjacent to any leading or trailing dark reference regions are classified as active buffer pixels. These

pixels are light sensitive but are not tested for defects and non-uniformities.

Image Acquisition

An electronic representation of an image is formed when incident photons falling on the sensor plane create electron-hole pairs within the individual silicon photodiodes. These photoelectrons are collected locally by the formation of potential wells at each photosite. Below photodiode saturation, the number of photoelectrons collected at each pixel is linearly dependent upon light level and exposure time and non-linearly dependent on wavelength. When the photodiodes charge capacity is reached, excess electrons are discharged into the substrate to prevent blooming.

ESD Protection

Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor. See Power-Up and Power-Down Sequence section.

Physical Description

PGA Pin Description and Device Orientation

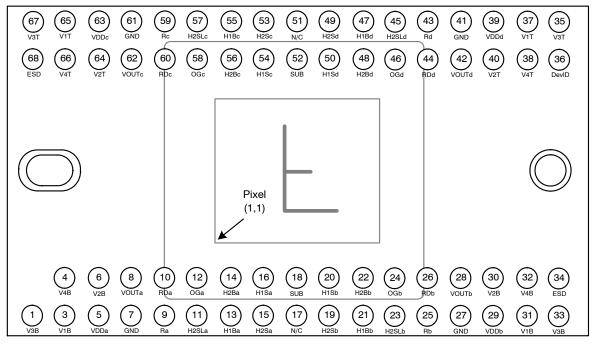


Figure 3. PGA Package Pin Designations – Top View

Table 4. PGA PACKAGE PIN DESCRIPTION

Pin	Name	Description
1	V3B	Vertical CCD Clock, Phase 3, Bottom
3	V1B	Vertical CCD Clock, Phase 1, Bottom
4	V4B	Vertical CCD Clock, Phase 4, Bottom
5	VDDa	Output Amplifier Supply, Quadrant a
6	V2B	Vertical CCD Clock, Phase 2, Bottom
7	GND	Ground
8	VOUTa	Video Output, Quadrant a
9	Ra	Reset Gate, Quadrant a
10	RDa	Reset Drain, Quadrant a
11	H2SLa	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant a
12	OGa	Output Gate, Quadrant a
13	H1Ba	Horizontal CCD Clock, Phase 1, Barrier, Quadrant a
14	H2Ba	Horizontal CCD Clock, Phase 2, Barrier, Quadrant a
15	H2Sa	Horizontal CCD Clock, Phase 2, Storage, Quadrant a
16	H1Sa	Horizontal CCD Clock, Phase 1, Storage, Quadrant a
17	N/C	No Connect
18	SUB	Substrate
19	H2Sb	Horizontal CCD Clock, Phase 2, Storage, Quadrant b
20	H1Sb	Horizontal CCD Clock, Phase 1, Storage, Quadrant b
21	H1Bb	Horizontal CCD Clock, Phase 1, Barrier, Quadrant b
22	H2Bb	Horizontal CCD Clock, Phase 2, Barrier, Quadrant b
23	H2SLb	Horizontal CCD Clock, Phase 1, Storage, Last Phase, Quadrant b

KAI-01050

Pin Name Description 24 OGh Output Gate, Quadrant b Rb 25 Reset Gate, Quadrant b 26 RDb Reset Drain, Quadrant b GND Ground 27 28 VOUTb Video Output, Quadrant b 29 VDDb Output Amplifier Supply, Quadrant b 30 V2B Vertical CCD Clock, Phase 2, Bottom V1B Vertical CCD Clock, Phase 1, Bottom 31 V4B Vertical CCD Clock, Phase 4, Bottom 32 33 V3B Vertical CCD Clock, Phase 3, Bottom ESD **ESD** Protection Disable 34 35 V3T Vertical CCD Clock, Phase 3, Top **Device Identification** 36 DevID Vertical CCD Clock, Phase 1, Top 37 V1T V4T Vertical CCD Clock, Phase 4, Top 38 39 VDDd Output Amplifier Supply, Quadrant d V2T Vertical CCD Clock, Phase 2, Top 40 GND 41 Ground 42 VOUTd Video Output, Quadrant d 43 Rd Reset Gate, Quadrant d Reset Drain, Quadrant d RDd 44 45 H2SLd Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant d OGd Output Gate, Quadrant d 46 47 H1Bd Horizontal CCD Clock, Phase 1, Barrier, Quadrant d Horizontal CCD Clock, Phase 2, Barrier, Quadrant d H2Bd 48 49 H2Sd Horizontal CCD Clock, Phase 2, Storage, Quadrant d 50 H1Sd Horizontal CCD Clock, Phase 1, Storage, Quadrant d N/C No Connect 51 52 SUB Substrate 53 H2Sc Horizontal CCD Clock, Phase 2, Storage, Quadrant c 54 H1Sc Horizontal CCD Clock, Phase 1, Storage, Quadrant c 55 H1Bc Horizontal CCD Clock, Phase 1, Barrier, Quadrant c Horizontal CCD Clock, Phase 2, Barrier, Quadrant c H2Bc 56 57 H2SLc Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant c OGc 58 Output Gate, Quadrant c 59 Rc Reset Gate, Quadrant c Reset Drain, Quadrant c RDc 60 61 GND Ground 62 VOUTc Video Output, Quadrant c 63 VDDc Output Amplifier Supply, Quadrant c V2T Vertical CCD Clock, Phase 2, Top 64 65 V1T Vertical CCD Clock, Phase 1, Top 66 V4T Vertical CCD Clock, Phase 4, Top νзт Vertical CCD Clock, Phase 3, Top 67 68 ESD **EDS** Protection Disable

Table 4. PGA PACKAGE PIN DESCRIPTION (continued)

1. Liked named pins are internally connected and should have a common drive signal.

2. N/C pins (17, 51) should be left floating.

Ceramic Leadless Chip Carrier Pin Description

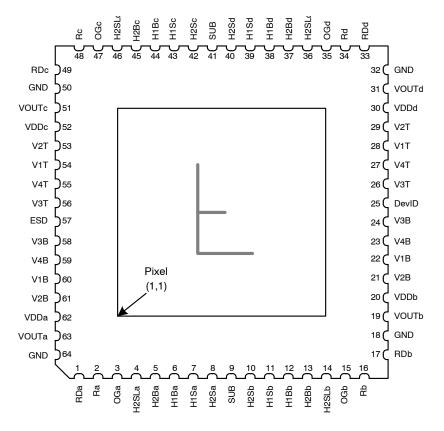


Figure 4. CLCC Package Pin Designations – Top View

Pin	Name	Description
1	RDa	Reset Drain, Quadrant a
2	Ra	Reset Gate, Quadrant a
3	OGa	Output Gate, Quadrant a
4	H2SLa	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant a
5	H2Ba	Horizontal CCD Clock, Phase 2, Barrier, Quadrant a
6	H1Ba	Horizontal CCD Clock, Phase 1, Barrier, Quadrant a
7	H1Sa	Horizontal CCD Clock, Phase 1, Storage, Quadrant a
8	H2Sa	Horizontal CCD Clock, Phase 2, Storage, Quadrant a
9	SUB	Substrate
10	H2Sb	Horizontal CCD Clock, Phase 2, Storage, Quadrant b
11	H1Sb	Horizontal CCD Clock, Phase 1, Storage, Quadrant b
12	H1Bb	Horizontal CCD Clock, Phase 1, Barrier, Quadrant b
13	H2Bb	Horizontal CCD Clock, Phase 2, Barrier, Quadrant b
14	H2SLb	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant b
15	OGb	Output Gate, Quadrant b
16	Rb	Reset Gate, Quadrant b
17	RDb	Reset Drain, Quadrant b
18	GND	Ground
19	VOUTb	Video Output, Quadrant b
20	VDDb	Output Amplifier Supply, Quadrant b

Table 5. CLCC PACKAGE PIN DESCRIPTION

KAI-01050

Table 5. CLCC PACKAGE PIN DESCRIPTION (continued)

Pin	Name	Description
21	V2B	Vertical CCD Clock, Phase 2, Bottom
22	V1B	Vertical CCD Clock, Phase 1, Bottom
23	V4B	Vertical CCD Clock, Phase 4, Bottom
24	V3B	Vertical CCD Clock, Phase 3, Bottom
25	DevID	Device Identification
26	V3T	Vertical CCD Clock, Phase 3, Top
27	V4T	Vertical CCD Clock, Phase 4, Top
28	V1T	Vertical CCD Clock, Phase 1, Top
29	V2T	Vertical CCD Clock, Phase 2, Top
30	VDDd	Output Amplifier Supply, Quadrant d
31	VOUTd	Video Output, Quadrant d
32	GND	Ground
33	RDd	Reset Drain, Quadrant d
34	Rd	Reset Gate, Quadrant d
35	OGd	Output Gate, Quadrant d
36	H2SLd	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant d
37	H2Bd	Horizontal CCD Clock, Phase 2, Barrier, Quadrant d
38	H1Bd	Horizontal CCD Clock, Phase 1, Barrier, Quadrant d
39	H1Sd	Horizontal CCD Clock, Phase 1, Storage, Quadrant d
40	H2Sd	Horizontal CCD Clock, Phase 2, Storage, Quadrant d
41	SUB	Substrate
42	H2Sc	Horizontal CCD Clock, Phase 2, Storage, Quadrant c
43	H1Sc	Horizontal CCD Clock, Phase 1, Storage, Quadrant c
44	H1Bc	Horizontal CCD Clock, Phase 1, Barrier, Quadrant c
45	H2Bc	Horizontal CCD Clock, Phase 2, Barrier, Quadrant c
46	H2SLc	Horizontal CCD Clock, Phase 2, Storage, Last Phase, Quadrant c
47	OGc	Output Gate, Quadrant c
48	Rc	Reset Gate, Quadrant c
49	RDc	Reset Drain, Quadrant c
50	GND	Ground
51	VOUTc	Video Output, Quadrant c
52	VDDc	Output Amplifier Supply, Quadrant c
53	V2T	Vertical CCD Clock, Phase 2, Top
54	V1T	Vertical CCD Clock, Phase 1, Top
55	V4T	Vertical CCD Clock, Phase 4, Top
56	V3T	Vertical CCD Clock, Phase 3, Top
57	ESD	ESD Protection Disable
58	V3B	Vertical CCD Clock, Phase 3, Bottom
59	V4B	Vertical CCD Clock, Phase 4, Bottom
60	V1B	Vertical CCD Clock, Phase 1, Bottom
61	V2B	Vertical CCD Clock, Phase 2, Bottom
62	VDDa	Output Amplifier Supply, Quadrant a
63	VOUTa	Video Output, Quadrant a
	GND	Ground

1. Liked named pins are internally connected and should have a common drive signal.

IMAGING PERFORMANCE

Table 6. TYPICAL OPERATION CONDITIONS

Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.

Description	Condition	Notes
Frame Time	71.6 msec	Electronic shutter is not used. Integration time equals frame time.
Horizontal Clock Frequency	20 MHz	
Light Source	Continuous red, green and blue LED illumination centered at 450, 530 and 650 nm respectively	For monochrome sensor, only green LED used.
Operation	Nominal operating voltages and timing	

Table 7. SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Dark Field Global Non-Uniformity	DSNU	-	-	2.0	mVpp	Die	27, 40	
Bright Field Global Non-Uniformity		-	2.0	5.0	%rms	Die	27, 40	1
Bright Field Global Peak to Peak Non–Uniformity	PRNU	-	5.0	15.0	%рр	Die	27, 40	1
Bright Field Center Non–Uniformity		-	1.0	2.0	%rms	Die	27, 40	1
Maximum Photoresponse Nonlinearity	NL	-	2	-	%	Design		2
Maximum Gain Difference Between Outputs	ΔG	-	10	-	%	Design		2
Maximum Signal Error due to Nonlinearity Differences	ΔNL	-	1	-	%	Design		2
Horizontal CCD Charge Capacity	HNe	-	55	-	ke⁻	Design		
Vertical CCD Charge Capacity	VNe	-	45	-	ke-	Design		
Photodiode Charge Capacity	PNe	-	20	-	ke⁻	Die	27, 40	3
Horizontal CCD Charge Transfer Efficiency	HCTE	0.999995	0.999999	-		Die		
Vertical CCD Charge Transfer Efficiency	VCTE	0.999995	0.999999	-		Die		
Photodiode Dark Current	lpd	-	7	70	e/p/s	Die	40	
Vertical CCD Dark Current	lvd	-	140	400	e/p/s	Die	40	
Image Lag	Lag	-	-	10	e-	Design		
Antiblooming Factor	Xab	300	-	-		Design		
Vertical Smear	Smr	-	-100	-	dB	Design		
Read Noise	n _{e-T}	-	12	-	e⁻rms	Design		4
Dynamic Range	DR	-	64	-	dB	Design		4, 5
Output Amplifier DC Offset	V _{odc}	-	9.4	-	V	Die	27, 40	
Output Amplifier Bandwidth	f _{-3db}	-	250	-	MHz	Die		6
Output Amplifier Impedance	R _{OUT}	-	127	-	Ω	Die	27, 40	
Output Amplifier Sensitivity	$\Delta V / \Delta N$	-	34	-	μV/e ⁻	Design		

1. Per color

2. Value is over the range of 10% to 90% of photodiode saturation.

The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such that the photodiode charge capacity is 680 mV.

4. At 40 MHz

5. Uses 20LOG (PNe/ n_{e-T}) 6. Assumes 5 pF load.

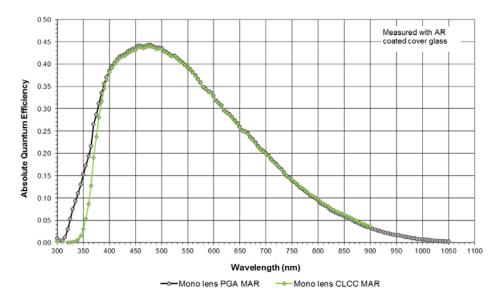
Table 8. KAI-01050-ABA CONFIGURATIONS

Description	Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	QE _{max}	-	44	-	%	Design		
Peak Quantum Efficiency Wavelength	λQE	-	480	-	nm	Design		

Table 9. KAI-01050-FBA GEN2 COLOR CONFIGURATIONS WITH MAR GLASS

Description		Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	Blue Green Red	QE _{max}	_	38 37 31	-	%	Design		
Peak Quantum Efficiency Wavelength	Blue Green Red	λQE	_	460 530 605	-	nm	Design		

Table 10. KAI-01050-CBA GEN1 COLOR CONFIGURATIONS WITH MAR GLASS


Description		Symbol	Min.	Nom.	Max.	Units	Sampling Plan	Temperature Tested At (°C)	Notes
Peak Quantum Efficiency	Blue Green Red	QE _{max}	-	39 37 29	-	%	Design		1
Peak Quantum Efficiency Wavelength	Blue Green Red	λQE	-	470 540 620	-	nm	Design		1

1. This color filter set configuration (Gen1) is not recommended for new designs.

TYPICAL PERFORMANCE CURVES

Quantum Efficiency

Monochrome with Microlens

NOTE: The PGA and CLCC versions have different quantum efficiencies due to differences in the cover glass transmission. See Figure 29: Cover Glass Transmission for more details.

Figure 5. Monochrome with Microlens Quantum Efficiency

Color (Bayer RGB) with Microlens (Gen2 and Gen1 CFA)

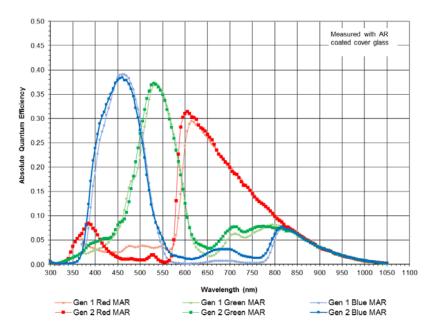


Figure 6. Gen2 and Gen1 Color (Bayer) with Microlens Quantum Efficiency

Angular Quantum Efficiency

For the curves marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD. For the curves marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD.

Monochrome with Microlens

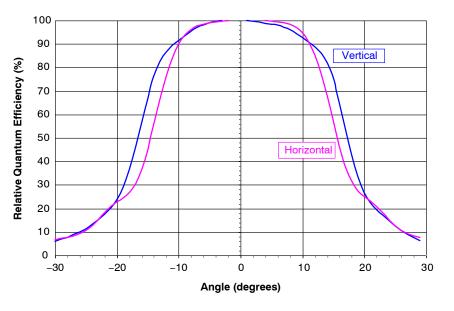
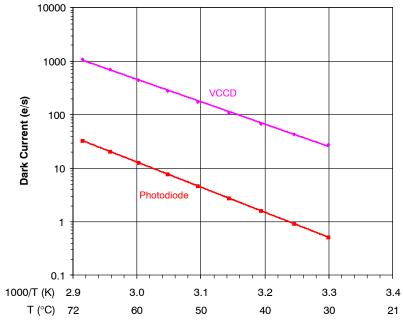



Figure 7. Monochrome with Microlens Angular Quantum Efficiency

Dark Current vs. Temperature

Figure 8. Dark Current vs. Temperature

Power-Estimated

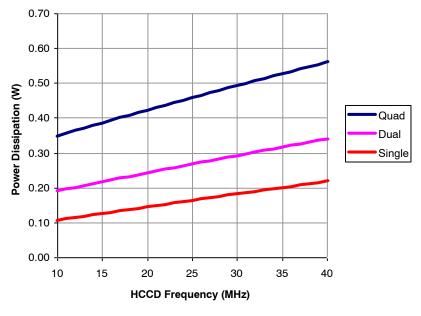


Figure 9. Power

Frame Rates

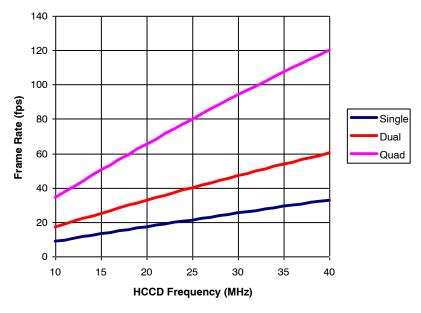


Figure 10. Frame Rates

DEFECT DEFINITIONS

Table 11. OPERATION CONDITIONS

Description	Condition	Notes
Frame Time	71.6 ms	Electronic shutter is not used. Integration time equals frame time.
Horizontal Clock Frequency	20 MHz	
Light Source	Continuous Red, Green and Blue LED Illumination centered at 450, 530 and 650 nm respectively	For monochrome sensor, only green LED is used.
Operation	Nominal operating voltages and timing	

Table 12. SPECIFICATIONS

Description	Definition	Standard Grade	Notes
Major Dark Field Defective Bright Pixel	Defect ≥ 25 mV	10	2
Major Bright Field Defective Dark Pixel	Defect ≥ 11%	10	2
Minor Dark Field Defective Bright Pixel	Defect ≥ 12 mV	100	3
Cluster Defect	A group of 2 contiguous major defective pixels.	0	1, 2
	A group of 3 to 10 contiguous major defective pixels.	0	
Column Defect	A group of more than 10 contiguous major defective pixels along a single column.	0	1, 2

1. Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects)

2. Tested at $27^{\circ}C$ and $40^{\circ}C$.

3. Tested at 40°C.

Defect Map

The defect map supplied with each sensor is based upon testing at an ambient $(27^{\circ}C)$ temperature. Minor point defects are not included in the defect map. All defective

pixels are reference to pixel 1, 1 in the defect maps. See Figure 11: Regions of Interest for the location of pixel 1, 1.

TEST DEFINITIONS

Test Regions of Interest

Image Area ROI:	Pixel (1, 1) to Pixel (1040, 1040)
Active Area ROI:	Pixel (9, 9) to Pixel (1032, 1032)
Center ROI:	Pixel (471, 471) to Pixel (570, 570)

Overclocking

The test system timing is configured such that the sensor is overclocked in both the vertical and horizontal directions. See Figure 11 for a pictorial representation of the regions.

Only the Active Area ROI pixels are used for performance and defect tests.

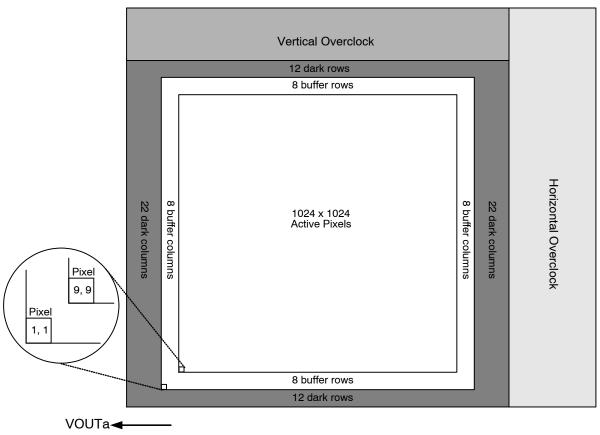


Figure 11. Regions of Interest

Tests

Dark Field Global Non-Uniformity

This test is performed under dark field conditions. The sensor is partitioned into 64 sub regions of interest, each of which is 128 by 128 pixels in size. See Figure 12: Test Sub Regions of Interest. The average signal level of each of the 64 sub regions of interest is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in Counts -

- Horizontal Overclock Average in Counts) ·
- · mV per Count

Units : mVpp (millivolts Peak to Peak)

Where i = 1 to 64. During this calculation on the 64 sub regions of interest, the maximum and minimum signal levels are found. The dark field global uniformity is then calculated as the maximum signal found minus the minimum signal level found.

Global Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 476 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 680 mV. Global non-uniformity is defined as

Global Non–Uniformity =
$$100 \cdot \left(\frac{\text{Active Area Standard Deviation}}{\text{Active Area Signal}}\right)$$

Units : % rms Active Area Signal = Active Area Average – Dark Column Average

Global Peak to Peak Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation

(approximately 476 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 680 mV. The sensor is partitioned into 64 sub regions of interest, each of which is 128 by 128 pixels in size. See Figure 12: Test Sub Regions of Interest. The average signal level of each of the 64 sub regions of interest (ROI) is calculated. The signal level of each of the sub regions of interest is calculated using the following formula:

Signal of ROI[i] = (ROI Average in Counts -

- Horizontal Overclock Average in Counts) ·

· mV per Count

Where i = 1 to 64. During this calculation on the 64 sub regions of interest, the maximum and minimum signal levels are found. The global peak to peak uniformity is then calculated as:

Global Uniformity = $100 \cdot \left(\frac{Max. Signal - Min. Signal}{Active Area Signal}\right)$

Units : % pp

Center Non-Uniformity

This test is performed with the imager illuminated to a level such that the output is at 70% of saturation (approximately 476 mV). Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 680 mV. Defects are excluded for the calculation of this test. This test is performed on the center 100 by 100 pixels of the sensor. Center uniformity is defined as:

Center ROI Uniformity = $100 \cdot \left(\frac{\text{Center ROI Standard Deviation}}{\text{Center ROI Signal}}\right)$ Units : % rms

Center ROI Signal = Center ROI Average - Dark Colum Average

Dark Field Defect Test

This test is performed under dark field conditions. The sensor is partitioned into 64 sub regions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified in the "Defect Definitions" section.

Bright Field Defect Test

This test is performed with the imager illuminated to a level such that the output is at approximately 476 mV. Prior to this test being performed the substrate voltage has been set such that the charge capacity of the sensor is 680 mV. The average signal level of all active pixels is found. The bright and dark thresholds are set as:

Dark Defect Threshold = Active Area Signal · Threshold

Bright Defect Threshold = Active Area Signal · Threshold

The sensor is then partitioned into 64 sub regions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark threshold specified.

Example for major bright field defective pixels:

- Average value of all active pixels is found to be 476 mV.
- Dark defect threshold: $476 \text{ mV} \cdot 11 \% = 52 \text{ mV}.$
- Bright defect threshold: $476 \text{ mV} \cdot 11 \% = 52 \text{ mV}.$
- Region of interest #1 selected. This region of interest is pixels 9, 9 to pixels 136, 136.
 - Median of this region of interest is found to be 470 mV.
 - Any pixel in this region of interest that is
 ≥ (470 + 52 mV) 522 mV in intensity will be marked
 defective.
 - Any pixel in this region of interest that is ≤ (470 - 52 mV) 418 mV in intensity will be marked defective.
- All remaining 64 sub regions of interest are analyzed for defective pixels in the same manner.

Test Sub Regions of Interest

								(1	Pixel 032,1032)
	57	58	59	60	61	62	63	64	
	49	50	51	52	53	54	55	56	
	41	42	43	44	45	46	47	48	
	33	34	35	36	37	38	39	40	
	25	26	27	28	29	30	31	32	
	17	18	19	20	21	22	23	24	
	9	10	11	12	13	14	15	16	
	1	2	3	4	5	6	7	8	
Pixel (9,9)									
VOUTa	◀								

Figure 12. Test Sub Regions of Interest

OPERATION

Absolute Maximum Ratings

Absolute maximum rating is defined as a level or condition that should not be exceeded at any time per the

description. If the level or the condition is exceeded, the device will be degraded and may be damaged. Operation at these values will reduce MTTF.

Table 13. ABSOLUTE MAXIMUM RATINGS

Description	Symbol	Minimum	Maximum	Unit	Notes
Operating Temperature	T _{OP}	-50	70	°C	1
Humidity	RH	-5	90	%	2
Output Bias Current	I _{OUT}	-	60	mA	3
Off-Chip Load	CL	-	10	pF	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

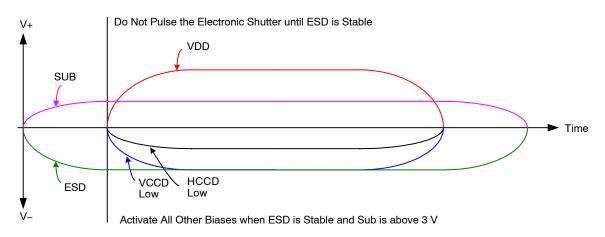
1. Noise performance will degrade at higher temperatures.

2. $T = 25^{\circ}C$. Excessive humidity will degrade MTTF.

3. Total for all outputs. Maximum current is -15 mA for each output. Avoid shorting output pins to ground or any low impedance source during operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).

Table 14. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND

Description	Minimum	Maximum	Unit	Notes
VDDα, VOUTα	-0.4	17.5	V	1
RDα	-0.4	15.5	V	1
V1B, V1T	ESD – 0.4	ESD + 24.0	V	
V2B, V2T, V3B, V3T, V4B, V4T	ESD – 0.4	ESD + 14.0	V	
H1Sa, H1Ba, H2Sa, H2Ba, H2SLa, Ra, OGa	ESD – 0.4	ESD + 14.0	V	1
ESD	-10.0	0.0	V	
SUB	-0.4	40.0	V	2


1. α denotes a, b, c or d.

2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions

KAI-01050

Power-Up and Power-Down Sequence

Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down sequences may cause damage to the sensor.

Notes:

- 1. Activate all other biases when ESD is stable and SUB is above 3 V.
- 2. Do not pulse the electronic shutter until ESD is stable.
- 3. VDD cannot be +15 V when SUB is 0 V.
- 4. The image sensor can be protected from an accidental improper ESD voltage by current limiting the SUB current to less than 10 mA. SUB and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and ground will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See the figure below.

Figure 13. Power-Up and Power-Down Sequence

The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage.

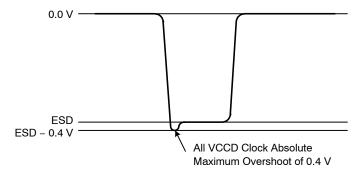
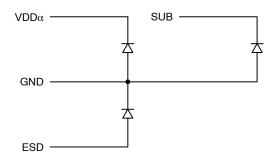



Figure 14. VCCD Clock Waveform

Example of external diode protection for SUB, VDD and ESD. α denotes a, b, c or d.

DC Bias Operating Conditions

Table 15.	DC BIAS	OPERATING	CONDITIONS
		•••••••••••	

Description	Pins	Symbol	Min.	Nom.	Max.	Unit	Max. DC Current	Notes
Reset Drain	RDα	RD	11.8	12.0	12.2	V	10 μA	1
Output Gate	OGα	OG	-2.2	-2.0	-1.8	V	10 μA	1
Output Amplifier Supply	VDDα	V _{DD}	14.5	15.0	15.5	V	11.0 mA	1, 2
Ground	GND	GND	0.0	0.0	0.0	V	–1.0 mA	
Substrate	SUB	V _{SUB}	5.0	V _{AB}	V _{DD}	V	50 μA	3, 8
ESD Protection Disable	ESD	ESD	-9.5	-9.0	Vx_L	V	50 μA	6, 7, 9
Output Bias Current	VOUTα	I _{OUT}	-3.0	-7.0	-10.0	mA	-	1, 4, 5

1. α denotes a, b, c or d.

2. The maximum DC current is for one output. $I_{DD} = I_{OUT} + I_{SS}$. See Figure 16. 3. The operating value of the substrate voltage, V_{AB}, will be marked on the shipping container for each device. The value of V_{AB} is set such that the photodiode charge capacity is the nominal P_{Ne} (see Specifications).
An output load sink must be applied to each VOUT pin to activate each output amplifier.

5. Nominal value required for 40 MHz operation per output. May be reduced for slower data rates and lower noise.

6. Adherence to the power-up and power-down sequence is critical. See Power Up and Power Down Sequence section. 7. ESD maximum value must be less than or equal to $V1_L + 0.4 V$ and $V2_L + 0.4 V$.

Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
 Where Vx_L is the level set for V1_L, V2_L, V3_L, or V4_L in the application.

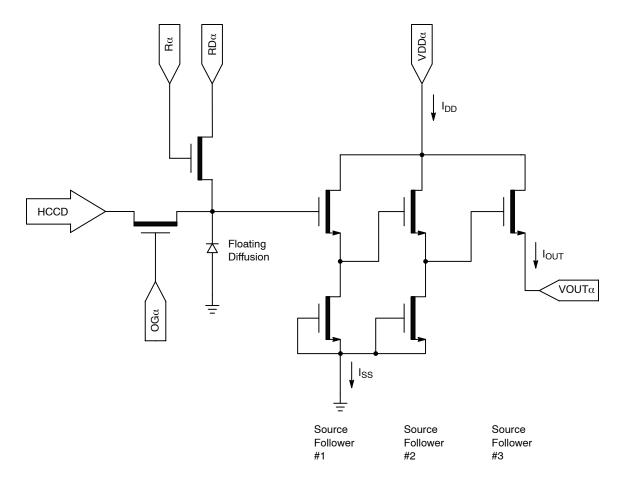


Figure 16. Output Amplifier

AC Operating Conditions

Table 16. CLOCK LEVELS

Description	Pins (Note 1)	Symbol	Level	Min.	Nom.	Max.	Unit	Capacitance (Note 2)
Vertical CCD Clock, Phase 1	V1B, V1T	V1_L	Low	-8.2	-8.0	-7.8	V	6 nF
		V1_M	Mid	-0.2	0.0	0.2		(Note 6)
		V1_H	High	11.5	12.0	12.5		
Vertical CCD Clock, Phase 2	V2B, V2T	V2_L	Low	-8.2	-8.0	-7.8	V	6 nF
		V2_H	High	-0.2	0.0	0.2		(Note 6)
Vertical CCD Clock, Phase 3	V3B, V3T	V3_L	Low	-8.2	-8.0	-7.8	V	6 nF
		V3_H	High	-0.2	0.0	0.2		(Note 6)
Vertical CCD Clock, Phase 4	V4B, V4T	V4_L	Low	-8.2	-8.0	-7.8	V	6 nF
		V4_H	High	-0.2	0.0	0.2		(Note 6)
Horizontal CCD Clock, Phase 1 Storage	H1Sa	H1S_L	Low	-5.2 (Note 7)	-4.0	-3.8	V	90 pF (Note 6)
		H1S_A	Amplitude	3.8	4.0	5.2 (Note 7)		
Horizontal CCD Clock, Phase 1 Barrier	Η1Βα	H1B_L	Low	–5.2 (Note 7)	-4.0	-3.8	V	60 pF (Note 6)
		H1B_A	Amplitude	3.8	4.0	5.2 (Note 7)		
Horizontal CCD Clock, Phase 2 Storage	H2Sa	H2S_L	Low	–5.2 (Note 7)	-4.0	-3.8	V	90 pF (Note 6)
		H2S_A	Amplitude	3.8	4.0	5.2 (Note 7)		
Horizontal CCD Clock, Phase 2 Barrier	Η2Βα	H2B_L	Low	–5.2 (Note 7)	-4.0	-3.8	V	60 pF (Note 6)
		H2B_A	Amplitude	3.8	4.0	5.2 (Note 7)		
Horizontal CCD Clock,	H2SLa	H2SL_L	Low	-5.2	-5.0	-4.8	V	20 pF
Phase 2 Last Phase (Note 3)		H2SL_A	Amplitude	4.8	5.0	5.2	1	(Note 6)
Reset Gate	Rα	R_L (Note 4)	Low	-3.5	-2.0	-1.5	V	16 pF (Note 6)
		R_H	High	2.5	3.0	4.0	1	
Electronic Shutter (Note 5)	SUB	VES	High	29.0	30.0	40.0	V	800 pF (Note 6)
		•	•			•		

1. α denotes a, b, c or d.

2. Capacitance is total for all like named pins.

Use separate clock driver for improved speed performance.
 Reset low should be set to -3 V for signal levels greater than 40,000 electrons.

Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
 Capacitance values are estimated.

 If the minimum horizontal clock low level is used (-5.2 V), then the maximum horizontal clock amplitude should be used (5.2 V amplitude) to create a -5.2 V to 0.0 V clock. If a 5 V clock driver is used, the horizontal low level should be set to -5.0 V and the high level should be a set to 0.0 V.

KAI-01050

The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground.

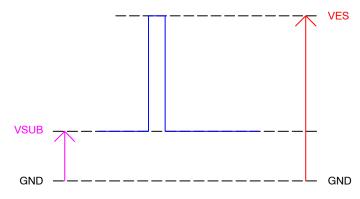


Figure 17. DC Bias and AC Clock Applied to the SUB Pin

Device Identification

The device identification pin (DevID) may be used to determine which Truesense Imaging 5.5 micron pixel interline CCD sensor is being used.

Table 17.

Description	Pins	Symbol	Min.	Nom.	Max.	Unit	Max. DC Current	Notes
Device Identification	DevID	DevID		8		Ω	n/a	1, 2

1. For the KAI-01050, the DevID pin is not connected internally to the device. Thus the resistance on the pin is infinity.

2. If the Device Identification is not used, it may be left disconnected.

Recommended Circuit

Note that V1 must be a different value than V2.

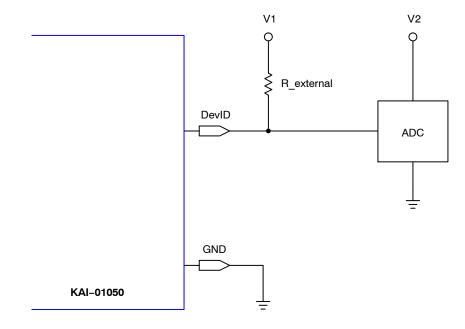


Figure 18. Device Identification Recommended Circuit

TIMING

Table 18. REQUIREMENTS AND CHARACTERISTICS

Description	Symbol	Min.	Nom.	Max.	Unit	Notes
Photodiode Transfer	t _{PD}	1.0	-	-	μs	
VCCD Leading Pedestal	t _{3P}	4.0	-	-	μs	
VCCD Trailing Pedestal	t _{3D}	4.0	-	-	μs	
VCCD Transfer Delay	t _D	1.0	-	-	μs	
VCCD Transfer	t _V	1.0	-	-	μs	
VCCD Clock Cross-Over	V _{VCR}	75	-	100	%	
VCCD Rise, Fall Times	t _{VR} , t _{VF}	5	-	10	%	2, 3
HCCD Delay	t _{HS}	0.2	-	-	μs	
HCCD Transfer	t _e	25.0	-	-	ns	
Shutter Transfer	t _{SUB}	1.0	-	-	μs	
Shutter Delay	t _{HD}	1.0	-	-	μs	
Reset Pulse	t _R	2.5	-	-	ns	
Reset - Video Delay	t _{RV}	-	2.2	-	ns	
H2SL – Video Delay	t _{HV}	-	3.1	-	ns	
Line Time	t _{LINE}	15.53	-	-	μs	Dual HCCD Readout
		29.35	-	-		Single HCCD Readout
Frame Time	t _{FRAME}	8.26	-	-	ms	Quad HCCD Readout
		16.52	-	-	1	Dual HCCD Readout
		31.23	-	-	1	Single HCCD Readout

Refer to timing diagrams as shown in Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23.
 Refer to Figure 23: VCCD Clock Edge Alignment.
 Relative to the pulse width.

Timing Diagrams

The timing sequence for the clocked device pins may be represented as one of seven patterns (P1–P7) as shown in the table below. The patterns are defined in Figure 19 and

Figure 20. Contact ON Semiconductor Application Engineering for other readout modes.

Table 19. TIMING DIAGRAMS

Device Pin	Quad Readout	Dual Readout VOUTa, VOUTb	Dual Readout VOUTa, VOUTc	Single Readout VOUTa			
V1T	P1T	P1B	P1T	P1B			
V2T	P2T	P4B	P2T	P4B			
V3T	P3T	P3B	P3T	P3B			
V4T	P4T	P2B	P4T	P2B			
V1B	P1B						
V2B	P2B						
V3B	P3B						
V4B	P4B						
H1Sa	P5						
H1Ba	P5						
H2Sa (Note 2)	P6						
H2Ba	P6						
Ra	P7						
H1Sb	P5 P5						
H1Bb		P5	P6				
H2Sb (Note 2)		P6	P6				
H2Bb	P6		P5				
Rb	Ρ7		P7 (Note 1) or Off (Note 3)	P7 (Note 1) or Off (Note 3)			
H1Sc	P5	P5 (Note 1) or Off (Note 3)	P5	P5 (Note 1) or Off (Note 3)			
H1Bc	P5	P5 (Note 1) or Off (Note 3)	P5	P5 (Note 1) or Off (Note 3)			
H2Sc (Note 2)	P6	P6 (Note 1) or Off (Note 3)	P6	P6 (Note 1) or Off (Note 3)			
H2Bc	P6	P6 (Note 1) or Off (Note 3)	P6	P6 (Note 1) or Off (Note 3)			
Rc	P7	P7 (Note 1) or Off (Note 3)	P7	P7 (Note 1) or Off (Note 3)			
H1Sd	P5	P5 (Note 1) or Off (Note 3)	P5	P5 (Note 1) or Off (Note 3)			
H1Bd	P5	P5 (Note 1) or Off (Note 3)	P6	P5 (Note 1) or Off (Note 3)			
H2Sd (Note 2)	P6	P6 (Note 1) or Off (Note 3)	P6	P6 (Note 1) or Off (Note 3)			
H2Bd	P6	P6 (Note 1) or Off (Note 3)	P5	P6 (Note 1) or Off (Note 3)			
Rd	P7	P7 (Note 1) or Off (Note 3)	P7 (Note 1) or Off (Note 3)	P7 (Note 1) or Off (Note 3)			

#Lines/Frame (Minimum)	532	1064	532	1064	
#Pixels/Line (Minimum)	553		1106		

1. For optimal performance of the sensor. May be clocked at a lower frequency. If clocked at a lower frequency, the frequency selected should be a multiple of the frequency used on the a and b register.

2. H2SLx follows the same pattern as H2Sx For optimal speed performance, use a separate clock driver.

3. Off = +5 V. Note that there may be operating conditions (high temperature and/or very bright light sources) that will cause blooming from the unused c/d register into the image area.

Photodiode Transfer Timing

A row of charge is transferred to the HCCD on the falling edge of V1 as indicated in the P1 pattern below. Using this timing sequence, the leading dummy row or line is combined with the first dark row in the HCCD. The "Last Line" is dependent on readout mode – either 532 or 1064 minimum counts required. It is important to note that, in general, the rising edge of a vertical clock (patterns P1–P4) should be coincident or slightly leading a falling edge at the same time interval. This is particularly true at the point where P1 returns from the high (3rd level) state to the mid-state when P4 transitions from the low state to the high state.

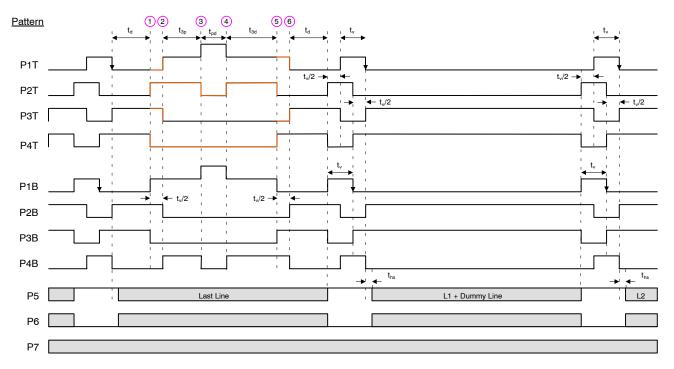


Figure 19. Photodiode Transfer Timing

Line and Pixel Timing

Each row of charge is transferred to the output, as illustrated below, on the falling edge of H2SL (indicated as

P6 pattern). The number of pixels in a row is dependent on readout mode – either 553 or 1106 minimum counts required.

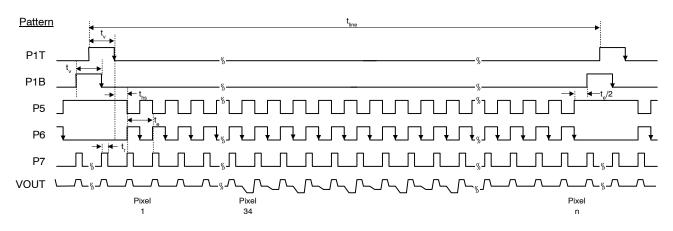


Figure 20. Line and Pixel Timing

Pixel Timing Detail

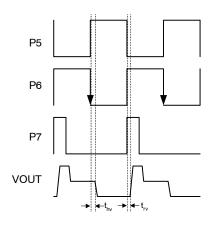
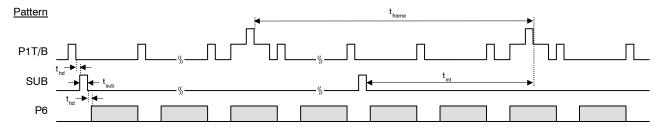
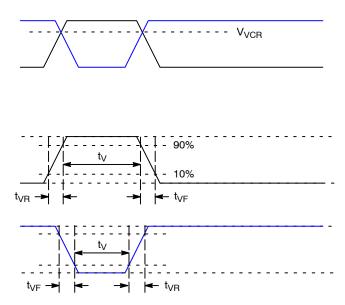


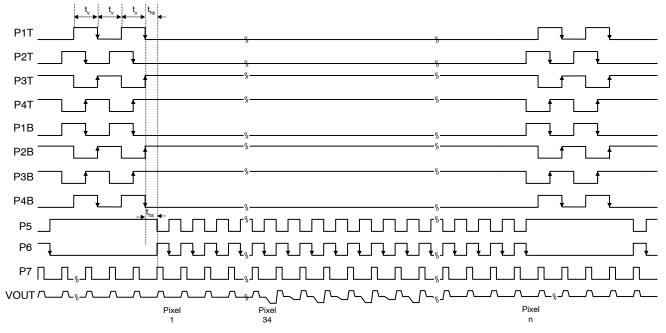
Figure 21. Pixel Timing Detail

Frame/Electronic Shutter Timing

The SUB pin may be optionally clocked to provide electronic shuttering capability as shown below. The

resulting photodiode integration time is defined from the falling edge of SUB to the falling edge of V1 (P1 pattern).


Figure 22. Frame/Electronic Shutter Timing

VCCD Clock Edge Alignment

KAI-01050

Line and Pixel Timing – Vertical Binning by 2

STORAGE AND HANDLING

Table 20. STORAGE CONDITIONS

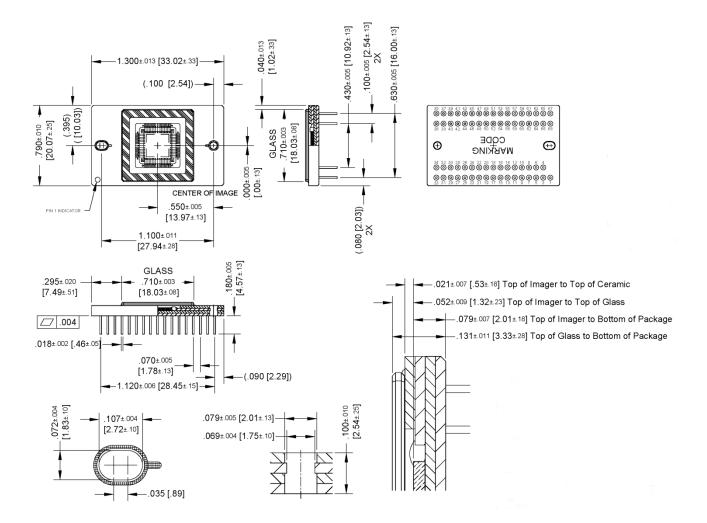
Description	Symbol	Minimum	Maximum	Units	Notes
Storage Temperature	T _{ST}	-55	80	°C	1
Humidity	RH	5	90	%	2

1. Long-term storage toward the maximum temperature will accelerate color filter degradation.

2. T = 25°C. Excessive humidity will degrade MTTF.

For information on ESD and cover glass care and cleanliness, please download the *Image Sensor Handling and Best Practices* Application Note (AN52561/D) from www.onsemi.com.

For information on environmental exposure, please download the Using Interline CCD Image Sensors in High Intensity Lighting Conditions Application Note (AND9183/D) from www.onsemi.com.


For information on soldering recommendations, please download the Soldering and Mounting Techniques Reference Manual (SOLDERRM/D) from www.onsemi.com. For quality and reliability information, please download the *Quality & Reliability* Handbook (HBD851/D) from www.onsemi.com.

For information on device numbering and ordering codes, please download the *Device Nomenclature* technical note (TND310/D) from <u>www.onsemi.com</u>.

For information on Standard terms and Conditions of Sale, please download <u>Terms and Conditions</u> from <u>www.onsemi.com</u>.

MECHANICAL INFORMATION

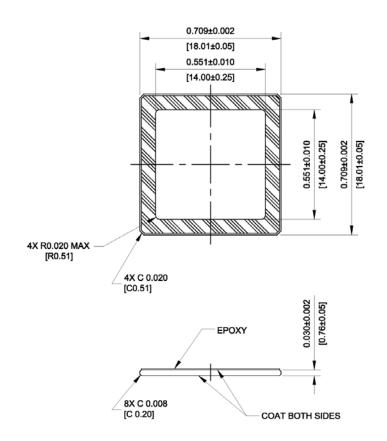
PGA Completed Assembly

Notes:

- 1. See Ordering Information for marking code.
- 2. No materials to interfere with clearance through guide holes.
- 3. The center of the active image is nominally at the center of the package.
- 4. Die rotation < 0.5 degrees.
- 5. Glass rotation < 1.5 degrees
- 6. Internal traces may be exposed on sides of package. Do not allow metal to contact sides of ceramic package.
- 7. Recommended mounting screws:
 - a.) 1.6×0.35 mm (ISO Standard)
 - b.) 0-80 (Unified Fine Thread Standard).
- 8. Units: IN [MM]

Figure 25. PGA Completed Assembly

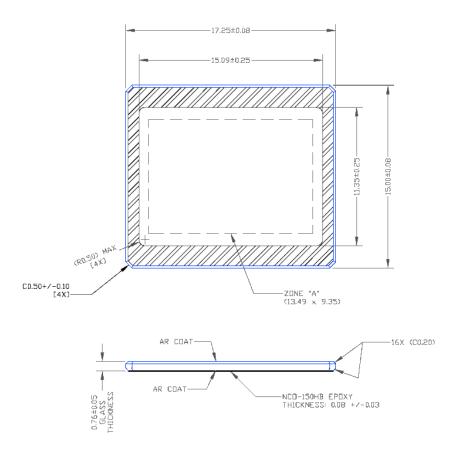
CLCC Completed Assembly



Notes:

- 1. See Ordering Information for marking code.
- 2. Die rotation < 0.5 degrees.
- 3. Units: millimeters.

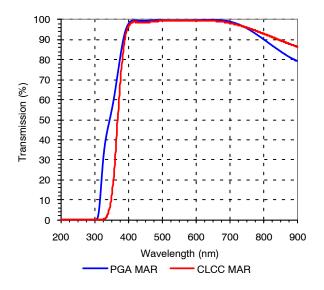
PGA Cover Glass


Notes:

- Dust/Scratch Count 12 micron maximum
 Units: IN [MM]
 Reflectance Specification

 a. 420 nm to 435 nm < 2.0%
 b. 435 nm to 630 nm < 0.8%
 context
- - c. 630 nm to 680 nm < 2.0%

CLCC MAR Cover Glass



Notes:

- 1. Dust/Scratch Count 12 micron maximum
- Units: millimeter
 Reflectance Specification
 - a. 420 nm to 435 nm < 2.0% b. 435 nm to 630 nm < 0.8%
 - c. 630 nm to 680 nm < 2.0%

Figure 28. CLCC MAR Cover Glass

Cover Glass Transmission

NOTE: PGA and CLCC MAR transmission data differ due to in-spec differences from glass vendor.

Figure 29. Cover Glass Transmission

ON Semiconductor and the intervent and the intervent of the patient patient patient of the patient of the patient patient patient of the patient of the patient patient of the patient of the patient of the patient patient patient patient patient of the patient p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А