

Is Now Part of

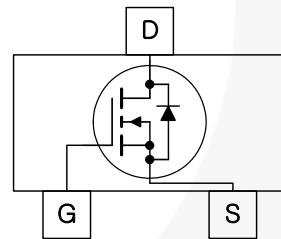
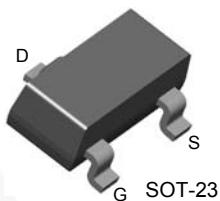
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

BSS123L



N-Channel Logic Level Enhancement Mode Field Effect Transistor

Features

- 0.17 A, 100 V, $R_{DS(ON)} = 6 \Omega$ at $V_{GS} = 10 \text{ V}$
 $R_{DS(ON)} = 10 \Omega$ at $V_{GS} = 4.5 \text{ V}$
- High Density Cell Design for Low $R_{DS(ON)}$
- Rugged and Reliable
- Compact Industry Standard SOT-23 Surface Mount Package
- Very Low Capacitance
- Fast Switching Speed

Description

This N-channel enhancement mode field effect transistor is produced using high cell density, trench MOSFET technology. This product minimizes on-state resistance while providing rugged, reliable and fast switching performance. This product is particularly suited for low-voltage, low-current applications such as small servo motor control, power MOSFET gate drivers, logic level transistor, high speed line drivers, power management/power supply and switching applications.

Ordering Information

Part Number	Marking	Package	Packing Method
BSS123L	SB	SOT-23 3L	Tape and Reel

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter		Value	Unit
V_{DSS}	Drain-Source Voltage		100	V
V_{GSS}	Gate-Source Voltage		± 20	V
I_D	Maximum Drain Current	Continuous	0.17	A
		Pulsed	0.68	
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to +150	$^\circ\text{C}$
T_L	Maximum Lead Temperature for Soldering Purposes, 1/16 inch from Case for 10 Seconds		300	$^\circ\text{C}$

Thermal Characteristics

Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
P_D	Maximum Power Dissipation ⁽¹⁾	0.36	W
	Derate Above 25°C	2.8	$\text{mW}/^\circ\text{C}$
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	380	$^\circ\text{C}/\text{W}$

Note:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) $380^\circ\text{C}/\text{W}$ when mounted on a minimum pad.

Scale 1: 1 on letter size paper

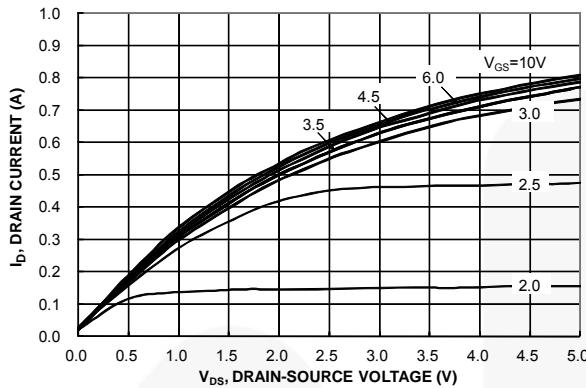
ESD Rating⁽²⁾

Symbol	Parameter	Value	Unit
HBM	Human Body Model per ANSI/ESDA/JEDEC JS-001-2012	50	V
CDM	Charged Device Model per JEDEC C101C	>2000	

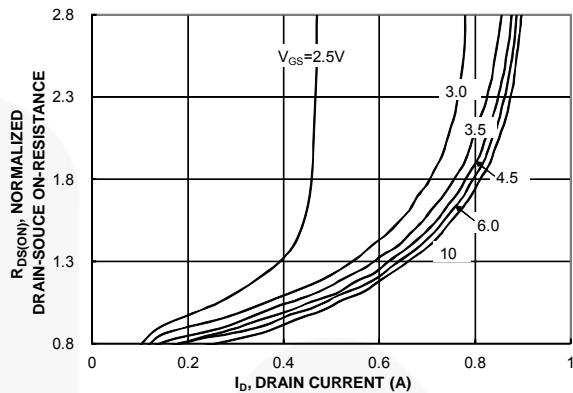
Note:

2. ESD values are in typical, no over-voltage rating is implied, ESD CDM zap voltage is 2000 V maximum.

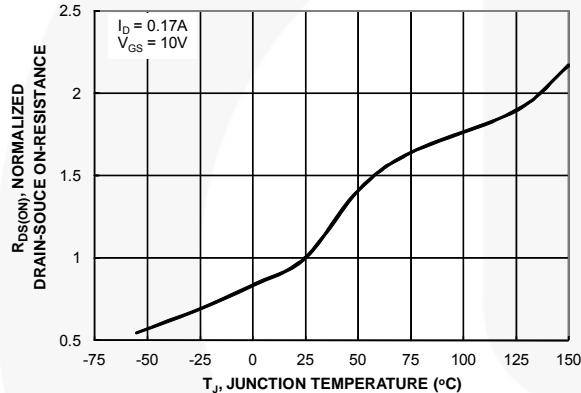
Electrical Characteristics

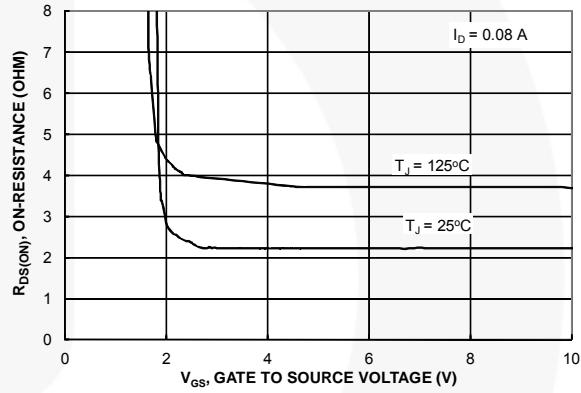

Values are at $T_A = 25^\circ\text{C}$ unless otherwise noted.

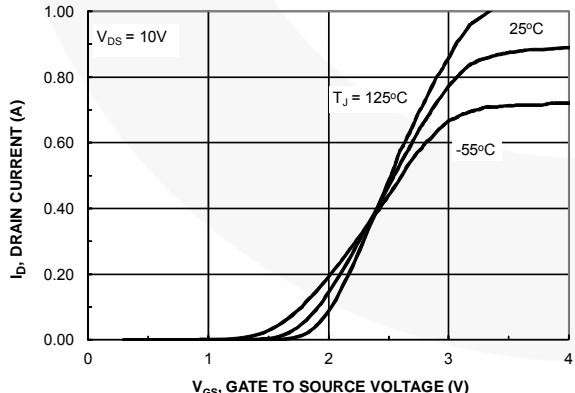
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Off Characteristics						
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	100	103		V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		100		$\text{mV/}^\circ\text{C}$
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 100 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$		0.027	1	μA
		$V_{\text{DS}} = 100 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $T_J = 125^\circ\text{C}$		0.159	60	
		$V_{\text{DS}} = 20 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$		0.07	10	nA
I_{GSSF}	Gate-Body Leakage, Forward	$V_{\text{GS}} = 20 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$		0.036	50	nA
I_{GSSR}	Gate-Body Leakage, Reverse	$V_{\text{GS}} = -20 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$		-0.019	-50	
On Characteristics⁽³⁾						
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 1 \text{ mA}$	0.8	1.405	2	V
$\frac{\Delta V_{\text{GS}(\text{th})}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 1 \text{ mA}$, Referenced to 25°C		-2.82		$\text{mV/}^\circ\text{C}$
$R_{\text{DS}(\text{ON})}$	Static Drain-Source On-Resistance	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 0.17 \text{ A}$		2.98	6	Ω
		$V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 0.17 \text{ A}$		3.17	10	
		$V_{\text{GS}} = 10 \text{ V}$, $I_D = 0.17 \text{ A}$, $T_J = 125^\circ\text{C}$		5.63	12	
$I_{\text{D}(\text{ON})}$	On-State Drain Current	$V_{\text{GS}} = 10 \text{ V}$, $V_{\text{DS}} = 5 \text{ V}$	0.680	0.735		A
g_{FS}	Forward Transconductance	$V_{\text{DS}} = 10 \text{ V}$, $I_D = 0.17 \text{ A}$	0.08	2.13		S
Dynamic Characteristics						
C_{iss}	Input Capacitance	$V_{\text{DS}} = 25 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$		21.5		pF
C_{oss}	Output Capacitance			3.52		pF
C_{rss}	Reverse Transfer Capacitance			1.67		pF
R_G	Gate Resistance	$V_{\text{GS}} = 15 \text{ V}$, $V_{\text{GS}} = 1.0 \text{ MHz}$		7.18		Ω
Switching Characteristics⁽³⁾						
$t_{\text{d}(\text{on})}$	Turn-On Delay	$V_{\text{DD}} = 30 \text{ V}$, $I_D = 0.28 \text{ A}$, $V_{\text{GS}} = 10 \text{ V}$, $R_{\text{GEN}} = 6 \Omega$		2.2	3.4	ns
t_r	Turn-On Rise Time			1.7	18	ns
$t_{\text{d}(\text{off})}$	Turn-Off Delay			5.9	31	ns
t_f	Turn-Off Fall Time			5.6	5	ns
Q_g	Total Gate Charge	$V_{\text{DS}} = 25 \text{ V}$, $I_D = 0.22 \text{ A}$, $V_{\text{GS}} = 10 \text{ V}$		0.793	2.5	nC
Q_{gs}	Gate-Source Charge			0.092		nC
Q_{gd}	Gate-Drain Charge			0.171		nC
Drain-Source Diode Characteristics and Maximum Ratings						
V_{SD}	Drain-Source Diode Forward Voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_S = 440 \text{ mA}^{(1)}$		0.867	1.3	V
T_{rr}	Diode Reverse Recovery Time	$I_F = 0.2 \text{ A}$, $dI_F/dt = 100 \text{ A}/\mu\text{s}$		11.9		ns
Q_{rr}	Diode Reverse Recovery Charge			1.3		nC


Note:

3. Pulse test: pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2.0\%$.


Typical Performance Characteristics


Figure 1. On-Region Characteristics


Figure 2. On-Resistance Variation with Gate Voltage and Drain Current

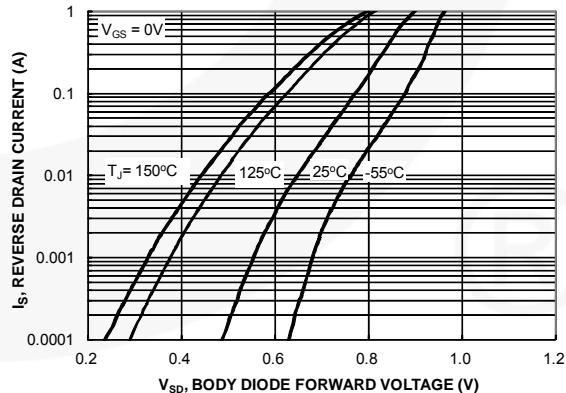

Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Performance Characteristics (Continued)

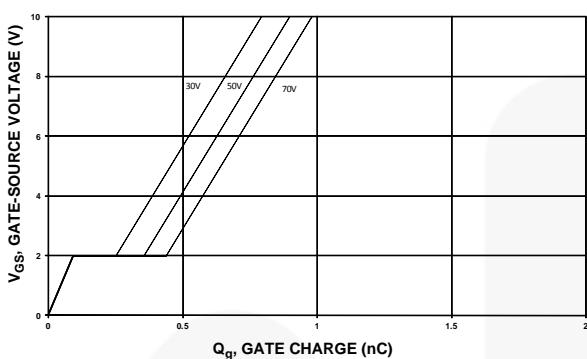


Figure 7. Gate Charge Characteristics

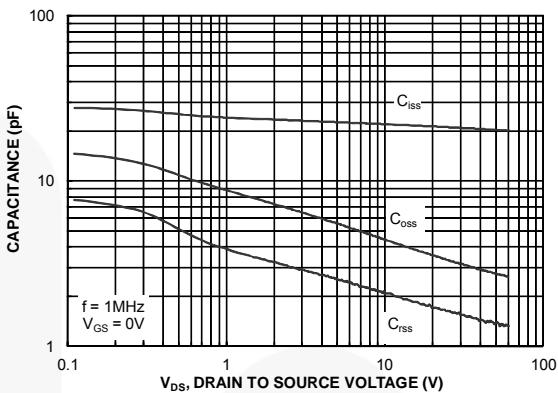


Figure 8. Capacitance Characteristics

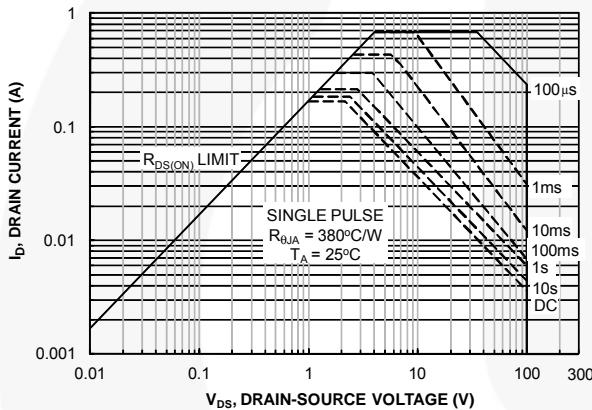


Figure 9. Maximum Safe Operating Area

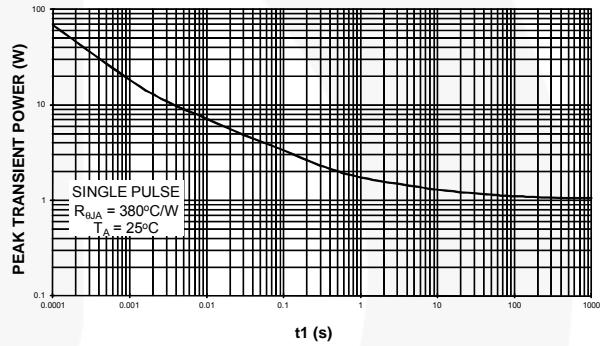
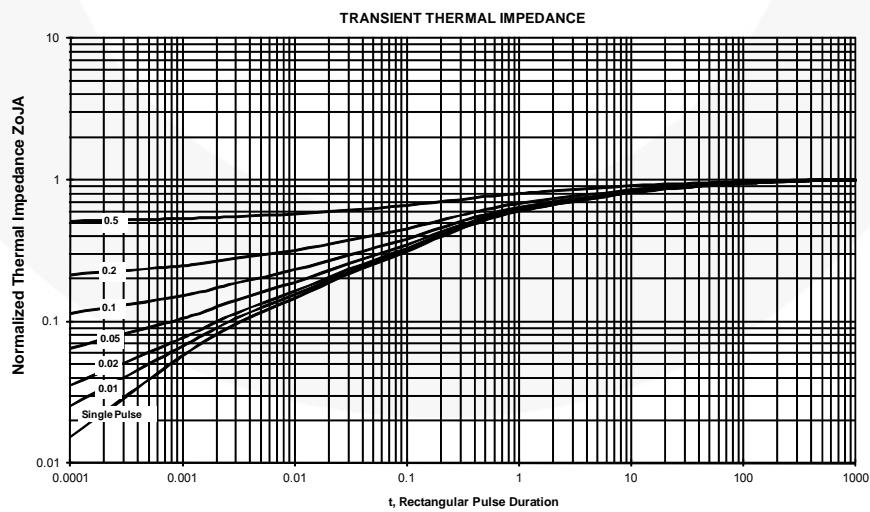
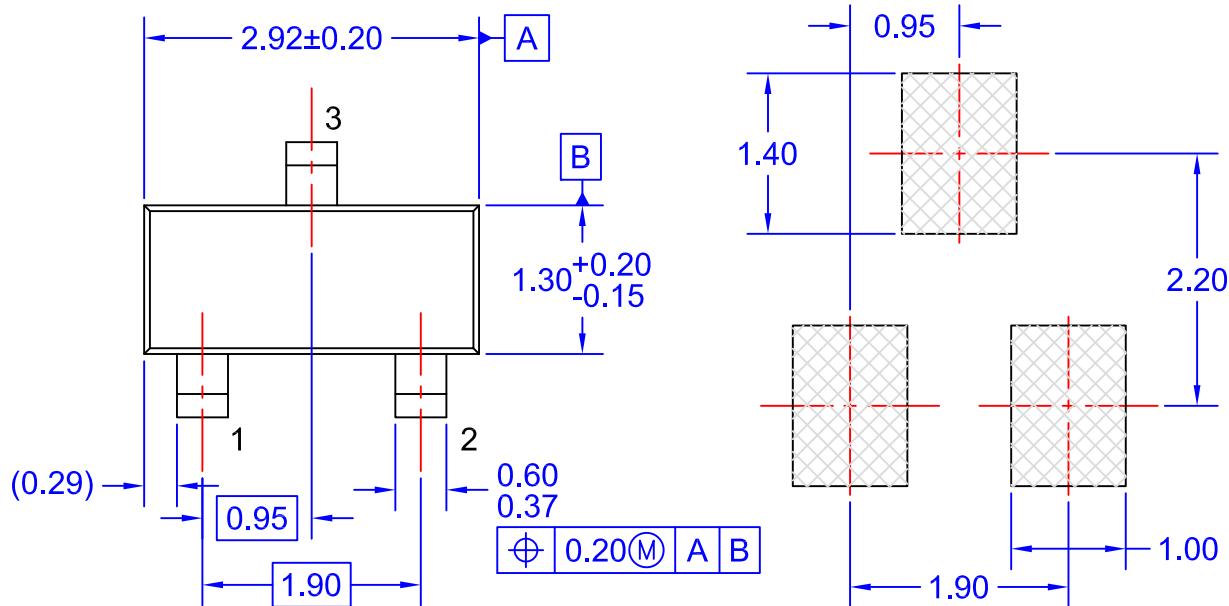
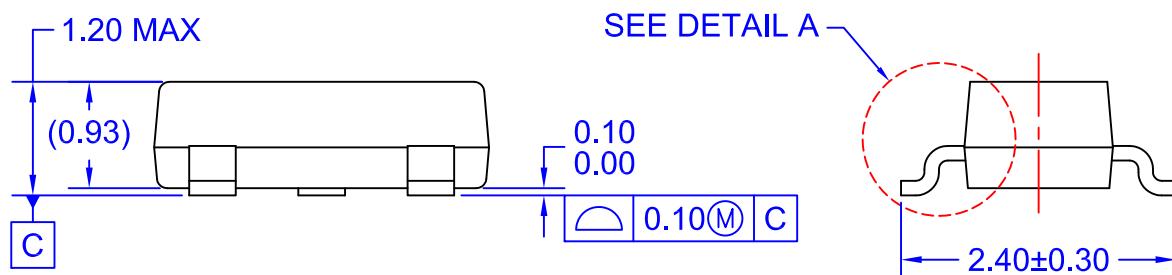
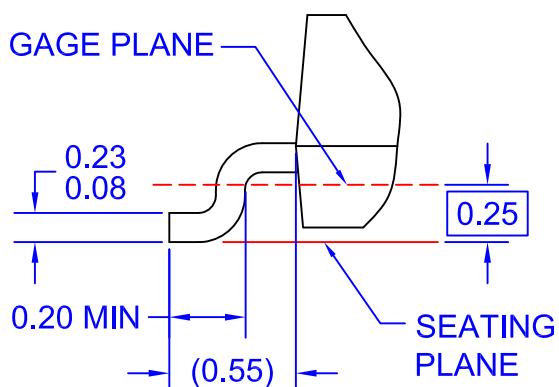


Figure 10. Single Pulse Maximum Power Dissipation


Figure 11. Transient Thermal Response Curve.

LAND PATTERN
RECOMMENDATION

NOTES: UNLESS OTHERWISE SPECIFIED

- A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 2009.
- E) DRAWING FILE NAME: MA03DREV12

DETAIL A
SCALE: 2X

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[BSS123L](#)

OCEAN CHIPS

Океан Электроники

Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибутором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибутором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

JONHON

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: <http://oceanchips.ru/>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А