Product data sheet

1. General description

The 74LVC30A is an 8-input NAND gate.

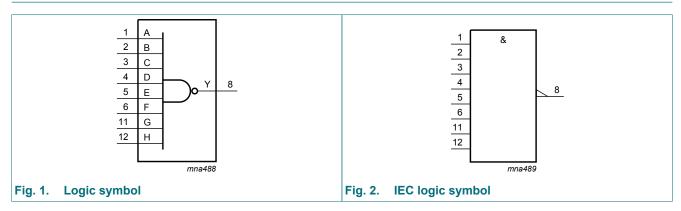
Inputs can be driven from either 3.3~V or 5~V devices. This feature allows the use of these devices in a mixed 3.3~V and 5~V environment.

Schmitt trigger action at all inputs makes the circuit tolerant for slower input rise and fall time.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.2 V to 3.6 V
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- · Direct interface with TTL levels
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JEDEC JS-001-2012 exceeds 2000 V
 - MM JESD22-A115-C exceeds 200 V
 - CDM JESD22-C101F exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C


8-input NAND gate

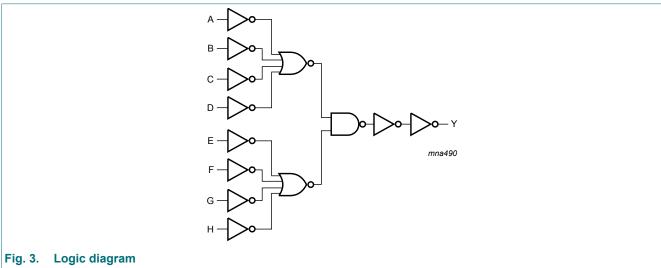
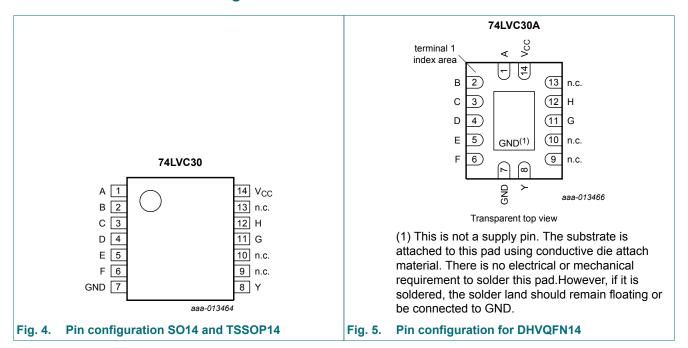

3. Ordering information

Table 1. Ordering information

Type number	Package						
	Temperature range Name Description		Description	Version			
74LVC30AD	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1			
74LVC30APW	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1			
74LVC30ABQ	-40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm	SOT762-1			

4. Functional diagram



8-input NAND gate

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Table 2.1 III description				
Symbol	Pin	Description		
A, B, C, D, E, F, G, H	1, 2, 3, 4, 5, 6, 11, 12	data input		
GND	7	ground (0 V)		
Υ	8	data output		
n.c.	9, 10, 13	not connected		
V _{CC}	14	supply voltage		

8-input NAND gate

6. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care.$

Input	nput					Output		
Α	В	С	D	E	F	G	Н	Y
L	Х	Х	Х	Х	Х	Х	Х	Н
Χ	L	Х	Х	Х	Х	Х	Х	Н
Χ	Х	L	Х	Х	Х	Х	Х	Н
Χ	Х	Х	L	Х	Х	Х	Х	Н
Χ	Х	Х	Х	L	Х	Х	Х	Н
X	Х	Х	Х	Х	L	Х	Х	Н
Χ	Х	Х	Х	Х	Х	L	Х	Н
Χ	Х	Х	Х	Х	Х	Х	L	Н
Н	Н	Н	Н	Н	Н	Н	Н	L

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V		-	±50	mA
V _O	output voltage		[2]	-0.5	V _{CC} + 0.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[3]	-	500	mW
T _{stg}	storage temperature			-65	+150	°C

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		V _{CC} = 0 V; Power-down mode	0	-	5.5	V

4 / 13

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO14 packages: above 70 °C the value of P_D derates linearly with 8 mW/K.
For TSSOP14 packages: above 60 °C the value of P_D derates linearly with 5.5 mW/K.
For DHVQFN14 packages: above 60 °C the value of P_D derates linearly with 4.5 mW/K.

8-input NAND gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and	V _{CC} = 1.65 V to 2.7 V	0	-	20	ns/V
	fall rate	V _{CC} = 2.7 V to 3.6 V	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max		
V _{IH}	HIGH-level input	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V	
	voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}	-	-	0.65 × V _{CC}	-	V	
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V	
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V	
V _{IL}	LOW-level input	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V	
	voltage	V _{CC} = 1.65 V to 1.95 V	-	-	0.35 × V _{CC}	-	0.35 × V _{CC}	٧	
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V	
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V	
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}							
	output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 3.6 V	V _{CC} - 0.2	-	-	V _{CC} - 0.3	-	V	
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	1.05	-	٧	
		I _O = -8 mA; V _{CC} = 2.3 V	1.8	-	-	1.65	-	V	
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	-	-	2.05	-	V	
		I _O = -18 mA; V _{CC} = 3.0 V	2.4	-	-	2.25	-	V	
		I _O = -24 mA; V _{CC} = 3.0 V	2.2	-	-	2.0	-	V	
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}							
		I _O = 100 μA; V _{CC} = 1.65 V to 3.6 V	-	-	0.2	-	0.3	V	
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	-	0.65	٧	
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V	
		I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.4	-	0.6	V	
		I_{O} = 24 mA; V_{CC} = 3.0 V	-	-	0.55	-	0.8	V	
l _l	input leakage current	$V_{CC} = 3.6 \text{ V}; V_I = 5.5 \text{ V or GND}$	-	±0.1	±5	-	±20	μΑ	
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	-	±0.1	±10	-	±20	μΑ	
I _{CC}	supply current	$V_{CC} = 3.6 \text{ V}; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0 \text{ A}$	-	1	10	-	40	μΑ	
ΔI _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $V_{I} = V_{CC} - 0.6 \text{ V};$ $I_{O} = 0 \text{ A}$	-	5	500	-	5000	μΑ	
C _I	input capacitance	V_{CC} = 0 V to 3.6 V; V_{I} = GND to V_{CC}	-	4.0	-	-	-	pF	

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

8-input NAND gate

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit, see Fig. 7.

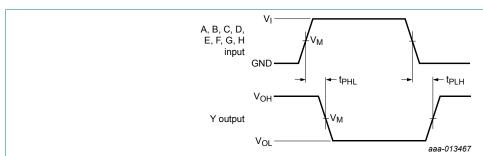
Symbol	Parameter	Conditions		-40 °C to +85 °C		5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	1
t _{pd}	propagation delay	A, B, C, D, E, F, G, H to Y; see Fig. 6	2]						
		V _{CC} = 1.2 V		-	13.2	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		2.2	5.9	11.6	2.2	12.3	ns
		V _{CC} = 2.3 V to 2.7 V		1.6	3.9	7.3	1.6	7.9	ns
		V _{CC} = 2.7 V		1.5	4.1	7.3	1.5	7.8	ns
		V _{CC} = 3.0 V to 3.6 V		1.4	3.6	6.3	1.4	6.8	ns
C _{PD}	power dissipation	per gate; V _I = GND to V _{CC}	3]						
	capacitance	V _{CC} = 1.65 V to 1.95 V		-	12.5	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V		-	13.5	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V		-	15.5	-	-	-	pF

Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;


C_L = output load capacitance in pF;

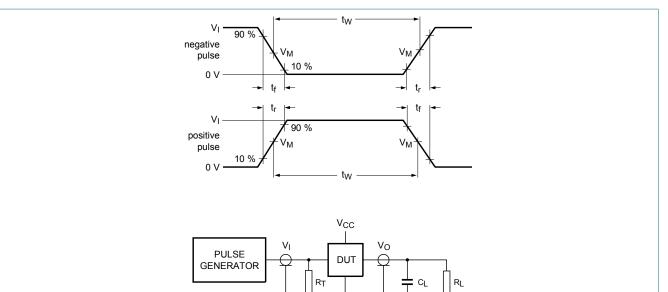
V_{CC} = supply voltage in Volt;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

10.1. Waveform and test circuit

 $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}$


 $V_M = 0.5 \times V_{CC}$ at $V_{CC} < 2.7 \text{ V}$.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Input (A, B, C, D, E, F, G, H) to output (Y) propagation delays

 t_{pd} is the same as t_{PLH} and t_{PHL} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

8-input NAND gate

001aaf615

Test data is given in Table 8.

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

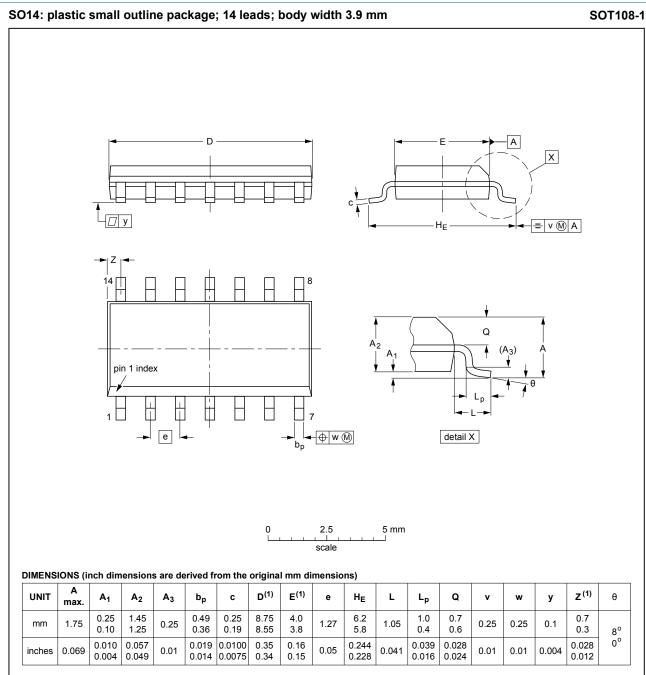
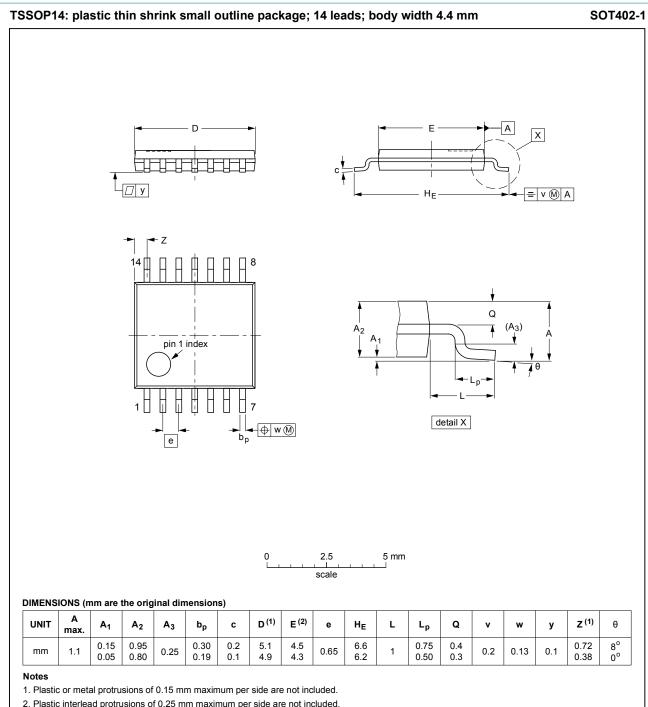

Fig. 7. Test circuit for measuring switching times

Table 8. Test data

Supply voltage	Input	Input		
	VI	t _r , t _f	CL	R _L
1.2 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
1.65 V to 1.95 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ
2.3 V to 2.7 V	V _{CC}	≤ 2 ns	30 pF	500 Ω
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω

8-input NAND gate

11. Package outline


Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			99-12-27 03-02-19

Fig. 8. Package outline SOT108-1 (SO14)

8-input NAND gate

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION ISSUE DAT	ISSUE DATE
SOT402-1		MO-153			99-12-27 03-02-18

Fig. 9. Package outline SOT402-1 (TSSOP14)

8-input NAND gate

Fig. 10. Package outline SOT762-1 (DHVQFN14)

10 / 13

8-input NAND gate

12. Abbreviations

Table 9. Abbreviations

Acronym	Description	
CDM	Charged Device Model	
CMOS	Complementary Metal Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

13. Revision history

Table 10. Revision history

1440-14-14-14-14-14-14-14-14-14-14-14-14-14-						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC30A v.2	20190315	Product data sheet	-	74LVC30A v.1		
Modifications:	Nexperia. • Legal texts have	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. Fig. 10: Package outline drawing SOT762-1 updated. 				
74LVC30A v.1	20140623	Product data sheet	-	-		

11 / 13

8-input NAND gate

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC30A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2019. All rights reserved

8-input NAND gate

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Functional diagram	2
5. Pinning information	3
5.1. Pinning	3
5.2. Pin description	3
6. Functional description	4
7. Limiting values	4
8. Recommended operating conditions	4
9. Static characteristics	5
10. Dynamic characteristics	6
	6
10.1. Waveform and test circuit	
10.1. Waveform and test circuit	8
11. Package outline	8 11
11. Package outline	11 11

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 15 March 2019

[©] Nexperia B.V. 2019. All rights reserved

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А