

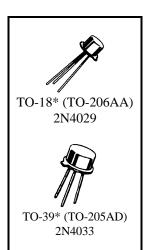
PNP SILICON SWITCHING TRANSISTOR

Qualified per MIL-PRF-19500/512

Devices Qualified Level

2N4029 2N4033

JAN JANTX JANTXV


MAXIMUM RATINGS

Ratings	Symbol	VALUE		Unit
Collector-Emitter Voltage	V_{CEO}	80		Vdc
Collector-Base Voltage	V_{CBO}	80		Vdc
Emitter-Base Voltage	V_{EBO}	5.0		Vdc
Collector Current	I_{C}	1.0		Adc
		2N4029 ¹	2N4033 ²	
Total Power Dissipation @ $T_A = +25^{\circ}C$	P_{T}	0.5	0.8	W
Operating & Storage Junction Temperature Range	T _J , T _{stg}	-55 to +200		°C

THERMAL	CHARA	<u>CTERISTICS</u>

Characteristics	Symbol	Max.	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	25.0	⁰ C/W

¹⁾ Derate linearly 2.86 mW/ $^{\circ}$ C for $T_A > +25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_A = 25⁰C unless otherwise noted)

Characteristics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS				
Collector-Base Cutoff Current				
$V_{CB} = 80 \text{ Vdc}$	I_{CBO}		10	μAdc
$V_{CB} = 60 \text{ Vdc}$			10	ηAdc
Emitter-Base Cutoff Current				
$V_{BE} = 5.0 \text{ Vdc}$	I_{EBO}		25	μAdc
$V_{BE} = 3.0 \text{ Vdc}$			10	ηAdc
Collector-Emitter Cutoff Voltage	ī		25	n A da
$V_{BE} = 40 \text{ Vdc}; V_{CE} = 60 \text{ Vdc}$	I_{CEX}		23	ηAdc

²⁾ Derate linearly $4.56 \text{ mW}/^{0}\text{C}$ for $T_{A} > +25^{0}\text{C}$

2N4029, 2N4033 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_C = 100 \mu\text{Adc}, V_{CE} = 5.0 \text{Vdc}$		50		
$I_C = 100 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$	$h_{ m FE}$	100	300	
$I_C = 500 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}$		70		
$I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc}$		25		
Collector-Emitter Saturation Voltage				
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	$V_{CE(sat)}$		0.15	
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$			0.50	Vdc
$I_C = 1.0 \text{ Adc}, I_B = 100 \text{ mAdc}$			1.0	
Base-Emitter Voltage				
$I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$	$V_{BE(sat)}$		0.9	Vdc
$I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$			1.2	
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward-Current Transfer Ratio	h _{fe}			
$I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz}$		1.5	6.0	
Output Capacitance	$C_{ m obo}$		20	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Cobo		20	pr.
Input Capacitance	C_{ibo}		80	pF
$V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	Cibo		80	pr.
SWITCHING CHARACTERISTICS				
On-Time	t _d		15	ηs
$V_{CC} = 31.9 \text{ Vdc}; I_C = 500 \text{ mAdc}; I_{B1} = 50 \text{ mAdc}$	u		13	
Rise Time	t r		25	ηs
$V_{CC} = 31.9 \text{ Vdc}; I_C = 500 \text{ mAdc}; I_{B1} = 50 \text{ mAdc}$	1		23	ιĮδ

⁽³⁾ Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А