18×8 DOTS MATRIX LED DRIVER

GENERAL DESCRIPTION

The IS31FL3745 is a general purpose 18 x n (n=1-8) LED Matrix programmed via 1MHz I2C compatible interface. Each LED can be dimmed individually with 8-bit PWM data and 8-bit DC scaling data which allowing 256 steps of linear PWM dimming and 256 steps of DC current adjustable level.

Additionally each LED open and short state can be detected, IS31FL3745 store the open or short information in Open-Short Registers. The Open-Short Registers allowing MCU to read out via I2C compatible interface. Inform MCU whether there are LEDs open or short and the locations of open or short LEDs.

The IS31FL3745 operates from 2.7V to 5.5V and features a very low shutdown and operational current.

IS31FL3745 is available in WLCSP-36 (0.5mm ball pitch, 0.25mm ball diameter) package. It operates from 2.7V to 5.5V over the temperature range of -40°C to +125°C.

Preliminary Information June 2018

FEATURES

- Supply voltage range: 2.7V to 5.5V
- 18 Current Sink (Maximum)
- Support 18 × n (n=1~8) LED matrix configurations
- Individual 256 PWM control steps
- Individual 256 DC current steps
- Global 256 current setting
- SDB rising edge reset I2C module
- Programmable H/L logic:1.4/0.4, 2.4/0.6
- 24kHz PWM frequency
- 1MHz I2C-compatible interface
- State lookup registers
- Individual open and short error detect function
- 180 degree phase delay operation to reduce power noise
- De-Ghost
- Cascade for synchronization of chips
- WLCSP-36 (0.5mm ball pitch, 0.25mm ball diameter) package

APPLICATIONS

- Al-speakers and smart home devices
- LED display for hand-held devices

TYPICAL APPLICATION CIRCUIT

Figure 1 Typical Application Circuit: 48 RGBs

Figure 2 Typical Application Circuit (Eight Parts Synchronization-Work)

Note 1: One part is configured as master mode, all the other 7 parts configured as slave mode. Work as master mode or slave mode specified by Configuration Register (SYNC bits, register 25h, Page2). Master part output master clock, and all the other parts which work as slave input this master clock.

PIN CONFIGURATION

Package	Pin Configuration (Top View)			
WLCSP-36	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			

PIN DESCRIPTION

No.	Pin	Description
A2~B6	SW1~SW8	Power SW.
A3	PVDD	Power for current source
B2~B5	CS1~CS18	Current sink pin for LED matrix.
D3	SDA	I2C compatible serial data
D4, E4	ADDR2/ADDR1	I2C address select pin
E3	SCL	I2C compatible serial clock
E5	SDB	Shutdown pin
F2	SYNC	System clock output/input
F3	RSET	Set the maximum IOUT current
F4	GND	Power GND and analog GND
F5	VDD	Power for digital circuits

ORDERING INFORMATION Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY/Reel
IS31FL3745-CLS4-TR	WLCSP-36, Lead-free	2500

Copyright © 2018 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V _{CC}	-0.3V ~+6.0V
Voltage at any input pin	$-0.3V \sim V_{CC} + 0.3V$
Maximum junction temperature, T _{JMAX}	+150°C
Storage temperature range, T _{STG}	-65°C ~+150°C
Operating temperature range, $T_A=T_J$	-40°C ~ +125°C
Package thermal resistance, junction to ambient (4 layer standard test PCB based on JEDEC standard), θ_{JA}	47.49°C/W
ESD (HBM)	TBD
ESD (CDM)	

Note 2: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

The following specifications apply for V_{CC} = 3.6V, T_A = 25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply voltage		2.7		5.5	V
I _{cc}	Quiescent power supply current	V _{SDB} =V _{CC,} all LEDs off		2		mA
		V _{SDB} =0V		1		
I _{SD}	Shutdown current	V _{SDB} = V _{CC} , Configuration Register written "0000 0000 (Software SD)		1		μA
I _{OUT}	Maximum constant current of CSx	R _{SET} =10kΩ, GCC=0xFF SL=0xFF		34		mA
I _{LED}	Average current on each LED I _{LED} = I _{OUT(PEAK)} /Duty(8.2)	R _{SET} =10kΩ, GCC=0xFF SL=0xFF		4.15		mA
	Current switch headroom voltage SWx	I _{switch} =306mA R _{set} =10kΩ, GCC=0x80 SL=0xFF		200		
V _{HR}	Current sink headroom voltage CSx			300		mV
t _{SCAN}	Period of scanning			40		μs
t _{NOL1}	Non-overlap blanking time during scan, the SWx and CSy are all off during this time			1		μs
t _{NOL2}	Delay total time for CS1 to CS 18, during this time, the SWx is on but CSx is not all turned on			0.4		μs
Logic El	ectrical Characteristics (SDA, SC	L, ADDR1, ADDR2, SDB)				
VIL	Logic "0" input voltage	V _{CC} =2.7V, LGC=0			0.4	V
V _{IH}	Logic "1" input voltage	V _{CC} =5.5V, LGC=0	1.4			V
V _{HYS}	Input Schmitt trigger hysteresis	V _{CC} =3.6V, LGC=0		0.2		V
VIL	Logic "0" input voltage	V _{CC} =2.7V, LGC=1			0.6	V
V _{IH}	Logic "1" input voltage	V _{CC} =5.5V, LGC=1	2.4			V
V _{HYS}	Input Schmitt trigger hysteresis	V _{CC} =3.6V, LGC=1		0.2		V
I _{IL}	Logic "0" input current	V _{INPUT} = L (Note 3)				nA
I _{IH}	Logic "1" input current	V _{INPUT} = H (Note 3)				nA

DIGITAL INPUT SWITCHING CHARACTERISTICS (NOTE 3)

Cumb al	Devemeter	Fast Mode			Fast Mode Plus			11:0:40
Symbol	Parameter		Тур.	Max.	Min.	Тур.	Max.	Units
f_{SCL}	Serial-clock frequency	-		400	-		1000	kHz
t _{BUF}	Bus free time between a STOP and a START condition	1.3		-	0.5		-	μs
t _{HD, STA}	Hold time (repeated) START condition	0.6		-	0.26		-	μs
t _{su, sta}	Repeated START condition setup time	0.6		-	0.26		-	μs
t _{su, sto}	STOP condition setup time	0.6		-	0.26		-	μs
t _{hd, dat}	Data hold time	-		-	-		-	μs
$t_{\text{SU, DAT}}$	Data setup time	100		-	50		-	ns
t _{LOW}	SCL clock low period	1.3		-	0.5		-	μs
t _{HIGH}	SCL clock high period	0.7		-	0.26		-	μs
t _R	Rise time of both SDA and SCL signals, receiving	-		300	-		120	ns
t _F	Fall time of both SDA and SCL signals, receiving	-		300	-		120	ns

Note 3: Guaranteed by design.

DETAILED DESCRIPTION

I2C INTERFACE

When I2C/SPI=H, the IS31FL3745 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. The IS31FL3745 has a 7-bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 to "0" for a write command and set A0 to "1" for a read command. The value of bits A1 and A2 are decided by the connection of the ADDRx pin.

Table 1 Slave Address:

ADDR2	ADDR1	A7:A5	A4:A3	A2:A1	A0
GND	GND		00	00	
GND	SCL		00	01	
GND	SDA		00	10	
GND	VCC		00	11	
SCL	GND		01	00	
SCL	SCL		01	01	
SCL	SDA		01	10	
SCL	VCC	010	01	11	0/4
SDA	GND	010	10	00	0/1
SDA	SCL		10	01	
SDA	SDA		10	10	
SDA	VCC		10	11	
VCC	GND		11	00	
VCC	SCL		11	01	
VCC	SDA		11	10	
	VCC		11	11	

ADDR1/2 connected to GND, (A2:A1)/(A4:A3)=00;

ADDR1/2 connected to VCC, (A2:A1)/(A4:A3)=11;

ADDR1/2 connected to SCL, (A2:A1)/(A4:A3)=01;

ADDR1/2 connected to SDA, (A2:A1)/(A4:A3)=10;

The SCL line is uni-directional. The SDA line is bidirectional (open-collector) with a pull-up resistor (typically 400kHz I2C with 4.7k Ω , 1MHz I2C with 1k Ω). The maximum clock frequency specified by the I2C standard is 1MHz. In this discussion, the master is the microcontroller and the slave is the IS31FL3745.

The timing diagram for the I2C is shown in Figure 3. The SDA is latched in on the stable high level of the SCL. When there is no interface activity, the SDA line should be held high.

The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.

The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for the IS31FL3745's acknowledge. The master releases the SDA line high (through a pull-up resistor). Then the master sends an SCL pulse. If the IS31FL3745 has received the address correctly, then it holds the SDA line low during the SCL pulse. If the SDA line is not low, then the master should send a "STOP" signal (discussed later) and abort the transfer.

Following acknowledge of IS31FL3745, the register address byte is sent, most significant bit first. IS31FL3745 must generate another acknowledge indicating that the register address has been received.

Then 8-bit of data byte are sent next, most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, the IS31FL3745 must generate another acknowledge to indicate that the data was received.

The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

ADDRESS AUTO INCREMENT

To write multiple bytes of data into IS31FL3745, load the address of the data register that the first data byte is intended for. During the IS31FL3745 acknowledge of receiving the data byte, the internal address pointer will increment by one. The next data byte sent to IS31FL3745 will be placed in the new address, and so on. The auto increment of the address will continue as long as data continues to be written to IS31FL3745 (Figure 7).

READING OPERATION

Most of the registers can be read.

To read the FCh, FEh, after I2C start condition, the bus master must send the IS31FL3745 device

address with the R/\overline{W} bit set to "0", followed by the register address (FEh or F1h) which determines which register is accessed. Then restart I2C, the bus master should send the IS31FL3745 device address with the

R/W bit set to "1". Data from the register defined by the command byte is then sent from the IS31FL3745 to the master (Figure 8).

To read the registers of Page 0 thru Page 3, the FDh should write with 00h before follow the Figure 8 sequence to read the data. That means, when you want to read registers of Page 0, the FDh should point to Page 0 first and you can read the Page 0 data.

Figure 4 I2C interface timing

Figure 5 I2C bit transfer

Figure 6 I2C writing to IS31FL3745 (Typical)

Figure 7 I2C writing to IS31FL3745 (Automatic address increment)

Figure 8 I2C reading from IS31FL3745

Table 2 COMMAND REGISTER DEFINITION

Address	Name	Function	Table	R/W	Default
FEh	Command Register Write lock	To unlock Command Register	4	R/W	0000 0000
FDh	Command Register	Available Page 0 to Page 2 Registers	3	W	XXXX XXXX
FCh	ID Register	For read the product ID only Read result is the slave address	-	R	Slave Address

REGISTER CONTROL

Table 3 FDh Command Register

Data	Function
0000 0000	Point to Page 0 (PG0, PWM Register is available)
0000 0001	Point to Page 1 (PG1, White balance Scaling Register is available)
0000 0010	Point to Page 2 (PG2, Function Register is available)
Others	Reserved

Note: FDh is locked when power up, need to unlock this register before write command to it. See Table 4 for detail.

TheCommand Register should be configured first after writing in the slave address to choose the available register. Then write data in the choosing register. Power up default state is "0000 0000".

For example, when write "0000 0001" in the Command Register (FDh), the data which writing after will be stored in Page1 (PG1).

Table 4 FEh Command Register Write Lock (Read/Write)

Bit	D7:D0
Name	CRWL
Default 0000 0000 (FDh write disable)	

To select the PG0~PG2, need to unlock this register first, with the purpose to avoid mis-operation of this register. When FEh is written with 0xC5, FDh is allowed to modify once, after the FDh is modified the FEh will reset to be 0x00 at once.

Table 5 Register Definition

Address	Name	Function	Table	R/W	Default	
PG0 (0x00)	: PWM Register					
01h~90h	PWM Register	Set PWM for each LED	6	R/W	0000 0000	
PG1 (0x01)	: LED Scaling					
01h~90h	Scaling Register	Set Scaling for each LED	7	R/W	0000 0000	
PG2 (0x02)	PG2 (0x02): Function Register					
00h	Configuration Register	Configure the operation mode	9	R/W	0000 0000	
01h	Global Current Control Register	Set the global current	10	R/W	0000 0000	
02h	Pull Down/Up Resistor Selection Register	Set the pull down resistor for SWx and pull up resistor for CSy	11	R/W	0101 0101	
03h~1Ah	Open/Short Register	Store the open or short information	12	R	0000 0000	
24h	Temperature Status	Store the temperature point of the IC	13	R/W	0000 0000	
25h	Spread Spectrum Register	Spread spectrum function enable	14	R/W	0000 0000	
2Fh	Reset Register	Reset all register to POR state	-	W	0000 0000	

Page 0 (PG0, FDh= 0x00): PWM Register

Figure 9 PWM Register

Table 6 PG0: 01h ~ 90h PWM Register

Bit	D7:D0
Name	PWM
Default	0000 0000

Each dot has a byte to modulate the PWM duty in 256 steps.

The value of the PWM Registers decides the average current of each LED noted I_{LED} . I_{LED} computed by Formula (1):

$$I_{LED} = \frac{PWM}{256} \times I_{OUT(PEAK)} \times Duty$$
(1)
$$PWM = \sum_{n=0}^{7} D[n] \cdot 2^{n}$$

Where Duty is the duty cycle of SWx,

$$Duty = \frac{40\mu s}{(40\mu s + 1\mu s)} \times \frac{1}{8} = \frac{1}{8.2} \quad (2)$$

 I_{OUT} is the output current of CSy (y=1~18),

$$I_{OUT(PEAK)} = \frac{343}{R_{SET}} \times \frac{GCC}{256} \times \frac{SL}{256}$$
(3)

GCC is the Global Current Control register (PG2, 01h) value, SL is the Scaling Register value as Table 9 and R_{SET} is the external resistor of R_{SET} pin. D[n] stands for the individual bit value, 1 or 0, in location n.

For example: if D7:D0=1011 0101 (0xB5, 181), GCC=1111 1111, R_{SET} =10k Ω , SL=1111 1111:

$$I_{LED} = \frac{343}{10k\Omega} \times \frac{255}{256} \times \frac{255}{256} \times \frac{1}{8.2} \times \frac{181}{256}$$

Page 1 (PG1, FDh= 0x01): Scaling Register

Figure 10 Scaling Register

Bit	D7:D0
Name	SL
Default	0000 0000

Scaling register control the DC output current of each dot. Each dot has a byte to modulate the scaling in 256 steps.

The value of the Scaling Register decides the peak current of each LED noted $I_{OUT(PEAK)}$.

 $I_{OUT(PEAK)}$ computed by Formula (3):

$$I_{OUT(PEAK)} = \frac{343}{R_{SET}} \times \frac{GCC}{256} \times \frac{SL}{256}$$
(3)
$$SL = \sum_{n=0}^{7} D[n] \cdot 2^{n}$$

 I_{OUT} is the output current of CSy (y=1~18), GCC is the Global Current Control Register (PG2, 01h) value and R_{SET} is the external resistor of R_{SET} pin. D[n] stands for the individual bit value, 1 or 0, in location n.

For example: if R_{SET} =10k Ω , GCC=1111 1111, SL=0111 1111:

$$SL = \sum_{n=0}^{7} D[n] \cdot 2^{n} = 127$$
$$I_{OUT} = \frac{343}{10 k\Omega} \times \frac{255}{256} \times \frac{127}{256} = 16.8 mA$$
$$I_{LED} = 16.8 mA \times \frac{1}{8.2} \times \frac{PWM}{256}$$

Table 8 Page 2 (PG2, FDh= 0x02): Function Register

Register	Name	Function T		R/W	Default
00h	Configuration Register	Configure the operation mode	10	R/W	0000 0000
01h	Global Current Control Register	Set the global current	11	R/W	0000 0000
02h	Pull Down/Up Resistor Selection Register	Set the pull down resistor for SWx and pull up resistor for CSy	12	R/W	0101 0101
03h~1Ah	Open/Short Register	Store the open or short information	13	R	0000 0000
24h	Temperature Status	Store the temperature point of the IC	14	R/W	0000 0000
25h	Spread Spectrum Register	Spread spectrum function enable	15	R/W	0000 0000
2Fh	Reset Register	Reset all register to POR state	-	W	0000 0000

Table 9 00h Configuration Register

Bit	D7:D4	D3	D2:D1	D0
Name	SWS	LGC	OSDE	SSD
Default	0000	0	00	0

The Configuration Register sets operating mode of IS31FL3745.

- SSD Software Shutdown Control
- 0 Software shutdown
- 1 Normal operation
- **OSDE** Open Short Detection Enable
- 00 Disable open/short detection
- 01/11 Enable open detection
- 10 Enable short detection

LGC H/L Logic

- 0 1.4V/0.4V
- 1 2.4V/0.6V
- SWS SWx Setting
- 0000 1/11 (default) 0001 1/10 0010 1/9 0011 SW1~SW8, 1/8 0100 SW1~SW7, 1/7, SW8 no-active SW1~SW6, 1/6, SW7~SW8 no-active 0101 0110 SW1~SW5, 1/5, SW6~SW8 no-active 0111 SW1~SW4, 1/4, SW5~SW8 no-active 1000 SW1~SW3, 1/3, SW4~SW8 no-active SW1~SW2, 1/2, SW3~SW8 no-active 1001 1010 All CSx work as current sinks only, no scan Others Not allowed

When OSDE set to "01", open detection will be trigger once, the user could trigger open detection again by set OSDE from "00" to "01". When OSDE set "10", short detection will be trigger once, the user could trigger short detection again by set OSDE from "00" to "10".

When SSD is "0", IS31FL3745 works in software shutdown mode and to normal operate the SSD bit should set to "1".

SWS control the duty cycle of the SW, default mode is 1/11.

Table 10 01h Global Current Control Register

Bit	D7:D0
Name	GCC
Default	0000 0000

The Global Current Control Register modulates all CSy ($x=1\sim18$)DC current which is noted as I_{OUT} in 256 steps.

I_{OUT} is computed by the Formula (3):

$$I_{OUT(PEAK)} = \frac{343}{R_{SET}} \times \frac{GCC}{256} \times \frac{SL}{256}$$
(3)
$$GCC = \sum_{n=0}^{7} D[n] \cdot 2^{n}$$

Where D[n] stands for the individual bit value, 1 or 0, in location n.

Table 1102hPull Down/UpResistor SelectionRegister

Bit	D7	D6:D4	D3	D2:D0
Name	PHC	SWPDR	-	CSPUR
Default	0	011	0	011

Set pull down resistor for SWx and pull up resistor for CSy.

PHC Phase choice

0 0 degree phase delay

1 180 degree phase delay

SWPD	R SWx Pull down Resistor Selection Bit
000	No pull down resistor
001	0.5kΩ only in SWx off time
010	1.0kΩ only in SWx off time
011	2.0kΩ only in SWx off time
100	1.0kΩ all the time
101	2.0k Ω all the time
110	4.0k Ω all the time
111	8.0k Ω all the time
CSPU	R CSy Pull up Resistor Selection Bit
000	No pull up resistor
001	0.5kΩ only in CSx off time
010	1.0kΩ only in CSx off time
011	2.0kΩ only in CSx off time
100	1.0kΩ all the time
101	2.0k Ω all the time
110	4.0k Ω all the time

111 8.0k Ω all the time

Table 12 Open/Short Register (Read Only)

03h~1Ah Open/Short Information

Bit	D7:D6	D5:D0
Name	-	CS18:CS13, CS12:CS07,CS06:CS01
Default	00	00 0000

When OSDE (PG2, 00h) is set to "01", open detection will be trigger once, and the open information will be stored at 03h~1Ah.

When OSDE (PG2, 00h) set to "10", short detection will be trigger once, and the short information will be stored at 03h~1Ah.

Before set OSDE, the GCC should set to 0x01.

Figure 11 Open/Short Register

Table 13 24h Temperature Status

Bit	D7:D4	D3:D2	D1:D0	
Name	-	TS	TROF	
Default	0000	00	00	

TS store the temperature point of the IC. If the IC temperature reaches the temperature point the IC will trigger the thermal roll off and will decrease the current as TROF set percentage.

TROF percentage of output current

- 00 100%
- 01 75%
- 10 55%
- 11 30%

TS Temperature Point, Thermal roll off start point

- 00 140D
- 01 120D
- 10 100D
- 11 90D

Table 14 25h Spread Spectrum Register

Bit	D7:D6	D4	D3:D2	D1:D0
Name	SYNC	SSP	RNG	CLT
Default	00	0	00	00

When SYNC bits are set to '11', the IS31FL3745 is configured as the master clock source and the SYNC pin will generate a clock signal distributed to the clock slave devices. To be configured as a clock slave device and accept an external clock input the slave device's SYNC bits must be set to '10'.

When SSP enable, the spread spectrum function will be enabled and the RNG & CLT bits will adjust the range and cycle time of spread spectrum function.

- SYNC Enable of SYNC function
- 0x Disable SYNC function, about 30kOhm pull-low
- 10 Slave, clock input
- 11 Master, clock output

SSP Spread spectrum function enable

- 0 Disable
- 1 Enable

RNG Spread spectrum range

- 00 ±5%
- 01 ±15%
- 10 ±24%
- 11 ±34%

CLT Spread spectrum cycle time

- 00 1980µs
- 01 1200µs
- 10 820µs
- 11 660µs

2Fh Reset Register

Once user writes the Reset Register with 0xAE, IS31FL3745 will reset all the IS31FL3745 registers to their default value. On initial power-up, the IS31FL3745 registers are reset to their default values for a blank display.

APPLICATION INFORMATION

Figure 12 Scanning Timing

SCANING TIMING

As shown in Figure 12, the SW1~SW8 is turned on by serial, LED is driven 8 by 8 within the SWx (x=1~8) on time (SWx, x=1~8 is source and it is high when LED on), including the non-overlap blanking time during scan, the duty cycle of SWx (active high, x=1~8) is:

$$Duty = \frac{40\mu s}{(40\mu s + 1\mu s)} \times \frac{1}{8} = \frac{1}{8.2}$$
 (2)

Where 33 μs is $t_{SCAN},$ the period of scanning and 1 μs is $t_{NOL},$ the non-overlap time and CSx delay time.

PWM CONTROL

After setting the I_{OUT} and GCC, the brightness of each LEDs (LED average current (I_{LED})) can be modulated with 256 steps by PWM Register, as described in Formula (1).

$$I_{LED} = \frac{PWM}{256} \times I_{OUT(PEAK)} \times Duty$$
(1)

Where PWM is PWM Registers (PG0, 00h~B3h /PG1, 00h~AAh) data showing in Table 6.

For example, in Figure 1, if R_{SET} = 10k $\Omega,$ PWM= 255, and GCC= 255, Scaling= 255, then

$$I_{OUT (PEAK)} = \frac{343}{10k\Omega} \times \frac{255}{256} \times \frac{255}{256} = 34 \, mA$$

Integrated Silicon Solution, Inc. – www.issi.com Rev. 0A, 06/04/2018

$$I_{LED} = 34 \, mA \times \frac{1}{8.2} \times \frac{PWM}{256}$$

Writing new data continuously to the registers can modulate the brightness of the LEDs to achieve a breathing effect.

GAMMA CORRECTION

In order to perform a better visual LED breathing effect we recommend using a gamma corrected PWM value to set the LED intensity. This results in a reduced number of steps for the LED intensity setting, but causes the change in intensity to appear more linear to the human eye.

Gamma correction, also known as gamma compression or encoding, is used to encode linear luminance to match the non-linear characteristics of display. Since the IS31FL3745 can modulate the brightness of the LEDs with 256 steps, a gamma correction function can be applied when computing each subsequent LED intensity setting such that the changes in brightness matches the human eye's brightness curve.

Tabl	Table 15 32 Gamma Steps with 256 PWM Steps							
C(0)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	
0	1	2	4	6	10	13	18	
C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)	
22	28	33	39	46	53	61	69	
C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)	
78	86	96	106	116	126	138	149	
C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)	
161	173	186	199	212	226	240	255	

Choosing more gamma steps provides for a more continuous looking breathing effect. This is useful for very long breathing cycles. The recommended configuration is defined by the breath cycle T. When T=1s, choose 32 gamma steps, when T=2s, choose 64 gamma steps. The user must decide the final number of gamma steps not only by the LED itself, but also based on the visual performance of the finished product.

C(0)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)
0	1	2	3	4	5	6	7
C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)
8	10	12	14	16	18	20	22
C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)
24	26	29	32	35	38	41	44
C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)
47	50	53	57	61	65	69	73
C(32)	C(33)	C(34)	C(35)	C(36)	C(37)	C(38)	C(39)
77	81	85	89	94	99	104	109
C(40)	C(41)	C(42)	C(43)	C(44)	C(45)	C(46)	C(47)
114	119	124	129	134	140	146	152
C(48)	C(49)	C(50)	C(51)	C(52)	C(53)	C(54)	C(55)
158	164	170	176	182	188	195	202
C(56)	C(57)	C(58)	C(59)	C(60)	C(61)	C(62)	C(63)
209	216	223	230	237	244	251	255

Figure 14 Gamma Correction (64 Steps)

Note: The data of 32 gamma steps is the standard value and the data of 64 gamma steps is the recommended value.

OPERATING MODE

PWM Mode

IS31FL3745 can only operate in PWM Mode. The brightness of each LED can be modulated with 256 steps by PWM registers. For example, if the data in PWM Register is "0000 0100", then the PWM is the fourth step.

Writing new data continuously to the registers can modulate the brightness of the LEDs to achieve a breathing effect.

De-Ghost Function

The 'ghost' term is used to describe the behavior of an LED that should be OFF but instead glows dimly when another LED is turned ON. A ghosting effect typically can occur when multiplexing LEDs. In matrix architecture any parasitic capacitance found in the constant-current outputs or the PCB traces to the LEDs may provide sufficient current to dimly light an LED to create a ghosting effect.

To prevent this LED ghost effect, the IS31FL3745 has integrated Pull down resistors for each SWx (x=1~8) and Pull up resistors for each CSy (y=1~18). Select the right SWx Pull down resistor (PG2, 02h) and CSy Pull up resistor (PG2, 02h) which eliminates the ghost LED for a particular matrix layout configuration.

Typically, selecting the $2k\Omega$ will be sufficient to eliminate the LED ghost phenomenon.

The SWx Pull down resistors and CSy Pull up resistors are active only when the CSy/SWx output working the OFF state and therefore no power is lost through these resistors.

SHUTDOWN MODE

Shutdown mode can be used as a means of reducing power consumption. During shutdown mode all registers retain their data.

Software Shutdown

By setting SSD bit of the Configuration Register (PG2, 00h) to "0", the IS31FL3745 will operate in software shutdown mode. When the IS31FL3745 is in software shutdown, all current sources are switched off, so that the matrix is blanked. All registers can be operated. Typical current consume is 1μ A.

Hardware Shutdown

The chip enters hardware shutdown when the SDB pin is pulled low. All analog circuits are disabled during hardware shutdown, typical the current consume is 1μ A.

The chip releases hardware shutdown when the SDB pin is pulled high. During hardware shutdown state Function Register can be operated.

If V_{CC} has risk drop below 1.75V but above 0.1V during SDB pulled low, please re-initialize all Function Registers before SDB pulled high.

LAYOUT

As described in external resistor (R_{SET}), the chip consumes lots of power. Please consider below factors when layout the PCB.

1. The V_{CC} (PVCC, AVCC) capacitors need to close to the chip and the ground side should well connected to the GND of the chip.

2. R_{SET} should be close to the chip and the ground side should well connect to the GND of the chip.

3. The GND pad should connect to ground area to help radiate the heat.

4. The CSy pins maximum current is 34mA (R_{SET} =10k Ω), and the SWx pins maximum current is larger, the width of the trace, SWx should have wider trace then CSy.

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp)	3°C/second max.
Liquidous temperature (TL) Time at liquidous (tL)	217°C 60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

Figure 15 Classification Profile

PACKAGE INFORMATION

WLCSP-36

REVISION HISTORY

Revision	Detail Information	Date
0A	Initial release	2018.06.04

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А