Qualcom

RF360 Europe GmbH

Data sheet

SAW RF downlink filter Base stations R-GSM

Series/type:	B5057
Ordering code:	B39941B5057U410
Date:	June 03, 2019
Version:	2.3

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Data sheet

SAW RF downlink filter Base stations R-GSM

Series/type:	B5057
Ordering code:	B39941B5057U410
Date:	June 03, 2019
Version:	2.3

RF360 products mentioned within this document are products of RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries").

RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Table of contents

1 Application	4
2 Features	4
3 Package	5
4 Pin configuration	5
5 Matching circuit	6
6 Characteristics	7
7 Maximum ratings	9
8 <u>Transmission coefficient</u>	
9 Reflection coefficients	
10 Packing material	
11 Marking	15
12 <u>Soldering profile</u>	
13 Annotations.	
14 Cautions and warnings	
15 Important notes	

Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

1 Application

- Low-loss filter for Basestation R-GSM,transmit path (Tx)
- Usable pass band 39 MHz
- Unbalanced to unbalanced operation
- No matching required
- Filter impedance 50 Ω

2 Features

- Package code DCC6C
- Package size 3.0±0.1 mm × 3.0±0.1 mm
- Package height 1.1±0.125 mm
- Approximate weight 0.04 g
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Lead free soldering compatible with J-STD20C
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 1 (MSL1)

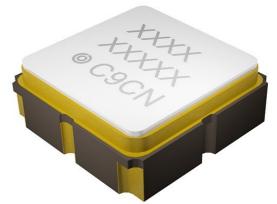
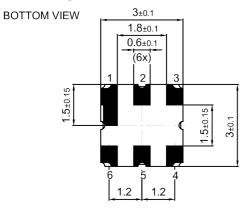
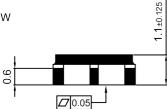
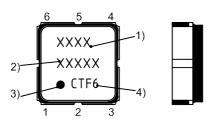
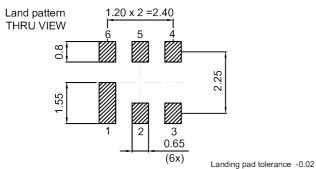



Figure 1: Picture of component with example of product marking.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture


3 Package


- 2 Input
- 5 Output
- 1, 3, 4, 6 Ground



TOP VIEW

SIDE VIEW

Device designation
 Last five digits of the lot number
 Marking for pad number 1
 Example of production location and date code

Figure 2: Drawing of package. See Sec. Package information (p. 18).

5 Matching circuit

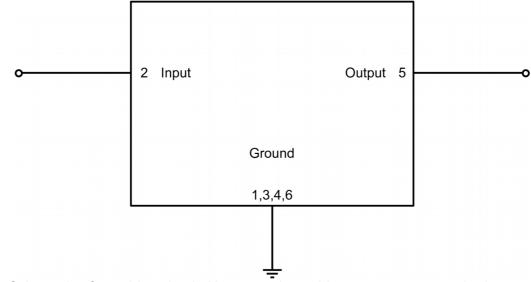


Figure 3: Schematic of matching circuit. No external matching components required.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Qualcom

6 Characteristics

Temperature range for specification	T _{SPEC}	= −30 °C +80 °C
Input terminating impedance	Z	= 50 Ω
Output terminating impedance	Z _{OUT}	= 50 Ω

Characteristics				min. for T_{SPEC}	typ. @ +25 °C	max. for T _{SPEC}	
Center frequency			f _c	—	940.5		MHz
Maximum insertion attenuation			$\alpha_{_{max}}$				
	921 960	MHz		_	2.7	4.0 ¹⁾	dB
Amplitude ripple (p-p)			Δα				
	921 960	MHz		—	1.4	3.0 ²⁾	dB
Maximum VSWR			$VSWR_{_{max}}$				
@ input port	921 960	MHz		—	2.3	3.0 ³⁾	
@ output port	921 960	MHz		—	2.6	3.0 ³⁾	
Minimum attenuation			$\alpha_{_{min}}$				
	0.34) 800	MHz		25	47	—	dB
	800 880	MHz		26	39	—	dB
	880 905	MHz		20 ⁵⁾	31	—	dB
	905 915	MHz		2 ⁶⁾	6	—	dB
	980 985	MHz		23	42	—	dB
	985 1005	MHz		30	34	—	dB
	1005 1025	MHz		30	34		dB
	1025 1760	MHz		27	34		dB
	1760 2000	MHz		28	32	—	dB
	2000 4000	MHz		18	23	_	dB

¹⁾ 3.0 dB at 25°C.

²⁾ 2.0 dB at 25°C.

³⁾ 2.8 dB at 25°C.

⁴⁾ Final electrical test starts at 10 MHz.

⁵⁾ 28 dB at 25°C.

⁶⁾ 3 dB at 25°C.

Qualcom

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Temperature range for specification	$T_{_{\rm SPEC}}$	= −40 °C +85 °C
Input terminating impedance	Z _{IN}	= 50 Ω
Output terminating impedance	Z _{OUT}	= 50 Ω

Characteristics				min. for $T_{\rm SPEC}$	typ. @ +25 °C	max. for $T_{\rm SPEC}$	
Maximum insertion attenuation			α _{max}	SPEC		SPEC	
	921 960	MHz		_	2.7	4.5 ¹⁾	dB
Amplitude ripple (p-p)			Δα				
	921 960	MHz		_	1.4	3.2 ²⁾	dB
Maximum VSWR			VSWR _{max}				
@ input port	921 960	MHz		_	2.3	3.0 ³⁾	
@ output port	921 960	MHz		_	2.6	3.0 ³⁾	
Minimum attenuation			$\alpha_{_{min}}$				
	0.34) 800	MHz		25	47	—	dB
	800 880	MHz		26	39	_	dB
	880 905	MHz		20 ⁵⁾	31	_	dB
	905 915	MHz		2 ⁶⁾	6	_	dB
	980 985	MHz		23	42	_	dB
	985 1005	MHz		30	34	_	dB
	1005 1025	MHz		30	34	_	dB
	1025 1760	MHz		27	34	—	dB
	1760 2000	MHz		28	32	—	dB
	2000 4000	MHz		18	23	—	dB

¹⁾ 3.0 dB at 25°C.

²⁾ 2.0 dB at 25°C.

³⁾ 2.8 dB at 25°C.

⁴⁾ Final electrical test starts at 10 MHz.

⁵⁾ 28 dB at 25°C.

⁶⁾ 3 dB at 25°C.

7 **Maximum ratings**

Operable temperature	T _{op} = −40 °C +125 °C	
Storage temperature	<i>T</i> _{STG} ¹⁾ = −40 °C +125 °C	
DC voltage	V _{DC} = 5.0 V	
ESD voltage		
	$V_{\rm ESD}^{2)}$ = 125 V	Machine model.
	$V_{\rm ESD}^{3)} = 350 \rm V$	Human body model.
	$V_{\rm ESD}^{4)}$ = 1000 V	Charged device model.
Input power @ input port: 921 960 MHz	$P_{\rm IN} = 10 \rm dBm$	

1) Not valid for packaging material. Please refer to definition of Shelf life (p. 17).

2)

According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses. According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse. 3)

4) According to JESD22-C101C (CDM - Field Induced Charged Device Model), 3 negative & 3 positive pulses. Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

8 Transmission coefficient

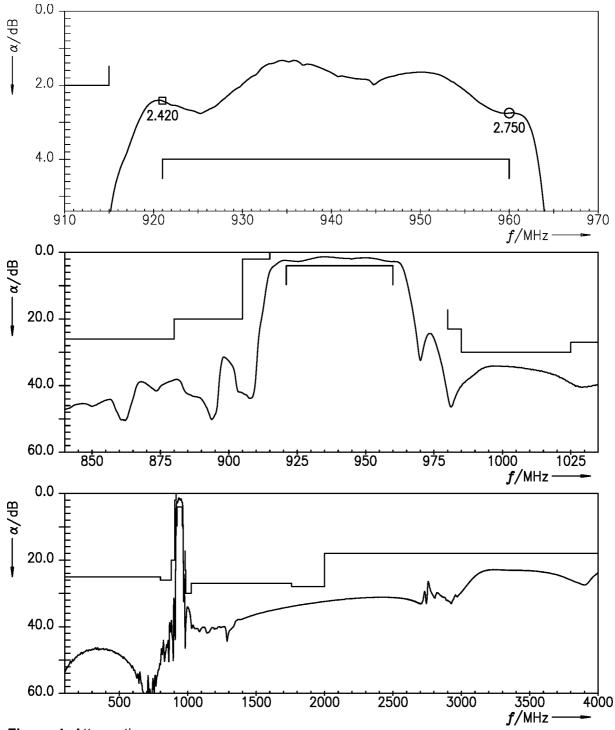


Figure 4: Attenuation.

RF360 Europe GmbH A Qualcomm – TDK Joint Venture

Z_{IN}=50 Ω

□ = 921.0 O = 960.0

9 **Reflection coefficients**

Qualcom

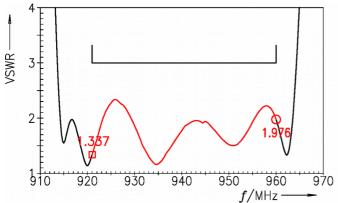


Figure 5: Reflection coefficient at input port.

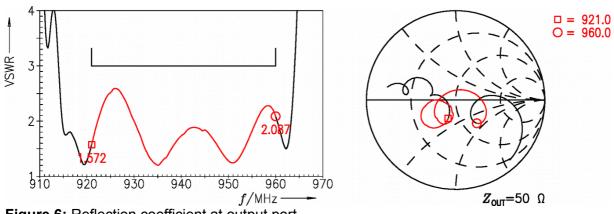
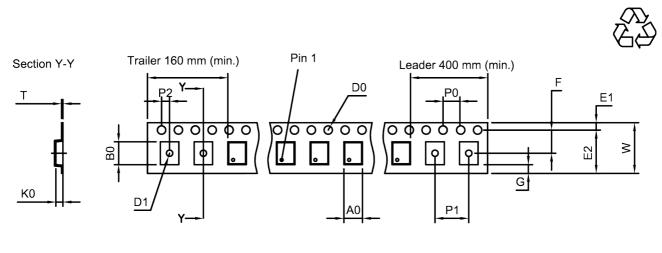



Figure 6: Reflection coefficient at output port.

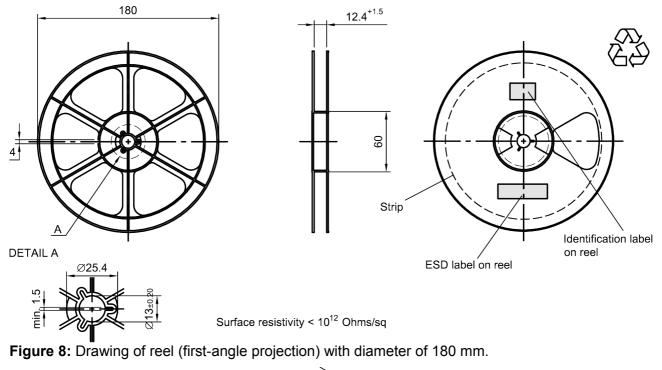
10 Packing material

10.1 Tape

User direction of unreeling

Figure 7: Drawing of tape (first-angle projection) for illustration only and not to scale. The valid tape dimensions are listed in Table 1.

 $\begin{array}{c|c} A_0 & 3.25_{\pm 0.1} \text{ mm} \\ \hline B_0 & 3.3_{\pm 0.1} \text{ mm} \\ \hline D_0 & 1.5_{\pm 0.1/-0} \text{ mm} \\ \hline D_1 & 1.5 \text{ mm} (\text{min.}) \\ \hline E_1 & 1.75_{\pm 0.1} \text{ mm} \end{array}$


Table 1: Tape dimensions.

E2	10.25 mm (min.)
F	5.5±0.05 mm
G	0.75 mm (min.)
K ₀	1.5±0.1 mm
P ₀	4.0±0.1 mm

P ₁	4.0±0.1 mm
P_2	2.0±0.1 mm
Т	0.3±0.05 mm
W	12.0+0.3/-0.1 mm

10.2 Reel with diameter of 180 mm

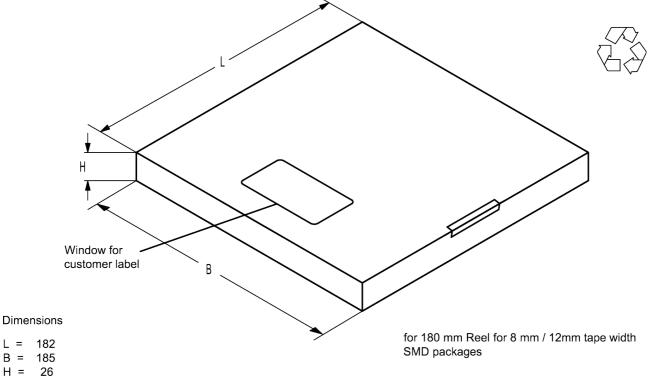


Figure 9: Drawing of folding box for reel with diameter of 180 mm.

Qualcomm RF360 Europe GmbH A Qualcomm – TDK Joint Venture

10.3 Reel with diameter of 330 mm

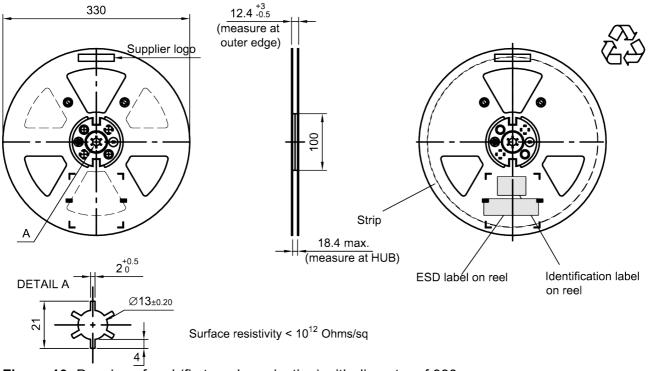


Figure 10: Drawing of reel (first-angle projection) with diameter of 330 mm.

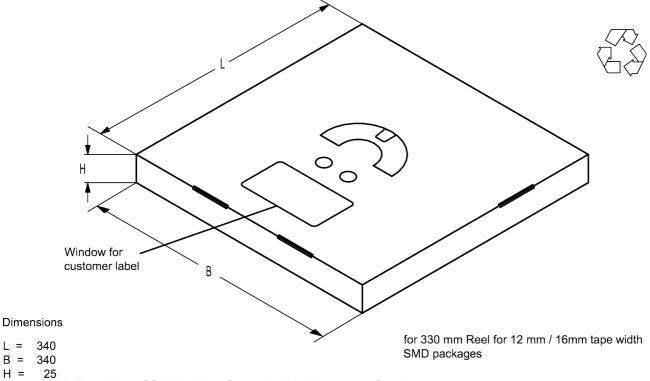


Figure 11: Drawing of folding box for reel with diameter of 330 mm.

11 Marking

Products are marked with device designation, lot number, as well as production location and date code.

Device designation: The 4-character device designation of the ordering code is used for the marking.

Example for 4-character device designation: B3xxxxB1234xxxx

■ Lot number: The last 5 digits of the lot number are used for the marking.

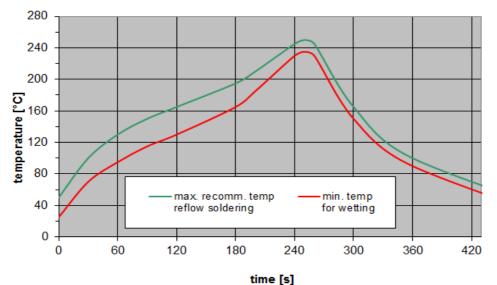
Example: 12345

Production location and date code: The production location is Wuxi (encoded in the first character 'C'). The production date code is encoded in the last three characters according to Table 2.

1 st digit (day)					2 nd digit (year)			3 rd digit (month)					
Day	Code	Day	Code	Day	Code	Year	Code	Year	Code	Month	Code	Month	Code
1	1	11	А	21	М	2010	А	2022	Р	Jan	1	Jul	7
2	2	12	В	22	Ν	2011	В	2023	R	Feb	2	Aug	8
3	3	13	С	23	Р	2012	С	2024	S	Mar	3	Sep	9
4	4	14	D	24	R	2013	D	2025	Т	Apr	4	Oct	0
5	5	15	E	25	S	2014	Е	2026	U	May	5	Nov	N
6	6	16	F	26	Т	2015	F	2027	V	Jun	6	Dec	D
7	7	17	н	27	U	2016	Н	2028	W				
8	8	18	J	28	V	2017	J	2029	Х				
9	9	19	к	29	W	2018	К	2030	Z				
10	0	20	L	30	Х	2019	L	2031	А				
				31	Z	2020	М	2032	В				
						2021	Ν	and	so on				

 Table 2: Production date code.

Example of how to decode production location and date code:


Location:	С		\rightarrow	Wuxi
Day:	Т		\rightarrow	26 th
Year:	F		\rightarrow	2015
Month:		6	\rightarrow	June

12 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	≤ 3 K/s	
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s	
<i>T</i> > 220 °C	30 s to 70 s	
<i>T</i> > 230 °C	min. 10 s	
<i>T</i> > 245 °C	max. 20 s	
<i>T</i> ≥ 255 °C	-	
peak temperature T_{peak}	250 °C +0/-5 °C	
wetting temperature T _{min}	230 °C +5/-0 °C for 10 s ± 1 s	
cooling rate	≤ 3 K/s	
soldering temperature T	measured at solder pads	

 Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 12: Recommended reflow profile for convection and infrared soldering – lead-free solder.

13 Annotations

13.1 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

13.2 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local RF360 sales office.

13.3 Shelf life

The shelf life of components is determined by solderability of the package terminals. It is specified as 2 years from manufacturing date assuming the following conditions:

- storage in original packaging and non-aggressive atmosphere,
- storage temperature ranging from −25 °C to +40 °C, and
- storage humidity with ≤ 75 % r.h. mean annual humidity, ≤ 95 % r.h. for max. 30 days / year, and no dew condensation.

14 Cautions and warnings

14.1 Display of ordering codes for RF360 products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of RF360, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under <u>www.rf360jv.com/orderingcodes</u>.

14.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

For information on recycling of tapes and reels please contact one of our sales offices.

14.3 Moldability

Before using in overmolding environment, please contact your local RF360 sales office.

14.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on RF360 internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of RF360, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

15 Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, RF360 Europe GmbH and its affiliates are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an RF360 product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.rf360jv.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.

The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qualcomm RF360: B39941B5057U410

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А