# Triple Output I2C Controlled RGB LED Driver

The NCP5623 mixed analog circuit is a triple output LED driver dedicated to the RGB illumination or backlight LCD display.

# Features

- 2.7 to 5.5 V Input Voltage Range
- RGB Function Fully Supported
- Programmable Integrated Gradual Dimming
- 90 mA Total LED Current Capability
- Provides Three Independent LED Drives
- Support I2C Protocol
- This is a Pb–Free Device

# **Typical Applications**

- Multicolor Illuminations
- Portable Back Light
- Digital Cellular Phone Camera Photo Flash
- LCD and Key Board Simultaneous Drive



Figure 1. Typical Multiple Color LED Driver



# **ON Semiconductor®**

http://onsemi.com





(Note: Microdot may be in either location)

# ORDERING INFORMATION

| Device        | Package               | Shipping <sup>†</sup> |
|---------------|-----------------------|-----------------------|
| NCP5623DTBR2G | TSSOP-14<br>(Pb-Free) | 2500 /<br>Tape & Reel |

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.







Figure 3. Simplified Block Diagram

# **PIN ASSIGNMENT**

| Pin  | Name             | Туре              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | IC               |                   | This pin is internally connected. It must be left open.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2    | GND              | POWER             | This pin is the GROUND signal for the analog and digital blocks and output current control. The pin must be connected to the system ground, a ground plane being strongly recommended.                                                                                                                                                                                                                                                                                                          |
| 3    | LED3             | output,<br>Power  | This pin sinks to ground and monitors the current flowing into the BLUE LED, intended to be used in illumination application (Note 1). The Anode of the associated LED shall be connected to the Vbat supply.                                                                                                                                                                                                                                                                                   |
| 4    | LED2             | output,<br>Power  | This pin sinks to ground and monitors the current flowing into the GREEN LED, intended to be used in illumination application (Note 1). The Anode of the associated LED shall be connected to the Vbat supply.                                                                                                                                                                                                                                                                                  |
| 5    | LED1             | output,<br>Power  | This pin sinks to ground and monitors the current flowing into the RED LED, intended to be used in illumination application (Note 1). The anode of the associated LED shall be connected to the Vbat supply.                                                                                                                                                                                                                                                                                    |
| 6    | GND              | ANALOG<br>GROUND  | This pin copies the Analog Ground and shall be connected to the system ground plane.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7, 8 | NC               |                   | This pin must be left floating with no connection.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9    | SDA              | INPUT,<br>DIGITAL | This pin carries the data provided by the I2C protocol. The content of the SDA byte is used to program the mode of operation and to set up the output current.                                                                                                                                                                                                                                                                                                                                  |
| 10   | I <sub>REF</sub> | ANALOG            | This pin provides the reference current, based on the internal band-gap voltage reference, to control the output current flowing in the LED. A 1% tolerance, or better, resistor shall be used to get the highest accuracy of the LED current. An external current mirror can be used to bias this pin to dynamically set up the LED maximum current. In no case shall the voltage at $I_{\text{REF}}$ pin be forced either higher or lower than the 600 mV provided by the internal reference. |
| 11   | SCL              | INPUT,<br>DIGITAL | This pin carries the I2C clock to control the I2C communication. The SCL clock is associated with the SDA signal.                                                                                                                                                                                                                                                                                                                                                                               |
| 12   | Vdet             | INPUT             | This pin provides a DC bias to the internal circuit and must be connected to the same voltage that the one applied to the Vbat pin 13.                                                                                                                                                                                                                                                                                                                                                          |
| 13   | Vbat             | POWER             | This pin is the input Battery voltage to supply the analog and digital blocks. The pin must be decoupled to ground by a 1 $\mu F$ or higher ceramic capacitor (Note 2).                                                                                                                                                                                                                                                                                                                         |
| 14   | IC               |                   | This pin is internally connected. It must be left open.                                                                                                                                                                                                                                                                                                                                                                                                                                         |

The maximum current is 37 mA for each LED
 Using low ESR ceramic capacitor, X5R type, is recommended.

### MAXIMUM RATINGS

| Symbol                                                                        | Rating                                                                                                                         | Value                         | Unit               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|
| V <sub>bat</sub>                                                              | Power Supply (see Figure 4)                                                                                                    | -0.3 < V <sub>bat</sub> < 7.0 | V                  |
| SDA, SCL                                                                      | Digital Input Voltage                                                                                                          | -0.3 < V < V <sub>bat</sub>   | V                  |
| ESD                                                                           | Human Body Model: R = 1500 $\Omega$ , C = 100 pF (Note 3) Machine Model                                                        | 2<br>200                      | kV<br>V            |
| ${\mathsf P}_{\mathsf D} \ {\mathsf R}_{\theta JC} \ {\mathsf R}_{\theta JA}$ | Power Dissipation @ $T_A = +85^{\circ}C$ (Note 4)<br>Thermal Resistance Junction to Case<br>Thermal Resistance Junction to Air | 235<br>46<br>170              | mW<br>°C/W<br>°C/W |
| T <sub>A</sub>                                                                | Operating Ambient Temperature Range                                                                                            | -40 to +85                    | °C                 |
| TJ                                                                            | Operating Junction Temperature Range                                                                                           | -40 to +125                   | °C                 |
| T <sub>Jmax</sub>                                                             | Maximum Junction Temperature                                                                                                   | +150                          | °C                 |
| T <sub>stg</sub>                                                              | Storage Temperature Range                                                                                                      | -65 to +150                   | °C                 |
| ILATCHUP                                                                      | Latch-up current maximum rating per JEDEC standard: JESD78.                                                                    | ±100                          | mA                 |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

 This device series contains ESD protection and exceeds the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22–A114 Machine Model (MM) ±200 V per JEDEC standard: JESD22–A115

The maximum package power dissipation limit must not be exceeded.

#### **POWER SUPPLY SECTION:**

(Typical values are referenced to  $T_A = +25^{\circ}C$ , Min & Max values are referenced  $-40^{\circ}C$  to  $+85^{\circ}C$  ambient temperature, unless otherwise noted), operating conditions 2.85 V < V<sub>bat</sub> < 5.5 V, unless otherwise noted.

| Pin   | Symbol            | Rating                                                                                                                | Min | Тур  | Max | Unit |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| 13    | V <sub>bat</sub>  | Power Supply                                                                                                          | 2.7 |      | 5.5 | V    |
| 13    | I <sub>stdb</sub> | Stand By Current 3.0 V $\leq$ V <sub>bat</sub> $\leq$ 4.2 V, I <sub>LED</sub> = 0 mA                                  |     | 0.8  | 1.0 | μΑ   |
| 13    | I <sub>op</sub>   | Operating Current,<br>@ $I_{LED}$ = 0 mA, 3.0 V $\leq$ V <sub>bat</sub> $\leq$ 4.2 V                                  |     | 350  |     | μΑ   |
| 3,4,5 | I <sub>TOL</sub>  | RGB Output Current Tolerance<br>@ $V_{bat} = 3.6 \text{ V}, I_{LED} = 10 \text{ mA}$<br>-25°C < T <sub>A</sub> < 85°C |     | ±3   |     | %    |
| 3,4,5 | IMATCH            | RGB Output Current LED Matching<br>@V <sub>bat</sub> = 3.6 V, I <sub>LED</sub> = 5.0 mA                               |     | ±0.5 |     | %    |
|       | Fpwr              | Internal Clock Operating Frequency $-40^{\circ}C < T_A < 85^{\circ}C$                                                 | 0.8 | 1    | 1.2 | MHz  |

#### ANALOG SECTION:

(Typical values are referenced to  $T_A = +25^{\circ}C$ , Min & Max values are referenced  $-40^{\circ}C$  to  $+85^{\circ}C$  ambient temperature, unless otherwise noted), operating conditions 2.85 V < V<sub>bat</sub> < 5.5 V, unless otherwise noted.

| Pin   | Symbol            | Rating                                                           | Min | Тур  | Max | Unit |
|-------|-------------------|------------------------------------------------------------------|-----|------|-----|------|
| 10    | I <sub>REF</sub>  | Reference current @V <sub>REF</sub> = 600 mV<br>(Note 5, Note 8) | 3   | 12.5 | 20  | μΑ   |
| 10    | V <sub>REF</sub>  | Reference Voltage (Note 5)                                       | -3% | 600  | +3% | mV   |
|       | I <sub>LEDR</sub> | Reference Current (IREF) current ratio                           |     | 2400 |     |      |
| 10    | Rbias             | External Reference current Bias resistor (Note 6)                | 30  | 48   | 200 | kΩ   |
| 3,4,5 | F <sub>PWM</sub>  | Internal PWM Frequency (Note 7)                                  |     | 2.1  |     | kHz  |

5. The external circuit must not force the I<sub>REF</sub> pin voltage either higher or lower than the 600 mV specified. The system is optimized with a 12.5 μA reference current.

6. The overall output current tolerance depends upon the accuracy of the external resistor. Using 1% or better resistor is recommended.

7. This parameter, derived from the 1 MHz clock, is guaranteed by design, not tested in production.

#### DIGITAL PARAMETERS SECTION:

(Typical values are referenced to  $T_A = +25^{\circ}C$ , Min & Max values are referenced  $-40^{\circ}C$  to  $+85^{\circ}C$  ambient temperature, unless otherwise noted), operating conditions 2.85 V <  $V_{bat}$  < 5.5 V, unless otherwise noted.

| Pin  | Symbol           | Rating                                                                    | Min | Тур | Max              | Unit |
|------|------------------|---------------------------------------------------------------------------|-----|-----|------------------|------|
| 11   | F <sub>SCL</sub> | Input I2C clock frequency                                                 |     |     | 400              | kHz  |
| 9,11 | V <sub>IH</sub>  | Positive going Input High Voltage Threshold,<br>SDA, SCL signals (Note 8) | 1.6 |     | V <sub>bat</sub> | V    |
| 9,11 | V <sub>IL</sub>  | Negative going Input Low Voltage Threshold,<br>SDA, SCL signals (Note 8)  | 0   |     | 0.4              | V    |

NOTE: Digital inputs undershoot  $\leq$  0.30 V to ground, Digital inputs overshoot < 0.30 V to V\_{bat}

8. Test guaranteed by design and fully characterized, not implemented in production.



Note: the internal POR sequence is 850  $\mu s$  maximum long

Figure 4. Understanding Integrated Circuit Voltage Limitations

[2]

#### LED MAXIMUM CURRENT CALCULATION

The load current is derived from the 600 mV reference voltage provided by the internal Band Gap associated to the external resistor connected across  $I_{REF}$  pin and Ground. Note : due to the internal structure of this pin, no voltage, either downward or upward, shall be forced at the  $I_{REF}$  pin.

The reference current is multiplied by the constant k = 2400 to yield the output load current. Since the reference voltage is based on a temperature compensated Band Gap, a tight tolerance resistor will provide a very accurate load current. The resistor is calculated from the Ohm's law (R<sub>bias</sub> = V<sub>REF</sub>/I<sub>REF</sub>) and a more practical equation can be arranged to define the resistor value for a given maximum output current ILEDmax:

$$R_{\text{bias}} = (V_{\text{REF}} * k) / \text{ILEDmax} \qquad [1]$$

 $R_{bias} = (0.6*2400)/ILEDmax$ 

 $R_{bias} = 1440/ILEDmax$ 

Since the I<sub>REF</sub> to ILEDmax ratio is very high, it is strongly recommended to set up the reference current at 12.5  $\mu$ A to optimize the tolerance of the output current. Although it is possible to use higher or lower value, as defined in the analog section, a 48 k $\Omega$  / 1% resistor will provide the best compromise, the dimming being performed by the appropriate PWM registers.

On the other hand, care must be observed to avoid leakage current flowing into either the  $I_{\text{REF}}$  pin of the bias resistor network.

Finally, for any desired ILED current, the curve provided Figure 5 can be recalculated according to the equation:

$$ILED = \frac{I_{REF} \cdot k}{31 - n}$$
 (eq. 1)  
$$\frac{V_{REF}}{2400}$$

$$ILED = \frac{\frac{R_{bias}}{R_{bias}} \cdot 2400}{31 - n}$$
 (eq. 2)

with: n = step value @  $1 \le n \le 31$   $R_{bias}$  = reference resistance k = internal multiplier constant = 2400 Note: n=0 - ILED is set to zero

n = 31 - ILED is set to the same current as n = 30

#### LOAD CONNECTION

The primary function of the NCP5623 is to control three LED arranged in the RGB color structure (reference OSRAM LATB G66x). The brightness of each LED is independently controlled by a set of dedicated PWM structure embedded into the silicon chip. The maximum current, identical for each LED, is programmable by means of the I2C data byte. With 32 steps per PWM, the chip provides 32768 colors hue in a standard display.

Moreover, a built–in gradual dimming provides a smooth brightness transition for any current level, in both Upward and Downward direction. The dimming function is controlled by the I2C interface: see Table 2.

The NCP5623 chip is capable to drive the three LED simultaneously, as depicted in Figure 1, but the load can be arranged to accommodate several LED if necessary in the application. Finally, the three current mirrors can be connected in parallel to drive a single powerful LED, thus yielding 90 mA current capability in a single LED.

#### **I2C PROTOCOL**

The NCP5623 is programmed by means of the standard I2C protocol controlled by an external MCU. The communication takes place with two serial bytes sharing the same I2C frame:

- Byte#1  $\rightarrow$  physical I2C address

- Byte#2  $\rightarrow$  Selected internal registers & function

| B7                                                                | B6     | B5     | B4     | B3     | B2     | B1     | B0     |  |  |
|-------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|
| Byte#1 : I2C Physical Address, based 7 bits : % 011 1000 → \$38 * |        |        |        |        |        |        |        |  |  |
| 0                                                                 | 1      | 1      | 1      | 0      | 0      | 0      | R/W    |  |  |
| Byte#2 : DATA register                                            |        |        |        |        |        |        |        |  |  |
| BLED2                                                             | BI ED1 | BI ED0 | BI ED4 | BI ED3 | BI ED2 | BI ED1 | BI ED0 |  |  |

\*Note: according to the I2C specifications, the physical address is based on 7 bits out of the SDA byte, the 8<sup>th</sup> bit representing the R/W command. Since the NCP5623 is a receiver only, the R/W command is 0 and the hexadecimal byte send by the MCU is %0111 0000 = \$70

| B7 | B6 | B5 | Function                                            |  |  |  |  |
|----|----|----|-----------------------------------------------------|--|--|--|--|
| 0  | 0  | 0  | Chip Shut Down $\rightarrow$ all LED current = zero |  |  |  |  |
| 0  | 0  | 1  | Set up the maximum Output LED Current               |  |  |  |  |
| 0  | 1  | 0  | PWM1 : Red LED control                              |  |  |  |  |
| 0  | 1  | 1  | PWM2 : Green LED control                            |  |  |  |  |
| 1  | 0  | 0  | PWM3 : Blue LED control                             |  |  |  |  |
| 1  | 0  | 1  | Set the Upward lend target                          |  |  |  |  |
| 1  | 1  | 0  | Set the Downward lend target                        |  |  |  |  |
| 1  | 1  | 1  | Gradual Dimming Step Time and Run                   |  |  |  |  |

#### B[7:5] : Internal Register Selection:

The contain of bits B[4:0] depends upon the type of function selected by bits B[7:5] as depicted in Table 1

|    |           |    | •               | •              |                |                |               |                                                       |
|----|-----------|----|-----------------|----------------|----------------|----------------|---------------|-------------------------------------------------------|
| B7 | <b>B6</b> | B5 | B4              | B3             | B2             | B1             | B0            | Comments                                              |
| 0  | 0         | 0  | Х               | х              | Х              | Х              | Х             | Shut down                                             |
| 0  | 0         | 1  | 16              | 8              | 4              | 2              | 1             | LED Current Step, see Figure 5 (Note 9)               |
| 0  | 1         | 0  | BPWM16          | BPWM8          | BPWM4          | BPWM2          | BPWM1         | Red PWM                                               |
| 0  | 1         | 1  | BPWM16          | BPWM8          | BPWM4          | BPWM2          | BPWM1         | Green PWM                                             |
| 1  | 0         | 0  | BPWM16          | BPWM8          | BPWM4          | BPWM2          | BPWM1         | Blue PWM                                              |
| 1  | 0         | 1  | GDIM5<br>16     | GDIM4<br>8     | GDIM3<br>4     | GDIM2<br>2     | GDIM1<br>1    | Set Gradual Dimming<br>Upward lend Target (Note 10)   |
| 1  | 1         | 0  | GDIM5<br>16     | GDIM4<br>8     | GDIM3<br>4     | GDIM2<br>2     | GDIM1<br>1    | Set Gradual Dimming<br>Downward lend Target (Note 10) |
| 1  | 1         | 1  | GDIM5<br>128 ms | GDIM4<br>64 ms | GDIM3<br>32 ms | GDIM2<br>16 ms | GDIM1<br>8 ms | Gradual Dimming<br>Time & run                         |

#### Table 1. Internal Register Bits Assigment

9. The programmed current applies to the three LED simultaneously, the gradual dimming is not engaged

10. The bit values represent the steps count, not the ILED current: see equations 1 & 2, page 6, to derive the ILED value.

#### **GRADUAL DIMMING**

The purpose of that function is to gradually Increase or Decrease the brightness of the backlight LED upon command from the external MCU. The function is activated and controlled by means of the I2C protocol.

In order to avoid arithmetic division functions at silicon level, the period (either upward or downward) is equal to the time defined for each step, multiplied by the number of steps.

To operate such a function, the MCU will provide two information:

1 – The target current level (either upward or downward)

2 – The time per step and run

When a new gradual dimming sequence is requested, the output current increases, according to an exponential curve, from the existing start value to the end value. The end current value is defined by the contain of the Upward or Downward registers, the width of each step is defined by the Time and run register, the number of step being in the 1 to 31 range. In the event of software error, the system checks that neither the maximum output current (30 mA), nor the zero level are forced out of their respective bounds. Similarly, software errors shall not force the NCP5623 into an uncontrolled mode of operation.

The dimming is built with 30 steps and the time delay encoded into the second byte of the I2C transaction: see Table 1.

When the gradual dimming is deactivated (B7 = B6 = 0, B5 = 1), the output current is straightforwardly set up to the level defined by the contain of the related register upon acknowledge of the output current byte.

The gradual dimming sequence must be set up before a new output current data byte is send to the NCP5623. At this point, the brightness sequence takes place when the new data byte is acknowledged by the internal I2C decoder. Since the six registers are loaded on independent byte flow associated to the I2C address, any parameter of the NCP5623 chip can be updated ahead of the next function as depicted in Table 2.

| I2C Address | COMMAND Bits[7:0]      | Operation                                            | Note                                                                                       |
|-------------|------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|
| \$70        | 000X XXXX              | System Shut Down                                     | Bits[4:0] are irrelevant                                                                   |
| \$70        | 0010 0000<br>0011 1111 | Set Up the ILED current                              | ILED register<br>Bits[4:0] contain the ILED value as defined by the I <sub>REF</sub> value |
| \$70        | 0100 0000<br>0101 1111 | Set Up the RED PWM                                   | REDPWM<br>Bits[4:0] contain the PWM value                                                  |
| \$70        | 0110 0000<br>0111 1111 | Set Up the GREEN PWM                                 | GREENPWM<br>Bits[4:0] contain the PWM value                                                |
| \$70        | 1000 0000<br>1001 1111 | Set Up the BLUE PWM                                  | BLUEPWM<br>Bits[4:0] contain the PWM value                                                 |
| \$70        | 1010 0000<br>1011 1111 | Set Up the IEND Upward                               | UPWARD<br>Bits[4:0] contain the IEND value                                                 |
| \$70        | 1100 0000<br>1101 1111 | Set Up the IEND Downward                             | DWNWRD<br>Bits[4:0] contain the IEND value                                                 |
| \$70        | 1110 0001<br>1111 1111 | Set Up the Gradual Dimming time and run the sequence | GRAD<br>Bits[4:0] contain the TIME value                                                   |

#### Table 2. Basic Programming Sequences

The number of step for a given sequence, depends upon the start and end output current range: since the ILED value is encoded in the Bits[4:0] binary scale, a maximum of 31 steps is achievable during a gradual dimming operation.

The number of steps will be automatically recalculated by the chip according to the equation:

Nstep = | existing step position – new step position |

As an example, assuming the previously programmed step was 5 and the new one is 15, then we will have 10 steps to run between the actual location to the end value. If the timing was set at 16 ms, the total gradual dimming sequence will be 160 ms. To select the direction of the gradual dimming (either Upward or Downward), one shall send the appropriate register before to activate the sequence as depicted below: 1010 1111  $\rightarrow$  1110 0011  $\rightarrow$  select an UPWARD sequence with 24 ms/step, the end ILED current being (I<sub>REF</sub>\*2400)/(31-15)

1100 0001 → 1110 0100 → select the DOWNWARD sequence with 32 ms/step, the end ILED current being  $(I_{REF}*2400)/(31-1)$ .

| Step     | ILED (mA) | Step      | ILED (mA) | Step      | ILED (mA) | Step      | ILED (mA) |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0 / \$00 | 0         | 9 / \$09  | 1.25      | 18 / \$12 | 2.12      | 27 \$1B   | 6.90      |
| 1 / \$01 | 0.92      | 10 / \$0A | 1.31      | 19 / \$13 | 2.30      | 28 / \$1C | 9.20      |
| 2 / \$02 | 0.95      | 11 / \$0B | 1.38      | 20 / \$14 | 2.50      | 29 / \$1D | 13.80     |
| 3 / \$03 | 0.98      | 12 / \$0C | 1.45      | 21 / \$15 | 2.76      | 30 / \$1E | 27.60     |
| 4 / \$04 | 1.02      | 13 / \$0D | 1.53      | 22 / \$16 | 3.06      | 31 / \$1F | 27.60     |
| 5 / \$05 | 1.06      | 14 / \$0E | 1.62      | 23 / \$17 | 3.45      |           |           |
| 6 / \$06 | 1.10      | 15 / \$0F | 1.72      | 24 / \$18 | 3.94      |           |           |
| 7 / \$07 | 1.15      | 16 / \$10 | 1.84      | 25 / \$19 | 4.60      |           |           |
| 8 / \$08 | 1.20      | 17 / \$11 | 1.97      | 26 / \$1A | 5.52      |           |           |

NOTE: The table assumes  $I_{REF} = 11.5 \ \mu A$ 



Figure 5. Output Current Programmed Value (ILED = F(Step))

### **PWM OPERATION**

The built-in PWM are fully independent and can be programmed to any value during the normal operation of the NCP5623 chip. The PWM operate with five bits, yielding a 32 steps range to cover the full modulation (0 to 100%) of the associated LED:

- PWM =  $00 \rightarrow$  the associated LED is fully OFF, whatever be the programmed ILED value
- PWM > \$00 but < \$1F → the brightness of the associated LED is set depending upon the PWM modulation value
- PWM = \$1F → the associated LED is fully ON, the current being the one defined by the ILED value.

Each PWM is programmable, via the I2C port as depicted, at any time under any sequence arrangement as requested by the end system's designer. The PWM does not change the ILED value, but merely modulate the ON/OFF ratio of the associated LED. Each step of the PWM represent 100/31 = 3.225% of the full range, the clock being 2.1 kHz (typical).



Figure 6. Basic RGB Application

#### PACKAGE DIMENSIONS



details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

INCHES

0.026 BSC

0.252 BSC

0.047

4.50 0.169 0.177

1.20

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative



Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».



«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).



Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А