

SYNCHRONOUS MOSFET CONTROLLER IN SO-8

Description

ZXGD3107N8 synchronous controller is designed for driving a MOSFET as an ideal rectifier. This is to replace a diode for increasing the power transfer efficiency.

Proportional Gate drive control monitors the reverse voltage of the MOSFET such that if body diode conduction occurs, a positive voltage is applied to the MOSFET's Gate pin. Once the positive voltage is applied to the Gate, the MOSFET switches on allowing reverse current flow. The controllers' output voltage is then proportional to the MOSFET drain-source voltage and this is applied to the Gate via the driver. This action minimizes body diode conduction while enabling a rapid MOSFET turn-off as drain current decays to zero.

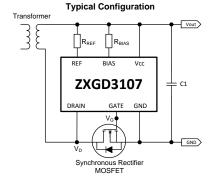
Applications

Flyback Converters in:

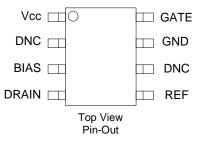
- **AC-DC Adaptors**
- Set-Top Boxes
- PoE Power Devices

Resonant Converters in:

- Telecoms PSU
- Laptop Adaptors
- Computing Power Supplies ATX and Server PSU


Features

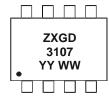
- Proportional Gate Drive to Minimize Body Diode Conduction
- Low Standby Power with Quiescent Supply Current < 1mA
- 4.5V Operation Enables Low Voltage Supply
- 40V V_{CC} Rating
- 200V Drain Voltage Rating
- Operation up to 500kHz
- Critical Conduction Mode (CrCM) & Continuous Mode (CCM)
- Compliant with Eco-Design Directive
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony free. "Green" Device (Note 3)


Mechanical Data

Case: SO-8

- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish
- Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.074 grams (Approximate)

Pin Name	Pin Function
V _{CC}	Power Supply
DNC	Do Not Connect
BIAS	Bias Current
DRAIN	Drain Sense
REF	Reference Current
GND	Power Ground
GATE	Gate Drive

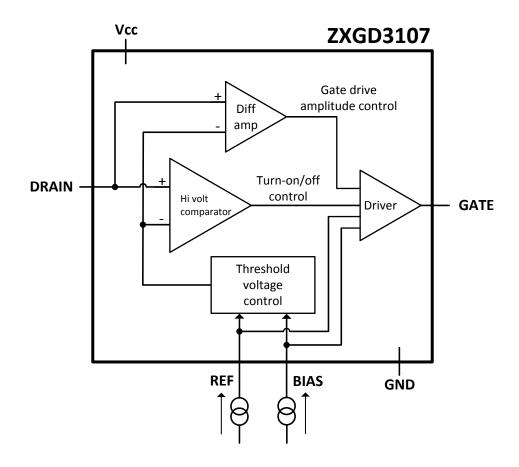

Ordering Information (Note 4)

	Product	Marking	Reel size (inches)	Tape width (mm)	Quantity per reel
ZX	GD3107N8TC	ZXGD3107	13	12	2,500
Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.					

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com.

Marking Information


ZXGD = Product Type Marking Code, Line 1 3107 = Product Type Marking Code, Line 2 ΥY = Year (ex: 15 = 2015)

= Week (01 - 53)

WW

Functional Block Diagram

Pin #	Pin Name	Pin Function and Description
1	Vcc	Power supply This supply pin should be closely decoupled to ground with a ceramic capacitor.
2	DNC	Do Not Connect Leave pin floating.
3	BIAS	Bias Connect this pin to Vcc via R _{BIAS} resistor. Select R _{BIAS} to source 0.56mA into this pin. Refer to Table 1 and 2, in Application Information section.
4	DRAIN	Drain sense Connect directly to the synchronous MOSFET drain terminal.
5	REF	Reference Connect this pin to Vcc via R _{REF} resistor. Select R _{REF} to source 1.23mA into this pin. Refer to Table 1 and 2, in Application Information section.
6	DNC	Do not connect Leave pin floating.
7	GND	Ground Connect this pin to the synchronous MOSFET source terminal and ground reference point.
8	GATE	Gate drive This pin sinks and sources the I _{SINK} and I _{SOURCE} current to the synchronous MOSFET Gate.

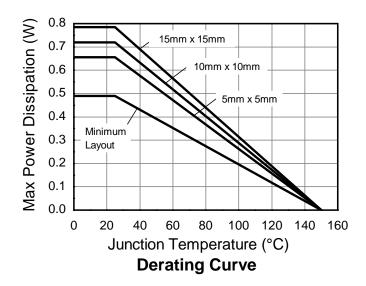
Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Supply Voltage, relative to GND	Vcc	40	V
Drain Pin Voltage	V _D	-3 to 200	V
Gate Output Voltage	V_{G}	-3 to V _{CC} + 3	V
Gate Driver Peak Source Current	I _{SOURCE}	4	А
Gate Driver Peak Sink Current	I _{SINK}	9	Α
Reference Voltage	V _{REF}	Vcc	V
Reference Current	I _{REF}	25	mA
Bias Voltage	V _{BIAS}	Vcc	V
Bias Current	I _{BIAS}	100	mA

Thermal Characteristics ($@T_A = +25^{\circ}C$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit	
	(Note 5)		490 3.92		
Power Dissipation	(Note 6)] [655 5.24	mW	
Linear Derating Factor	(Note 7)	P _D	720 5.76	mW/°C	
	(Note 8)		785 6.28		
	(Note 5)		255		
Thermal Desistance Investigate Ambient	(Note 6)	T 5 F	191	°C/W	
Thermal Resistance, Junction to Ambient	(Note 7)	R _{θJA}	173		
	(Note 8)	1	159		
Thermal Resistance, Junction to Lead	(Note 9)	R _{θJL}	55	°C/W	
Thermal Resistance, Junction to Case	(Note 10)	R _{eJC}	45	°C/W	
Operating Temperature Range		TJ	-40 to +150	°C	
Storage Temperature Range		T _{STG}			

ESD Ratings (Note 11)


Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	1,500	V	1C
Electrostatic Discharge - Machine Model	ESD MM	200	V	В

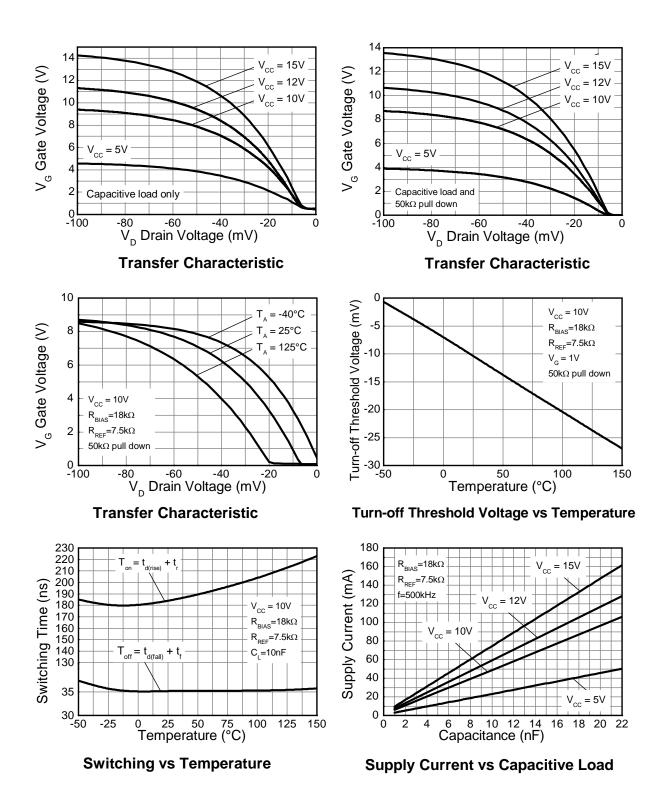
Notes:

- 5. For a device surface mounted on minimum recommended pad layout FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the For a device surface mounted on minimum recommended pad layout FR4 PCB with high coverage of single sided 1oz coper device is measured when operating in a steady-state condition.
 Same as note (5), except pin 1 (V_{CC}) and pin 7 (GND) are both connected to separate 5mm x 5mm 1oz copper heatsinks.
 Same as note (6), except both heatsinks are 10mm x 10mm.
 Same as note (6), except both heatsinks are 15mm x 15mm.
 Thermal resistance from junction to solder-point at the end of each lead on pin 1 (V_{CC}) or pin 7 (GND).
 Thermal resistance from junction to top of the case.
 Refer to JEDEC specification JESD22-A114 and JESD22-A115.

Thermal Derating Curve

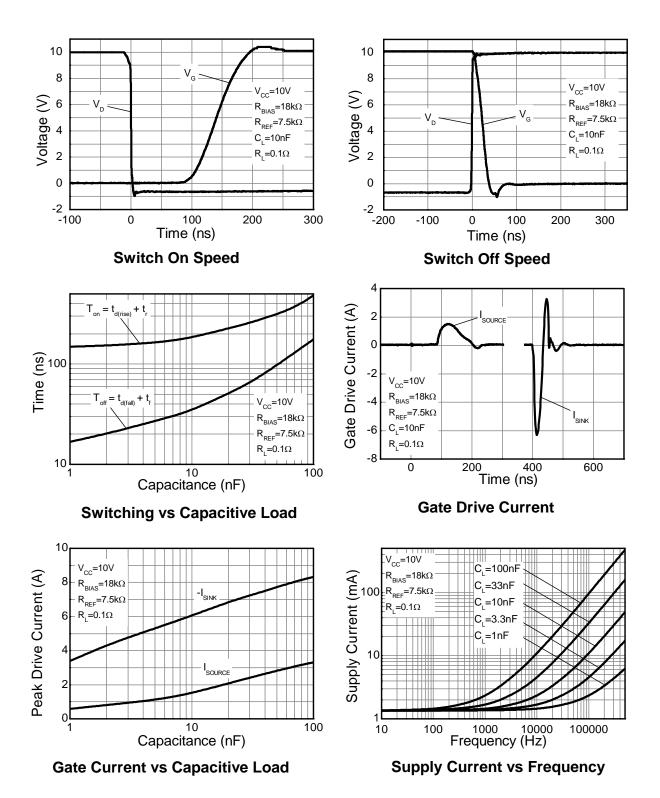
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

 $V_{CC}=10V;\,R_{BIAS}=18k\Omega\;(I_{BIAS}=0.56mA);\,R_{REF}=7.5k\Omega\;(I_{REF}=1.23mA)$


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition		
Input Supply								
Supply to GND Voltage	V _{CC(ON)}	40	-	-	V	V _D = -100mV @ Icc = 10μA		
Supply to GND Voltage	V _{CC(OFF)}	40	-	-	V	V _D = 1V @ Icc = 10μA		
Drain to GND Voltage	V_D	200	-	-	V	$I_D = 1\mu A$		
Quiescent Current	ΙQ	-	1.79	-	mA	$V_D \ge 0 \text{mV}$		
Gate Driver								
Gate Peak Source Current	I _{SOURCE}	-	2	-	A	Capacitive load: C _L = 20nF		
Gate Peak Sink Current	Isink	-	7	-] ^			
Detector under DC condition								
Turn-off Threshold Voltage	V_{T}	-20	-10	0	mV	$V_G = 1V$		
	$V_{G(off)}$	-	0.2	0.6		V _D ≥ 1V	Camaaitina laad ambi	
Gate Output Voltage	\/	5.0	7.8	-	V	$V_D = -50 \text{mV}$	Capacitive load only	
	V_{G}	8.0	9.4	-		$V_D = -100 \text{mV}$	7	
Switching Performance								
Turn-on Propagation Delay	t _{d(rise)}	-	70	-				
Gate Rise Time	t _r	-	175	-	Rise and fall measured 10% to		ed 10% to 90%	
Turn-off Propagation Delay	t _{d(fall)}	-	15	-	ns	Refer to application test circuit below		
Gate Fall Time	t _f	-	20	-				

Test Circuit for Switching Performance

Flyback transformer Magnetising inductance = 820µH Vcc = 10V Output load R_{REF} R_{BIAS} [⅃]7.5ΚΩ Ϥ 18ΚΩ BIAS Vcc = ^{C1} 1uF **ZXGD3107** DRAIN GATE GND **Test conditions** Switching frequency = 100kHz $V_G \phi$ Continuous conduction mode $\textbf{MOSFET} \ Q_{g(tot)} = 82nC$ $R_{DS(on)} = 15m\Omega$



Typical Electrical Characteristics (@TA = +25°C, unless otherwise specified.)

Typical Electrical Characteristics (continued) (@TA = +25°C, unless otherwise specified.)

Application Information

The purpose of the ZXGD3107 is to drive a MOSFET as a low- V_F Schottky diode replacement in isolated AC-DC converter. When combined with a low $R_{DS(ON)}$ MOSFET, the controller can yield significant power-efficiency improvement, while maintaining design simplicity and incurring minimal component count. Figure 1 shows the typical configuration of ZXGD3107 for synchronous rectification in a low output voltage flyback converter.

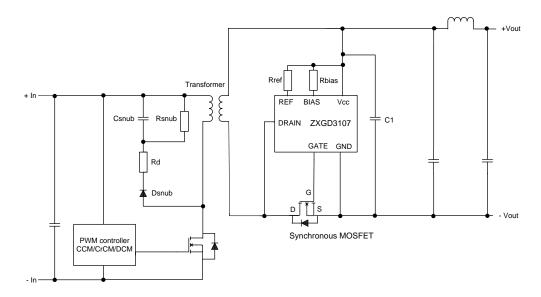


Figure 1 - Typical flyback application schematic

Threshold Voltage and Resistor Setting

Proper selection of external resistors R_{REF} and R_{BIAS} is important for optimum device operation. R_{REF} and R_{BIAS} supply fixed current into the I_{REF} and I_{BIAS} pin of the controller. I_{REF} and I_{BIAS} combines to set the turn-off threshold voltage level, $V_{T.}$ In order to set $V_{T.}$ to -10mV, the recommended I_{REF} and I_{BIAS} are 1.23mA and 0.56mA respectively.

The values for R_{REF} and R_{BIAS} are selected based on the Vcc voltage. If the Vcc pin is connected to the power converter's output, the resistors should be selected based on the nominal converter's output voltage. Table 1 provides the recommended resistor values for different Vcc voltages to achieve a V_T of -10mV.

Supply, Vcc	Bias Resistor, R _{BIAS}	Reference Resistor, R _{REF}
5V	9.6kΩ	4kΩ
10V	18kΩ	7.5kΩ
12V	24kΩ	9.6kΩ
15V	30kΩ	12kΩ

Table 1 - Recommended resistor values for different Vcc voltages

Application Information (continued)

Functional Descriptions

The operation of the device is described step-by-step with reference to the timing diagram in Figure 2.

- 1. The detector stage monitors the MOSFET drain-source voltage.
- 2. When, due to transformer action, the MOSFET body diode is forced to conduct there is a negative voltage on the drain pin due to the body diode forward voltage.
- 3. When the negative drain voltage crosses the turn-off Threshold voltage V_T, the detector stage outputs a positive voltage with respect to ground after the turn-on delay time t_{d(fall)}. This voltage is then fed to the MOSFET driver stage and current is sourced out of the GATE pin.
- 4. The controller goes into Proportional Gate drive control the Gate output voltage is proportional to the MOSFET on-resistance-induced drain-source voltage. Proportional Gate drive ensures that MOSFET conducts during majority of the conduction cycle to minimize power loss in the body diode.
- 5. As the drain current decays linearly toward zero, Proportional Gate drive control reduces the Gate voltage so the MOSFET can be turned off rapidly at zero current crossing. The Gate voltage falls to 1V when the drain-source voltage crosses the detection threshold voltage to minimize reverse current flow.
- 6. At zero drain current, the controller Gate output voltage is pulled low to V_{G(off)} to ensure that the MOSFET is off.

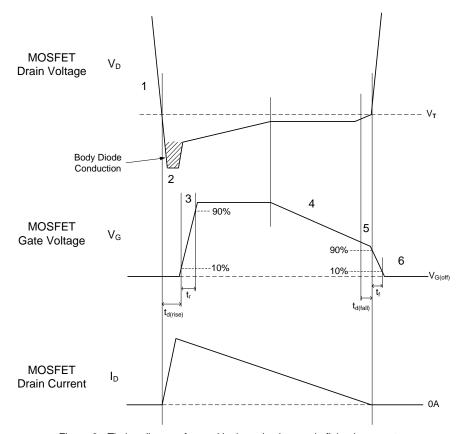


Figure 2 - Timing diagram for a critical conduction mode flyback converter

Application Information (cont.)

Gate Driver

The controller is provided with single channel high-current Gate drive output, capable of driving one or more N-channel power MOSFETs. The controller can operate from Vcc of 4.5V to drive both standard MOSFETs and logic level MOSFETs.

The GATE pin should be as close to the MOSFET's Gate as possible. A resistor in series with GATE pin helps to control the rise time and decrease switching losses due to Gate voltage oscillation. A diode in parallel to the resistor is typically used to maintain fast discharge of the MOSFET's Gate.

Figure 3 - Typical connection of the ZXGD3107 to the synchronous MOSFET

Quiescent Current Consumption

The quiescent current consumption of the controller is the sum of I_{REF} and I_{BIAS} . For an application that requires ultra-low standby power consumption, I_{REF} and I_{BIAS} can be further reduced by increasing the value of resistor R_{REF} and R_{BIAS} .

Bias Current I _{BIAS}	Ref Current I _{REF}	Bias Resistor R _{BIAS}	Ref Resistor R _{REF}	Quiescent Current I _Q
0.25	0.78	39.8kΩ	11.9kΩ	1.03mA
0.35	0.94	28.4kΩ	9.8kΩ	1.29mA
0.45	1.1	22.1kΩ	8.4kΩ	1.55mA
0.56	1.23	18kΩ	7.5kΩ	1.79mA
0.6	1.34	16.6kΩ	6.9kΩ	1.94mA
0.8	1.6	12.4kΩ	5.8kΩ	2.4mA

Table 2 – Quiescent current consumption for different resistor values at Vcc=10V

 I_{REF} also controls the Gate driver peak sink current whilst I_{BIAS} controls the peak source current. At the default current value of I_{REF} and I_{BIAS} of 1.23mA and 0.56mA, the Gate driver is able to provide 2A source and 6A sink current. The Gate current decreases if I_{REF} and I_{BIAS} are reduced. Care must be taken in reducing the controller quiescent current so that sufficient drive current is still delivered to the MOSFET particularly for high-switching frequency application.

Application Information (cont.)

Layout Guidelines

When laying out the PCB, care must be taken in decoupling the ZXGD3107 closely to V_{CC} and ground with 1 μ F low-ESR, low-ESL X7R type ceramic bypass capacitor. If the converter's output voltage is higher than 40V, a series voltage regulator between the converter's output voltage and the Vcc pin can be used to get a stable Vcc voltage.

GND is the ground reference for the internal high-voltage amplifier as well as the current return for the Gate driver. So the ground return loop should be as short as possible. Sufficient PCB copper area should be allocated to the Vcc and GND pin for heat dissipation especially for high-switching frequency application.

Any stray inductance involved by the load current may cause distortion of the drain-to-source voltage waveform, leading to premature turn-off of the synchronous MOSFET. In order to avoid this issue, drain-voltage sensing should be done as physically close to the drain terminals as possible. The PCB track length between the controller drain pin and MOSFET's terminal should be kept less than 10mm. MOSFET packages with low internal-wire-bond inductance are preferred for high-switching frequency power conversion to minimize body diode conduction.

After the primary MOSFET turns-off, its drain voltage oscillates due to reverse recovery of the snubber diode. These high-frequency oscillations are reflected across the transformer to the drain terminal of the synchronous MOSFET. The synchronous controller senses the drain-voltage ringing, causing its Gate output voltage to oscillate. The synchronous MOSFET cannot be fully enhanced until the drain voltage stabilizes.

In order to prevent this issue, the oscillations on the primary MOSFET can be damped with either a series resistor Rd to the snubber diode or an R-C network across the diode. Both methods reduce the oscillations by softening the snubber diode's reverse recovery characteristic.

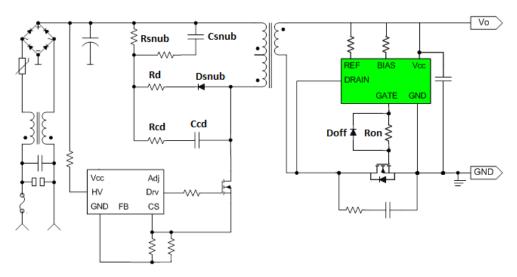
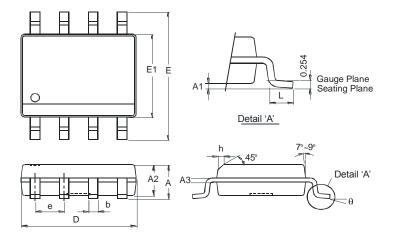
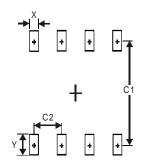



Figure 4 - Primary side snubber network to reduce drain voltage oscillations

Package Outline Dimensions


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

	SO-8		
Dim	Min	Max	
Α	-	1.75	
A1	0.10	0.20	
A2	1.30	1.50	
A3	0.15	0.25	
b	0.3	0.5	
D	4.85	4.95	
Е	5.90	6.10	
E1	3.85	3.95	
е	1.27	Тур	
h	-	0.35	
L	0.62	0.82	
θ	0°	8°	
All Dimensions in mm			

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Dimensions	Value (in mm)
Х	0.60
Y	1.55
C1	5.4
C2	1.27

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2015, Diodes Incorporated

www.diodes.com

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А