HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018 #### **Features** - True Dual-Port memory cells which allow simultaneous access of the same memory location - High-speed access - Commercial: 10/12/15ns (max.) - Industrial: 10/12ns (max.) - RapidWrite Mode simplifies high-speed consecutive write cycles - Dual chip enables allow for depth expansion without external logic - IDT70T651/9 easily expands data bus width to 72 bits or more using the Master/Slave select when cascading more than one device - M/S = VIH for BUSY output flag on Master, M/S = VIL for BUSY input on Slave - Busy and Interrupt Flags - On-chip port arbitration logic - Full on-chip hardware support of semaphore signaling between ports - Fully asynchronous operation from either port - Separate byte controls for multiplexed bus and bus matching compatibility - Sleep Mode Inputs on both ports - Supports JTAG features compliant to IEEE 1149.1 - Single 2.5V (±100mV) power supply for core - LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV) power supply for I/Os and control signals on each port - Available in a 256-ball Ball Grid Array, 208-pin Plastic Quad Flatpack and 208-ball fine pitch Ball Grid Array. - Industrial temperature range (-40°C to +85°C) is available for selected speeds - Green parts available, see ordering information ### Functional Block Diagram #### NOTES: - 1. Address A_{17x} is a NC for IDT70T659. - BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH). - 3. BUSY and INT are non-tri-state totem-pole outputs (push-pull). - The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are not affected during sleep mode. 4869 drw 01 **NOVEMBER 2017** ### Description The IDT70T651/9 is a high-speed 256/128K x 36 Asynchronous Dual-Port Static RAM. The IDT70T651/9 is designed to be used as a stand-alone 9216/4608K-bit Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 72-bit-or-more word system. Using the IDT MASTER/SLAVE Dual-Port RAM approach in 72-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic. This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by the chip enables (either $\overline{CE}0$ or CE1) permit the on-chip circuitry of each port to enter a very low standby power mode. The IDT70T651/9 has a RapidWrite Mode which allows the designer to perform back-to-back write operations without pulsing the R/\overline{W} input each cycle. This is especially significant at the 10ns cycle time of the IDT70T651/9, easing design considerations at these high performance levels. The 70T651/9 can support an operating voltage of either 3.3 V or 2.5 V on one or both ports, controlled by the OPT pins. The power supply for the core of the device (VDD) is at 2.5 V. # $Pin\,Configuration^{(1,2,3)}$ ### 70T651/9BC BC-256(5,6) ### 256-Pin BGA Top View | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | |--------|-----------------|-----------------|-----------------------------|--------------|-------|-------------|-------------------|-------------------|--------------|-------------|-------------|-------------|--------|-----------------|--------| | NC | TDI | NC | A17L ⁽⁴⁾ | A14L | A11L | A8L | BE ₂ L | CE1L | OEL | INTL | A 5L | A2L | A0L | NC | NC | | B1 | NC | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | B15 | B16 | | I/O18L | | TDO | NC | A15L | A12L | A9L | BE3L | CEol | R/W L | NC | A4L | A1L | NC | I/O17L | NC | | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | | I/O18R | I/O19L | Vss | A16L | A13L | A10L | A7L | BE ₁ L | BE ₀ L | SEML | BUSYL | A6L | A3L | OPTL | I/ O 17R | I/O16L | | D1 | D2 | D3 | D4 | D5 | d6 | d7 | d8 | | d10 | d11 | d12 | D13 | D14 | D15 | D16 | | I/O20R | I/ O 19R | I/O20L | Vdd | Vddql | Vddql | Vddqr | Vddqr | | Vddql | Vddqr | Vddqr | VDD | I/O15R | I/O15L | I/O16R | | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | E14 | E15 | E16 | | I/O21R | I/O21L | I/O22L | Vddql | Vdd | Vdd | Vss | Vss | Vss | Vss | VDD | Vdd | Vddqr | I/O13L | I/O14L | I/O14R | | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | | I/O23L | I/ O 22R | I/ O 23R | Vddql | Vdd | NC | Vss | Vss | Vss | Vss | Vss | Vdd | Vddqr | I/O12R | I/O13R | I/O12L | | G1 | G2 | G3 | g4 | G5 | G6 | G7 | G8 | G9 | G10 | G11 | G12 | G13 | G14 | G15 | G16 | | I/O24R | I/O24L | I/O25L | Vddqr | Vss Vddql | I/O10L | I/O11L | I/O11R | | H1 | H2 | H3 | h4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | H14 | H15 | H16 | | I/O26L | I/ O 25R | I/O26R | Vddqr | Vss VDDQL | I/O9R | IO 9L | I/O10R | | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | ^{J9} | J10 | J11 | J12 | J13 | J14 | J15 | J16 | | I/O27L | I/ O 28R | I/ O 27R | Vddql | ZZR | Vss | Vss | Vss | Vss | Vss | Vss | ZZ L | Vddqr | I/O8R | I/ O 7R | I/O8L | | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | K11 | K12 | K13 | K14 | K15 | K16 | | I/O29R | I/ O 29L | I/O28L | Vddql | Vss Vddqr | I/O6R | I/O6L | I/O7L | | L1 | L2 | L3 | l4 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L12 | L13 | L14 | L15 | L16 | | I/O30L | I/O31R | I/O30R | Vddqr | Vdd | NC | Vss | Vss | Vss | Vss | Vss | Vdd | Vddql | I/O5L | I/O4R | I/O5R | | M1 | M2 | M3 | m4 | M5 | M6 | M7 | M8 | м9 | M10 | M11 | M12 | M13 | M14 | M15 | M16 | | I/O32R | I/O32L | I/O31L | Vddqr | Vdd | Vdd | Vss | Vss | Vss | Vss | VDD | Vdd | Vddql | I/O3R | I/ОзL | I/O4L | | N1 | N2 | N3 | N4 | N5 | n6 | n7 | n8 | n9 | N10 | N11 | N12 | N13 | N14 | N15 | N16 | | I/O33L | I/O34R | I/ O 33R | Vdd | Vddqr | Vddqr | Vddql | Vddql | Vddqr | Vddqr | Vddql | Vddql | Vdd | I/O2L | I/O1R | I/O2R | | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | P14 | P15 | P16 | | I/O35R | I/O34L | TMS | A 16R | A13R | A10R | A 7R | BE1R | BE0R | SEMR | BUSYR | A6R | A 3R | I/OoL | I/ O 0R | I/O1L | | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | | I/O35L | NC | TRST | NC | A15R | A12R | A 9R | BE3R | CE0R | R/W R | M /S | A4R | A1R | OPTr | NC | NC | | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14 | T15 | T16 | | NC | TCK | NC | A 17R ⁽⁴⁾ | A 14R | A11R | A8R | BE2R | CE1R | OEr | INTR | A 5R | A 2R | Aor | NC | NC | 5632 drw 02f - 1. All VDD pins must be connected to 2.5V power supply. - 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is set to Vss (0V). - 3. All Vss pins must be connected to ground supply. - 4. A₁₇x is a NC for IDT70T659. - 5. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch. - 6. This package code is used to reference the package diagram. # Pin Configurations (1,2,3) (con't.) - 1. All VDD pins must be connected to 2.5V power supply. - 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V) and 2.5V if OPT pin for that port is set to VSS (0V). - 3. All Vss pins must be connected to ground. - 4. A₁₇x is a NC for IDT70T659. - 5. Package body is approximately 28mm x 28mm x 3.5mm. - 6. This package code is used to reference the package diagram. - 7. 10ns Industrial speed grade is not available in the DR-208 package. - 8. This text does not indicate orientation of the actual part-marking # Pin Configurations (1,2,3) (con't.) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | |---|---------------------|---------------------|---------------------|-----------------|----------------------|---|-------------------|-------------------|-------------------|-------|------------------|------------------|------------------|---------------------|--------------------|---------------------|--------------------|---| | Α | I/O19L | I/O18L | Vss | TDO | NC | A _{16L} | A12L | AsL | BE₁L | VDD | SEML | ĪNTL | A4L | AoL | OPTL | I/O ₁₇ L | Vss | Α | | В | I/O _{20R} | Vss | I/O _{18R} | TDI | A _{17L} (4) | A13L | A9L | BE ₂ L | Œ₀∟ | Vss | BUSYL | A5L | A ₁ L | Vss | VDDQR | I/O16L | I/O _{15R} | В | | С | VDDQL | I/O19R | VDDQR | V _{DD} | NC | A14L | A10L | <u>BE</u> ₃∟ | CE ₁ L | Vss | R/WL | A6L | A ₂ L | VDD | I/O _{16R} | I/O _{15L} | Vss | С | | D | I/O22L | Vss | I/O21L | I/O20L | A ₁₅ L | A15L A11L A7L BEOL VDD OEL NC A3L VDD I/C | | | | | | | | | VDDQL | I/O14L | I/O14R | D | | Е | I/O23L | I/O22R | VDDQR | I/O21R | | | | - | | | - | | | I/O ₁₂ L | I/O13R | Vss | I/O13L | Е | | F | VDDQL | I/O23R | I/O ₂₄ L | Vss | | | | | | | | | | Vss | I/O _{12R} | I/O11L | Vddqr | F | | G | I/O ₂₆ L | Vss | I/O25L | I/O24R | | | | | | | | | | I/O ₉ L | VDDQL | I/O _{10L} | I/O _{11R} | G | | Н | VDD | I/O ₂₆ R | VDDQR | I/O25R | | | | | Γ651.
208 | | | | | VDD | I/O ₉ R | Vss | I/O _{10R} | Н | | J | VDDQL | VDD | Vss | ZZR | | | | 2 | 208-B | all | | | | ZZL | V _{DD} | Vss | VDDQR | J | | K | I/O ₂₈ R | Vss | I/O27R | Vss | | | | | fpBG
p Vie | iΑ | | | | I/O7R | VDDQL | I/O8R | Vss | K | | L | I/O29R | I/O ₂₈ L | VDDQR | I/O27L | | | | 10 | ib vie | ₹W` ′ | | | | I/O ₆ R | I/O7L | Vss | I/O ₈ L | L | | М | VDDQL | I/O29L | I/O _{30R} | Vss | | | | | | | | | | Vss | I/O ₆ L | I/O ₅ R | VDDQR | М | | N | I/O31L | Vss | I/O31R | I/O30L | | | | | | | | | | I/O3R | VDDQL | I/O4R | I/O ₅ L | Ν | | Р | I/O32R | I/O32L | VDDQR | I/O35R | TRST |
A16R | A ₁₂ R | A ₈ R | BE _{1R} | VDD | SEM _R | ĪNTr | A4R | I/O ₂ L | I/O3L | Vss | I/O ₄ L | Р | | R | Vss | I/O33L | I/O34R | тск | A _{17R} (4) | A13R | A9R | BE _{2R} | <u>CE</u> ōR | Vss | BUSYR | A ₅ R | A _{1R} | Vss | VDDQL | I/O1R | VDDQR | R | | Т | I/O33R | I/O34L | VDDQL | TMS | NC | A _{14R} | A _{10R} | <u>B</u> E₃R | CE _{1R} | Vss | R/W̄R | A6R | A ₂ R | Vss | I/Oor | Vss | I/O ₂ R | Т | | U | Vss | I/O35L | Vdd | NC | A _{15R} | A _{11R} | A7R | BEor | VDD | ŌĒr | M/S | Азп | Aor | VDD | OPTR | I/OoL | I/O ₁ L | U | 5632 drw 02e - 1. All VDD pins must be connected to 2.5V power supply. - 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V) and 2.5V if OPT pin for that port is set to Vss (0V). - 3. All Vss pins must be connected to ground. - 4. A₁₇x is a NC for IDT70T659. - 5. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch. - 6. This package code is used to reference the package diagram. - 7. This text does not indicate orientation of the actual part-marking. ### Pin Names | Left Port | Right Port | Names | | | | | |---------------------------|---------------------------|---|--|--|--|--| | CEOL, CE1L | CEOR, CE1R | Chip Enables (Input) | | | | | | R/WL | R/WR | Read/Write Enable (Input) | | | | | | ŌĒL | ŌĒr | Output Enable (Input) | | | | | | Aol - A17L ⁽¹⁾ | Aor - A17R ⁽¹⁾ | Address (Input) | | | | | | I/Ool - I/O35L | I/Oor - I/O35R | Data Input/Output | | | | | | SEML | <u>SEM</u> R | Semaphore Enable (Input) | | | | | | ĪNTL | ĪNTr | Interrupt Flag (Output) | | | | | | BUSYL | BUSY R | Busy Flag (Output) | | | | | | BEOL - BE3L | BEOR - BE3R | Byte Enables (9-bit bytes) (Input) | | | | | | VDDQL | VDDQR | Power (I/O Bus) (3.3V or 2.5V) ⁽²⁾ (Input) | | | | | | OPTL | OPTr | Option for selecting VDDQX ^(2,3) (Input) | | | | | | ZZL | ZZR | Sleep Mode Pin ⁽⁴⁾ (Input) | | | | | | l | M/S | Master or Slave Select (Input) ⁽⁵⁾ | | | | | | , | /DD | Power (2.5V) ⁽²⁾ (Input) | | | | | | , | I ss | Ground (0V) (Input) | | | | | | | TDI | Test Data Input | | | | | | 7 | TDO | Test Data Output | | | | | | - | TCK | Test Logic Clock (10MHz) (Input) | | | | | | 7 | MS | Test Mode Select (Input) | | | | | | Ī | RST | Reset (Initialize TAP Controller) (Input) | | | | | 5632 tbl 01 - 1. Address A₁₇x is a NC for IDT70T659. - VDD, OPTx, and VDDox must be set to appropriate operating levels prior to applying inputs on I/Ox. - 4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, NTTx, M/S and the sleep mode pins themselves (ZZx) are not affected during sleep mode. It is recommended that boundry scan not be operated during sleep mode. - BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH). ## Truth Table I—Read/Write and Enable Control^(1,2) | ŌĒ | SEM | Œ | CE ₁ | BE ₃ | BE ₂ | BE ₁ | BE₀ | R/W | ZZ | Byte 3 | Byte 2
I/O ₁₈₋₂₆ | Byte 1
I/O ₉₋₁₇ | Byte 0
I/O ₀₋₈ | MODE | |----|-----|---|-----------------|-------------|-------------|-----------------|-----|-----|----|--------------|--------------------------------|-------------------------------|------------------------------|-----------------------------| | X | Н | Н | X | X | X | X | X | Х | L | High-Z | High-Z | High-Z | High-Z | Deselected–Power Down | | Х | Н | Χ | L | Χ | Χ | Χ | Χ | Χ | L | High-Z | High-Z | High-Z | High-Z | Deselected–Power Down | | Х | Н | L | Н | Н | Н | Н | Н | Х | L | High-Z | High-Z | High-Z | High-Z | All Bytes Deselected | | Х | Н | L | Н | Н | Н | Н | L | L | L | High-Z | High-Z | High-Z | Din | Write to Byte 0 Only | | Х | Н | L | Н | Н | Н | L | Н | L | L | High-Z | High-Z | Din | High-Z | Write to Byte 1 Only | | Х | Н | L | Н | Н | L | Н | Н | L | L | High-Z | Din | High-Z | High-Z | Write to Byte 2 Only | | Х | Н | L | Н | L | Н | Н | Н | L | L | Din | High-Z | High-Z | High-Z | Write to Byte 3 Only | | Х | Н | L | Н | Н | Н | L | L | L | L | High-Z | High-Z | Din | Din | Write to Lower 2 Bytes Only | | Х | Н | L | Н | L | L | Н | Н | L | L | Din | Din | High-Z | High-Z | Write to Upper 2 bytes Only | | Х | Н | L | Н | L | L | L | L | L | L | Din | Din | DIN | Din | Write to All Bytes | | L | Н | L | Н | Н | Н | Н | L | Н | L | High-Z | High-Z | High-Z | Douт | Read Byte 0 Only | | L | Н | L | Н | Н | Н | L | Н | Н | L | High-Z | High-Z | Dout | High-Z | Read Byte 1 Only | | L | Н | L | Н | Н | L | Н | Н | Н | L | High-Z | Dout | High-Z | High-Z | Read Byte 2 Only | | L | Н | L | Н | L | Н | Н | Н | Н | L | Dout | High-Z | High-Z | High-Z | Read Byte 3 Only | | L | Н | L | Н | Н | Н | L | L | Н | L | High-Z | High-Z | Dout | Dout | Read Lower 2 Bytes Only | | L | Н | L | Н | L | L | Н | Н | Н | L | D оит | D оит | High-Z | High-Z | Read Upper 2 Bytes Only | | L | Н | L | Н | L | L | L | L | Н | L | D оит | D оит | Dout | Dout | Read All Bytes | | Н | Н | L | Н | L | L | L | L | Х | L | High-Z | High-Z | High-Z | High-Z | Outputs Disabled | | Х | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Н | High-Z | High-Z | High-Z | High-Z | High-Z Sleep Mode | NOTES: 5632 tbl 02 ## Truth Table II - Semaphore Read/Write Control(1) | | | | Inp | uts ⁽¹⁾ | | | | Out | puts | | |-------|-----|----|-------------|--------------------|-----------------|-----|-----|-------------------|------|--| | CE(2) | R/W | ŌĒ | BE ₃ | BE₂ | BE ₁ | BE₀ | SEM | I/O1-35 I/O0 | | Mode | | Н | Н | L | L | L | L | L | L | DATAout DATAout F | | Read Data in Semaphore Flag ⁽³⁾ | | Н | 1 | Χ | Χ | Χ | Χ | L | L | X DATAIN | | Write I/Oo into Semaphore Flag | | L | Χ | Χ | Χ | Χ | Χ | Χ | L | | | Not Allowed | NOTES 5632 tbl 03 - 1. There are eight semaphore flags written to I/Oo and read from all the I/Os (I/Oo-I/O35). These eight semaphore flags are addressed by Ao-A2. - 2. \overline{CE} = L occurs when \overline{CE}_0 = VIL and CE1 = VIH. \overline{CE} = H when \overline{CE}_0 = VIH and/or CE1 = VIL. - 3. Each byte is controlled by the respective $\overline{BE}n$. To read data $\overline{BE}n$ = VIL. ^{1. &}quot;H" = V_{IH} , "L" = V_{IL} , "X" = Don't Care. ^{2.} It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here. # Recommended Operating Temperature and Supply Voltage⁽¹⁾ | Grade | Ambient
Temperature | GND | Vdd | | | |------------|------------------------|-----|---------------------|--|--| | Commercial | 0°C to +70°C | 0V | 2.5V <u>+</u> 100mV | | | | Industrial | -40°C to +85°C | 0V | 2.5V <u>+</u> 100mV | | | #### NOTE: 5632 tbl 04 5632 tbl 08 1. This is the parameter TA. This is the "instant on" case temperature. # Capacitance⁽¹⁾ ### (TA = +25°C, F = 1.0MHz) PQFP ONLY | Symbol | Parameter | Conditions ⁽²⁾ | Max. | Unit | |---------------------|--------------------|---------------------------|------|------| | Cin | Input Capacitance | VIN = 3dV | 8 | pF | | Соит ⁽³⁾ | Output Capacitance | Vout = 3dV | 10.5 | pF | #### NOTES: These parameters are determined by device characterization, but are not production tested. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. 3. Cout also references Ci/o. ### Absolute Maximum Ratings⁽¹⁾ | Symbol | Rating | Commercial & Industrial | Unit | |---|---|-------------------------|------| | VTERM
(VDD) | VDD Terminal Voltage
with Respect to GND | -0.5 to 3.6 | V | | Vterm ⁽²⁾
(Vdd) | VDDQ Terminal Voltage with Respect to GND | -0.3 to VDDQ + 0.3 | V | | V _{TERM} (2)
(INPUTS and I/O's) | Input and I/O Terminal
Voltage with Respect to GND | -0.3 to VDDQ + 0.3 | V | | TBIAS ⁽³⁾ | Temperature
Under Bias | -55 to +125 | °C | | Tstg | Storage
Temperature | -65 to +150 | °C | | NuT | Junction Temperature | +150 | °C | | IOUT(For VDDQ = 3.3V) | DC Output Current | 50 | mA | | IOUT(For VDDQ = 2.5V) | DC Output Current | 40 | mA | #### MOTEC. - Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any Input or I/O pin cannot exceed VDDQ during power supply ramp up. - 3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected. # Recommended DC Operating Conditions with VDDQ at 2.5V | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|---|---------------------|------|-----------------------------|------| | VDD | Core Supply Voltage | 2.4 | 2.5 | 2.6 | V | | VDDQ | I/O Supply Voltage ⁽³⁾ | 2.4 | 2.5 | 2.6 | V | | Vss | Ground | 0 | 0 | 0 | V | | VIH | Input High Volltage
(Address, Control &
Data I/O Inputs) ⁽³⁾ | 1.7 | | VDDQ + 100mV ⁽²⁾ | ٧ | | VIH | Input High Voltage -
JTAG | 1.7 | | VDD + 100mV ⁽²⁾ | V | | Vн | Input High Voltage -
ZZ, OPT, M/S | VDD - 0.2V | | VDD + 100mV ⁽²⁾ | V | | VIL | Input Low Voltage | -0.3 ⁽¹⁾ | | 0.7 | V | | VIL | Input Low Voltage - ZZ, OPT, M/S | -0.3 ⁽¹⁾ | | 0.2 | V | - (22 Ib.) OF #### NOTES: - 1. VIL (min.) = -1.0V for pulse width less than trc/2 or 5ns, whichever is less. - 2. VIH (max.) = VDDQ + 1.0V for pulse width less than trc/2 or 5ns, whichever is - To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to Vss(0V), and VDDOX for that port must be
supplied as indicated above. # Recommended DC Operating Conditions with VDDQ at 3.3V | Symbol | Parameter | Min. | Тур. | Max. | Unit | |--------|---|---------------------|------|-----------------------------|------| | VDD | Core Supply Voltage | 2.4 | 2.5 | 2.6 | V | | VDDQ | I/O Supply Voltage ⁽³⁾ | 3.15 | 3.3 | 3.45 | V | | Vss | Ground | 0 | 0 | 0 | V | | VIH | Input High Voltage
(Address, Control
&Data I/O Inputs) ⁽³⁾ | 2.0 | | VDDQ + 150mV ⁽²⁾ | ٧ | | VIH | Input High Voltage -
JTAG | 1.7 | - | VDD + 100mV ⁽²⁾ | ٧ | | VIH | Input High Voltage -
ZZ, OPT, M/S | VDD - 0.2V | | VDD + 100mV ⁽²⁾ | ٧ | | VIL | Input Low Voltage | -0.3 ⁽¹⁾ | 1 | 0.8 | V | | VIL | Input Low Voltage -
ZZ, OPT, M/S | -0.3 ⁽¹⁾ | | 0.2 | ٧ | 5632 tbl 0 #### **NOTES** 5632 tbl 07 - 1. VIL (min.) = -1.0V for pulse width less than trc/2 or 5ns, whichever is less. - VIH (max.) = VDDQ + 1.0V for pulse width less than trc/2 or 5ns, whichever is less. - To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VDD (2.5V), and VDDDX for that port must be supplied as indicated above. 5632 tbl 09 # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV) | | | | 70T6! | 51/9S | | |------------|--|--|-------|-------------|------| | Symbol | Parameter | Test Conditions | Min. | Max. | Unit | | ILI | Input Leakage Current ⁽¹⁾ | $V_{DDQ} = Max., V_{IN} = 0V \text{ to } V_{DDQ}$ | _ | 10 | μΑ | | ILI | JTAG & ZZ Input Leakage Current ^(1,2) | V _{DD} = Max., V _{IN} = 0V to V _{DD} | _ | <u>+</u> 30 | μΑ | | ILO | Output Leakage Current ^(1,3) | $\overline{CE}_0 = VIH \text{ or } CE_1 = VIL, VOUT = 0V \text{ to } VDDQ$ | | 10 | μΑ | | Vol (3.3V) | Output Low Voltage ⁽¹⁾ | IOL = +4mA, $VDDQ = Min$. | _ | 0.4 | V | | Vон (3.3V) | Output High Voltage ⁽¹⁾ | IOH = -4mA, VDDQ = Min. | 2.4 | _ | V | | Vol (2.5V) | Output Low Voltage ⁽¹⁾ | IoL = +2mA, $VDDQ = Min$. | _ | 0.4 | V | | Vон (2.5V) | Output High Voltage ⁽¹⁾ | IOH = -2mA, VDDQ = Min. | 2.0 | _ | V | NOTES - 1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 6 for details. - 2. Applicable only for TMS, TDI and TRST inputs. - 3. Outputs tested in tri-state mode. # DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(3)}$ (VDD = 2.5V \pm 100mV) | | | | | | | 1/9S10
m'l
nd ⁽⁷⁾ | 70T651/9S12
Com'l
& Ind | | 70T651/9S15
Com'l Only | | | |---------------------|---|---|--------|---|---------------------|------------------------------------|-------------------------------|------|---------------------------|------|------| | Symbol | Parameter | Test Condition | Versio | n | Typ. ⁽⁴⁾ | Max. | Typ. ⁽⁴⁾ | Max. | Typ. ⁽⁴⁾ | Max. | Unit | | IDD | Dynamic Operating
Current (Both | CEL and CER= VIL, Outputs Disabled | COM'L | S | 300 | 405 | 300 | 355 | 225 | 305 | mA | | | Ports Active) | $f = fMAX^{(1)}$ | IND | S | 300 | 445 | 300 | 395 | _ | _ | | | ISB1 ⁽⁶⁾ | Standby Current | CEL = CER = VIH | COM'L | S | 90 | 120 | 75 | 105 | 60 | 85 | mA | | | (Both Ports - TTL
Level Inputs) | $f = fMAX^{(1)}$ | IND | S | 90 | 145 | 75 | 130 | _ | _ | | | ISB2 ⁽⁶⁾ | Standby Current
(One Port - TTL | CE"A" = VIL and CE"B" = VIH ⁽⁵⁾ | COM'L | S | 200 | 265 | 180 | 230 | 150 | 200 | mA | | | Level Inputs) | Active Port Outputs Disabled,
f = fMAX ⁽¹⁾ | IND | S | 200 | 290 | 180 | 255 | _ | _ | | | ISB3 | Full Standby Current
(Both Ports - CMOS | Both Ports $\overline{CE}L$ and $\overline{CE}R \ge VDDQ - 0.2V$, | COM'L | S | 2 | 10 | 2 | 10 | 2 | 10 | mA | | | Level Inputs) | VIN \geq VDDQ - 0.2V or VIN \leq 0.2V, $f = 0^{(2)}$ | IND | S | 2 | 20 | 2 | 20 | | _ | | | ISB4 ⁽⁶⁾ | Full Standby Current
(One Port - CMOS
Level Inputs) | $\overline{CE}^*A^* \le 0.2V \text{ and}$
$\overline{CE}^*B^* \ge VDDQ - 0.2V^{(5)}$ | COM'L | S | 200 | 265 | 180 | 230 | 150 | 200 | mA | | | Level inputs) | $\begin{array}{l} \text{VIN} \geq \text{VDDQ} - 0.2 \text{V or VIN} \leq 0.2 \text{V}, \\ \text{Active Port, Outputs Disabled,} \\ f = \text{fMAX}^{(1)} \end{array}$ | IND | S | 200 | 290 | 180 | 255 | | | | | IZZ | Sleep Mode Current
(Both Ports - TTL | ZZL = ZZR = VIH
$f = fMAX^{(1)}$ | COM'L | S | 2 | 10 | 2 | 10 | 2 | 10 | mA | | | Level Inputs) | I = IIVIAA. | IND | S | 2 | 20 | 2 | 20 | _ | _ | | 5632 tbl 10 - Atf = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/trc, using "ACTEST CONDITIONS" at input levels of GND to 3.3V - 2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby. - 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". - 4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDDDc(f=0) = 100mA (Typ). - 5. $\overline{CE}x = VIL \text{ means } \overline{CE}_{0x} = VIL \text{ and } CE_{1x} = VIH$ - $\overline{\text{CE}}$ x = VIH means $\overline{\text{CE}}$ 0x = VIH or CE1x = VIL - $\overline{\text{CE}} x \le 0.2 \text{V means } \overline{\text{CE}} 0x \le 0.2 \text{V and } \text{CE} 1x \ge \text{VDDQ} x 0.2 \text{V}$ - $\overline{\text{CE}} x \ge V_{DDQX} 0.2V \text{ means } \overline{\text{CE}}_{0X} \ge V_{DDQX} 0.2V \text{ or } \text{CE}_{1X} \le 0.2V.$ - "X" represents "L" for left port or "R" for right port. - $6. \quad Isb1, Isb2 \ and \ Isb4 \ will \ all \ reach full \ standby \ levels \ (Isb3) \ on \ the \ appropriate \ port(s) \ if \ ZZL \ and \ / or \ ZZR = VIH.$ - 7. 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. ### AC Test Conditions (VDDQ - 3.3V/2.5V) | 710 1001 00110110110 (11 | 984 0101721017 | |-------------------------------|---------------------------| | Input Pulse Levels | GND to 3.0V / GND to 2.4V | | Input Rise/Fall Times | 2ns Max. | | Input Timing Reference Levels | 1.5V/1.25V | | Output Reference Levels | 1.5V/1.25V | | Output Load | Figure 1 | 5632 tbl 11 Figure 1. AC Output Test load. Figure 3. Typical Output Derating (Lumped Capacitive Load). # AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾ | | | | 1/9S10
I Only | 70T651/9S12
Com'l
& Ind | | 70T651/9S15
Com'l Only | | | |------------|--|------|------------------|-------------------------------|------|---------------------------|------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | READ CYCLE | | | | | | | | | | trc | Read Cycle Time | 10 | | 12 | - | 15 | _ | ns | | taa | Address Access Time | | 10 | | 12 | _ | 15 | ns | | tace | Chip Enable Access Time ⁽³⁾ | | 10 | | 12 | _ | 15 | ns | | tabe | Byte Enable Access Time ⁽³⁾ | | 5 | | 6 | | 7 | ns | | taoe | Output Enable Access Time | | 5 | | 6 | _ | 7 | ns | | toн | Output Hold from Address Change | 3 | | 3 | _ | 3 | _ | ns | | tlz | Output Low-Z Time ^(1,2) | 0 | _ | 0 | - | 0 | _ | ns | | tHZ | Output High-Z Time ^(1,2) | 0 | 4 | 0 | 6 | 0 | 8 | ns | | tpu | Chip Enable to Power Up Time ⁽²⁾ | 0 | _ | 0 | - | 0 | _ | ns | | tpd | Chip Disable to Power Down Time ⁽²⁾ | _ | 8 | _ | 8 | _ | 12 | ns | | tsop | Semaphore Flag Update Pulse (OE or SEM) | | 4 | _ | 6 | _ | 8 | ns | | tsaa | Semaphore Address Access Time | 2 | 10 | 2 | 12 | 2 | 15 | ns | 5632tbl 12 # AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁴⁾ | | | | 1/9S10
I Only | Co | 1/9S12
m'l
Ind | | 1/9S15
I Only | | |-------------|--|------|------------------|------|----------------------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | WRITE CYCLE | | | | | | | | | | twc | Write Cycle Time | 10 | | 12 | | 15 | _ | ns | | tew | Chip Enable to End-of-Write ⁽³⁾ | 8 | | 10 | _ | 12 | _ | ns | | taw | Address Valid to End-of-Write | 8 | | 10 | | 12 | _ | ns | | tas | Address Set-up Time ⁽³⁾ | 0 | _ | 0 | _ | 0 | _ | ns | | twp | Write Pulse Width | 8 | _ | 10 | _ | 12 | _ | ns | | twr | Write Recovery Time | 0 | _ | 0 | _ | 0 | _ | ns | | tow | Data Valid to End-of-Write | 6 | | 8 | _ | 10 | | ns | | tон | Data Hold Time ⁽⁴⁾ | 0 | _ | 0 | _ | 0 | _ | ns | | twz | Write Enable to Output in High-Z ^(1,2) | | 4 | _ | 6 | _ | 8 | ns | | tow | Output Active from End-of-Write ^(1,2,4) | 0 | _ | 0 | _ | 0 | _ | ns | | tswrd | SEM Flag Write to Read Time | 5 | _ | 5 | _ | 5 | _ | ns | | tsps | SEM Flag Contention Window | 5 | | 5 | | 5 | _ | ns | NOTES: 5632 tbl 13 - $1. \quad \text{Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1)}.$ - 2. This parameter is guaranteed by device characterization, but is not production tested. - 3. To access RAM, $\overline{CE} = V_{IL}$ and $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$ and $\overline{SEM} = V_{IL}$. Either condition must be valid for the entire tew time. $\overline{CE} = V_{IL}$ when $\overline{CE}_0 = V_{IL}$ and $\overline{CE}_1 = V_{IH}$. - 4. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details. - 5. 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. ### Waveform of Read Cycles⁽⁵⁾ #### NOTES: - 1. Timing depends on which signal is asserted last, $\overline{\text{OE}}$, $\overline{\text{CE}}$ or $\overline{\text{BE}}\text{n}$. - 2. Timing depends on which signal is de-asserted first $\overline{\text{CE}}$, $\overline{\text{OE}}$ or
$\overline{\text{BE}}$ n. - 3. tepp delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data. - 4. Start of valid data depends on which timing becomes effective last taoe, tace, taa, tabe or tBDD. - 5. SEM = VIH. - 6. $\overline{CE} = L$ occurs when $\overline{CE}_0 = V_{IL}$ and $CE_1 = V_{IH}$. $\overline{CE} = H$ when $\overline{CE}_0 = V_{IH}$ and/or $CE_1 = V_{IL}$. # Timing of Power-Up Power-Down # Timing Waveform of Write Cycle No. 1, R/W Controlled Timing (1,5,8) # Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1,5,8) - 1. R/\overline{W} or \overline{CE} or $\overline{BE}n = VIH$ during all address transitions for Write Cycles 1 and 2. - 2. A write occurs during the overlap (tew or twp) of a $\overline{\text{CE}} = \text{V}_{\text{IL}}$, $\overline{\text{BEn}} = \text{V}_{\text{IL}}$, and a $R/\overline{W} = \text{V}_{\text{IL}}$ for memory array writing cycle. - 3. twn is measured from the earlier of \overline{CE} , \overline{BEn} or R/\overline{W} (or \overline{SEM} or R/\overline{W}) going HIGH to the end of write cycle. - 4. During this period, the I/O pins are in the output state and input signals must not be applied. - 5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state. - 6. Timing depends on which enable signal is asserted last, $\overline{\text{CE}}$ or R/\overline{W} . - 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 1). - 8. If $\overline{OE} = V_{IL}$ during $R\overline{W}$ controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{OE} = V_{IH}$ during an R/\overline{W} controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp. - 9. To access RAM, $\overline{CE} = VIL$ and $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ and $\overline{SEM} = VIL$. tew must be met for either condition. $\overline{CE} = VIL$ when $\overline{CE}_0 = VIL$ and $\overline{CE}_1 = VIH$. To access semaphore, $\overline{CE}_1 = VIH$ and $\overline{CE}_1 = VIH$. ### RapidWrite Mode Write Cycle Unlike other vendors' Asynchronous Random Access Memories, the IDT70T651/9 is capable of performing multiple back-to-back write operations without having to pulse the R/\overline{W} , \overline{CE} , or $\overline{BE}n$ signals high during address transitions. This RapidWrite Mode functionality allows the system designer to achieve optimum back-to-back write cycle performance without the difficult task of generating narrow reset pulses every cycle, simplifying system design and reducing time to market. During this new RapidWrite Mode, the end of the write cycle is now defined by the ending address transition, instead of the R/\overline{W} or \overline{CE} or \overline{BE} n transition to the inactive state. R/\overline{W} , \overline{CE} , and \overline{BE} n can be held active throughout the address transition between write cycles. Care must be taken to still meet the Write Cycle time (twc), the time in which the Address inputs must be stable. Input data setup and hold times (tow and toh) will now be referenced to the ending address transition. In this RapidWrite Mode the I/O will remain in the Input mode for the duration of the operations due to R/\overline{W} being held low. All standard Write Cycle specifications must be adhered to. However, tas and twn are only applicable when switching between read and write operations. Also, there are two additional conditions on the Address Inputs that must also be met to ensure correct address controlled writes. These specifications, the Allowable Address Skew (taas) and the Address Rise/Fall time (tarf), must be met to use the RapidWrite Mode. If these conditions are not met there is the potential for inadvertent write operations at random intermediate locations as the device transitions between the desired write addresses. ## Timing Waveform of Write Cycle No. 3, RapidWrite Mode Write Cycle (1,3) - 1. $\overline{OE} = V_{IL}$ for this timing waveform as shown. \overline{OE} may equal \underline{V}_{IH} with same write functionality; I/O would then always be in High-Z state. - 2. A write occurs during the overlap (tew or twp) of a $\overline{\text{CE}} = \text{V}_{\text{IL}}$, $\overline{\text{BE}} = \text{V}_{\text{IL}}$, and a $\overline{\text{R/W}} = \text{V}_{\text{IL}}$ for memory array writing cycle. The last transition LOW of $\overline{\text{CE}}$, $\overline{\text{BE}} = \text{DE}$, and $\overline{\text{R/W}}$ initiates the write sequence. The first transition HIGH of $\overline{\text{CE}}$, $\overline{\text{BE}} = \text{DE}$, and $\overline{\text{R/W}}$ terminates the write sequence. - 3. If the $\overline{\text{CE}}$ or $\overline{\text{SEM}} = \text{VIL}$ transition occurs simultaneously with or after the $\overline{\text{R/W}} = \text{VIL}$ transition, the outputs remain in the High-impedance state. - 4. The timing represented in this cycle can be repeated multiple times to execute sequential RapidWrite Mode writes. - 5. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 1). - 6. To access RAM, $\overline{CE} = VIL$ and $\overline{SEM} = VIH$. To access semaphore, $\overline{CE} = VIH$ and $\overline{SEM} = VIL$. tew must be met for either condition. $\overline{CE} = VIL$ when $\overline{CE}_0 = VIL$ and $\overline{CE}_1 = VIL$ when $\overline{CE}_1 = VIL$ and $\overline{CE}_2 = VIL$ when $\overline{CE}_3 = VIH$ and $\overline{CE}_3 = VIH$ and $\overline{CE}_3 = VIH$ when $\overline{CE}_3 = VIH$ and $\overline{CE}_3 = VIH$ and $\overline{CE}_3 = VIH$ when $\overline{CE}_3 = VIL$ whe # AC Electrical Characteristics over the Operating Temperature Range and Supply Voltage Range for RapidWrite Mode Write Cycle⁽¹⁾ | Symbol | Parameter | Min | Max | Unit | |--------|--|-----|-----|------| | taas | Allowable Address Skew for RapidWrite Mode | | 1 | ns | | tarf | Address Rise/Fall Time for RapidWrite Mode | 1.5 | _ | V/ns | 5632 tbl 14 #### NOTE: 1. Timing applies to all speed grades when utilizing the RapidWrite Mode Write Cycle. ## Timing Waveform of Address Inputs for RapidWrite Mode Write Cycle NOTE: 1. A₁₆ for IDT70T659. Timing Waveform of Semaphore Read after Write Timing, Either Side (1) #### NOTES: - CE₀ = V_IH and CE₁ = V_IL are required for the duration of both the write cycle and the read cycle waveforms shown above. Refer to Truth Table II for details and for appropriate BEn controls. - 2. "DATAOUT VALID" represents all I/O's (I/O₀ I/O₃₅) equal to the semaphore value. # Timing Waveform of Semaphore Write Contention (1,3,4) - 1. DOR = DOL = VIL, $\overline{CE}L = \overline{CE}R = VIH$. Refer to Truth Table II for appropriate \overline{BE} controls. - All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A". This parameter is measured from R/W "A" or SEM" A" going HIGH to R/W "B" or SEM" B" going HIGH. - 4. If tsps is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag. ### AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range | Combal | Proventor | 70T651/9S10
Com'l Only | | 70T651/9S12
Com'l
& Ind | | 70T651/9S15
Com'l Only | | l lait | |--------------------|--|---------------------------|------|-------------------------------|------|---------------------------|------|--------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | BUSY TIMING | (M/S=ViH) | | | | | | | | | tbaa | BUSY Access Time from Address Match | | 10 | | 12 | | 15 | ns | | tbda | BUSY Disable Time from Address Not Matched | | 10 | | 12 | | 15 | ns | | tbac | BUSY Access Time from Chip Enable Low | | 10 | | 12 | | 15 | ns | | tBDC | BUSY Disable Time from Chip Enable High | | 10 | | 12 | _ | 15 | ns | | taps | Arbitration Priority Set-up Time ⁽²⁾ | 2.5 | _ | 2.5 | | 2.5 | | ns | | tBDD | BUSY Disable to Valid Data ⁽³⁾ | | 10 | | 12 | _ | 15 | ns | | twн | Write Hold After BUSY ⁽⁵⁾ | 8 | | 10 | | 12 | | ns | | BUSY TIMING | $(M/\overline{S}=VIL)$ | | | | | | | | | twB | BUSY Input to Write ⁽⁴⁾ | 0 | _ | 0 | | 0 | | ns | | twн | Write Hold After BUSY ⁽⁵⁾ | | | 10 | | 12 | | ns | | PORT-TO-POR | T DELAY TIMING | | | | | | | | | twdd | Write Pulse to Data Delay ⁽¹⁾ | | 22 | | 25 | | 30 | ns | | todo | Write Data Valid to Read Data Delay ⁽¹⁾ | | 20 | | 22 | | 25 | ns | 5632 tbl 15b #### NOTES: - 1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)". - 2. To ensure that the earlier of the two ports wins. - 3. tBDD is a calculated parameter and is the greater of the Max. spec, twdd twp (actual), or tddd tdw (actual). - 4. To ensure that the write cycle is inhibited on port "B" during contention on port "A". - 5. To ensure that a write cycle is completed on port "B" after contention on port "A". - 6. 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. # AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,2,3) | | | | 1/9S10
I Only | 70T65
Co
& I | | 70T651/9S15
Com'l Only | | |------------|----------------------------|----|------------------|--------------------
------|---------------------------|------| | Symbol | Parameter | | Max. | Min. | Max. | Min. | Max. | | SLEEP MODE | TIMING (ZZx=ViH) | | | | | | | | tzzs | Sleep Mode Set Time | 10 | | 12 | _ | 15 | | | tzzr | Sleep Mode Reset Time | 10 | _ | 12 | _ | 15 | | | tzzpd | Sleep Mode Power Down Time | | _ | 12 | _ | 15 | _ | | tzzpu | Sleep Mode Power Up Time | | 0 | | 0 | _ | 0 | #### NOTES: 5632 tbl 15c - Timing is the same for both ports. - 2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx, M/S and the sleep mode pins themselves (ZZx) are not affected during sleep mode. It is recommended that boundary scan not be operated during sleep mode. - 3. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details. - 4. 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. - 5. This parameter is guaranteed by device characterization, but is not production tested. ## Timing Waveform of Write with Port-to-Port Read and $\overline{\textbf{BUSY}}$ (M/ $\overline{\textbf{S}}$ = VIH) $^{(2,4,5)}$ NOTES: - 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = V_{IL}$ (SLAVE). - 2. $\overline{CE}OL = \overline{CE}OR = VIL$; CE1L = CE1R = VIH. - 3. $\overline{OE} = V_{IL}$ for the reading port. - 4. If $M/\overline{S} = VIL$ (slave), \overline{BUSY} is an input. Then for this example $\overline{BUSY}^*A^* = VIH$ and \overline{BUSY}^*B^* input is shown above. - 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A". # Timing Waveform of Write with **BUSY** (M/**S** = VIL) - 1. twn must be met for both $\overline{\text{BUSY}}$ input (SLAVE) and output (MASTER). - 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH. - 3. two only applies to the slave mode. Waveform of **BUSY** Arbitration Controlled by **CE** Timing (M/**S** = VIH)⁽¹⁾ Waveform of **BUSY** Arbitration Cycle Controlled by Address Match Timing $(M/\overline{S} = VIH)^{(1,3,4)}$ #### NOTES - 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A". - 2. If taps is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted. - 3. $\overline{CE}x = V_{IL}$ when $\overline{CE}_{0x} = V_{IL}$ and $\overline{CE}_{1x} = V_{IH}$. $\overline{CE}x = V_{IH}$ when $\overline{CE}_{0x} = V_{IH}$ and/or $\overline{CE}_{1x} = V_{IL}$. - 4. $\overline{CE}_{0x} = \overline{OE}_{x} = \overline{BE}_{nx} = V_{IL}$. $CE_{1x} = V_{IH}$. ## AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,2) | | | | 1/9S10
'I Only | Co | 1/9S12
om'l
Ind | | 1/9S15
I Only | | |-----------|----------------------|------|-------------------|------|-----------------------|------|------------------|------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | INTERRUPT | FIMING | | | | | | | | | tas | Address Set-up Time | 0 | | 0 | | 0 | | ns | | twr | Write Recovery Time | 0 | | 0 | | 0 | | ns | | tins | Interrupt Set Time | | 10 | | 12 | - | 15 | ns | | tinr | Interrupt Reset Time | | 10 | | 12 | _ | 15 | ns | NOTES: 5632 thl 16a - 1. Timing is the same for both ports. - 2. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details. - 3. 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. ### Waveform of Interrupt Timing⁽¹⁾ #### NOTES: - 1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A". - 2. Refer to Interrupt Truth Table. - Refer to linear up that habie. CEx = ViL means CEox = ViL and CE1x = ViH. CEx = ViH means CEox = ViH and/or CE1x = ViL. Timing depends on which enable signal (CE or R/W) is asserted last. Timing depends on which enable signal (CE or R/W) is de-asserted first. # <u>Truth Table III</u> — Interrupt Flag^(1,4) | | Left Port | | | | | | | | | | |------|-------------|-------------|-------------------------|------------------|-------|-----|-------------|-------------------------|------------------|-----------------------| | R/₩L | <u>CE</u> ∟ | ŌĒ L | A17L-A0L ⁽⁵⁾ | ĪNT∟ | R/W̄R | CER | ŌĒ R | A17R-A0R ⁽⁵⁾ | ĪNT⊓ | Function | | L | L | Х | 3FFFF | Х | Х | Х | Х | Х | L ⁽²⁾ | Set Right INTR Flag | | Х | Х | Х | Х | Х | Х | L | L | 3FFFF | H ⁽³⁾ | Reset Right INTR Flag | | Х | Х | Х | Х | L ⁽³⁾ | L | L | Х | 3FFFE | Х | Set Left INTL Flag | | X | L | L | 3FFFE | H ⁽²⁾ | Х | Χ | Х | Х | Χ | Reset Left INTL Flag | 5632 thl 17 - 1. Assumes $\overline{BUSY}_L = \overline{BUSY}_R = VIH$. $\overline{CE}_{0x} = VIL$ and $CE_{1x} = VIH$. - 2. If $\overline{BUSY}L = VIL$, then no change. - 3. If $\overline{\text{BUSY}}_{R} = \text{VIL}$, then no change. - 4. $\overline{\text{INT}}_{\text{L}}$ and $\overline{\text{INT}}_{\text{R}}$ must be initialized at power-up. - 5. A_{17x} is a NC for IDT70T659. Therefore, Interrupt Addresses are 1FFFF and 1FFFE. # Truth Table IV — ### Address **BUSY** Arbitration | | In | puts | Out | puts | | |---------------------|---------------------|-------------------------------------|-----------------------|-----------------------|------------------------------| | CE _L (5) | CE _R (5) | Aol-A17L ⁽⁴⁾
Aor-A17R | BUSY _L (1) | BUSY _R (1) | Function | | Χ | Χ | NO MATCH | Н | Н | Normal | | Н | Χ | MATCH | Н | Н | Normal | | Х | Н | MATCH | Н | Н | Normal | | L | L | MATCH | (2) | (2) | Write Inhibit ⁽³⁾ | 5632 tbl 18 #### NOTES: - 1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70T651/9 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes. - 2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If taps is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously. - 3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin. - 4. A17 is a NC for IDT70T659. Address comparison will be for A0 A16. - 5. $\overline{CE}x = L$ means $\overline{CE}ox = V_{IL}$ and $CE_{1X} = V_{IH}$. $\overline{CE}x = H$ means $\overline{CE}ox = V_{IH}$ and/or $CE_{1X} = V_{IL}$. ### Truth Table V — Example of Semaphore Procurement Sequence (1,2,3) | Functions | Do - D35 Left | Do - D35 Right | Status | |------------------------------------|---------------|----------------|--| | No Action | 1 | 1 | Semaphore free | | Left Port Writes "0" to Semaphore | 0 | 1 | Left port has semaphore token | | Right Port Writes "0" to Semaphore | 0 | 1 | No change. Right side has no write access to semaphore | | Left Port Writes "1" to Semaphore | 1 | 0 | Right port obtains semaphore token | | Left Port Writes "0" to Semaphore | 1 | 0 | No change. Left port has no write access to semaphore | | Right Port Writes "1" to Semaphore | 0 | 1 | Left port obtains semaphore token | | Left Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | | Right Port Writes "0" to Semaphore | 1 | 0 | Right port has semaphore token | | Right Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | | Left Port Writes "0" to Semaphore | 0 | 1 | Left port has semaphore token | | Left Port Writes "1" to Semaphore | 1 | 1 | Semaphore free | NOTES: 5632 tbl 19 - 1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T651/9. - 2. There are eight semaphore flags written to via I/Oo and read from all I/O's (I/Oo-I/O35). These eight semaphores are addressed by Ao A2. - 3. $\overline{CE} = VIH$, $\overline{SEM} = VIL$ to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table. ## Functional Description The IDT70T651/9 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT70T651/9 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} 0 and CE_1 control the on-chip power down circuitry that permits the respective port to go into a standby mode when not selected $(\overline{CE} = HIGH)$. When a port is enabled, access to the entire memory array is permitted. ### Interrupts If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag ($\overline{INT}L$) is asserted when the right port writes to memory location 3FFFE (HEX), where a write is defined as $\overline{CE}R = R/\overline{W}R = VIL$ per the Truth Table. The left port clears the interrupt through access of address location 3FFFE when $\overline{CE}L = \overline{OE}L = VIL$, R/\overline{W} is a "don't care". Likewise, the right port interrupt flag ($\overline{INT}R$) is asserted when the left port writes to memory location 3FFFF (HEX) and to clear the interrupt flag ($\overline{INT}R$), the right port must read the memory location 3FFFF. The message (36 bits) at 3FFFE or 3FFFF (1FFFF or 1FFFE for IDT70T659) is user-defined since it is an address able SRAM location. If the interrupt function is not used, address locations 3FFFE and 3FFFF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table III for the interrupt operation. ### **Busy Logic** Busy Logic provides a hardware
indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The $\overline{\text{BUSY}}$ pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a $\overline{\text{BUSY}}$ indication, the write signal is gated internally to prevent the write from proceeding. The use of \overline{BUSY} logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of \overline{BUSY} logic is not desirable, the \overline{BUSY} logic can be disabled by placing the part in slave mode with the \overline{MS} pin. Once in slave mode the \overline{BUSY} pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the \overline{BUSY} pins HIGH. If desired, unintended write operations can be prevented to a port by tying the \overline{BUSY} pin for that port LOW. The BUSY outputs on the IDT70T651/9 RAM in master mode, are push-pull type outputs and do not require pull up resistors to operate. Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70T651/9 Dual-Port RAMs. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate. # Width Expansion with Busy Logic Master/Slave Arrays When expanding an IDT70T651/9 RAM array in width while using $\overline{\text{BUSY}}$ logic, one master part is used to decide which side of the RAMs array will receive a $\overline{\text{BUSY}}$ indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master use the $\overline{\text{BUSY}}$ signal as a write inhibit signal. Thus on the IDT70T651/9 RAM the $\overline{\text{BUSY}}$ pin is an output if the part is used as a master (M/\$\overline{\Sigma}\$ pin = VIL), and the \$\overline{\text{BUSY}}\$ pin is an input if the part used as a slave (M/\$\overline{\Sigma}\$ pin = VIL) as shown in Figure 3. If two or more master parts were used when expanding in width, a split decision could result with one master indicating $\overline{\text{BUSY}}$ on one side of the array and another master indicating $\overline{\text{BUSY}}$ on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word. The $\overline{\text{BUSY}}$ arbitration on a master is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a $\overline{\text{BUSY}}$ flag to be output from the master before the actual write pulse can be initiated with the R/\overline{W} signal. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave. ### Semaphores The IDT70T651/9 is an extremely fast Dual-Port 256/128K x 36 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource. The Dual-Port RAM features a fast access time, with both ports being completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from or written to at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by $\overline{\text{CE}}\text{o}$ and CE1, the Dual-Port RAMchip enables, and $\overline{\text{SEM}}$, the semaphore enable. The $\overline{\text{CE}}\text{o}$, CE1, and $\overline{\text{SEM}}$ pins control onchip power down circuitry that permits the respective port to go into standby mode when not selected. Systems which can best use the IDT70T651/9 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT70T651/9s hardware semaphores, which provide a lockout mechanism without requiring complex programming. Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT70T651/9 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture. An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems. ## How the Semaphore Flags Work The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that a shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control. The semaphore flags are active LOW. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch. The eight semaphore flags reside within the IDT70T651/9 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a low input on the $\overline{\text{SEM}}$ pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, $\overline{\text{CEo}}$, CE1,R/ $\overline{\text{W}}$ and $\overline{\text{BEn}}$) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins Ao – A2. When accessing the semaphores, none of the other address pins has any effect. When writing to a semaphore, only data pin Do is used. If a low level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table V). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side. When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros for a semaphore read, the $\overline{\text{SEM}}$, $\overline{\text{BEn}}$, and $\overline{\text{OE}}$ signals need to be active. (Please refer to Truth Table II). Furthermore, the read value is latched into one side's output register when that side's semaphore select ($\overline{\text{SEM}}$, $\overline{\text{BEn}}$) and output enable ($\overline{\text{OE}}$) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Table V). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side
attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles. It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. If the opposite side semaphore flag will flip over to the other side as soon as a one is written into the first request latch. The opposite side flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch. The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other. One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen. Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed. Timing Waveform of Sleep Mode^(1,2) NOTES: 1. CE1 = V_{IH} . 2. All timing is same for Left and Right ports. ### Sleep Mode The IDT70T651/9 is equipped with an optional sleep or low power mode on both ports. The sleep mode pin on both ports is active high. During normal operation, the ZZ pin is pulled low. When ZZ is pulled high, the port will enter sleep mode where it will meet lowest possible power conditions. The sleep mode timing diagram shows the modes of operation: Normal Operation, No Read/Write Allowed and Sleep Mode. For a period of time prior to sleep mode and after recovering from sleep mode (tzzs and tzzr), new reads or writes are not allowed. If a write or read operation occurs during these periods, the memory array may be corrupted. Validity of data out from the RAM cannot be guaranteed immediately after ZZ is asserted (prior to being in sleep). During sleep mode the RAM automatically deselects itself. The RAM disconnects its internal buffer. All outputs will remain in high-Z state while in sleep mode. All inputs are allowed to toggle. The RAM will not be selected and will not perform any reads or writes. ### JTAG Timing Specifications ### NOTES: - 1. Device inputs = All device inputs except TDI, TMS, TCK and $\overline{\text{TRST}}$. - 2. Device outputs = All device outputs except TDO. # JTAG AC Electrical Characteristics^(1,2,3,4,5) | | | | 70T651/9 | | |--------|-------------------------|------|------------------|-------| | Symbol | Parameter | Min. | Мах. | Units | | ticyc | JTAG Clock Input Period | 100 | _ | ns | | исн | JTAG Clock HIGH | 40 | _ | ns | | tucı | JTAG Clock Low | 40 | | ns | | tur | JTAG Clock Rise Time | | 3 ⁽¹⁾ | ns | | ₩ | JTAG Clock Fall Time | | 3 ⁽¹⁾ | ns | | URST | JTAG Reset | 50 | | ns | | tursr | JTAG Reset Recovery | 50 | | ns | | tico | JTAG Data Output | | 25 | ns | | tido | JTAG Data Output Hold | 0 | | ns | | tus | JTAG Setup | 15 | _ | ns | | υн | JTAG Hold | 15 | | ns | #### NOTES: - 1. Guaranteed by design. - 2. 30pF loading on external output signals. - 3. Refer to AC Electrical Test Conditions stated earlier in this document. - JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet. - 5. JTAG cannot be tested in sleep mode. 5632 tbl 20 ### Identification Register Definitions | Instruction Field | Value | Description | |-----------------------------------|----------------------|--| | Revision Number (31:28) | 0x0 | Reserved for version number | | IDT Device ID (27:12) | 0x338 ⁽¹⁾ | Defines IDT part number 70T651 | | IDT JEDEC ID (11:1) | 0x33 | Allows unique identification of device vendor as IDT | | ID Register Indicator Bit (Bit 0) | 1 | Indicates the presence of an ID register | NOTE: 1. Device ID for IDT70T659 is 0x339. ### Scan Register Sizes | Register Name | Bit Size | |----------------------|----------| | Instruction (IR) | 4 | | Bypass (BYR) | 1 | | Identification (IDR) | 32 | | Boundary Scan (BSR) | Note (3) | 5632 tbl 22 # System Interface Parameters | Instruction | Code | Description | |----------------|-----------------|---| | EXTEST | 0000 | Forces contents of the boundary scan cells onto the device outputs ⁽¹⁾ . Places the boundary scan register (BSR) between TDI and TDO. | | BYPASS | 1111 | Places the bypass register (BYR) between TDI and TDO. | | IDCODE | 0010 | Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO. | | HIGHZ | 0100 | Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state. | | CLAMP | 0011 | Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO. | | SAMPLE/PRELOAD | 0001 | Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs (2) and outputs (1) to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI. | | RESERVED | All Other Codes | Several combinations are reserved. Do not use codes other than those identified above. | NOTES: 5632 tbl 23 5632 tbl 21 - 1. Device outputs = All device outputs except TDO. - 2. Device inputs = All device inputs except TDI, TMS, TCK and $\overline{\text{TRST}}$. - 3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative. ### Ordering Information #### NOTES: - 10ns Industrial speed grade is available in BF-208 and BC-256 packages only. - Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice-PDN#SP-17-02 - 3. Contact your local sales office for additional industrial temprange speeds, packages and powers. ## **Datasheet Document History** | 04/25/03:
10/01/03: | Page 9
Page 9
Page 9, 11, 15,
17 & 26 | Initial Datasheet Added 8ns speed DC power numbers to DC Electrical Characteristics Table Updated DC power numbers for 10, 12 & 15ns speeds in the DC Electrical Characteristics Table Added footnote that indicates that 8ns speed is available in BF-208 and BC-256 packages only | |------------------------|--|---| | | Page 10 | Added Capacitance Derating Drawing | | | • | Added 8ns AC timing numbers to the AC Electrical Characteristics Tables | | | Page 11 | Added tsoe and tlzob to the AC Read Cycle Electrical Characteristics Table | | | Page 12 | Added tlzob to the Waveform of Read Cycles Drawing | | | Page 14 | Added tsoE to Timing Waveform of Semaphore Read after Write Timing, Either Side Drawing | | | Page 1 & 25 | Added 8ns speed grade and 10ns I-temp to features and to ordering information | | | Page 1, 14 & 15 | Added RapidWrite Mode Write Cycle text and waveforms | | 10/20/03: | Page 15 | Corrected tarf to 1.5V/ns Min. | | 04/21/04: | | Removed Preliminary status from entire datasheet | | 01/05/06: | Page 1 | Added green availability to features | | | Page 27 | Added green indicator to ordering information | ### Datasheet Document History (con't) Corrected a typo in the DC Chars table 07/25/08: Page 9 01/19/09: Removed "IDT" from orderable part number Page 27 06/22/15: Page 2, 3 & 4 Removed the date from all of the pin configurations BC-256, DR-208 & BF-208 Added T&R indicator and updated footnotes to Ordering Information Page 27 07/20/15: Page 1 Updated the commercial speed offering by removing the 8ns speed Page 9 Removed commercial 8ns speed from DC Elec Chars table and edited footnotes to reflect this change Page 11 & 17 Removed commercial 8ns speed from all AC Elec Chars tables and edited footnotes to reflect this change Page 27 Removed commercial 8ns speed offering from the Ordering Information Product Discontinuation Notice - PDN# SP-17-02 11/28/17: Last
time buy expires June 15, 2018 CORPORATE HEADQUARTERS for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: 408-284-2794 DualPortHelp@idt.com # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ## IDT (Integrated Device Technology): 70T651S12BCI8 70T659S12BCI8 70T659S12BFI8 70T651S12BFI8 70T651S12BFGI 70T659S12BC 70T659S12DR 70T659S10BC 70T659S10DR 70T659S10BFI 70T659S10BCI 70T659S15DR 70T659S15BC 70T651S15BC8 70T651S15BF8 70T651S10BF8 70T651S10BC8 70T651S10BCI8 70T659S10BCI8 70T651S10BFI8 70T659S10BFI8 70T651S10BF 70T651S10BC 70T651S10DR 70T651S12DR 70T651S12BC 70T651S12BF 70T659S15BC8 70T651S15BC 70T651S15BF 70T651S15DR 70T659S12BFI 70T659S12BCI 70T651S12BFGI8 70T651S12BCI 70T651S12BFI 70T651S12DRI 70T651S10BFGI8 70T659S12BC8 70T651S10BCI 70T651S10BFI 70T651S12BC8 70T651S12BF8 70T651S10BFGI 70T659S12BF8 70T659S15BF 70T659S10BF 70T659S12BF 70T659S15BF8 70T659S12DRI 70T659S10BF8 70T659S12BF8 70T651S10BFG8 70T651S10BFG Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А