MIC3203/MIC3203-1 # High-Brightness LED Driver Controller with High-Side Current Sense ### **General Description** The MIC3203 is a hysteretic, step-down, constant-current, High-Brightness LED (HB LED) driver. It provides an ideal solution for interior/exterior lighting, architectural and ambient lighting, LED bulbs, and other general illumination applications. The MIC3203 is well suited for lighting applications requiring a wide-input voltage range. The hysteretic control gives good supply rejection and fast response during load transients and PWM dimming. The high-side current sensing and on-chip current-sense amplifier delivers LED current with $\pm 5\%$ accuracy. An external high-side current-sense resistor is used to set the output current. The MIC3203 offers a dedicated PWM input (DIM) which enables a wide range of pulsed dimming. A high-frequency switching operation up to 1.5MHz allows the use of smaller external components minimizing space and cost. The MIC3203 offers frequency dither feature for EMI control. The MIC3203 operates over a junction temperature from -40°C to +125°C and is available in an 8-pin SOIC package. A dither disabled version MIC3203-1 is also available in the same package as the MIC3203. Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com. #### **Features** - 4.5V to 42V input voltage range - High efficiency (>90%) - ±5% LED current accuracy - MIC3203: Dither enabled for low EMI - MIC3203-1: Dither disabled - High-side current sense - · Dedicated dimming control input - Hysteretic control (no compensation!) - Up to 1.5MHz switching frequency - · Adjustable constant LED current - Over-temperature protection - -40°C to +125°C junction temperature range ### **Applications** - · Architectural, industrial, and ambient lighting - LED bulbs - · Indicators and emergency lighting - Street lighting - Channel letters - 12V lighting systems (MR-16 bulbs, under-cabinet lighting, garden/pathway lighting) ## **Typical Application** MIC3203 Step-down LED Driver Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com March 2010 M9999-032910-A # Ordering Information (1) | Part Number | Marking | Junction Temperature Range | Package | PWM | |-------------|-------------|----------------------------|------------|------------| | MIC3203YM | MIC3203YM | −40°C to +125°C | 8-Pin SOIC | Dither | | MIC3203-1YM | MIC3203-1YM | −40°C to +125°C | 8-Pin SOIC | Non-Dither | #### Note: 1. YM^{\otimes} is a GREEN RoHS compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free. ## **Pin Configuration** 8-Pin SOIC MIC3203/MIC3203-1 ## **Pin Description** | Pin Number | Pin Name | Pin Function | |------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | VCC | Voltage Regulator Output. The V_{CC} pin supplies the power to the internal circuitry. The VCC in the output of a linear regulator which is powered from VIN. A 1µF ceramic capacitor is recommended for bypassing and should be placed as close as possible to the VCC and AGND pins. Do not connect to an external load. | | 2 | CS | Current-Sense Input. The CS pin provides the high-side current sense to set the LED current with an external sense resistor. | | 3 | VIN | Input Power Supply. VIN is the input supply pin to the internal circuitry and the positive input to the current sense comparator. Due to the high frequency switching noise, a 10µF ceramic capacitor is recommended to be placed as close as possible to VIN and the power ground (PGND) pin for bypassing. Please refer to layout recommendations. | | 4 | AGND | Ground pin for analog circuitry. Internal signal ground for all low power sections. | | 5 | EN | Enable Input. The EN pin provides a logic level control of the output and the voltage has to be 2.0V or higher to enable the current regulator. The output stage is gated by the DIM pin. When the EN pin is pulled low, the regulator goes to off state and the supply current of the device is greatly reduced (below 1µA). In the off state, during this period the output drive is placed in a "tri-stated" condition, where MOSFET is in an "off" or non-conducting state. Do not drive the EN pin above the supply voltage. | | 6 | DIM | PWM Dimming Input. The DIM pin provides the control for brightness of the LED. A PWM input can be used to control the brightness of LED. DIM high enables the output and its voltage has to be at least 2.0V or higher. DIM low disables the output, regardless of EN "high" state. | | 7 | PGND | Power Ground Pin for Power FET. Power Ground (PGND) is for the high-current switching with hysteretic mode. The current loop for the power ground should be as small as possible and separate from the Analog ground (AGND) loop. Refer to the layout considerations for more details. | | 8 | DRV | Gate-Drive Output. Connect to the gate of an external N-channel MOSFET. The drain of the external MOSFET connects directly to the inductor and provides the switching current necessary to operate in hysteretic mode. Due to the high frequency switching and high voltage associated with this pin, the switch node should be routed away from sensitive nodes. | # Absolute Maximum Ratings (1) | V _{IN} to PGND | 0.3V to +45V | |-------------------------------------|------------------------------| | V _{CC} to PGND | 0.3V to +6.0V | | CS to PGND | $-0.3V$ to $(V_{IN} + 0.3V)$ | | EN to AGND | $0.3V$ to $(V_{IN} + 0.3V)$ | | DIM to AGND | $-0.3V$ to $(V_{IN} + 0.3V)$ | | DRV to PGND | $-0.3V$ to $(V_{CC} + 0.3V)$ | | PGND to AGND | 0.3V to + 0.3V | | Junction Temperature | 150°C | | Storage Temperature Range | 60°C to +150°C | | Lead Temperature (Soldering, 10sec) |)260°C | | ESD Ratings (3) | | | HBM | 1.5kV | | MM | 200V | # Operating Ratings (2) | Supply voltage (V _{IN}) | 4.5V to 42V | |----------------------------------------|-----------------------| | Enable Voltage (V _{EN)} | 0V to V _{IN} | | Dimming Voltage (V _{DIM}) | | | Junction Temperature (T _J) | | | Junction Thermal Resistance | | | SOIC (θ _{JA}) | 98.9°C/W | | SOIC (θ _{IC}) | | # Electrical Characteristics (4) $V_{\text{IN}} = V_{\text{EN}} = V_{\text{DIM}} = 12 \text{V}; \ C_{\text{VCC}} = 1.0 \mu \text{F}; \ T_{\text{J}} = 25 ^{\circ}\text{C}, \ \text{bold} \ \text{values indicate} \ -40 ^{\circ}\text{C} \leq T_{\text{J}} \leq +125 ^{\circ}\text{C}; \ \text{unless noted}.$ | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---------------------|-----------------------------------------------------------|-----------------------------------------------|----------|------|-------|-------| | Input Sup | pply | | <u>.</u> | | | | | V _{IN} | Input Voltage Range (V _{IN}) | | 4.5 | | 42 | V | | Is | Supply Current | DRV = open | | 1 | 3 | mA | | I _{SD} | Shutdown Current | V _{EN} = 0V | | | 1 | μΑ | | UVLO | V _{IN} UVLO Threshold | V _{IN} rinsing | 3.2 | 4 | 4.5 | V | | UVLO _{HYS} | V _{IN} UVLO Hysteresis | | | 500 | | mV | | VCC Sup | ply | | | | | | | VCC | V _{CC} Output Voltage | V _{IN} = 12V, I _{CC} = 10mA | 4.5 | 5 | 5.5 | V | | Current L | imit | • | | | | | | V | N/ | V V | 201.4 | 212 | 222.6 | mV | | $V_{CS(MAX)}$ | Current Sense Upper Threshold | $V_{CS(MAX)} = V_{IN} - V_{CS}$ | 199 | 212 | 225 | mV | | V | Conce Voltage Threshold Law | V V V | 168 | 177 | 186 | mV | | $V_{CS(MIN)}$ | Sense Voltage Threshold Low | $V_{CS(MIN)} = V_{IN} - V_{CS}$ | 165 | 177 | 189 | mV | | V _{CSHYS} | V _{CS} Hysteresis | | | 35 | | mV | | | Current Sance Deanence Time | V _{CS} Rising | | 50 | | ns | | | Current Sense Response Time | V _{CS} Falling | | 70 | | ns | | | CS Input Current | $V_{IN} - V_{CS} = 220 \text{mV}$ | | 0.5 | 10 | μΑ | | Frequenc | у | • | • | | • | • | | F _{MAX} | Switching Frequency | | | | 1.5 | MHz | | Dithering | (MIC3203) | | | | | | | V_{DITH} | V _{CS} Hysteresis Dithering Range ⁽⁵⁾ | | | ±6 | | mV | | F _{DITHER} | Frequency Dithering Range ⁽⁵⁾ | % of Switching Frequency | | ±12 | | % | # **Electrical Characteristics** (4) (Continued) $V_{\text{IN}} = V_{\text{EN}} = V_{\text{DIM}} = 12V; \ C_{\text{VCC}} = 1.0 \mu \text{F}; \ T_{\text{J}} = 25 ^{\circ}\text{C}, \ \text{bold} \ \text{values indicate} \ -40 ^{\circ}\text{C} \leq T_{\text{J}} \leq +125 ^{\circ}\text{C}; \ \text{unless noted}.$ | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---------------------|--------------------------------------|-------------------------------------------|------|------|------|-------| | Enable Ir | nput | | | | | | | EN _{HI} | EN Logic Level High | | 2.0 | | | V | | EN _{LO} | EN Logic Level Low | | | | 0.4 | V | | | EN Bias Current | V _{EN} = 12V | | | 60 | μA | | | EN Blas Current | V _{EN} = 0V | | | 1 | μA | | | Start-Up Time | From EN Pin going high to DRV going high | | 30 | | μs | | Dimming | Input | | | | | | | DIM _{HI} | DIM Logic Level High | | 2.0 | | | V | | DIM _{LO} | DIM Logic Level Low | | | | 0.4 | V | | | DIM Bias Current | | | 20 | 50 | | | | Divi Bias Current | V _{DIM} = 0V | | | 1 | μA | | | DIM Delay Time | From DIM Pin going high to DRV going high | | 450 | | ns | | F _{DIM} | Maximum Dimming Frequency | | | | 20 | kHz | | External | FET Driver | | | | | - | | | DRV On-Resistance | Pull Up, I _{SOURCE} = 10mA | | 2 | | Ω | | | DRV On-Resistance | Pull Down, I _{SINK} = -10mA | | 1.5 | | 12 | | | DRV Transition Time | Rise Time, C _{LOAD} = 1000pF | 13 | | | 20 | | | DRV Hanshort Time | Fall Time, C _{LOAD} = 1000pF | | 7 | | ns | | Thermal | Protection | | | | | | | T _{LIM} | Over-Temperature Shutdown | T _J Rising | | 160 | | - °C | | T _{LIMHYS} | Over-Temperature Shutdown Hysteresis | | | 20 | | | #### Notes: - 1. Exceeding the absolute maximum rating may damage the device. - 2. The device is not guaranteed to function outside its operating rating. - 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. - 4. Specification for packaged product only. - 5. Guaranteed by design. ## **Typical Characteristics** ## **Typical Characteristics (Continued)** 15 20 25 INPUT VOLTAGE (V) 30 0.0 5 10 ## **Typical Characteristics (Continued)** ## **Functional Characteristics** # **Functional Characteristics (Continued)** Time (2.0ms/div) ### **Functional Diagram** Figure 1. MIC3203/MIC3203-1 Block Diagram ## **Functional Description** cycle repeats. regulates the LED current over wide input voltage range. The device operates from a 4.5V to 42V input MOSFET voltage range and provides up to 0.5A source and 1A sink drive capability. When the input voltage reaches 4.5V, the internal 5V VCC is regulated and the DRV pin is pulled high to turn on an external MOSFET if EN pin and DIM pin are high. The inductor current builds up linearly. When the CS pin voltage hits the $V_{\text{CS}(\text{MAX})}$ with respect to V_{IN} , the MOSFET turns off and the Schottky diode takes over and returns the current to V_{IN} . Then the current through inductor and LEDs starts decreasing. When CS pin hits $V_{\text{CS}(\text{MIN})}$, the MOSFET turns on and the The MIC3203 is a hysteretic step-down driver which The frequency of operation depends upon input voltage, total LEDs voltage drop, LED current and temperature. The calculation for frequency of operation is given in application section. The MIC3203 has an on board 5V regulator which is for internal use only. Connect a $1\mu F$ capacitor on VCC pin to analog ground. The MIC3203 has an EN pin which gives the flexibility to enable and disable the output with logic high and low signals. The MIC3203 also has a DIM pin which can turn on and off the LEDs if EN is in HIGH state. This DIM pin controls the brightness of the LED by varying the duty cycle of DIM pin from 1% to 99%. ### **Application Information** The internal block diagram of the MIC3203 is shown in Figure 1. The MIC3203 is composed of a current-sense comparator, voltage and current reference, 5V regulator and MOSFET driver. Hysteretic mode control – also called bang-bang control – is a topology that does not employ an error amplifier, using an error comparator instead. The inductor current is controlled within a hysteretic window. If the inductor current is too small, the power MOSFET is turned on; if the inductor current is large enough, the power MOSFET is turned off. It is a simple control scheme with no oscillator and no loop compensation. Since the control scheme does not need loop compensation, it makes a design easy, and avoids problems of instability. Transient response to load and line variation is very fast and only depends on propagation delay. This makes the control scheme very popular for certain applications. #### LED Current and Rcs The main feature in MIC3203 is to control the LED current accurately within $\pm 5\%$ of set current. Choosing a high-side R_{CS} resistor helps for setting constant LED current irrespective of wide input voltage range. The following equation gives the R_{CS} value: $$R_{CS} = \frac{1}{2}x(\frac{V_{CS(MAX)} + V_{CS(MIN)}}{I_{LED}})$$ Table 1. Rcs for LED Current | R _{CS} (Ω) | I _{LED} (A) | I ² R (W) | Size (SMD) | |---------------------|----------------------|----------------------|------------| | 1.33 | 0.15 | 0.03 | 0603 | | 0.56 | 0.35 | 0.07 | 0805 | | 0.4 | 0.5 | 0.1 | 0805 | | 0.28 | 0.7 | 0.137 | 0805 | | 0.2 | 1.0 | 0.2 | 1206 | | 0.13 | 1.5 | 0.3 | 1206 | | 0.1 | 2.0 | 0.4 | 2010 | | 0.08 | 2.5 | 0.5 | 2010 | | 0.068 | 3.0 | 0.6 | 2010 | For $V_{\text{CS}(\text{MAX})}$ and $V_{\text{CS}(\text{MIN}),}$ refer to the Electrical Characteristic table. #### **Frequency of Operation** To calculate the frequency spread across input supply: $$V_{L} = L \frac{\Delta I_{L}}{\Delta t}$$ L is the inductance, ΔI_L is fixed (the value of the hysteresis): $$\Delta I_{L} = \frac{V_{CS(MAX)} - V_{CS(MIN)}}{R_{CS}}$$ V_L is the voltage across inductor L which varies by supply. For current rising (MOSFET is ON): $$t_r = L \frac{\Delta I_L}{V_{L RISE}}$$ where: $$V_{L RISE} = V_{IN} - I_{LED} \times R_{CS} - V_{LED}$$ For current falling (MOSFET is OFF): $$t_{f} = L \frac{\Delta I_{L}}{V_{L_FALL}}$$ where: $$\begin{split} &V_{L_FALL} = V_D + I_{LED} \times R_{CS} + V_{LED} \\ &T = t_r + t_f \;,\; F_{SW} = \frac{1}{T} \\ &F_{SW} = \frac{(V_D + I_{LED} \times R_{CS} + V_{LED}) \times (V_{IN} - I_{LED} \times R_{CS} - V_{LED})}{L \times \Delta I_L \times (V_D + V_{IN})} \end{split}$$ #### where: - V_D is Schottky diode forward drop - V_{LED} is total LEDs voltage drop - V_{IN} is input voltage - I_{LED} is average LED current #### Inductor According to the above equation, choose the inductor to make the operating frequency no higher than 1.5MHz. The following Tables give a reference inductor value and corresponding frequency for a given LED current. For space-sensitive applications, smaller inductor with higher switching frequency could be used but efficiency of the regular will be reduced. Table 2. Inductor for VIN = 12V, 1 LED | | Table 2: Inductor for Vitt 12V, 1 22B | | | | | |---------|---------------------------------------|--------|-----------------------|--|--| | RCS (Ω) | I _{LED} (A) | L (µH) | F _{SW} (kHz) | | | | 1.33 | 0.15 | 220 | 474 | | | | 0.56 | 0.35 | 100 | 439 | | | | 0.4 | 0.5 | 68 | 461 | | | | 0.28 | 0.7 | 47 | 467 | | | | 0.2 | 1.0 | 33 | 475 | | | | 0.13 | 1.5 | 22 | 463 | | | | 0.1 | 2.0 | 15 | 522 | | | | 0.08 | 2.5 | 12 | 522 | | | | 0.068 | 3.0 | 10 | 533 | | | Table 3. Inductor for VIN = 24V, 4 LEDs | RCS (Ω) | I _{LED} (A) | L (µH) | F _{SW} (kHz) | |---------|----------------------|--------|-----------------------| | 1.33 | 0.15 | 470 | 474 | | 0.56 | 0.35 | 220 | 426 | | 0.4 | 0.5 | 150 | 447 | | 0.28 | 0.7 | 100 | 470 | | 0.2 | 1.0 | 68 | 493 | | 0.13 | 1.5 | 47 | 463 | | 0.1 | 2.0 | 33 | 507 | | 0.08 | 2.5 | 27 | 496 | | 0.068 | 3.0 | 22 | 517 | Table 4. Inductor for VIN = 36V, 8 LEDs | RCS (Ω) | I _{LED} (A) | L (µH) | F _{SW} (kHz) | |---------|----------------------|--------|-----------------------| | 1.33 | 0.15 | 470 | 495 | | 0.56 | 0.35 | 220 | 446 | | 0.4 | 0.5 | 150 | 467 | | 0.28 | 0.7 | 100 | 490 | | 0.2 | 1.0 | 68 | 515 | | 0.13 | 1.5 | 47 | 485 | | 0.1 | 2.0 | 33 | 530 | | 0.08 | 2.5 | 27 | 519 | | 0.068 | 3.0 | 22 | 541 | Given an inductor value, the size of the inductor can be determined by its RMS and peak current rating. $$\frac{\Delta I_L}{I_L} = 2 \times \frac{V_{CS(MAX)} - V_{CS(MIN)}}{V_{CS(MAX)} + V_{CS(MIN)}} = 0.18$$ $$I_{L(\mathsf{RMS})} = \sqrt{I_L^2 + \frac{1}{12} \Delta I_L^2} \approx I_L$$ $$I_{L(PK)} = I_L + \frac{1}{2}\Delta I_L = 1.09I_L$$ where: I_I is inductor average current. Select an inductor with saturation current rating at least 30% higher than the peak current. #### **MOSFET** MOSFET selection depends upon the maximum input voltage, output LED current and switching frequency. The selected MOSFET should have 30% margin on maximum voltage rating for high reliability requirements. The MOSFET channel resistance R_{DSON} is selected such that it helps to get the required efficiency at the required LED currents as well as meets the cost requirement. Logic level MOSFETs are preferred as the drive voltage is limited to 5V. The MOSFET power loss has to be calculated for proper operation. The power loss consists of conduction loss and switching loss. The conduction loss can be found by: $$\begin{aligned} &P_{LOSS(CON)} = I_{RMS(FET)}^{2} \times R_{DSON} \\ &I_{RMS(FET)} = I_{LED} \times \sqrt{D} \\ &D = \frac{V_{TOTAL_LED}}{V_{IN}} \end{aligned}$$ The switching loss occurs during the MOSFET turn-on and turn-off transition and can be found by: $$\begin{split} P_{LOSS(TRAN)} &= \frac{V_{IN} \times I_{LED} \times F_{SW}}{I_{DRV}} \times (Q_{gs2} + Q_{gd}) \\ I_{DRV} &= \frac{V_{DRV}}{R_{GATE}} \end{split}$$ where: R_{GATE} is total MOSFET resistance, Q_{gs2} and Q_{gd} can be found in a MOSFET manufacturer datasheet. The total power loss is: $$P_{LOSS(TOT)} = P_{LOSS(CON)} + P_{LOSS(TRAN)}$$ The MOSFET junction temperature is given by: $$T_J = P_{LOSS(TOT)} \times R_{\theta JA} + T_A$$ The T_J must not exceed maximum junction temperature under any conditions. #### Freewheeling Diode The free wheeling diode should have the reverse voltage rating to accommodate the maximum input voltage. The forward voltage drop should be small to get the lowest conduction dissipation for high efficiency. The forward current rating has to be at least equal to LED current. A Schottky diode is recommended for highest efficiency. #### **Input Capacitor** The ceramic input capacitor is selected by voltage rating and ripple current rating. To determine the input current ripple rating, the RMS value of the input capacitor can be found by: $$I_{CIN(RMS)} = I_{IFD} \times \sqrt{D \times (1-D)}$$ The power loss in the input capacitor is: $$P_{LOSS(CIN)} = I_{CIN(RMS)}^2 \times C_{IN_{ESR}}$$ The input capacitor current rating can be considered as $I_{1,ED}/2$ under the worst condition D = 50%. #### **LED Ripple Current** The LED current is the same as inductor current. If LED ripple current needs to be reduced then place a $4.7\mu\text{F}/50\text{V}$ ceramic capacitor across LED. #### **Frequency Dithering** The MIC3203 is designed to reduce EMI by dithering the switching frequency $\pm 12\%$ in order to spread the frequency spectrum over a wider range. This lowers the EMI noise peaks generated by the switching regulator. Switching regulators generate noise by their nature and they are the main EMI source to interference with nearby circuits. If the switching frequency of a regulator is modulated via frequency dithering, the energy of the EMI is spread among many frequencies instead of concentrated at fundamental switching frequency and its harmonics. The MIC3203 modulates the $V_{\text{CS}(\text{MAX})}$ with amplitude $\pm 6\text{mV}$ by a pseudo random generator to generate the $\pm 12\%$ of the switching frequency dithering to reduce the EMI noise peaks. ### **PCB Layout Guidelines** # Warning!!! To minimize EMI and output noise, follow these layout recommendations. PCB Layout is critical to achieve reliable, stable and efficient performance. A ground plane is required to control EMI and minimize the inductance in power, signal and return paths. The following guidelines should be followed to insure proper operation of the MIC3203 regulator. #### IC Use thick traces to route the input and output power lines. Signal and power grounds should be kept separate and connected at only one location. #### **Input Capacitor** Place the input capacitors on the same side of the board and as close to the IC as possible. Keep both the VIN and PGND traces as short as possible. Place several vias to the ground plane close to the input capacitor ground terminal, but not between the input capacitors and IC pins. Use either X7R or X5R dielectric input capacitors. Do not use Y5V or Z5U type capacitors. Do not replace the ceramic input capacitor with any other type of capacitor. Any type of capacitor can be placed in parallel with the input capacitor. If a Tantalum input capacitor is placed in parallel with the input capacitor, it must be recommended for switching regulator applications and the operating voltage must be derated by 50%. In "Hot-Plug" applications, a Tantalum or Electrolytic bypass capacitor must be placed in parallel to ceramic capacitor to limit the over-voltage spike seen on the input supply with power is suddenly applied. In this case an additional Tantalum or Electrolytic bypass input capacitor of $22\mu F$ or higher is required at the input power connection if necessary. #### Inductor Keep the inductor connection to the switch node (MOSFET drain) short. Do not route any digital lines underneath or close to the inductor. To minimize noise, place a ground plane underneath the inductor. #### **Output Capacitor** If LED ripple current needs to be reduced then place a $4.7\mu\text{F}/50\text{V}$ capacitor across LED. The capacitor must be placed as close to the LED as possible. #### **MOSFET** Place the MOSTET as close as possible to the MIC3203 to avoid the trace inductance. Provide sufficient copper area on MOSFET ground to dissipate the heat. #### Diode Place the Schottky diode on the same side of the board as the IC and input capacitor. The connection from the Schottky diode's Anode to the switching node must be as short as possible. The diode's Cathode connection to the R_{CS} must be keep as short as possible. #### **RC Snubber** If a RC snubber is needed, place the RC snubber on the same side of the board and as close to the Schottky diode as possible. #### R_{cs} (Current-Sense Resistor) VIN pin and CS pin must be as close as possible to $R_{\text{CS.}}$ Make a Kelvin connection to the VIN and CS pin respectively for current sensing. #### **Trace Routing Recommendation** Keep the power traces as short and wide as possible. One current flowing loop is during the MOSFET ON time, the traces connecting the input capacitor C_{IN} , R_{CS} , LEDs, Inductor, the MOSFET and back to C_{IN} . The other current flowing loop is during the MOSFET OFF time, the traces connecting R_{CS} , LED, inductor, free wheeling diode and back to R_{CS} . These two loop areas should kept as small as possible to minimize the noise interference, Keep all analog signal traces away from the switching node and its connecting traces. ### **Ripple Measurements** To properly measure ripple on either input or output of a switching regulator, a proper ring in tip measurement is required. Standard oscilloscope probes come with a grounding clip, or a long wire with an alligator clip. Unfortunately, for high-frequency measurements, this ground clip can pick-up high-frequency noise and erroneously inject it into the measured output ripple. The standard evaluation board accommodates a home made version by providing probe points for both the input and output supplies and their respective grounds. This requires the removing of the oscilloscope probe sheath and ground clip from a standard oscilloscope probe and wrapping a non-shielded bus wire around the oscilloscope probe. If there does not happen to be any non-shielded bus wire immediately available, the leads from axial resistors will work. By maintaining the shortest possible ground lengths on the oscilloscope probe, true ripple measurements can be obtained. Figure 2. Low Noise Measurement ### **Evaluation Board Schematic** ## **Bill of Materials** | Item | Part Number | Manufacturer | Description | Qty. | |--------|---------------------------|-------------------------------------------------------|--------------------------------------------------------------------|------| | C1 CE | 12105C475KAZ2A | AVX ⁽¹⁾ | 4 7uF/F0V/ Coromio Congolitor, V7D, Sizo 1210 | 2 | | C1, C5 | GRM32ER71H475KA88L | Murata ⁽²⁾ | 4.7μF/50V, Ceramic Capacitor, X7R, Size 1210 | | | | 12105C475KAZ2A | AVX ⁽¹⁾ | | | | C2 | GRM32ER71H475KA88L | Murata ⁽²⁾ | 4.7μF/50V, Ceramic Capacitor, X5R, Size 1210 | 1 | | | C3225X7S1H475M | TDK ⁽³⁾ | | | | | 08053D105KAT2A | AVX ⁽¹⁾ | 1μF/25V, Ceramic Capacitor, X5R, Size 0805 | 1 | | C3 | GRM21BR71E105KA99L | Murata ⁽²⁾ | 4. E/05)/ O O | 4 | | | C2012X7R1E105K | TDK ⁽³⁾ | 1μF/25V, Ceramic Capacitor, X7R, Size 0805 | 1 | | 0.4 | (Open) 08055A271JAT2A | AVX ⁽¹⁾ | 070 F/50 / 0 0 | 1 | | C4 | (Open) GRM2165C2A271JA01D | Murata ⁽²⁾ | 270pF/50V, Ceramic Capacitor NPO, Size 0805 | | | | SK36-TP | MCC ⁽⁴⁾ | | | | D1 | SK36 | Fairchild ⁽⁵⁾ 60V, 3A, SMC, Schottky Diode | | 1 | | | SK36-7-F | Diodes, Inc. ⁽⁶⁾ | | | | L1 | SLF10145T-680M1R2 | TDK ⁽³⁾ | 68μH, 1.2A, 0.14Ω, SMT, Power Inductor | 1 | | M1 | FDS5672 | Fairchild ⁽⁷⁾ | MOSFET, N-CH, 60V, 12A, SO-8 | 1 | | R1 | CSR 1/2 0.2 1% I | Stackpole
Electronics, Inc ⁽⁸⁾ | 0.2Ω Resistor, 1/2W, 1%, Size 1206 | 1 | | R2, R3 | CRCW08051003FKEA | Vishay ⁽⁹⁾ | 100kΩ Resistor, 1% , Size 0805 | 2 | | R4 | CRCW08050000FKEA | Vishay ⁽⁹⁾ | 0Ω Resistor, 1%, Size 0805 | 1 | | R5 | (Open) CRCW08052R20FKEA | Vishay ⁽⁹⁾ | 2.2Ω Resistor, 1%, Size 0805 | 1 | | R6 | CRCW08051002FKEA | Vishay ⁽⁹⁾ | 10kΩ Resistor, 1% , Size 0805 | 1 | | U1 | MIC3203YM | Micrel, Inc. ⁽¹⁰⁾ | High Brightness LED Driver Controller with High-Side Current Sense | 1 | #### Notes: 1. AVX: <u>www.avx.com</u>. 2. Murata: www.murata.com. 3. TDK: www.tdk.com. 4. MCC: www.mccsemi.com. 5. Fairchild: www.fairchildsemi.com. 6. Diodes Inc. : www.diodes.com. 7. Fairchild: www.Fairchildsemi.com. 8. Stackpole Electronics: www.seielect.com. Vishay: www.vishay.com. Diodes Inc.: www.micrel.com. Micrel, Inc.: www.micrel.com. ## **PCB Layout Recommendation** **Top Assembly** **Top Layer** # **PCB Layout Recommendation (Continued)** **Bottom Layer** ## **Package Information** BOTTOM VIEW DETAIL "A" 8-Pin SOIC ### **Recommended Landing Pattern** #### LP # SOICN-8LD-LP-1 All units are in mm Tolerance ± 0.05 if not noted 8-Pin SOIC #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2010 Micrel, Incorporated. Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А