

CPC1008N Single-Pole, Normally Open 4-Pin SOP OptoMOS® Relay

Parameter	Rating	Units
Blocking Voltage	100	V _P
Load Current	150	mA _{rms} / mA _{DC}
On-Resistance (max)	8	Ω

Features

- 1500V_{rms} Input/Output Isolation
 Small 4-Pin SOP Package
- Low Drive Power Requirements
- High Reliability
- Arc-Free With No Snubbing Circuits
- No EMI/RFI Generation
- Halogen-Free
- Tape & Reel Version Available
- Flammability Rating UL 94 V-0

Applications

- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment—Patient/Equipment Isolation
- Security Systems
- Aerospace
- Industrial Controls
- Reed Relay Replacement

Description

CPC1008N is a miniature, low-voltage, low on-resistance, single-pole, normally open (1-Form-A) solid state relay in a 4-Pin SOP package. It uses IXYS Integrated Circuits Division's patented, optically coupled, OptoMOS architecture to provide 1500Vrms of input/output isolation.

Using IXYS Integrated Circuits Division's state of the art double-molded vertical construction packaging, the CPC1008N is one of the world's smallest relays. It is ideal for replacing larger, less-reliable reed and electromechanical relays.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1172007
- EN/IEC 60950-1 Certified Component: Certificate B 13 12 82667 003

Ordering Information

Part #	Description
CPC1008N	4-Pin SOP (100/tube)
CPC1008NTR	4-Pin SOP (2000/reel)

Pin Configuration

Switching Characteristics of Normally Open Devices

Absolute Maximum Ratings @ 25°C

Parameter	Ratings	Units
Blocking Voltage	100	V _P
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	А
Input Power Dissipation	70	mW
Total Power Dissipation ¹	400	mW
Isolation Voltage, Input to Output (60 Seconds)	1500	V _{rms}
Operational Temperature	-40 to +85	°C
Storage Temperature	-40 to +125	°C

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements

¹ Derate linearly 3.33 mW / °C

Electrical Characteristics @ 25°C

Conditions	Symbol	Min	Тур	Max	Units
1				I	-
-	ΙL			150	mA _{rms} / mA _{DC}
t=10ms	I _{LPK}	-	-	±350	mA _P
I _L =150mA	R _{ON}	-	4.8	8	Ω
V _L =100V _P		-	-	1	μA
$\int Em \Lambda (10)/$	t _{on}	-	1	2	
$r_{\rm F}$ =5111A, $v_{\rm L}$ =10V	t _{off}	-	0.17	1	ms
I _F =0mA, V _L =50V, f=1MHz	C _{OUT}	-	6	-	pF
I _L =150mA	I _F	-	0.45	2	mA
-	l _F	0.2	-	-	mA
I _F =5mA	V _F	0.9	1.2	1.5	V
V _R =5V	I _R	-	-	10	μΑ
1				1	
V _{IO} =0V, f=1MHz	C _{IO}	-	1	-	pF
	$- \\ t=10ms \\ I_{L}=150mA \\ V_{L}=100V_{P} \\ I_{F}=5mA, V_{L}=10V \\ I_{F}=0mA, V_{L}=50V, f=1MHz \\ \\ I_{L}=150mA \\ - \\ I_{F}=5mA \\ V_{R}=5V \\ \end{bmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Load current derates intearry from 150mA @ 25°C to 120mA @ 85°C.
 ² Measurement taken within 1 second of on time.

³ For high temperature operation (>60°C) a minimum LED drive current of 4mA is recommended.

CPC1008N

PERFORMANCE DATA*

Typical I_F for Switch Operation (N=50, I_L=100mA)

Typical Blocking Voltage Distribution (N=50)

 Typical Turn-Off Time vs. LED Forward Current

 0.25
 0.20

 0.15
 0.15

 0.10
 0.05

 0.00
 0.00

 0.010
 0.00

 0.00
 0.00

 0.00
 0.00

Temperature (°C)

LED Current (mA)

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C. For guaranteed parameters not indicated in the written specifications, please contact our application department.

CPC1008N

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C. For guaranteed parameters not indicated in the written specifications, please contact our application department.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, **IPC/JEDEC J-STD-020**, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification		
CPC1008N	MSL 3		

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the Classification Temperature (T_c) of this product and the maximum dwell time the body temperature of this device may be (T_c - 5)°C or greater. The classification temperature sets the Maximum Body Temperature allowed for this device during lead-free reflow processes. For through-hole devices, and any other processes, the guidelines of **J-STD-020** must be observed.

	Device	Classification Temperature (T _c)	Dwell Time (t _p)	Max Reflow Cycles
ſ	CPC1008N	260°C	30 seconds	3

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to flux or solvents that are Chlorine- or Fluorine-based.

MECHANICAL DIMENSIONS

CPC1008N

CPC1008NTR Tape & Reel

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infrigement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А