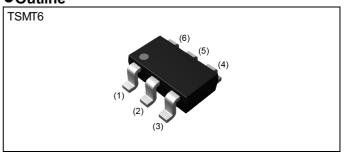
Nch 30V 5.5A Power MOSFET

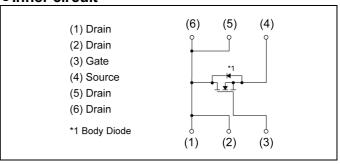
V_{DSS}	30V
R _{DS(on)} (Max.)	25mΩ
I _D	±5.5A
P _D	1.25W

Features

- 1) Low on resistance.
- 2) Built-in G-S Protection Diode.
- 3) Small Surface Mount Package (TSMT6).
- 4) Pb-free lead plating; RoHS compliant


Application

Switching


● Absolute maximum ratings (T_a = 25°C)

● Absolute maximum ratings (I _a = 25°C)							
Parameter	Symbol	Value	Unit				
Drain - Source voltage	V _{DSS}	30	V				
Continuous drain current	I _D *1	±5.5	Α				
Pulsed drain current	I _{D,pulse} *2	±18	Α				
Gate - Source voltage	V_{GSS}	±20	V				
Avalanche energy, single pulse	E _{AS} *3	2.2	mJ				
Avalanche current	I _{AS} *3	5.5	Α				
Power dissipation	P _D *4	1.25	W				
Junction temperature	T _j	150	°C				
Range of storage temperature	T _{stg}	-55 to +150	°C				

Outline

•Inner circuit

Packaging specifications

	Packing	Embossed Tape
	Reel size (mm)	180
Type	Tape width (mm)	8
	Basic ordering unit (pcs)	3000
	Taping code	TR
	Marking	HH

●Thermal resistance

Doromotor	Cumb of	Values			l leit
Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal resistance, junction - ambient	R _{thJA} *4	-	100	1	°C/W

● Electrical characteristics (T_a = 25°C)

Davamatav	Cymah al	Conditions	Values			Limit	
Parameter	Symbol Conditions -		Min.	Тур.	Max.	Unit	
Drain - Source breakdown voltage $V_{(BR)DSS}$ $V_{GS} = 0V, I_D = 1mA$		V _{GS} = 0V, I _D = 1mA	30	-	-	V	
Breakdown voltage temperature coefficient	$\frac{\Delta V_{(BR)DSS}}{\Delta T_j} I_D = 1 \text{mA}$ referenced to 25°C		-	21	-	mV/°C	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 30V, V _{GS} = 0V	-	-	1	μA	
Gate - Source leakage current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$	1	ı	±100	nA	
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1mA$	1.0	-	2.5	V	
Gate threshold voltage temperature coefficient	$\frac{\DeltaV_{GS(th)}}{\DeltaT_j}$	I _D = 1mA referenced to 25°C	-	-3	-	mV/°C	
Static drain - source	D *5	V _{GS} = 10V, I _D = 5.5A	-	19	25	m0	
on - state resistance	R _{DS(on)} *5	V _{GS} = 4.5V, I _D = 5.5A	-	30	39	mΩ	
Transconductance	g _{fs} *5	$V_{DS} = 5V, I_{D} = 5.5A$	3.4	-	-	S	

^{*1} Limited only by maximum temperature allowed.

^{*2} Pw \leq 10µs, Duty cycle \leq 1%

^{*3} L \simeq 100 μ H, V_{DD} = 15V, R_G = 25 Ω , STARTING T_{ch} = 25 $^{\circ}$ C Fig.3-1,3-2

^{*4} Mounted on a ceramic boad (30×30×0.8mm)

^{*5} Pulsed

• Electrical characteristics $(T_a = 25^{\circ}C)$

Darameter	Cumbal	Conditions		Unit		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Input capacitance	C _{iss}	V _{GS} = 0V	-	355	-	
Output capacitance	C _{oss}	V _{DS} = 15V	-	58	-	pF
Reverse transfer capacitance	C _{rss}	f = 1MHz	-	47	-	
Turn - on delay time	t _{d(on)} *5	V _{DD} ≈ 15V,V _{GS} = 10V	-	7	-	
Rise time	t _r *5	I _D = 2.75A	-	12	-	
Turn - off delay time	t _{d(off)} *5	$R_L = 5.5\Omega$	-	16	-	ns
Fall time	t _f *5	$R_G = 10\Omega$	-	7	-	

• Gate charge characteristics $(T_a = 25^{\circ}C)$

Davamatav	Cymahal	Conditions		Values			1.114
Parameter	Symbol			Min.	Тур.	Max.	Unit
T. 1. 1. 1	Q_g^{*5}	V _{DD} ≃ 15V	V _{GS} = 10V	-	8.6	-	
Total gate charge				-	4.4	-	~ C
Gate - Source charge	Q _{gs} *5	I _D = 5.5A	V _{GS} = 4.5V	-	1.7	-	nC
Gate - Drain charge	Q_{gd}^{*5}			1	1.6	ı	

● Body diode electrical characteristics (Source-Drain) (T_a = 25°C)

Parameter	Symbol	Conditions	Values			Unit
	Symbol	Conditions	Min.	Тур.	Max.	Offic
Body diode continuous forward current	I _S *1	T _a = 25°C	1	1	1.0	
Body diode pulse current	I _{SP} *2	1 _a - 25 C	-	-	18	Α
Forward voltage	V _{SD} *5	V _{GS} = 0V, I _S = 1.0A	-	-	1.2	V

Fig.1 Power Dissipation Derating Curve

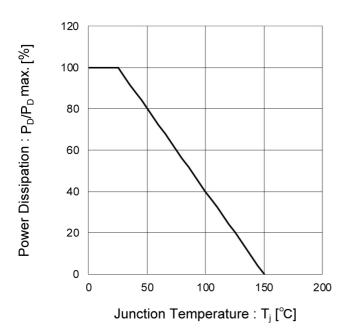
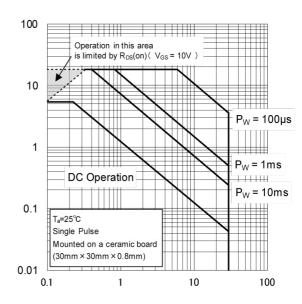



Fig.2 Maximum Safe Operating Area

Drain Current : I_D [A]

Drain - Source Voltage : V_{DS} [V]

Fig.3 Normalized Transient Thermal Resistance vs. Pulse Width

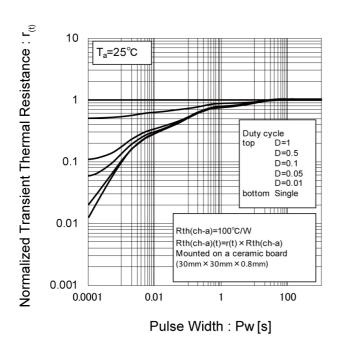
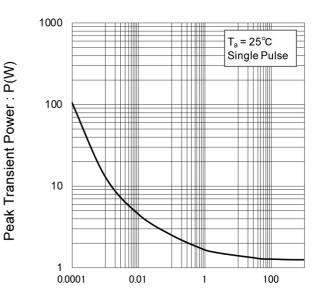
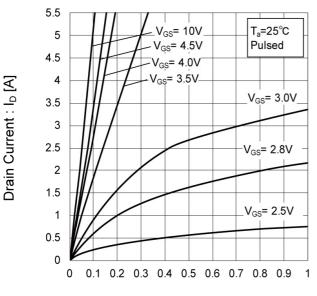
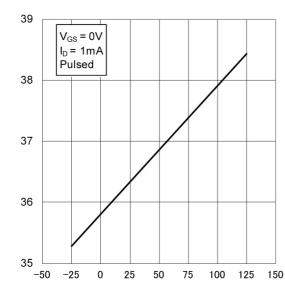




Fig.4 Single Pulse Maximum Power dissipation

Pulse Width: Pw[s]

Fig.5 Typical Output Characteristics(I)

Drain - Source Voltage : V_{DS} [V]


Fig.6 Typical Output Characteristics(II)

Drain Current : I_D [A]

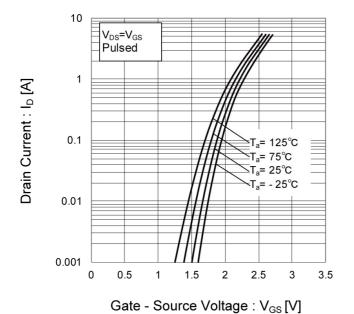
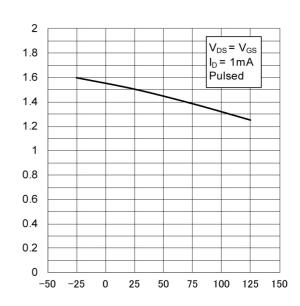
Drain - Source Voltage : V_{DS} [V]

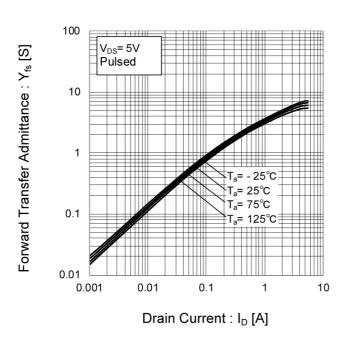
Fig.7 Breakdown Voltage vs. Junction Temperature

Junction Temperature : T_j [°C]

Drain-Source Breakdown Voltage: V_{(BR)DSS} [V]

Fig.8 Typical Transfer Characteristics


Fig.9 Gate Threshold Voltage vs. Junction Temperature

Gate Threshold Voltage: VGS(th) [V]

Junction Temperature : T_j [°C]

Fig.10 Transconductance vs. Drain Current

ROHM

Fig.11 Drain Current Derating Curve

Drain Current Dissipation

Orange (%) 80

Junction Temperature : T_j [°C]

Fig.12 Static Drain - Source On - State Resistance vs. Gate Source Voltage

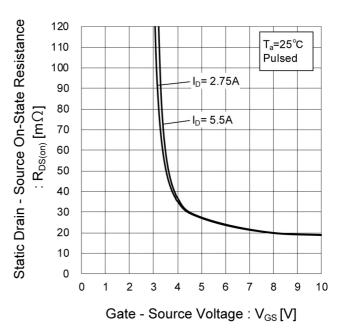


Fig.13 Static Drain - Source On - State Resistance vs. Junction Temperature

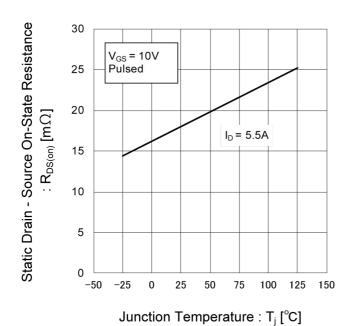


Fig.14 Static Drain - Source On - State Resistance vs. Drain Current(I)

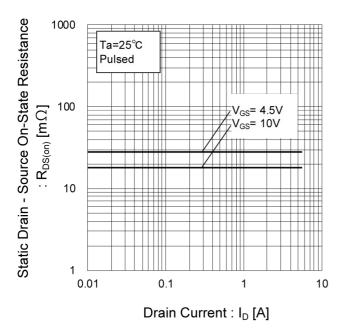


Fig.15 Static Drain - Source On - State Resistance vs. Drain Current(II)

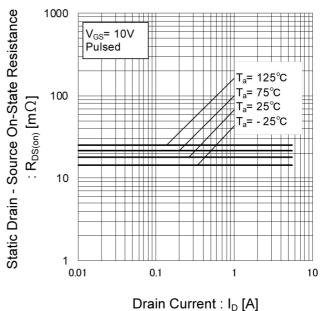
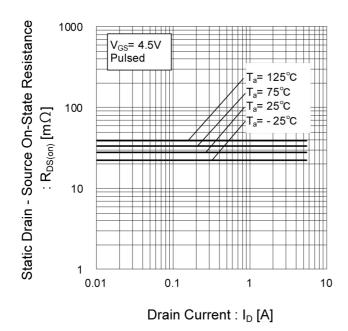



Fig.16 Static Drain - Source On - State Resistance vs. Drain Current(III)

ROHM

Fig.17 Typical Capacitance vs. Drain - Source Voltage

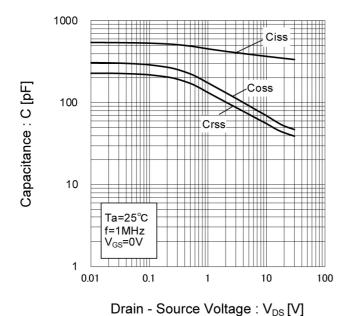


Fig.18 Switching Characteristics

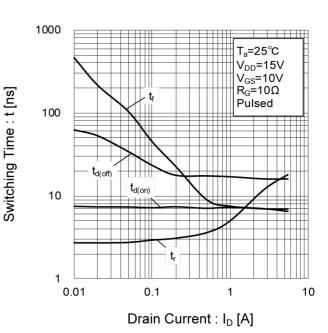
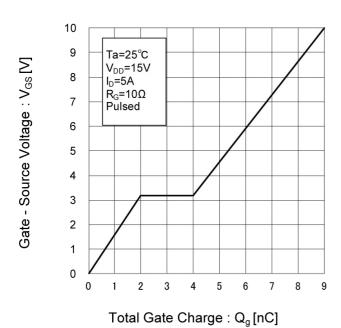
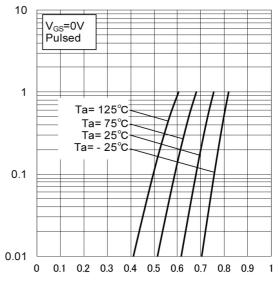




Fig.19 Dynamic Input Characteristics

Source Current :I_S [A]

Fig.20 Source Current vs. Source Drain Voltage

Source-Drain Voltage: V_{SD}[V]

Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

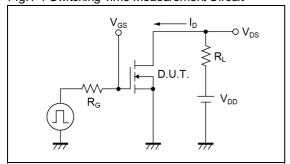


Fig.2-1 Gate Charge Measurement Circuit

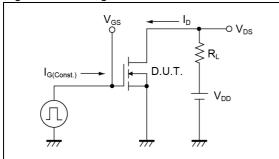


Fig.3-1 AVALANCHE MEASUREMENT CIRCUIT

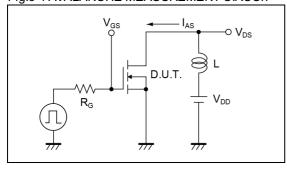


Fig.1-2 Switching Waveforms

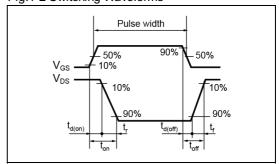


Fig.2-2 Gate Charge Waveform

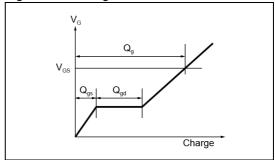
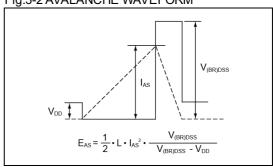
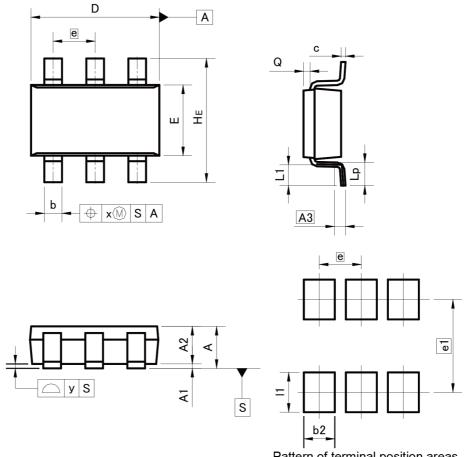



Fig.3-2 AVALANCHE WAVEFORM


Notice

This product might cause chip aging and breakdown under the large electrified environment. Please consider to design ESD protection circuit.

Dimensions

TSMT6

Pattern of terminal position areas
[Not a recommended pattern of soldering pads]

DIM	MILIM	INC	HES	
DIM	MIN	MAX	MIN	MAX
Α	_	1.00	ı	0.039
A1	0.00	0.10	0.000	0.004
A2	0.75	0.95	0.030	0.037
A3	0.:	25	0.0	10
b	0.35	0.50	0.014	0.020
С	0.10	0.26	0.004	0.010
D	2.80	3.00	0.110	0.118
E	1.50	1.80	0.059	0.071
е	0.	95	0.0	37
HE	2.60	3.00	0.102	0.118
L1	0.30	0.60	0.012	0.024
Lp	0.40	0.70	0.016	0.028
Q	0.05	0.25	0.002	0.010
х	-	0.20	_	0.008
У	_	0.10	_	0.004

DIM	MILIM	ETERS	INCHES		
	DIM	MIN	MAX	MIN	MAX
	b2	0.70		-	0.028
	e1	2.10		0.0	83
	l1	_	0.90	_	0.035

Dimension in mm/inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors.

 Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А