#### HIP4082 80V, 1.25A Peak Current H-Bridge FET Driver FN3676 Rev.6.00 Feb 12, 2020 The HIP4082 is a medium frequency, medium voltage H-Bridge N-Channel MOSFET driver IC, available in 16 lead plastic SOIC (N) and DIP packages. Specifically targeted for PWM motor control and UPS applications, bridge based designs are made simple and flexible with the HIP4082 H-bridge driver. With operation up to 80V, the device is best suited to applications of moderate power levels. Similar to the HIP4081, it has a flexible input protocol for driving every possible switch combination except those which would cause a shoot-through condition. The HIP4082's reduced drive current allows smaller packaging and it has a much wider range of programmable dead times (0.1 to 4.5 $\mu$ s) making it ideal for switching frequencies up to 200kHz. The HIP4082 does not contain an internal charge pump, but does incorporate non-latching level-shift translation control of the upper drive circuits. This set of features and specifications is optimized for applications where size and cost are important. For applications needing higher drive capability the HIP4080A and HIP4081A are recommended. #### Features - Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations - · Bootstrap Supply Max Voltage to 95VDC - Drives 1000pF Load in Free Air at 50°C with Rise and Fall Times of Typically 15ns - User-Programmable Dead Time (0.1 to 4.5μs) - DIS (Disable) Overrides Input Control and Refreshes Bootstrap Capacitor when Pulled Low - Input Logic Thresholds Compatible with 5V to 15V Logic Levels - · Shoot-Through Protection - · Undervoltage Protection - Pb-Free Plus Anneal Available (RoHS Compliant) ## **Applications** - UPS Systems - · DC Motor Controls - · Full Bridge Power Supplies - · Switching Power Amplifiers - Noise Cancellation Systems - · Battery Powered Vehicles - Peripherals - · Medium/Large Voice Coil Motors - · Related Literature - TB363, Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs) ## **Ordering Information** | PART NUMBER | PART MARKING | TEMP.<br>RANGE (°C) | PACKAGE | PKG.<br>DWG.# | |--------------------|--------------|---------------------|--------------------------|---------------| | HIP4082IBZ* (Note) | 4082IBZ | -55 to +125 | 16 Ld SOIC (N) (Pb-free) | M16.15 | | HIP4082IPZ (Note) | HIP4082IPZ | -55 to +125 | 16 Ld PDIP** (Pb-free) | E16.3 | <sup>\*</sup>Add "T" suffix for tape and reel. NOTE: Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. #### **Pinout** <sup>\*\*</sup>Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. # Application Block Diagram # Functional Block Diagram ## Typical Application (PWM Mode Switching) #### **Absolute Maximum Ratings** | Supply Voltage, V <sub>DD</sub> 0.3V to 16V | |-----------------------------------------------------------------------------| | Logic I/O Voltages0.3V to V <sub>DD</sub> +0.3V | | Voltage on AHS, BHS6V (Transient) to 80V (25°C to 150°C) | | Voltage on AHS, BHS6V (Transient) to 70V (-55°C to150°C) | | Voltage on AHB, BHB $V_{AHS, BHS}$ -0.3V to $V_{AHS, BHS}$ + $V_{DD}$ | | Voltage on ALO, BLO | | Voltage on AHO, BHO $V_{AHS, BHS}$ -0.3V to $V_{AHB, BHB}$ +0.3V Input | | Current, DEL | | Phase Slew Rate | | NOTE: All voltages are relative V <sub>SS</sub> unless otherwise specified. | # Thermal Information | Thermal Resistance | θ <sub>JA</sub> (°C/W) | |-------------------------------------|------------------------| | SOIC Package | 115 | | DIP Package | | | Maximum Power Dissipation | | | Storage Temperature Range65° | 'C to +150°C | | Operating Max. Junction Temperature | +150°C | | Lead Temperature (Soldering 10s) | +300°C | | (For SOIC - Lead Tips Only)) | | | | | #### **Operating Conditions** | Supply Voltage, V <sub>DD</sub> | +8.5V to +15V | |---------------------------------|---------------------------------------------------| | Voltage on V <sub>SS</sub> | 1.0V to +1.0V | | Voltage on AHB, BHB | $V_{AHS, BHS}$ +7.5V to $V_{AHS, BHS}$ + $V_{DD}$ | | Input Current, DEL | 4mA to -100μA | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. # $\textbf{Electrical Specifications} \qquad \textit{V}_{\text{DD}} = \textit{V}_{\text{AHB}} = \textit{V}_{\text{BHB}} = 12 \textit{V}, \, \textit{V}_{\text{SS}} = \textit{V}_{\text{AHS}} = \textit{V}_{\text{BHS}} = 0 \textit{V}, \, \textit{R}_{\text{DEL}} = 100 \textit{K}$ | | | | T <sub>J</sub> = +25°C | | | T <sub>J</sub> = -55°C<br>TO +150°C | | | |------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|------------------------|------|------|-------------------------------------|------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | TYP | MAX | MIN | MAX | UNITS | | SUPPLY CURRENTS & UNDER VOLTAGE | PROTECTION | | | | | | | | | V <sub>DD</sub> Quiescent Current | I <sub>DD</sub> | All inputs = 0V, R <sub>DEL</sub> = 100K | 1.2 | 2.3 | 3.5 | 0.85 | 4 | mA | | | | All inputs = 0V, R <sub>DEL</sub> = 10K | 2.2 | 4.0 | 5.5 | 1.9 | 6.0 | mA | | V <sub>DD</sub> Operating Current | I <sub>DDO</sub> | f = 50kHz, no load | 1.5 | 2.6 | 4.0 | 1.1 | 4.2 | mA | | | | 50kHz, no load, R <sub>DEL</sub> = 10kΩ | 2.5 | 4.0 | 6.4 | 2.1 | 6.6 | mA | | AHB, BHB Off Quiescent Current | I <sub>AHBL</sub> , I <sub>BHBL</sub> | I <sub>BHBL</sub> AHI = BHI = 0V | | 1.0 | 1.5 | 0.4 | 1.6 | mA | | AHB, BHB On Quiescent Current | I <sub>AHBH</sub> , I <sub>BHBH</sub> | AHI = BHI = V <sub>DD</sub> | 65 | 145 | 240 | 40 | 250 | μА | | AHB, BHB Operating Current | I <sub>AHBO</sub> , I <sub>BHBO</sub> | <sub>IBO</sub> , I <sub>BHBO</sub> f = 50kHz, CL = 1000pF | | 1.1 | 1.8 | .45 | 2.0 | mA | | AHS, BHS Leakage Current | I <sub>HLK</sub> | $V_{AHS} = V_{BHS} = 80V$<br>$V_{AHB} = V_{BHB} = 96$<br>$V_{DD} = Not Connected$ | - | - | 1.0 | - | - | μА | | V <sub>DD</sub> Rising Undervoltage Threshold | V <sub>DDUV+</sub> | | 6.8 | 7.6 | 8.25 | 6.5 | 8.5 | V | | V <sub>DD</sub> Falling Undervoltage Threshold | V <sub>DDUV-</sub> | | 6.5 | 7.1 | 7.8 | 6.25 | 8.1 | V | | Undervoltage Hysteresis | UVHYS | | 0.17 | 0.4 | 0.75 | 0.15 | 0.90 | V | | AHB, BHB Undervoltage Threshold | VHBUV | Referenced to AHS & BHS | 5 | 6.0 | 7 | 4.5 | 7.5 | V | | INPUT PINS: ALI, BLI, AHI, BHI, & DIS | | | | | | • | | | | Low Level Input Voltage | V <sub>IL</sub> | Full Operating Conditions | - | - | 1.0 | - | 8.0 | V | | High Level Input Voltage | V <sub>IH</sub> | Full Operating Conditions | 2.5 | - | - | 2.7 | | V | | Input Voltage Hysteresis | | | - | 35 | - | - | - | mV | | Low Level Input Current | I <sub>IL</sub> | V <sub>IN</sub> = 0V, Full Operating Conditions | | -100 | -60 | -150 | -50 | μА | | High Level Input Current | I <sub>IH</sub> | V <sub>IN</sub> = 5V, Full Operating Conditions | -1 | - | +1 | -10 | +10 | μА | | TURN-ON DELAY PIN DEL | • | | • | | | | | | | Dead Time | T <sub>DEAD</sub> | R <sub>DEL</sub> = 100K | 2.5 | 4.5 | 8.0 | 2.0 | 8.5 | μs | | | | R <sub>DEL</sub> = 10K | 0.27 | 0.5 | 0.75 | 0.2 | 0.85 | μs | # **Electrical Specifications** $V_{DD} = V_{AHB} = V_{BHB} = 12V$ , $V_{SS} = V_{AHS} = V_{BHS} = 0V$ , $R_{DEL} = 100K$ (Continued) | | | | T <sub>J</sub> = +25°C | | T <sub>J</sub> = -55°C<br>TO +150°C | | | | |-----------------------------------------------|----------------------------------|--------------------------|------------------------|-----|-------------------------------------|-----------|------|---| | PARAMETER | SYMBOL | TEST CONDITIONS | MIN TYP MAX | | MIN | MAX UNITS | | | | GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, & BHO | | | | | | | | | | Low Level Output Voltage | V <sub>OL</sub> | I <sub>OUT</sub> = 50mA | 0.65 | | 1.1 | 0.5 | 1.2 | V | | High Level Output Voltage | V <sub>DD</sub> -V <sub>OH</sub> | I <sub>OUT</sub> = -50mA | 0.7 | | 1.2 | 0.5 | 1.3 | V | | Peak Pullup Current | l <sub>O</sub> + | V <sub>OUT</sub> = 0V | 1.1 | 1.4 | 2.5 | 0.85 | 2.75 | Α | | Peak Pulldown Current | I <sub>O</sub> - | V <sub>OUT</sub> = 12V | 1.0 | 1.3 | 2.3 | 0.75 | 2.5 | Α | # $\textbf{Switching Specifications} \quad V_{DD} = V_{AHB} = V_{BHB} = 12V, \ V_{SS} = V_{AHS} = V_{BHS} = 0V, \ R_{DEL} = 100K, \ C_L = 1000pF.$ | | | | T <sub>J</sub> = +25°C | | | T <sub>J</sub> = -55°C TO<br>+150°C | | | | |----------------------------------------------------------|--------------------------|------------------------|------------------------|-------------|-----|-------------------------------------|-----|-------|--| | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | MIN TYP MAX | | MIN MAX | | UNITS | | | Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO) | T <sub>LPHL</sub> | | - | 25 | 50 | - | 70 | ns | | | Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO) | T <sub>HPHL</sub> | | - | 55 | 80 | - | 100 | ns | | | Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO) | T <sub>LPLH</sub> | | - | 40 | 85 | - | 100 | ns | | | Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO) | T <sub>HPLH</sub> | | - | 75 | 110 | - | 150 | ns | | | Rise Time | T <sub>R</sub> | | - | 9 | 20 | - | 25 | ns | | | Fall Time | T <sub>F</sub> | | - | 9 | 20 | - | 25 | ns | | | Minimum Input Pulse Width | T <sub>PWIN-ON/OFF</sub> | | 50 | - | - | 50 | - | ns | | | Output Pulse Response to 50 ns Input Pulse | T <sub>PWOUT</sub> | | | 63 | | | 80 | ns | | | Disable Turn-off Propagation Delay (DIS - Lower Outputs) | T <sub>DISLOW</sub> | | - | 50 | 80 | - | 90 | ns | | | Disable Turn-off Propagation Delay (DIS - Upper Outputs) | T <sub>DISHIGH</sub> | | - | 75 | 100 | - | 125 | ns | | | Disable Turn-on Propagation Delay (DIS - ALO & BLO) | T <sub>DLPLH</sub> | | - | 40 | 70 | - | 100 | ns | | | Disable Turn-on Propagation Delay (DIS- AHO & BHO) | T <sub>DHPLH</sub> | R <sub>DEL</sub> = 10K | - | 1.2 | 2 | - | 3 | μs | | | Refresh Pulse Width (ALO & BLO) | T <sub>REF-PW</sub> | | 375 | 580 | 900 | 350 | 950 | ns | | #### **TRUTH TABLE** | | | OUT | <b>TPUT</b> | | | | | | |----------|-----------------------------------|-----|-------------|---|----------|----------|--|--| | ALI, BLI | ALI, BLI AHI, BHI VDDUV VHBUV DIS | | | | ALO, BLO | АНО, ВНО | | | | Х | Х | Х | Х | 1 | 0 | 0 | | | | Х | Х | 1 | Х | Х | 0 | 0 | | | | 0 | Х | 0 | 1 | 0 | 0 | 0 | | | | 1 | Х | 0 | Х | 0 | 1 | 0 | | | | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | NOTE: X signifies that input can be either a "1" or "0". # Pin Descriptions | PIN<br>NUMBER | SYMBOL | DESCRIPTION | |---------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | ВНВ | B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. | | 2 | ВНІ | B High-side Input. Logic level input that controls BHO driver (Pin 16). BLI (Pin 3) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V <sub>DD</sub> ). | | 3 | BLI | B Low-side Input. Logic level input that controls BLO driver (Pin 14). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V <sub>DD</sub> ). | | 4 | ALI | A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V <sub>DD</sub> ). | | 5 | DEL | Turn-on DELay. Connect resistor from this pin to V <sub>SS</sub> to set timing current that defines the dead time between drivers. All drivers turn-off with no adjustable delay, so the DEL resistor guarantees no shoot-through by delaying the turn-on of all drivers. The voltage across the DEL resistor is approximately Vdd -2V. | | 6 | V <sub>SS</sub> | Chip negative supply, generally will be ground. | | 7 | AHI | A High-side Input. Logic level input that controls AHO driver (Pin 10). ALI (Pin 4) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V <sub>DD</sub> ). | | 8 | DIS | DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than V <sub>DD</sub> ). | | 9 | AHB | A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. | | 10 | AHO | A High-side Output. Connect to gate of A High-side power MOSFET. | | 11 | AHS | A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. | | 12 | V <sub>DD</sub> | Positive supply to control logic and lower gate drivers. De-couple this pin to V <sub>SS</sub> (Pin 6). | | 13 | ALO | A Low-side Output. Connect to gate of A Low-side power MOSFET. | | 14 | BLO | B Low-side Output. Connect to gate of B Low-side power MOSFET. | | 15 | BHS | B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. | | 16 | вно | B High-side Output. Connect to gate of B High-side power MOSFET. | # **Timing Diagrams** X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT FIGURE 1. INDEPENDENT MODE FIGURE 3. DISABLE FUNCTION XLO хно T<sub>DHPLH</sub> #### **Performance Curves** FIGURE 4. $I_{DD}$ SUPPLY CURRENT vs TEMPERATURE AND $V_{DD}$ SUPPLY VOLTAGE FIGURE 6. FLOATING (IXHB) BIAS CURRENT vs FREQUENCY AND LOAD FIGURE 8. GATE CURRENT vs TEMPERATURE, NORMALIZED TO 25°C FIGURE 5. V<sub>DD</sub> SUPPLY CURRENT vs TEMPERATURE AND SWITCHING FREQUENCY (1000pF LOAD) FIGURE 7. GATE SOURCE/SINK PEAK CURRENT vs BIAS SUPPLY VOLTAGE AT 25°C FIGURE 9. V<sub>DD</sub>-V<sub>OH</sub> vs BIAS VOLTAGE TEMPERATURE ## Performance Curves (Continued) FIGURE 10. $V_{OL}$ vs BIAS VOLTAGE AND TEMPERATURE FIGURE 12. UPPER LOWER TURN-ON/TURN-OFF PROPAGATION DELAY vs TEMPERATURE FIGURE 14. FULL BRIDGE LEVEL-SHIFT CURRENT vs FREQUENCY (kHz) FIGURE 11. UNDERVOLTAGE TRIP VOLTAGES vs TEMPERATURE FIGURE 13. UPPER/LOWER DIS(ABLE) TO TURN-ON/OFF vs TEMPERATURE (°C) FIGURE 15. MAXIMUM POWER DISSIPATION VS AMBIENT TEMPERATURE # Performance Curves (Continued) FIGURE 16. DEAD-TIME vs DEL RESISTANCE AND BIAS SUPPLY ( $V_{DD}$ ) VOLTAGE FIGURE 17. MAXIMUM OPERATING PEAK AHS/BHS VOLTAGE vs TEMPERATURE Page 11 of 15 # Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. | DATE | REVISION | CHANGE | |--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Feb 12, 2020 | FN3676.6 | Updated Ordering information table on page 2. Removed About Intersil section. Updated POD M16.15 to the latest revision, changes are as follows: -Updated graphics to new standard layout, removing the dimension table. Updated disclaimer. | | Sep 30, 2015 | FN3676.5 | Updated the Ordering Information Table on page 2. Added Revision History and About Intersil sections. | ## Package Outline Drawings #### NOTES: - Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. - 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. - Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95. - Dimensions A, A1 and L are measured with the package seated in JE-DEC seating plane gauge GS-3. - 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). - E and e<sub>A</sub> are measured with the leads constrained to be perpendicular to datum -C-. - e<sub>B</sub> and e<sub>C</sub> are measured at the lead tips with the leads unconstrained. e<sub>C</sub> must be zero or greater. - 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). - 9. N is the maximum number of terminal positions. - Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE (PDIP) | | INCHES MILLIMETERS | | | | | |----------------|--------------------|-------|----------|-------|-------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | - | 0.210 | - | 5.33 | 4 | | A1 | 0.015 | - | 0.39 | - | 4 | | A2 | 0.115 | 0.195 | 2.93 | 4.95 | - | | В | 0.014 | 0.022 | 0.356 | 0.558 | - | | B1 | 0.045 | 0.070 | 1.15 | 1.77 | 8, 10 | | С | 0.008 | 0.014 | 0.204 | 0.355 | - | | D | 0.735 | 0.775 | 18.66 | 19.68 | 5 | | D1 | 0.005 | - | 0.13 | - | 5 | | Е | 0.300 | 0.325 | 7.62 | 8.25 | 6 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | 5 | | е | 0.100 | BSC | 2.54 | BSC | - | | e <sub>A</sub> | 0.300 | BSC | 7.62 BSC | | 6 | | e <sub>B</sub> | - | 0.430 | - | 10.92 | 7 | | L | 0.115 | 0.150 | 2.93 | 3.81 | 4 | | N | 1 | 6 | 16 | | 9 | Rev. 0 12/93 # M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 2, 11/17 #### **Notice** - Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information. - 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. - 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or - 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. - Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document. - 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges. - 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you. - 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. - 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. - 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. - (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. - (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.4.0-1 November 2017) ### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А