

ADS5295, 8-Channel, Analog-to-Digital Converter Evaluation Module

This user's guide gives a general overview of the evaluation module (EVM) and provides a general description of the features and functions to be considered while using this module. This manual is applicable to the ADS5295 analog-to-digital converters (ADC), which, with the ADS5292 and ADS5294, are collectively referred to as ADS529x. Use this document in combination with the respective ADC data sheet. The ADS529xEVM provides a platform for evaluating the ADC under various signal, clock, reference, and power supply conditions.

1	Quick '	View of Evaluation Setup	. 3
2	Defaul	t Configuration	. 4
3	Softwa	re Installation and Operation	. 5
	3.1	GUI Installation – Mandatory	. 5
4	Test S	etup	12
5	Power	Up ADS5295	13
6	Launch	n TSW1400 High Speed Data Converter Pro GUI	14
7	ADS52	295 GUI Plug-In Tab	17
8	Test A	DS5295	20
	8.1	Step 1: Time Domain	20
	8.2	Step 2: Single Tone FFT	26
9	Board	Configuration	29
	9.1	Input/Output, Power Supply, and USB	29
	9.2	ADC Clock	31
	9.3	Light-Emitting Diodes (LEDs)	33
	9.4	Miscellaneous Test Points	34
10	EVM S	Schematics	36
11	ADS52	295EVM Bill of Materials	45
12	ADS52	295EVM Printed-Circuit Board Layout	47

List of Figures

1	Evaluation Setup	3
2	ADS5295EVM Basic Configuration	4
3	Hardware Setup of TSW1400EVM and ADS5295EVM	12
4	Power-Up Indications	13
5	High Speed Data Converter Pro GUI Launch	14
6	ADS5295 GUI	16
7	ADS5295 GUI Plug-In Tab	17
8	Top Level Tab	18
9	ADS5295 Time Domain Setup	20
10	Time Domain Test	21
11	ADS5295 RAMP Test Pattern Capture	22
12	Graph Zoom Functions	23
13	ADS5295 RAMP Verification	24
14	ADC Channel Selection	25

ADS5295, 8-Channel, Analog-to-Digital Converter Evaluation Module

10/10/	۱۸/	ti	ററ	m
** **	••.	· · ·	00	

	15	Disable RAMP PATTERN	26
	16	Single Tone Test	27
	17	Single Tone Capture	28
	18	I/O, PWR, and USB Connector	29
	19	ADS5295EVM Default Clock Jumper Locations	31
	20	ADS5295EVM LED Location	33
	21	ADS5295EVM Test Point Locations	34
	22	Schematic, Sheet 1 of 9	36
2	23	Schematic, Sheet 2 of 9	37
2	24	Schematic, Sheet 3 of 9	38
2	25	Schematic, Sheet 4 of 9	39
	26	Schematic, Sheet 5 of 9	40
i	27	Schematic, Sheet 6 of 9	41
2	28	Schematic, Sheet 7 of 9	42
2	29	Schematic, Sheet 8 of 9	43
;	30	Schematic, Sheet 9 of 9	44
	31	ADS5295EVM Top Layer Assembly Drawing – Top View	47
;	32	ADS5295EVM Bottom Layer Assembly Drawing – Bottom View	48
;	33	ADS5295EVM Solder Paste Top	49
;	34	ADS5295EVM Solder Paste Bottom	50
	35	ADS5295EVM Soldermask Top	51
;	36	ADS5295EVM Soldermask Bottom	52
	37	ADS5295EVM Bottom Layer Copper – Bottom View	53
	38	ADS5295EVM Layer 5 Ground Plane	54
	39	ADS5295EVM Layer 4 Split Power Planes	55
	40	ADS5295EVM Layer 3 Split Power Planes	56
4	41	ADS5295EVM Layer 2 Ground Plane	57
4	42	ADS5295EVM Top Layer Copper – Top View	58

List of Tables

1	Input/Output, Power, and USB	29
2	Channel 8 Configuration	30
3	ADC Clock Various Mode Jumper Settings	32
4	LED Indicators	33
5	Miscellaneous Test Points	34
6	Bill of Materials	45

1 Quick View of Evaluation Setup

Figure 1 shows an overview of the evaluation setup that includes the ADS5295EVM evaluation module (EVM), TSW1400EVM, external equipment, personal computer (PC), and software requirements.

Figure 1. Evaluation Setup

TSW1400EVM/GUI: The high-speed LVDS deserializer board, TSW1400EVM, is required for capturing data from the EVM. The capture analysis uses the TSW1400 *High Speed Data Converter Pro* graphical user interface (GUI). For more information pertaining to the TSW1400EVM, see: http://focus.ti.com/docs/toolsw/folders/print/tsw1400evm.html

Equipment: Signal generators (with low-phase noise) must be used as the source of input signal and clock (optional) in order to get the desired performance. Additionally, band-pass filters (BPF) are required in signal and clock (optional) paths to attenuate the harmonics and noise from the generators.

Power Supply: A single +5-V supply powers the EVM. The supplies for the ADS5295 device are derived from the +5-V supply. The power supply must be able to source up to 1.5 A. A +5-V wall adapter supply powers the TSW1400EVM.

USB Interface to PC: The USB connection from the EVM and TSW1400EVM to the personal computer (PC) must be set up.

ADS5295GUI: Section 3.1 explains the GUI installation procedure and its operation.

Figure 2. ADS5295EVM Basic Configuration

- 1. The EVM basic configuration uses the onboard single-ended clock as the default option. See Section 9.2 for the ADC clock, various-mode jumper settings.
- 2. P1 or TP_VP & TP2: +5-V power supply.
- 3. JP4, JP5, and JP6 are set to enable +3.3V analog, +1.8VD digital, and +1.8VA analog to device, respectively.
- 4. JP13: Enable onboard CMOS clock.
- 5. JP16, JP18, JP19, JP20: ADC clock source selection jumpers.

3 Software Installation and Operation

The EVM requires a software installation to invoke the GUI. In addition, the TSW1400 *High Speed Data Converter Pro* GUI (version 2.0 or higher) must be installed. The following section describes the installation procedure for the ADS5295 GUI. For instructions on installing the TSW1400 *High Speed Data Converter Pro* GUI, please visit the TI website.

3.1 GUI Installation – Mandatory

• Unzip the installer file found on the TI website. Install the GUI by running setup.exe as administrator.

• Click Next.

• Click Next to proceed with the default install paths or Browse to desired paths and then click Next.

G ADS5295_96 GUI	
Destination Directory Select the primary installation directory.	
All software will be installed in the following locations. To install software into a different locations, click the Browse button and select another directory.	
Directory for ADS5295_96 GUI C:\Program Files (x86)\Texas Instruments\High Speed Data Converter Pro\	Browse
Directory for National Instruments products C:\Program Files (x86)\National Instruments\	Browse
<< <u>B</u> ack <u>N</u> ext >>	<u>C</u> ancel

• Read the Software License Agreement and click I accept ... and then click Next.

🖳 ADS5295_96 GUI
License Agreement You must accept the licenses displayed below to proceed.
NATIONAL INSTRUMENTS SOFTWARE LICENSE AGREEMENT
INSTALLATION NOTICE: THIS IS A CONTRACT. BEFORE YOU DOWNLOAD THE SOFTWARE AND/OR COMPLETE THE INSTALLATION PROCESS, CAREFULLY READ THIS AGREEMENT. BY DOWNLOADING THE SOFTWARE AND/OR CLICKING THE APPLICABLE BUTTON TO COMPLETE THE INSTALLATION PROCESS, YOU CONSENT TO THE TERMS OF THIS AGREEMENT AND YOU AGREE TO BE BOUND BY THIS AGREEMENT. IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY ALL OF ITS TERMS AND CONDITIONS, CLICK THE APPROPRIATE BUTTON TO CANCEL THE INSTALLATION PROCESS, DO NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE WITHIN THIRTY (30) DAYS OF RECEIPT OF THE SOFTWARE (WITH ALL ACCOMPANYING WRITTEN MATERIALS, ALONG WITH THEIR CONTAINERS) TO THE PLACE YOU OBTAINED THEM. ALL RETURNS SHALL BE SUBJECT TO NI'S THEN CURRENT RETURN POLICY.
The software to which this National Instruments license applies is ADS5295_96 GUI.
I accept the License Agreement
<< Back Next >> Cancel

• Click Next to begin installation of listed components.

💭 ADS5295_96 GUI	_ □ ×
Start Installation Review the following summary before continuing.	
Upgrading • ADS5295_96 GUI Files	
Adding or Changing National Instruments system components 	
Click the Next button to begin installation. Click the Back button to change the installation settings	
<u>Save File</u> << <u>B</u> ack <u>N</u> ext >>	<u>C</u> ancel

Software Installation and Operation

• The following window shows the installation progress:

4DS5295_96 GUI		
Oursest Programs 0% Complete		
uverali Progress, u% complete		
	<< <u>B</u> ack <u>N</u>	ext >> Cancel

• Clicking *Finish* completes the installation.

😡 ADS5295_96 GUI		_ D X
Installation Complete		
The installer has finished updating your system.		
	<< <u>B</u> ack <u>N</u> ext >>	Finish

• The PC must be restarted to complete the installation.

Test Setup

4 Test Setup

To evaluate the ADS5295 device, a TSW1400EVM is required. Figure 3 shows the exact setup of these two boards and external connectors.

- Connect the P10 connector of the ADS5295EVM to the J3 connector of the TSW1400EVM.
- Connect a +5-V supply at the P1 connector or across the TP_VP (+5 V) and TP2 (GND).
- Connect a +5-V wall adapter to the TSW1400EVM at the J12 connector.
- Connect a USB cable from the PC to USB1 on the ADS5295EVM.
- Connect a USB cable from the PC to USB port J5 of the TSW1400EVM.
- An external sampling clock is not required as the onboard 80-MHz CMOS clock oscillator is used in the default configuration.

Figure 3. Hardware Setup of TSW1400EVM and ADS5295EVM

5 Power Up ADS5295

After connecting the EVM to the TSW1400 using the **P10** connector, the +5-V adapter to TSW1400EVM, and the +5-V supply (from the external power supply) across **TP_VP** and **TP2**, power up is complete. One green LED (LED_+5V) and one orange LED (LED33VA) should turn on as shown in Figure 4 (also see Figure 20).

Figure 4. Power-Up Indications

Launch TSW1400 High Speed Data Converter Pro GUI

www.ti.com

6 Launch TSW1400 High Speed Data Converter Pro GUI

Upon launching the *High Speed Data Converter Pro* software, the GUI automatically detects the TSW1400EVM that is connected and reports its serial number as shown in Figure 5.

• Clicking **OK** connects to the board.

ile Instru	ment Opt	ons Data (apture Option	ns Tesl	Option	is He	þ																							
W T	ÈXAS NSTRU	MENTS							ł	lig	h S	pee	ed [Dat	a C	onv	/ert	ter	Pro	0 v1	.52									
8					AD	С												,						DA	с					
Test Sele	Capture ction		\$095- Sepo 0		5000	1	0000	15	000	200	00	2500	00	3000))	35000	4	0000	4	5000	5	00000		55000		60000		65000	7	
Sing	e Tone	×		Fre	quency	•	1	Ch	annel 1	/8	~		Blackm	an	~	1/1	Avera	ges												
P	Value 0.00	Unit	20.0-				_									_	_	_		-						_			_	
DR	0.00	Codes	19.0-				4	TSW	/1400), lvlib	:Seri	al nun	nber.v	vi						\times										2
D	-0.00	Codes	18.0-																											2
NAD	NaN	Codes	17.0-					Sele	ct Th	e Seri	al nui	mber d	of the	Devi	ce															
OB	NaN	Codes	17.0-					_																						
nd. Erct Sour	NaN	Codes	16.0-									Se	rial No	ımber	5				^											
2	-		15.0-					_				1144	UMLD	15W14	100															
3			14.0-																											
4			13.0-																											
5			12.0-																											
			11.0-																		-									
1	Codes	Samples	企 10.0-				-	_																						
e i i i	0.00	0.00E+0	岩 9.0-				-												~											
lta	0.00	4.10E+3	8.0-				-		<u> </u>							-				h F										
Douto Ca	Ineters	of	7.0-				-			OK					- 1 🖉	X)	Cano	cel												
Coherer	nt Frequer	cies	6.0-						_							-				J										
An alysis W	/indow (sa	mples)	5.0-				_												-											
655	536	~	4.0-																											
DC Samp	ling Rate	(Fs)	3.0-		_	_															_									
	0		2.0-																											
ADC Input	t Target F	equency	1.0-		_																									
0.00	000000		0.0-					_															_							_
			-1.0-																											
			0	sм	10M	15M	20M	25M	зом	35M	40M	45M	50M	1 557	4 601 Frequ	M 65M	1 70 17)	M 7	SM 8	зом	อร์M	90M	951	1 10	IM 1	05M 1	10M	115M	120M	125M
			<														-,													>

Figure 5. High Speed Data Converter Pro GUI Launch

• In the upper left corner of the GUI, select ADS5295 in the drop down menu of Select ADC.

• Click Yes to update the Firmware for the ADC.

• The following window appears while the firmware is loading.

• A new tab labeled **ADS5295 GUI** appears in the *High Speed Data Converter Pro* GUI as shown in Figure 6. This tab allows control of the ADS5295 device.

Figure 6. ADS5295 GUI

7 ADS5295 GUI Plug-In Tab

The third tab of the *High Speed Data Converter Pro* GUI labeled **ADS5295 GUI** contains all the serial register programming of the ADS5295 device.

- The ADS5295 GUI tab contains two sub-tabs called Read Me First and High Level Test. The default tab displayed is the Read Me First tab as shown in Figure 7
- A table of all operating modes that the device supports is shown in this tab. The device can be quickly configured to any of the operating modes listed by selecting the appropriate **Saved Sequence** file name once the **Playback Sequence** button is pushed. This button is located in the right side of the GUI in the *RECORD/PLAYBACK COMMAND SEQUENCE* section. (*Note: The FPGA firmware of the TSW1400 capture card is automatically updated to match the operating mode selected*.)

Jis	TEXAS			Lill of the								
Y	INSTRU	MENTS		High S	peed	Data Co	nverter Pro	0 v1.52				
			ADC			DAC			ADS5	295 GL	л	
4	AD55295			Read Me First					ah Level Test		1	~
_	C								SIMULATION			
	Capture								Simulati	on		
ist Sele	ection											
Sing	le Tone	~							RECORD/PLA	YBACK COM	MAND SEQ	UENCI
	Value	Unit	1. EVM's DESCRIPTION	: EVM String Description sho	ows the de	evice connected.			Reco	rd Sequence		
	0.00	dBFs		EVM String Description								
2	0.00	dBc		AD55295EVM					Sav	e Sequence		
n.	0.00	dBFs	2 RECORD SECURINGE	Allows the user to record		during the everyt	ion of the command			1.0		
B	0.00	Bits	2. RECORD SEQUENCE	Allows the user to record	sequence	during the execut	Joir of the command	5.	Playb	ack Sequence	8	
l. –	0.00	dBFs	3. SAVE SEQUENCE	: Allows the user to save th	ne recorde	d sequence to a fi	le		Decorded Se		Clear Sec	queno
st Spur	0.00	dBFs		during the execution of th	ne commar	nds.			Recorded Se	Add:	Data	
	dBFs	Hz							TUDEX	Addr	Daca	
	0.00	0.00E+0	4. PLAYBACK SEQUENCE	: Allows the user to playbac	:k the save	ed sequence in a f	ile.					
5	0.00	1.00E+6	4. VERSION INFO.	Version : 1.0 11/27/2012								
									1			
												~
:st Par	ameters		OPERATING MODES OF JADS	5295							_	
Auto C	alculation	of	Saved Sequence	Mode	n-bit	# of Channels	Fclockmax(MHz)	1 or 2-wire mode	LVDS Data Rate		^	
Cohere	nt Freque	ncies	5295_10b_8ch_1W	1-wire Mode	10	8	100	1-Wire	1000			
alysis \	Nindow (sa	amples)	5295_10b_8ch_2w_bit	Bit wice	10	8	100	2-wire	500			
65	536	~	5295 10b 8ch 2w word	Word wise	10	8	100	2-wire	500			
CSam	pling Rate	e (Fs)	5295_12b_8ch_1w	1-Wire Mode	12	8	80	1-wire	960			
	0		5295_12b_8ch_2w_byte	Byte wise	12	8	100	2-wire	600			
DC Inpu	it Target F	requency	5295_12b_8ch_2w_bit	Bit wise	12	8	100	2-wire	600			
0.0	0000000		5295_12b_8ch_2w_word	Word wise	12	8	100	2-wire	2-wire 600		-	
			5295 14b 8ch 1w	1-Wire Mode	14	8	65	1-wire	910			
			<u>×</u>							/		
									Ready		Idle	

Clicking the High Level Test tab accesses all serial registers.

Figure 7. ADS5295 GUI Plug-In Tab

- The High Level Test tab contains five sub-tabs: Top Level, Test Pattern, Dig Sig Proc, Channel Filter, IN/OUTP Map. The default tab is the Top Level tab as shown in Figure 8.
- The Top Level tab contains four sections: OUTPUT INTERFACE MODES, GENERAL SETUP, POWERDOWN MODES, CUSTOM READ/ WRITE.
- To verify that communication with the ADS5295 is functioning properly, inside the *POWERDOWN MODES* section, click the checkbox labeled **PDN_COMPLETE**. The DC current from the power supply should drop to approximately 140 mA when this box is checked. Uncheck this box before continuing.

ADS5295 GUI Plug-In Tab

💀 High S	peed Dat	a Conver	ter Pro					
File Instru	ument Opti	ons Data (apture Options Test Options	Help				
*	TEXAS INSTRUI	MENTS		Hi	igh Speed Dat	a Converter	Pro v1.52	
	1		ADC		DA(C		ADS5295 GUI
ļ.	AD55295	•		Read Me First			High Le	evel Test
	Capture		Top Level	Test Pattern	Dig Sig Proc	Channel Filter	IN/OUTP Map	SIMULATION
Test Sele	ection							Simulation
Time	Domain	~	OUTPUT INTERFACE MOI	DES	GENERAL SETUP		POWERDOWN MODES	RECORD/PLAYBACK COMMAND SEQUENCE
	Value	Unit	EN_MSB_FIRST	LSB-First	RST (Soft Reset)	OFF	PDN_PARTIAL	Record Sequence
Min	0.00	Codes	DTC MODE				PDN_COMPLETE	
St Dev	4095.00	Codes	RIC_MODE	Offset Binary	EN_HIGH_ADDR C	isabled Regs ≥ 0xC8 Addr	PDN_PIN_CFG	Save Sequence
Mean	2047.50	Codes	EN_SDR	DDR		THE DECK - LL I	PDN_CH1	Playback Sequence
Median RMS	2047.50	Codes Codes			EN_EXT_REF	INT REF Enabled	PDN_CH2	Clear Sequence
Peak to Pe	4095.00	Codes	FALL_SDR	LCLK Falling Edge	EN EXT VCM	DRIVE VCM Pin	PDN_CH3	Recorded Sequence
PAR	4.77	dB	BIT_SER_SEL	12-Bits			PDN_CH4	Index Ador Data
							PDN_CH6	
_			DATA_RATE	ADC sampling rate 🔽			PDN_CH7	I I I I I I I I I I I I I I I I I I I
	Codes	Samples	PHASE DDR	00 🗸			PDN_CH8	
MI	1088.00	0.00E+0						
M2 Delta	1088.00	4.10E+3 4.10E+3	EN_2WIRE	1-Wire LVDS Output	CUSTOM WRITE/REA	AD		address × F Data × 200
Test Par	ameters		EN BIT WORD WISE	BYTE - WISE	Custom Write Regis	terCus	tom Read Register	DIGITAL WAVEFORM GRAPH-WRITE
Auto C. Cohere	alculation of the second	of		Contra Trada	Write Ad	dress	Read Address	SCLK-70000000000000000000
An alysis V	Nindow (sa	nples)	EN_WORDWISE_BY_CH	OTHER	× 0		× 0	SDATA-0100
65	536	~	EN BIT WISE	BYTE - WISE	Ubite Da		David Data	SEN-0
ADC Sam	pling Rate	(Fs)	CH_OTT_WIDE	DITE - WIDE	write Da	a	× 0	
ADC Issue	80M							DEVICE PIN CONTROL
0.0	0000000	equency			Write Custon	Register	Read Custom Register	[]PD
		_	Current Output Mode	-				
	PHASE_DDR Graphs		View O Close				Device STATUS	
								Tready Trie
		Firmware	Version = "0.2"		TSW 1400 Board = TIVN	IMLD	Interface T	voe = ADC_FIRMWARE
Waiting	for up or in	nut	TERMON - OIL	11/20/2012	2 12:25:04 AM Duild 44	(20/2012 CONNEC	TED	TEXAS INSTRUMENTS
avalung i	or user if	put		11/29/2012	2 12.33.04 PM Build - 11	CONNEC	Iule	TEAAS INSTRUMENTS

Figure 8. Top Level Tab

- The OUTPUT INTERFACE MODES section contains all serial registers associated with the LVDS data output format. The FPGA firmware of the TSW1400 capture card is automatically updated when one of these registers, such as DATA_RATE, is updated.
- The CUSTOM WRITE/READ section allows manual programming of a serial register's data value given it's address. In addition, the current data value of any serial register can be read from the device by inputting it's address.

💀 High S	peed Da	ta Conver	ter Pro						
File Instru	ment Opt	ions Data (Capture Options Test Options	Help					
-	ÎEXAS ÎNSTRU	MENTS		н	igh Speed Dat	a Converter	Pro v1.52		
	ADC			DAC	0		ADS5295 GUI		
A	DS5295	•		Read Me First			High Le	evel Test	
	Capture		Top Level	Test Pattern	Dig Sig Proc	Channel Filter	IN/OUTP Map	SIMULATION	
Test Sele	ction							Simulation	
Sing	le Tone	~	OUTPUT INTERFACE MO	DES	GENERAL SETUP		POWERDOWN MODES	RECORD/PLAYBACK COMMAND SEQUENCE	
	Value	Unit	EN_MSB_FIRST	LSB-First	RST (Soft Reset)	OFF	PDN_PARTIAL	Record Sequence	
SNR	0.00	dBFs	BTC MODE	Offert Director			PDN_COMPLETE		
THD	0.00	dBFs	DIC_HODE	Orfset Binary	EN_HIGH_ADDR D	isabled Regs ≥ 0xC8 Addr	PDN_PIN_CFG	Save Sequence	
SINAD	0.00	dBFs	EN_SDR	DDR		THE DEE Eachlad	PDN_CH1	Playback Sequence	
Fund.	0.00	dBFs			EN_EXT_REP	TALKEL FUGDIO	PDN_CH2	Clear Sequence	
Worst Spur	0.00	dBFs	FALL_SOR	LCLK Falling Edge	EN EXT VCM	DRIVE VCM Pin	PDN_CH3	Today Addr Data	
HD2 HD3	dBFs	Hz 0.00E+0	BIT_SER_SEL	12-Bits 🗸			PDN_CH5		
HD4	0.00	1.00E+6		10-Bits			PDN_CH6		
HD5	0.00	1.00E+6	DATA_RATE	/ 12-Bits			PDN_CH7	✓	
ное			PHASE DDR	14-Bits			PDN_CH8		
M1				16-bits					
M2 Delta			EN_2WIRE	1-Wire LVDS Output	CUSTOM WRITE/REA	ND		address × 24 Data × 0	
Test Para	ameters		EN RIT WORD WISE	DVTE - WICE	Custom Write Regis	terCus	tom Read Register	DIGITAL WAVEFORM GRAPH-WRITE	
Auto Ca	alculation	of	EN_DIT_WORD_WIDE	DTTC - WIDE	Write Ad	dress	Read Address	SCLK - TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
An alysis V	Vindow (sa	mples)	EN_WORDWISE_BY_CH	OTHER	× 0		× 0	SDATA - 0 0 0	
655	536	~	EN DIT WICE	DUTE UNTER				SEN-] 0 [
ADC Samp	pling Rate	(Fs)	ENTER T	BYTE - WIDE	Write Dat	a	Read Data		
	0						~ 0	DEVICE PIN CONTROL	
ADC Inpu	t Target F	requency	_		Write Custom	Register	Read Custom Register	PD	
0.00			Current Output Mode	-					
			PHASE_DDR Graphs	View O Close				DEVICE STATUS	
								Keady Idle	
		Firmware	Version = "0.2"		TSW 1400 Board = TIVNL	IMLD	Interface T	ype = ADC_FIRMWARE	
Waiting f	Valting for user input 11/29/2012 12:28:22 AM Build - 11/28/2012 CONNECTED Idle 🛛 👽 TEXAS INSTRUMENTS								

8 Test ADS5295

This section describes how to test the ADS5295 device in two ways: Time Domain and Single Tone.

8.1 Step 1: Time Domain

Time Domain test consists of applying a RAMP function to the ADC inputs, capturing, and verifying that every ADC code is generated incrementally.

- Select Test Pattern tab.
- In the TEST PATTERN MODES section, select RAMP PATTERN in the Enable Pattern Mode drop down menu. (Note: the RAMP PATTERN is applied internal to the device to all ADC channels simultaneously.)

Figure 9. ADS5295 Time Domain Setup

• On the *ADC* tab of the *High Speed Data Converter Pro* GUI, select **Time Domain** from the **Test Selection** drop down menu as shown in Figure 10.

Figure 10. Time Domain Test

- Input the appropriate ADC Sampling Rate (80 MHz in the default configuration of ADS5295 EVM) .
- Press the Capture button.

• A saw tooth ramp should be captured as shown below.

Figure 11. ADS5295 RAMP Test Pattern Capture

• Use the zoom functions provided in the *High Speed Data Converter Pro* GUI to verify that the captured RAMP is correct.

Figure 12. Graph Zoom Functions

 Zoom in on the RAMP until it is clear that every subsequent sample is an increment in ADC code as shown below.

Figure 13. ADS5295 RAMP Verification

٠

Repeat the above procedure for all eight ADC channels using the selection box shown in Figure 14.

Test ADS5295

Figure 14. ADC Channel Selection

8.2 Step 2: Single Tone FFT

The *Single Tone* test consists of applying a sine wave from an external signal generator to an ADC input, capturing, and analyzing performance.

• Disable the **RAMP PATTERN** by setting the **Enable Pattern Mode** to **None**.

Figure 15. Disable RAMP PATTERN

- Set the Test Selection to Single Tone.
- Set the ADC Input Target Frequency to 1M (Note: the value automatically changes to the exact coherent frequency once the Auto Calculation box is checked).
- Check the box labeled Auto Calculation of Coherent Frequencies.

Figure 16. Single Tone Test

- Connect Channel 1 of the ADS5295EVM to a signal generator through a band-pass filter (BPF). If no BPF is present, the results are not good.
- The **amplitude** of the input signal is dependent on the insertion loss of the filter and cables used as well as the desired backoff from full-scale. An iterative approach is used to determine the amplitude setting required to operate at approximately -1.0 dBFS. In this test setup, the amplitude was set to **+18.4 dBm**.
- Set the **frequency** of the signal generator to that shown in the **ADC Input Target Frequency** box (1.00219727M).
- Change the window option to **Hanning**, due to the fact that input signal and onboard CMOS clock are non-coherent.
- Pressing the Capture button returns the test result.
- Repeat for Channels 2 through 8.

Figure 17. Single Tone Capture

9 Board Configuration

9.1 Input/Output, Power Supply, and USB

Figure 18. I/O, PWR, and USB Connector

Connector	Description
J6,J7,J10J15	Analog Input signals for Ch1-Ch8. Connect to a signal generator. A band-pass filter must be applied between the generator and the SMA to get a better result.
J16	An alternative input for channel 8. Install two resistors (R169 and R170) and remove two resistors (R171 and R172) from J6.
P1/TP_VP	P1 is the +5-V power supply connector. TP_VP is the test point for +5-V power supply.
JP4	Onboard 3.3-V Analog enables. Set up as shown in Figure 2 is required to use onboard 3.3 V.
JP5	Onboard 1.8-V Digital enables. Set up as shown in Figure 2 is required to use onboard 1.8 V.
JP6	Onboard 1.8-V Analog enables. Set up as shown in Figure 2 is required to use onboard 1.8 V.

Table 1. Input/Output, Power, and USB

SLAU442–November 2012 Submit Documentation Feedback ADS5295, 8-Channel, Analog-to-Digital Converter Evaluation Module 29

Table 1. Input/Output, Power, and USB (continued)

Connector	Description
TP1, TP2, TP3, TP4, TP5, TP14, TP21, TP23, TP25, TP34,	Ground test points.
USB1	USB interface connector

Table 2. Channel 8 Configuration

Input Interface Type	Connector	Description
Through Transformer (Default)	J6	In default configuration, R171 and R172 are already populated
Through Amplifier (Not Default)	J16	It is an alternative input for channel 8. Need to install two resistors (R169 and R170) and remove two resistors(R171 and R172) from J6.It uses TI THS4509 single-ended to differential amplifier.

9.2 ADC Clock

Five options are available for the source of the ADC clocks. Refer to Table 3 for details. In Figure 19, the EVM uses an onboard, single-ended clock as the default option.

Figure 19. ADS5295EVM Default Clock Jumper Locations

Clock Type		Reference Designator	Jumper Setting	Diagram
	Onboard CMOS Oscillator	JP13, JP19, JP20, JP16, JP18	JP13 (1-2), JP20 (2-3), JP19 (1-2), JP16 (2-3), JP18 (2-3)	Dia. 1 (Default Option)
Single Ended	External CMOS Clock Generator	J8, JP19, JP20, JP16, JP18	JP20 (2-3), JP19 (2-3), JP16 (2-3), JP18 (2-3) and Connect CMOS clock generator output at SMA connector J8.	Dia. 2
	Transformer Based External	JP15, JP17, JP16, JP18, J4	JP15 (1-2), JP16 (1-2), JP17 (1-2), JP18 (1-2), and Connect external Clock source at SMA connector J4	Dia. 3
	Onboard Clock Buffer	JP13, JP19, JP20, JP15, JP17, JP16,	JP13 (1-2), JP20 (1-2), JP19 (1-2), JP15 (2-3), JP17 (2-3), JP16 (1-2), JP18 (1-2).	Dia. 4
Differential Clock Signal	(CDCLVP1102,U4)	JP18	This configures the onboard CMOS oscillator as clock input to buffer.	
		J8, JP19, JP20, JP15, JP17, JP16, JP18	JP19 (2-3), JP20 (1-2), JP15 (2-3), JP17 (2-3), JP16 (1-2), JP18 (1-2) and Connect External CMOS generator output at SMA connector J8.	Dia. 5
			This configures the external CMOS source as clock input to buffer.	

Table 3. ADC Clock Various Mode Jumper Settings

Dia.1

T

K A

į,

77

175 Dia.4

Board Configuration

9.3 Light-Emitting Diodes (LEDs)

Figure 20. ADS5295EVM LED Location

Table 4. LED Indicators

Reference Designator	Power Supply	Color
LED_+5V	+5 V	Green
LED1.8VA	+1.8 VA	Off
LED1.8VD	+1.8 VD	Off
LED3.3VA	+3.3 VA	Orange

9.4 Miscellaneous Test Points

Figure 21. ADS5295EVM Test Point Locations

Table 5	Miscellaneous	Test Points

Reference Designator	Description
TP22	VCM: Common-mode output pin, 0.95-V output
TP6	CDC_VTH: Fixed voltage level (1.65 V)
TP_D0	SCLK: Serial clock input
TP_D1	SDA: Serial data input
TP_D2	SEN: Serial enable chip select
TP_D7	SDOUT: Serial data output

Reference Designator	Description
JP14	RESET: Install to reset the device (DUT1) manually
JP12	PD: Install to power down the device (DUT1) manually

Table 5. Miscellaneous Test Points (continued)

EVM Schematics

10 EVM Schematics

Figure 23. Schematic, Sheet 2 of 9

Figure 24. Schematic, Sheet 3 of 9

EVM Schematics

-0

TP1 TP2 TP4 TP14 TP21 TP23 TP25 TP3 5001 5001 5001 5001 5001 5001 5001 5001 \checkmark

Figure 25. Schematic, Sheet 4 of 9

ADC CLOCK

Figure 26. Schematic, Sheet 5 of 9

Figure 27. Schematic, Sheet 6 of 9

ADC OUTPUT (TO SAMTEC CONNECTOR)

Figure 30. Schematic, Sheet 9 of 9

11 ADS5295EVM Bill of Materials

Table 6. Bill of Materials

ITEM	QTY	MFR P/N	Description	Value	MFR	RoH S	REF DES	Digi-Key P/N
1	1	ADS5295IPFP	12-Bit 8-Channel ADC	ADS5295	Texas Instruments	Yes	DUT1	Texas Instruments
2	0	ADS5294IPFP	14-Bit 8-Channel ADC	ADS5294	Texas Instruments	Yes	DUT1	Texas Instruments
3	0	ADS5292IPFP	12-Bit 8-Channel ADC	ADS5292	Texas Instruments	Yes	DUT1	Texas Instruments
4	17	ADT4-1WT+	RF TRANSFORMER WIDEBAND, 2-775 MHz, 50 OHM	ADT4-1WT+	Mini-Circuits	Yes	T1-T17	Mini-Circuits
5	1	CDCLVP1102RGT	TWO LVPECL OUTPUT CLOCK BUFFER	CDCLVP1102	Texas Instruments	Yes	U4	296-25283-1-ND
6	2	CRCW06034R99FKEA	RES 4.99 OHM 1/10W 1% 0603 SMD	4.99 Ω	Vishay/Dale	Yes	R37,R38	541-4.99HHCT-ND
7	16	CRCW040210R0FKED	RES 10.0 OHM 1/16W 1% 0402 SMD	10.0 Ω	Vishay/Dale	Yes	R45,R46,R51,R52,R57,R58,R63,R64,R69,R70, R75,R76,R81,R82, R87,R88	541-10.0LCT-ND
8	1	CRCW040249R9FKED	RES 49.9 OHM 1/16W 1% 0402 SMD	49.9 Ω	Vishay/Dale	Yes	R34	541-49.9LCT-ND
9	2	CRCW060353R6FKEA	RES 53.6 OHM 1/10W 1% 0603 SMD	53.6 Ω	Vishay/Dale	Yes	R31,R40	541-53.6HCT-ND
10	1	CRCW06030000Z0EA	RES 0.0 OHM 1/10W 0603 SMD	0.0 Ω	Vishay/Dale	Yes	R36	541-0.0GCT-ND
11	2	CRCW0603487RFKEA	RES 487 OHM 1/10W 1% 0603 SMD	487 Ω	Vishay/Dale	Yes	R32,R35	541-487HCT-ND
12	4	CRCW0402100RFKED	RES 100 OHM 1/16W 1% 0402 SMD	100 Ω	Vishay/Dale	Yes	R3,R4,R21,R22	541-100LCT-ND
13	3	CRCW04021K00FKED	RES 1.00K OHM 1/16W 1% 0402 SMD	1.00Κ Ω	Vishay/Dale	Yes	R2,R12,R168	541-1.00KLCT-ND
14	2	CRCW0402499RFKED	RES 499 OHM 1/16W 1% 0402 SMD	499 Ω	Vishay/Dale	Yes	R33,R164	541-499LCT-ND
15	3	CRCW080510K0FKEA	RES 10.0K OHM 1/8W 1% 0805 SMD	10.0Κ Ω	Vishay/Dale	Yes	R11,R13,R14	541-10.0KCCT-ND
16	7	C0402C104K8PACTU	CAP .10UF 10V CERAMIC X5R 0402	0.1uF	Kemet	Yes	C36,C37,C40,C41,C44,C45,C48	399-3027-1-ND
17	1	ECJ-0EB1H102K	CAPACITOR,SMT,0402,CER,1000pF,50V,10%,X7R	1000pF	Panasonic	Yes	C55	PCC1721CT-ND
18	4	ECJ-0EB1H122K	CAPACITOR,SMT,0402,CER,1200pF,50V,10%,X7R	1200pF	Panasonic	Yes	C71,C72,C75,C76	PCC1722CT-ND
19	2	ECJ-0EB1E181K	CAP 180PF 25V CERAMIC X7R 0402	180pF	Panasonic	Yes	C73,C74	PCC1705CT-ND
20	2	ECJ-0EC1H390J	CAP 39PF 50V CERAMIC 0402 SMD	39pF	Panasonic	Yes	C29,C30	PCC390CQCT-ND
21	5	ECJ-1V41E105M	CAP 1UF 25V CERAMIC 0603 X5S	1uF	Panasonic - ECG	Yes	C26,C31,C52,C68,C70	PCC2354CT-ND
22	1	ECS-3953M-800-BN	OSC,SMT,3.3V,50ppm,-40~85C,5nS,80.000 MHz	OSC 80 MHZ	ECS Inc	Yes	U3	XC344CT-ND
23	4	ELJ-RE33NGFA	INDUCTOR 33NH 2% 0603 SMD	33nH	Panasonic	Yes	L1,L4	PCD2008CT-ND
24	2	ERJ-2GEJ131	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,130	130 Ω	Panasonic	Yes	R27,R29	P130JCT-ND
25	2	ERJ-2GEJ820	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,82	82 Ω	Panasonic	Yes	R28,R30	P82JCT-ND
26	27	ERJ-2GE0R00X	RESISTOR/JUMPER,SMT,0402,0 OHM,5%,1/16W	0 Ω	Panasonic	Yes	R5,R6,R7,R8,R10,R47,R48,R53,R54,R59,R60, R65,R66,R71,R72,R77,R78,R83,R84,R89,R90, R93,R166,R167,R171,R172,R173	P0.0JCT-ND
27	16	ERJ-2RKF24R9X	RESISTOR,SMT,0402,24.9 OHM,1%,1/16W	24.9 Ω	Panasonic	Yes	R43,R44,R49,R50,R55,R56,R61,R62,R67,R68, R73,R74,R79,R80,R85,R86	P24.9LCT-ND
28	2	ERJ-2RKF49R9X	RESISTOR,SMT,0402,49.9 OHM,1%,1/16W	49.9 Ω	Panasonic	Yes	R1,R20	P49.9LCT-ND
29	3	ERJ-2RKF1000X	RESISTOR,SMT,0402,100 OHM,1%,1/10W	100 Ω	Panasonic	Yes	R15,R16, R18	P100LCT-ND
30	1	ERJ-2RKF3320X	RESISTOR,SMT,0402,332 OHM,1%,1/16W	332 Ω	Panasonic	Yes	R17	P332LCT-ND
31	1	FT245RL	USB FIFO IC INCORPORATE FTDICHIP-ID SECURITY DONGLE	USB	FTDI	Yes	U10	768-1011-1-ND
32	0	GRM1555C1H3R3CZ0 1D	CAP CER 3.3PF 50V C0G 0402	3.3pF	Murata	Yes	C77,C85,C92,C99,C106,C113,C120,C127,C134	490-1270-1-ND
33	9	GRM1555C1H6R8DZ0 1D	CAP CER 6.8PF 50V C0G 0402	6.8pF	Murata	Yes	C77,C85,C92,C99,C106,C113,C120,C127,C134	490-1276-1-ND

Table 6. Bill of Materials (continued)

ITEM	QTY	MFR P/N	Description	Value	MFR	RoH S	REF DES	Digi-Key P/N
34	8	HI0805R800R-10	FERRITE CHIP POWER 80 OHM SMD	FERRITE	Laird-Signal Integrity Products	Yes	FB1,FB2,FB3,FB4,FB5,FB6,FB7,FB8	240-2395-1-ND
35	2	ISO7240MDW	QUAD DIGITAL ISOLATORS	IC DGTL ISOL	Texas Instruments	Yes	U9,U11	296-22629-5-ND
36	3	JMK107BJ106MA-T	CAPACITOR,SMT,0603,CERAMIC,10uF,6.3V,20%,X5R	10uF	Taiyo Yuden	Yes	C33,C51,C54	587-1256-1-ND
37	10	JUMPER-0603(UN)	UNINSTALLED JUMPER,SMT0603	DNI			TP8,TP9,TP10,TP11,TP15,TP16,TP17,TP18, TP19,TP20	DNI
38	3	LNJ308G8PRA	LED,SMT,0603,PURE GREEN,2.03V	LED	Panasonic	Yes	LED18VA,LED18VD,LED_+5V	P11485CT-ND
39	1	LNJ808R8ERA	LED,SMT,0603,ORANGE,1.8V	LED	Panasonic	Yes	LED33VA	P523CT-ND
40	1	897-43-005-00-100001	CONN RECEPT MINI-USB TYPE B SMT	USB Mini B	Mill-Max	Yes	USB1	ED90341CT-ND
41	1	QTH-060-01-L-D-A	HEADER,SMT,120P,0.5mm,FEM,2BANK,RECEPTACLE,168/19 8H	CONN	Samtec Inc	Yes	P10	SAM8189-ND
42	2	TEST POINT YELLOW	NOT INSTALLED	DNI			TP22, TP35	DNI
43	1	THS4509QRGTRQ1	WIDEBAND,LOW NOISE,LOW DISTORTION FULLY DIFF AMP,1900 MHz	IC OPAMP	Texas Instruments	Yes	U12	296-24104-1-ND
44	9	TPSC226K016R0375	10%, 16V, 22uF	22µF	AVX	Yes	C35,C38,C39,C42,C43,C46,C47,C78,C79	478-1762-1-ND
45	2	TPS79618DCQR	ULTRALOW-NOISE HI PSRR FAST RF 1-A LDO LINEAR REGULATOR,1.8V	LDO REG 1.8V	Texas Instruments	Yes	U6,U7	296-13762-1-ND
46	1	TPS79633DCQR	ULTRALOW-NOISE HI PSRR FAST RF 1-A LDO LINEAR REGULATOR,3.3V	LDO REG 3.3V	Texas Instruments	Yes	U8	296-13766-1-ND
47	1	1SMB5921BT3G	DIODE ZENER 6.8V 3W SMB	DIODE Zener	ON Semiconductor	Yes	Z1	1SMB5921BT3GOSCT-ND
48	5	9-146285-0-02	CONN HEADR BRKWAY .100 02POS STR	CONN Header	TE Connectivity	Yes	JP10,JP11,JP12,JP13,JP14	A32700-02-ND
49	10	9-146285-0-03	CONN HEADR BRKWAY .100 03POS STR	CONN Header	TE Connectivity	Yes	JP4,JP5,JP6,JP15,JP16,JP17,JP18,JP19,JP20,J P21	A32700-03-ND
50	12	901-144-8	SMA COAX STRAIGHT PCB CURRENT P/N IS 901-144-8RFX	SMA	Amphenol	Yes	J4,J5,J6,J7,J8,J10,J11,J12,J13,J14,J15,J16	ARFX1231-ND
51	76	0402YD104KAT2A	CAP CERM .1UF 10% 16V X5R 0402	0.1uF	AVX	Yes	C1,C2,C3,C4,C5,C6,C7,C8,C13,C14,C17,C25, C27,C28,C32,C34,C53,C56,C57,C58,C62,C63, C65,C66,C67,C69,C81,C82,C83,C84,C86,C87, C88,C89,C90,C91,C93,C94,C95,C96,C97,C98, C100,C101,C102,C103,C104,C105,C107,C108, C109,C110,C111,C112,C114,C115,C116,C117, C118,C119,C121,C122,C123,C124,C125,C126, C128,C129,C130,C131,C132,C133,C135,C136, C137,C138	478-1126-1-ND
52	1	5000	TESTPOINT,THU,MINIATURE,0.1LS,120TL, RED	Test Point,Red	Keystone Electronics	Yes	TP_VP	5000K-ND
53	9	5001	TESTPOINT, THU, MINIATURE, 0.1LS, 120TL, BLACK	Test Point,Black	Keystone Electronics	Yes	TP1,TP2,TP3,TP4,TP5,TP14,TP21,TP23,TP25	5001K-ND
54	5	5002	TESTPOINT,THU,MINIATURE,0.1LS,120TL, WHITE	Test Point,White	Keystone Electronics	Yes	TP6,TP_D0, TP_D1,TP_D2,TP_D7	5002K-ND
55	1	5003	TESTPOINT, THU, MINIATURE, 0.1LS, 120TL, ORANGE	Test Point,Orange	Keystone Electronics	Yes	TP34	5003K-ND
56	1	39357-0002	HEADER, THRU, POWER, 2P,3.5MM, EUROSTYLE	CONN TERMINAL	Molex Connector Corp	Yes	P1	WM7877-ND
57	0	CRCW06030000Z0EA	RES 0.0 OHM 1/10W 0603 SMD	0.0 Ω	Vishay/Dale	Yes	R169, R170,R201, R202	541-0.0GCT-ND (DNI)
58	4	24436	STANDOFF HEX M3 THR ALUM 18MM	STANDOFF	Keystone	Yes	STANDOFF HEX M3 THR ALUM 18MM	24436K-ND
59	4	29311	SCREW STEEL M3 THR 6MM	SCREW	Keystone	Yes	SCREW STEEL M3 THR 6MM	29311K-ND

12 ADS5295EVM Printed-Circuit Board Layout

Figure 31 through Figure 42 illustrate the PCB layouts for the EVM.

Figure 31. ADS5295EVM Top Layer Assembly Drawing – Top View

ADS5295EVM Printed-Circuit Board Layout

ML

SIL

맯

er:

ST.

8PC

IST.

Figure 32. ADS5295EVM Bottom Layer Assembly Drawing – Bottom View

ADS5295, 8-Channel, Analog-to-Digital Converter Evaluation Module

M

뱀

Figure 33. ADS5295EVM Solder Paste Top

ADS5295EVM Printed-Circuit Board Layout

www.ti.com

Figure 34. ADS5295EVM Solder Paste Bottom

Figure 35. ADS5295EVM Soldermask Top

Figure 36. ADS5295EVM Soldermask Bottom

Figure 38. ADS5295EVM Layer 5 Ground Plane

Figure 39. ADS5295EVM Layer 4 Split Power Planes

Figure 40. ADS5295EVM Layer 3 Split Power Planes

Figure 41. ADS5295EVM Layer 2 Ground Plane

ADS5295EVM Printed-Circuit Board Layout

www.ti.com

Figure 42. ADS5295EVM Top Layer Copper – Top View

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

[Important Notice for Users of this Product in Japan]

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

- Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
- 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А