OZSA Series HF 60 OZSA Series Fuse RoHS 2 Compliant & Halogen-Free ### **Application** Rechargeable battery packs, Lithium cell and battery packs #### **Product Features** Low profile, Solid state ### Operating (Hold Current) Range 1.2A - 4.2A ### Maximum Voltage 15V - 30VDC ### Temperature Range -40°C to 85°C ### Agency Approval TUV (Std. EN62319-1-1, Cert. R50102187) UL Component (Std. UL1434, File E305051) UL Conditions of Acceptability: - 1. These devices have been investigated for use in safety circuits and are suitable as a limiting device. - 2. These devices have been calibrated to limit the current to 8 amps within 5 seconds, per ANSI/NFPA 70, "National Electrical Code". LEAD FREE = (Pb) HALOGEN FREE = HF # Electrical Characteristics (23°C) | | Part Number
(Bulk) | Hold
Current | Trip
Current | Max Time to Trip
@ 5xIH | Rated
Voltage | Max.
Current | Typical
Power | Resistance Tolerance | | | Agency Approvals | | |---|-----------------------|-----------------|-----------------|----------------------------|------------------|-----------------|------------------|----------------------|-------|-------|------------------|-------------| | | | | | | | | | Rmin | Rmax | R1max | c SU us È | \triangle | | | | IH, A | IT, A | Seconds | Vmax, Vdc | Imax, A | Pd, W | Ohms | Ohms | Ohms | | TÜV | | Α | 0ZSA0120FF1E | 1.20 | 2.70 | 5.0 | 15 | 100 | 1.2 | 0.085 | 0.160 | 0.220 | Υ | Υ | | В | 0ZSA0175FF1E | 1.75 | 3.80 | 5.0 | 15 | 100 | 1.5 | 0.050 | 0.090 | 0.120 | Υ | Υ | | С | 0ZSA0200FF1E | 2.00 | 4.40 | 4.0 | 30 | 100 | 1.9 | 0.030 | 0.060 | 0.100 | Y | Υ | | D | 0ZSA0350FF1E | 3.50 | 6.30 | 3.0 | 30 | 100 | 2.5 | 0.017 | 0.031 | 0.050 | Υ | Υ | | Ε | 0ZSA0420FF1E | 4.20 | 7.60 | 6.0 | 30 | 100 | 2.9 | 0.012 | 0.024 | 0.040 | Y | Υ | ΙH Hold Current-maximum current at which the device will not trip in still air at 23°C. Trip current-minimum current at which the device will always trip in still air at 23°C. Imax Maximum fault current device can withstand without damage at rated voltage (Vmax). Vmax Maximum voltage device can withstand without damage at its rated current. Pd Typical power dissipated by device when in tripped state in 23°C still air environment. Minimum device resistance at 23°C. Rmin Rmax Maximum device resistance at 23°C R1max Maximum device resistance at 23°C, 1 hour after initial device trip, or after being soldered to PCB in end application. Specifications subject to change without notice Bel Fuse Inc. 206 Van Vorst Street +1 201.432.0463 Bel.US.CS@belf.com belfuse.com/circuit-protection Jersey City, NJ 07302 USA **OZSA Series** RoHS 2 Compliant & Halogen-Free ### PTC's - Basic Theory of Operation / "Tripped" Resistance Explanation Fundamentally, a Bel PTC consists of a block of polymeric material containing conductive filler and bonded between two conductive, planar terminations. At currents below the device IHOLD rating, AND at temperatures below 100C, the PTC maintains a resistance value below its R1 MAX rating. As the device's temperature approaches 130C, either due to an increase in ambient temperature or a current exceeding its ITRIP rating, volumetric expansion of the filled polymer breaks apart the majority of conductive pathways across the terminals created by chain contact of adjacent filler particles or device resistance increases sharply by several orders of magnitude. At the much higher "Tripped" resistance, there is just enough leakage current to allow internal heating to "hold" the device in its tripped state (around 125C) until power is interrupted. Once power is removed, the PTC's core cools and contracts allowing conductive chains to reform and return the device to its low resistance state. The catalog data for each device specifies a "Typical Power" value. This is the power required to exactly match the heat lost by the tripped device to its ambient surroundings at 23C. By Ohm's Law, power can be stated as: $W = E^2/R$. Thus the approximate resistance of a "Tripped" PTC can be determined by: $R = E^2/W$, where "E" is the voltage appearing across the PTC (usually the supply's open circuit voltage), and "W" is the Typical Power value for the particular PTC. Since the PPTC acts to maintain a constant internal temperature, its apparent resistance will change based upon applied voltage and, to a lesser degree, ambient conditions. Consider the following example.... A PTC with a Typical Power of 1 watt protecting a circuit using a 60V supply will demonstrate an apparent, tripped resistance "R" of: $R = 60^2/1 = 3.600$ ohms This same tripped device when used to protect a 12V circuit would now present an apparent resistance of: $R = 12^2/1 = 144$ ohms The value for Typical Power is "typical" because any physical factors that affect heat loss (such as ambient temperature or air convection) will somewhat alter the level of power that the PTC needs to maintain its internal temperature. In short, PTCs do not exhibit a constant, quantifiable tripped resistance value. ### Type Time - To - Trip at 23℃ Specifications subject to change without notice Bel Fuse Inc. 206 Van Vorst Street Jersey City, NJ 07302 USA +1 201 432 0463 Bel.US.CS@belf.com belfuse.com/circuit-protection **OZSA Series** HF 60 0ZSA Series Fuse RoHS 2 Compliant & Halogen-Free ### **Physical Specifications** Lead material: 0.13mm nominal thickness, quarter-hard nickel. Insulating material: Polyester tape ### **PTC Marking** "bel" or "b", , IH code and "SA" . #### **Product Dimensions** All dimensions in mm. Top view ### **Thermal Derating Curve** #### **Cautionary Notes** - Operation beyond the specified maximum ratings or improper use may result in damage and possible electrical arcing and/or flame. - These Polymer PTC (PPTC) devices are intended for protection against occasional overcurrent/ overtemperature fault conditions and may not be suitable for use in applications where repeated and/or prolonged fault conditions are anticipated. - Avoid contact of PTC device with chemical solvent. Prolonged contact may adversely impact the PTC performance. - These PTC devices may not be suitable for use in circuits with a large inductance, as the PTC trip can generate circuit voltage spikes above the PTC rated voltage. - These devices are intended for use in DC voltage applications only. Use in AC voltage applications should be first discussed with Bel Fuse engineering. - Not recommended for use on potted or conformal coated PCB's. Restriction of free air flow could affect electrical performance and/or result in device failure. Consult Bel Fuse engineering. - In the "Indeterminate Performance / grey zone", tripping may occur but cannot be relied upon. For special circumstances considering use within this region, consult Bel Fuse Engineering. Specifications subject to change without notice Bel Fuse Inc. 206 Van Vorst Street Jersey City, NJ 07302 USA +1 201.432.0463 Bel.US.CS@belf.com belfuse.com/circuit-protection **OZSA Series** RoHS 2 Compliant & Halogen-Free # P/N Explanation and Ordering Information | | 0ZSA | xxxx | X X X | |--|-------------------------|--------------------|-------| | PTC series ———— | | | | | 0ZSA Series | | | | | I HOLD Rating Refer to Part Number and IH Rating in | Electrical Characterist | tics Table on P.1. | | | Electrical Characteristics F = Standard Design A to Z (except F) = Special, customer s | spec, DCR sort, etc. | | | | Mechanical Features F = Standard Design A to Z (except F) = Special, customer s | spec, lead forming, etc | ÷. | | | Tape & Reel Qty See standard packaging | | | | ## Standard Packaging | Packaging Option | Packaging Quantity | Packaging Code | | | |------------------|--------------------|----------------|--|--| | Bulk | 3000 | 1E | | | Specifications subject to change without notice Bel Fuse Inc. 206 Van Vorst Street Jersey City, NJ 07302 USA +1 201.432.0463 Bel.US.CS@belf.com belfuse.com/circuit-protection Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А