2N5374 2N5375

PNP SILICON TRANSISTOR

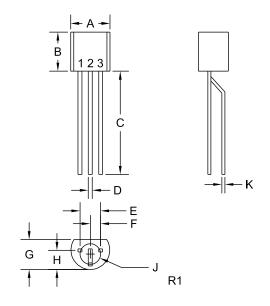
www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N5374, 2N5375 types are PNP silicon transistors, manufactured by the epitaxial planar process, designed for general purpose, medium current switching applications.

MAXIMUM RATINGS: (T _A =25°C) Collector-Base Voltage	SYMBOL V _{CBO}	2N5374 60	2N5375 40	UNITS V
Collector-Emitter Voltage	V_{CEO}	3	0	V
Emitter-Base Voltage	V_{EBO}	5.	0	V
Continuous Collector Current	IC	50	00	mA
Power Dissipation	P_{D}	36	60	mW
Operating and Storage Junction Temperature	T _J , T _{stg}	-65 to	+150	°C

Operating and	d Storage Junction Temperature	J, Istg	-65 to +150	°C
	CHARACTERISTICS: (T _A =25°C unless			
SYMBOL ICBO	TEST CONDITIONS VCB=Rated VCBO	MIN	MAX 50	UNITS nA
I _{EBO}	V _{EB} =3.0V		50	nA
BV _{CBO}	I _C =10μA (2N5374)	60		V
BV _{CBO}	I _C =10μA (2N5375)	40		V
BV _{CEO}	I _C =10mA	30		V
BV _{EBO}	I _E =10μA	5.0		V
V _{CE} (SAT)	I _C =150mA, I _B =15mA		300	mV
V _{BE} (SAT)	I _C =150mA, I _B =15mA		1.3	V
V _{BE(ON)}	V _{CE} =10V, I _C =150mA		1.2	V
hFE	V _{CE} =10V, I _C =1.0mA (2N5374)	100		
hFE	V _{CE} =10V, I _C =1.0mA (2N5375)	20		
h _{FE}	V _{CE} =10V, I _C =10mA (2N5374)	150		
hFE	V _{CE} =10V, I _C =10mA (2N5375)	30		
hFE	V _{CE} =10V, I _C =150mA (2N5374)	200	400	
h _{FE}	V _{CE} =10V, I _C =150mA (2N5375)	40	400	
C _{ob}	V_{CB} =10V, I_E =0, f=1.0MHz		10	pF
f _T	V_{CE} =10V, I_{C} =20mA, f=100MHz	150		MHz
ton	V_{CC} =30V, I_C =150mA, I_B =15mA		50	ns
^t off	V_{CC} =6.0V, I_{C} =150mA, I_{B1} = I_{B2} =15mA		175	ns


R0 (9-October 2012)

2N5374 2N5375

PNP SILICON TRANSISTOR

TO-92-18R CASE - MECHANICAL OUTLINE

DIMENSIONS							
	INCHES		MILLIMETERS				
SYMBOL	MIN	MAX	MIN	MAX			
A (DIA)	0.175	0.205	4.45	5.21			
В	0.170	0.210	4.32	5.33			
С	0.500	-	12.70	-			
D	0.016	0.022	0.41	0.56			
Е	0.100		2.54				
F	0.050		1.27				
G	0.125	0.165	3.18	4.19			
Н	0.080	0.105	2.03	2.67			
J (DIA)	0.100		2.54				
K	0.015		0.38				

TO-92-18R (REV: R1)

LEAD CODE:

- 1) Collector 2) Base 3) Emitter

MARKING:

FULL PART NUMBER

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А