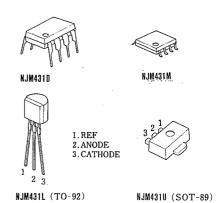


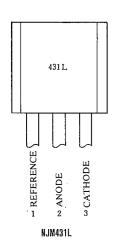
ADJUSTABLE PRECISION SHUNT REGULATOR

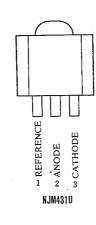
■ GENERAL DESCRIPTION

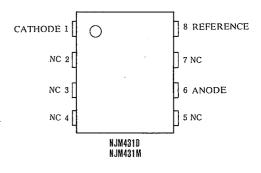
The NJM431 is a 3 terminal adjustable shunt regulator. The output voltage may be set to any value between VREF(about 2.5V) and 36V by two resistors. Output circuitry shows a sharp turn-on characteristics. Applications include shunt regulators, series regulators for small power and isolation regulators with photo couplers.

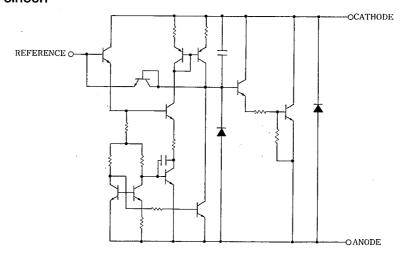

■ FEATURES

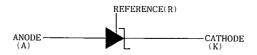
- Operating Voltage $(V_{KA}=V_{REF}\sim 36V)$
- Fast Tum-On Respability
- Cathode Current (1mA~100mA)
- Low Dynamic Output Impedance (0.2Ω typ.)
- Package Outline


DIP8, DMP8. TO-92. SOT-89


Bipolar Technology


■ PACKAGE OUTLINE


PIN CONFIGURATION



EQUIVALENT CIRCUIT

■ BLOCK DIAGEAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

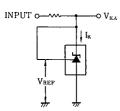
PARAMETER	SYMBOL	RATINGS	UNIT
Cathode Voltage (note)	Vka	37	V
Continuous Cathode Current	Ika	−100~150	mA
Reference Input Current	Iref	-0.05~10	mA
Power Dissipation		(DIP8) 700	mW
	PD	(DMP8) 300	mW
		(TO92) 500	mW
		(SOT89) 350	mW
Operating Temperature	Topr	-40~+85	°C
Storage Temperature	Tstg	-40~+ 12 5	r

(note) Unless specified, all voltage values are with respect to the anode terminal.

■ RECOMMENDED OPERATING CONDITIONS

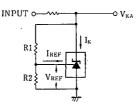
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Cathode Voltage	V _{KA}	V _{REF}	_	36	V
Cathode Current	I _K	. 1	_	100	mΑ

■ ELECTRICAL CHARACTERISTICS (Ta=25°C)

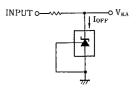

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Reference Voltage	V _{REF}	$V_{KA} = V_{REF}$, $I_K = 10$ mA (note 1)		2440	2495	2550	mV
Reference Voltage Change (Full Oper, Temp. Range)	V _{REF} (dev)	$V_{KA}=V_{REF}, I_{K}=10\text{mA} \text{ (note 1)}.$ $Ta=-20^{\circ}\text{C}\sim+85^{\circ}\text{C}$		-	8	1,7	mV
Reference Voltage Change	ΔV_{REF}	1 10 - 4 (4-2)	$\Delta V_{KA} = 10V - V_{REF}$	_	-1.4	-2.7	mV/V
vs. Cathode Voltage Change	ΔV_{KA}	$I_K = 10 \text{mA (note 2)}$	$\Delta V_{KA} = 10V - V_{REF}$ $\Delta V_{KA} = 36V - 10V$	T-	-1	-2	mV/V
Reference Input Current	IREF	$I_K=10\text{mA}$, $R_1=10\text{k}\Omega$, $R_2=\infty$ (note 2)			2	4	μΑ
Reference Input Current Change (Full Oper. Temp. Range)	I _{REF} (dev)	$I_K = 10\text{mA}, R_1 = 10\text{k}\Omega, R_2 = \infty \text{ (note 2)}$ $Ta = -20^{\circ}\text{C} \sim +85^{\circ}\text{C}$		-	0.4	1.2	μА
Minimum Input Current	I _{MIN}	V _{KA} =V _{REF} (note 1)			0.4	1.0	mA
Cathode Current (Off Cond.)	loff	$V_{KA}=36V$, $V_{REF}=0$ (note 3)		_	0.1	1.0	μΑ
Dynamic Impedance .	Z _{KA}	$V_{KA} = V_{REF}$, $I_K = 1 \text{mA} \sim 100 \text{mA}$, $f \le 1 \text{kHz (note 1)}$		-	0.2	,0.5	Ω

(note 1) TEST CIRCUIT (Fig. 1)

(note 2) TEST CIRCUIT (Fig. 2)

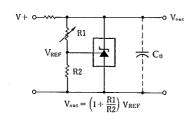

(note 3) TEST CIRCUIT (Fig. 3)

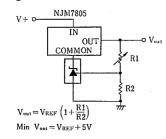
■ TEST CIRCUITS


1. $V_{KA} = V_{REF}$

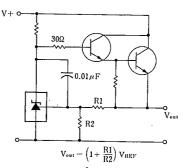
$$V_0 = V_{KA} = V_{REF}$$
(Fig. 1)

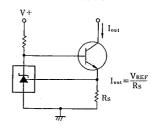
 $2. V_{KA} > V_{REF}$

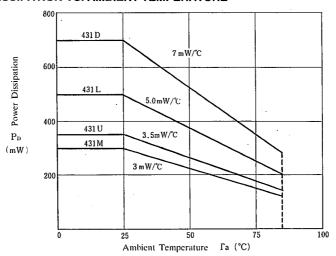

$$V_{O} = V_{KA} = V_{REF} \cdot \left(1 + \frac{R1}{R2}\right) + I_{REF} \cdot R1$$
(Fig. 2)


3. loff

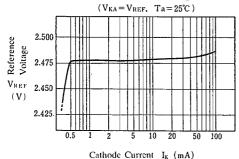
■ TYPICAL APPLICATION


(1) Shunt Regulator

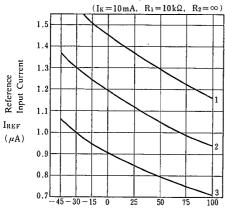

(3) Output Control of a Three-Terminal fixed Regulator


(2) Series Regulator

(4) Constant Current Source

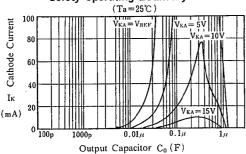


■ POWER DISSIPATION VS. AMBIENT TEMPERATURE



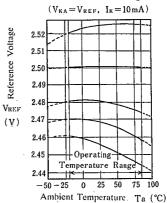
TYPICAL CHARACTERISTICS

Reference Voltage

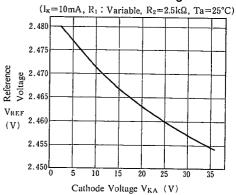

Reference Input Current

Ambient Temperature Ta (℃)

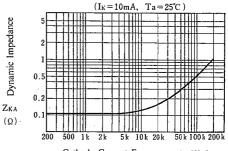
 $I_{REF}(dev)$ $No.1 - 0.38 \mu A$ $No.2 - 0.27 \mu A$ $No.3 - 0.21 \mu A$


Sefety Operating Boundary Condition

Note) Oscillation might occure while operating within the range of safety curve.


So that, it is necessary to make ample margins by taking considerations of flu-ctuation of the device.

Reference Voltage



 $V_{REF}(dev)$ (Ta = -20~25°C) (Ta = 25~85°C) $(Ta=25^{\circ}C)$ No. 1 + 5 mV + 1 mV 2525mV No. 2 0 m V 2501mV 0 mV No. 3 0 mV - 6 mV 2481 m V No. 4 - 2 mV — 9 mV 2468mV 2456mV No. 5 - 5 mV -12mV

Reference Voltage

Dynamic Impedance

Cathode Current Frequency f_i (Hz)

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А