KLI-2113/KLI-8023 Image Sensors Evaluation Kit User's Manual # Purpose, Scope The purpose of the KLI-2113/KLI-8023 Evaluation Board is to allow ON Semiconductor customers to quickly and easily operate and evaluate the performance of these image sensors. The Evaluation Board provides a complete Tri-linear CCD imaging acquisition sub-system for the following devices: - KLI-2113 Image Sensor - KLI-8023 Image Sensor ON Semiconductor® www.onsemi.com # **EVAL BOARD USER'S MANUAL** ### **OVERVIEW** The Evaluation Board set consists of two circuit boards, a Timing Generator Board and a CCD specific Sensor (Imager) Board (Note: The KLI–2113 requires the 3E8207 imager board and the KLI–8023 requires the 3E8206 imager board.) The Timing Generator Board generates the digital clock signals necessary to operate the CCD, the digital signals needed to operate the three A/D converters, and the Frame Grabber and External sync signals. The positive and negative DC power supply inputs are regulated on the Timing Generator Board. The outputs of the voltage regulators are routed from the Timing Generator Board to the CCD Sensor Board. Inputs to the CCD Sensor Board include the TTL timing signals from the Timing Generator Board and the regulated positive and negative DC power supplies. Clock drivers on the CCD Sensor Board generate the clock voltages necessary to operate the KLI series CCD. The CCD Sensor Board also generates the necessary CCD bias voltages from the positive regulated power supply input. For digital output operation, each of the three CCD VOUT signals are buffered by emitter follower circuits and then routed back to the Timing Generator Board to be processed by an Analog Front End (AFE) integrated circuit. The AFE chip contains a correlated double sampling (CDS) circuit, an 8 bit programmable DC offset compensation circuit, an 8 bit programmable gain amplifier, and a 12 bit A/D converter. For analog output operation, each of the three CCD VOUT signals are A/C coupled to remove the large DC component of the waveform and then routed to a non-inverting operational amplifier configured with a gain of two. The output of the amplifier is then driven off the Sensor board via a 50 Ω coaxial cable. #### **SPECIFICATIONS** Digital Output Data Rate: Maximum 6 MHz Analog Output Data Rate: CCD Dependent (Maximum 10 MHz) Differential TTL Resolution: 12 Bits per Channel Digital Line Rate: Depends on Data rate. Depends on Data rate, Integration time and CCD **Outputs** External Syncs: R [11..0]: Red Output Channel, Differential TTL G [11..0]: Green Output Channel, Differential TTL B [11..0]: Blue Output Channel, Differential TTL Frame Grabber Syncs: Differential TTL Inputs TTL Serial Clock: 10 MHz Maximum PGA Gain Range: 1X to 6X PGA Gain Resolution: 256 Steps Offset Range: -100 mV to +100 mV Offset Resolution: 256 Steps Temperature Range Board: $0 - 70^{\circ}$ C Temperature Range CCD: $-50 \text{ to } +70^{\circ}\text{C}$ Power Supplies **Table 1. POWER SUPPLIES REQUIREMENTS** | | Volta | Cı | ırrent | | | |--------|---------|---------|---------|---------|---------| | Supply | Minimum | Nominal | Maximum | Typical | Maximum | | +5 V | +4.9 V | +5 V | +5.1 V | 1000 mA | 2000 mA | | +20 V | +17 V | +18 V | +20 V | 500 mA | 1000 mA | | -20 V | -20 V | –18 V | –17 V | 100 mA | 250 mA | # **BLOCK DIAGRAMS** Figure 1. Timing Board Block Diagram (3E8205) Figure 2. CCD Imager Board Block Diagram (3E8206) Figure 3. CCD Imager Board Block Diagram (3E8207) #### ARCHITECTURE, HIGH LEVEL DESIGN # **Timing Generator Board** See Figure 1 for reference. #### Master Clock The Pixel clock frequency is one tenth the Master Clock frequency. The maximum pixel clock frequency is 10 MHz; therefore the maximum master clock frequency is 100 MHz. For slower Pixel clock frequencies, decrease the master clock frequency. The source of the master clock can be an on-board oscillator, or the clock can be provided via an external timing generator hooked up to the Timing Generator Board via the clock input SMA connector. The default setting of the evaluation board is an on-board 50 MHz master clock, with a pixel clock frequency of 5 MHz. # Timing Generator PLD The Timing Generator PLD controls the operational flow of the evaluation board. This PLD generates the CCD clock timing, A/D converter timing and frame grabber sync signals timing. The PLD controls the image line length depending on the CCD switch settings. The PLD controls the pixel rate signal generation depending on the binning mode BIN jumper settings. The PLD controls the Transfer Gate timing depending on the integration mode INT switch setting. The PLD also controls the programming of the A/D converters. # A/D Converter: Analog Devices AD9816 The AD9816 is a 12 bit, 6 MSPS CCD analog signal processor. The IC provides on board correlated double sampling (CDS), 8 bit programmable gain, and 8 bit DC offset adjust. The necessary timing signals for the AD9816 are provided by the Timing Generator PLD. Default serial programming of the A/D's registers is provided by the PLD at power up. Alternate programming of its registers can be achieved via external serial interface or by manually setting the address and data switches on the board and pressing the Adjust A/D button. # Power on Clear/Reset Resets and initializes the board on power up, or when the Board_Reset button in pressed. #### JTAG Header 10 pin header, provides the user with the ability to reprogram the Altera 7000S PLDs in system via Altera's ByteBlaster programming hardware. # Input Connector This connector provides digital input control signals to the evaluation board. This is an optional feature, all control lines can be set via on board switches. No external digital inputs are needed to operate the evaluation board. # Digital Output Connectors For each channel, Red, Green, and Blue: 12 bits of digital information are output in RS422 differential TTL. Additionally, three frame grabber sync signals are provided in RS422 differential TTL. ### EXT SYNC Connector This connector provides the Clamp, Sample, A/D clock, and Line_Start signals. These signals can be used to sync up digital conversion of the Analog output of the CCD Sensor Board. # **Board Interface Connectors** Provides interface between timing board and sensor boards. The sensor boards route the clock traces from the timing Board to the CCD clock drivers. ## Power Supplies The Timing board is designed to require only a 5 V, 2 A external power supply. ### Power connector The power connector is a 5 pin connector with +5 V, +20 V, -20 V and two AGND connections. Although the Timing board only requires the +5 V supply, all the necessary supplies are brought into the Timing board via this single connector. The power supplies are then regulated and routed up to the Sensor board via the board interface connector. #### **CCD Imager Board 3E8206** See Figure 2 for reference. ### Power Supplies Power is supplied to the CCD Sensor Board via the Timing Board interface connector. In order to operate, the CCD Sensor board requires a +15 V, 1000 mA external power supply. If it is desired to utilize the analog output mode of operation, an additional -15 V, 200 mA external power supply is required for the video line drivers. ### Horizontal Clock Delay Pots The $\Phi 1$ and $\Phi 2$ TTL signals can be delayed slightly by adjusting the delay pots on the Sensor board. This allows the $\Phi 1$ and $\Phi 2$ signals to be adjusted with respect to one another to achieve better crossover points in the $\Phi 1$ and $\Phi 2$ CCD clocks signals. #### CCD Clock Drivers Φ 1, Φ 2 Elantec clock drivers are used to generate the Φ clocks. These devices take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The supply voltage of these drivers is regulated and adjustable via a potentiometer (V_PEAK). <u>TG1, TG2:</u> Elantec clock drivers, designed to drive large capacitance clock gates of a CCD image sensor, are used to generate the TG clocks. These drivers take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The drivers can source up to 2 A per channel of drive current. The drivers' peak output voltage is adjustable via potentiometer. LOGr, LOGg: Elantec clock drivers, designed to drive large capacitance clock gates of a CCD image sensor, are used to generate the LOG clocks. These drivers take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The drivers can source up to 2 A per channel of drive current. The drivers' peak output voltage is adjustable via potentiometer. $\underline{\Phi R}$: The reset clock driver is a pair of fast switching transistors that can drive the lower capacitance reset gate. The drivers supply voltage is regulated and is adjustable via a potentiometer (V_PEAK). # CCD Bias Voltages <u>VDD:</u> The VDD bias is de-coupled at the device pin. <u>VRD:</u> The Reset Drain CCD bias voltage is adjustable via a potentiometer. VRD is de-coupled at the device pin. Access is provided to this bias via a jumper. This allows measurement of the current IRD from which the number of electrons flowing through the Reset Drain can be calculated. <u>VOG:</u> The Output Gate bias is adjustable via a potentiometer. VOG is de-coupled at the device pin. <u>VSS:</u> This CCD bias voltage is fixed to be a diode drop above VSUB, about 0.7 V. <u>VLS:</u> The Light Shield bias voltage is fixed by a resistor divider. The voltage varies depending on which CCD is being operated. VID: The Input Diode test pin is biased to VDD. <u>VIG:</u> This Input Gate test pin bias is connected to VSUB. On the L24 sensor board, this pin is biased to VDD. # CCD Image Sensor This evaluation board supports the KLI–8023 Linear CCD sensor. #### Emitter Follower The video out of the CCD is buffered using a bipolar junction transistor in the emitter follower configuration. ### **CCD Imager Board 3E8207** See Figure 3 for reference. ### **Power Supplies** Power is supplied to the CCD Sensor Board via the Timing Board interface connector. In order to operate, the CCD Sensor board requires a +12 V, 1000 mA external power supply. If it is desired to utilize the analog output mode of operation, an additional -15 V, 200 mA external power supply is required for the video line drivers. #### CCD Clock Drivers Φ 1, Φ 2 CMOS clock drivers are used to generate the Φ clocks. These devices take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The supply voltage of these drivers is regulated and adjustable via a potentiometer (V_PEAK). TG1, TG2: Elantec clock drivers, designed to drive large capacitance clock gates of a CCD image sensor, are used to generate the TG clocks. These drivers take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The drivers can source up to 2 A per channel of drive current. The drivers' peak output voltage is adjustable via potentiometer (V PEAK). <u>LOGr, LOGg:</u> Elantec clock drivers, designed to drive large capacitance clock gates of a CCD image sensor, are used to generate the LOG clocks. These drivers take TTL inputs from the Timing Board and output the voltage levels required by the CCD. The drivers can source up to 2 A per channel of drive current. The drivers' peak output voltage is adjustable via potentiometer (V_PEAK). $\underline{\Phi R}$: A CMOS clock driver is used to drive the lower capacitance reset gate. The drivers supply voltage is adjustable via a potentiometer (V_PEAK). # CCD Bias Voltages <u>VDD</u>: The VDD bias is de-coupled at the device pin. VID: The Input Diode test pin is biased to VDD. VIG: The Input Gate test pin is biased to VDD. <u>VRD</u>: VRD is de-coupled at the device pin. Access is provided to this bias via a jumper. This allows measurement of the current IRD from which the number of electrons flowing through the Reset Drain can be calculated. # CCD Image Sensor This evaluation board supports the KLI-2113 Linear CCD sensor. ### Emitter Follower The video out of the CCD is buffered using a bipolar junction transistor in the emitter follower configuration. ## **Board Requirements** Power Supply The Timing board operates from a +5 V, 2 A or greater power supply. The Sensor board requires a +20 V, 1000 mA or greater power supply to operate. If analog output is desired, an additional –20 V, 200 mA external power supply is required for the video line drivers. Although extensive filtering is done on board, the power supplied to the board must be quiet and stable in order to achieve the best performance possible. #### Inputs Upon power up, the evaluation board is free running and requires no input signals to begin operating. See CCD Imager Board 3E8206 section for information on additional optional inputs. ### Outputs R[11..0] (±): 12 bits of Differential TTL Digital information. $\underline{G[11..0]}$ (±): 12 bits of Differential TTL Digital information. B[11..0] (±): 12 bits of Differential TTL Digital information. <u>FRAME (±):</u> Differential TTL frame grabber vertical synchronization signal. <u>LINE (±):</u> Differential TTL frame grabber horizontal synchronization signal. <u>PIX (±):</u> Differential TTL frame grabber PIX synchronization signal. <u>CLAMP (±):</u> Differential TTL signal in sync with the reset level of the CCD output waveform. <u>SAMPLE (±):</u> Differential TTL signal in sync with the settled Vout portion of the CCD output waveform. <u>A/D CLOCK (±):</u> Differential TTL signal that can be used by external A/D to digitize the analog output of the CCD Sensor Board. <u>LINE START (±)</u>: Differential TTL signal that indicates the start of a CCD line. ### JTAG Programming An Altera 7000S In System Programmable (ISP) PLD is used on this board. A ten pin header (J8) is provided to allow for the programming of these PLD's. Because these parts are re-programmable, custom digital logic can be implemented for timing and mode adjustments or additions. Any custom implementation can be made quickly and easily to via the JTAG programming interface provided by this connector. #### **CONFIGURATION MODES** #### Line/Switches Modes The Line/Switches Jumper (JMP6) Selects whether some of the board settings will be controlled externally through the Digital I/O connector (J10), or via the on board switches. If this switch is set to Line, then the integration time and the Binning mode must be set remotely via digital I/O. # AD INT/EXT Modes The board comes with three Analog Devices AD9816 12 bit A/D converters on board, one for each color channel. This A/D has several features, such as multiple configurations, programmable gain and offset registers which require initialization and/or programming on power up. The programming of these registers is done via a three wire serial interface. EXT: A three wire serial interface is provided on the J10 connector of the board and the AD9816's registers can be controlled remotely via these when the A/D_IN/EX Jumper (JMP5) is set to EXT. See Figure 1 for the AD9816 serial timing diagrams and information. <u>INT:</u> If it is not desired to control the programming of the A/D's registers remotely, set jumper JMP5 to INT. The Timing generator PLD contains a state machine that serially loads in the following default values to these registers upon power up or board reset. # A/D Default Register Settings | # channels: | 1 | |-------------------|----------| | Mode: | CDS Mode | | Input Span: | 3 V | | Channel Selected: | Green | | Red PGA Gain*: | 1 | | Green PGA Gain: | 1 | | Blue PGA Gain*: | 1 | | | | Red Offset*: 0 mv Green Offset: 0 mv Blue Offset*: 0 mv * Although the Red and Blue A/D converter channels are not used, these registers are still initialized to these default settings. #### Adjustments Adjustments can be made to each A/D's registers during operation of the board by utilizing the DATA Dipswitch (SW7), the ADDRESS switch (SW6) and the ADJ_AD button. After setting SW6 to the desired Address, and SW7 to the desired Data, pressing the ADJ_AD button will load the new value into the Timing generator PLD and a state machine inside the PLD will then serial load the new data into the A/D's register. Each AD9816 uses the Green Input channel pin for its video input. This is done to ease the default programming of all three A/D's on power up and reset. When the AD_INT/EXT jumper is set to INT, each channel can be manually adjusted independently of the others by selecting which channel(s) to adjust using the channel select jumpers (JMP2, JMP3, JMP4). When the AD_INT/EXT jumper is set to EXT, each channel can be remotely adjusted independently of the others by selecting which channel to adjust using the three independent SLOAD signals (SLOAD_R, SLOAD_G, SLOAD_B). See Figure 1 for more information on the AD9816's registers. #### CCD Modes The CCD Select switch (SW5) setting determines the line length timing. This switch should be set according to which CCD sensor board is being used. See Table 4 for additional information. Binning Modes The BIN Select jumper (JMP7) setting determines the Binning mode operation. See Table 5 for additional information. When no jumper is installed in JMP7, the Timing Generator board will operate according to the CCD device specification sheet timing diagram. When JMP7 is configured in BIN2 mode the timing will be modified to allow two pixels worth of charge to accumulate on the CCD's floating diffusion before being reset. When JMP7 is configured in BIN4 mode the timing will be modified to allow four pixels worth of charge to accumulate on the CCD's floating diffusion before being reset. Integration Modes The INT Select switch (SW4) settings determine the Integration time. See Table 6 for additional information. The INT Select switch determines how many line times worth of charge will accumulate in the photodiode before being transferred into the CCD register and clocked out of the CCD. Exposure Control Modes The GREEN_LOG switch (SW3) settings determine the green channel exposure control duration. The RED_LOG switch settings determine the red channel exposure control duration. The LOG switches determine how long the LOG signal will be turned on. See Table 7 for additional information. # **Adjustments** Adjustments that may be made to the circuit boards are addressed in the following sections. Fixed Bias Voltages **Table 2. FIXED BIAS VOLTAGES** | Bias | KLI-2113 | KLI-8023 | |-------|----------|----------| | VSUB | 0 V | 0 V | | VSS | - | 0.65 V | | VIG | 12 V | 0 V | | PHI A | - | - | Variable Clock and Bias Voltages (see Table 3) **Table 3. VARIABLE CLOCK AND BIAS VOLTAGES** | Supply | Minimum | Nominal | Maximum | |--------|---------|---------|--------------| | VDD | 12 V | 15 V | TIMING BOARD | | VLS | 12 V | 15 V | TIMING BOARD | | VID | 12 V | 15 V | TIMING BOARD | | VRD | 12 V | 11 V | SENSOR BOARD | | VOG | _ | 0.75 V | SENSOR BOARD | | Voltage | KLI-2113 | KLI-8023 | Location | |------------|----------|----------|--------------| | TG PEAK | 5 V | 6.5 V | SENSOR BOARD | | LOG PEAK | 5 V | 6.5 V | SENSOR BOARD | | HCLK PEAK | 5 V | 6.5 V | SENSOR BOARD | | RESET PEAK | 5 V | 6.5 V | SENSOR BOARD | NOTE: These voltages are optimized for the particular CCD being used and are fixed at the factory. Adjustments should not be made to them without consultation with ON Semiconductor. ### **Timing** Fixed Timing TG1, TG2, LINE, FRAME See Figure 4 for additional information. Variable Timing Φ 1, Φ 2 (Depending on CCD Select Switch) ΦR (Binning Modes) CLAMP (Binning Modes) SAMPLE (Binning Modes) A/D Clock (Binning modes) See Figure 5 and Figure 6 for additional information. Other Variable Parameters <u>Pixel Frequency:</u> The pixel rate frequency can be varied by changing the Master clock oscillator, or by utilizing the external clock feature. Line Length: (Depends on CCD switch setting) <u>TG1 Width:</u> (Depends on pixel frequency, 21 pixel counts wide) <u>TG2 Width:</u> (Depends on pixel frequency, 26 pixel counts wide) **Table 4. CCD MODES** | CCD Switch Setting | CCD | Pixels/Line | |--------------------|----------|-------------| | 0 | Test 0 | 2872 | | 1 | Test 5 | 6372 | | 2 | KLI-8013 | 8572 | | 3 | Test 3 | 10372 | | 4 | KLI-2113 | 2472 | | 5 | Test 4 | 14972 | | 6 | Test 1 | 172 | | 7 | Test 2 | 14972 | # **Table 5. BINNING MODES** | JMP7 Setting | Binning Mode | |--------------|--------------| | No Jumper | 1×1 | | BIN2 | 2×2 | | BIN4 | 4×4 | # **Table 6. INTEGRATION TIMING MODES** | INT Switch Setting (SW4) | Integration Time | |--------------------------|------------------| | 0 | 1 × Line Time | | 1 | 2 × Line Time | | 2 | 3 × Line Time | | 3 | 4 × Line Time | | 4 | 1 × Line Time | | 5 | 2 × Line Time | | 6 | 3 × Line Time | | 7 | 4 × Line Time | # **Table 7. LOG MODES** | LOG Switch Setting | Number of Pixels per Line | | | |--------------------|--------------------------------------|--|--| | (SW1, SW3) | LOG is ON | | | | 0 | 0 (Never ON, Always LOW) | | | | 1 | 500 | | | | 2 | 1000 | | | | 3 | 1500 | | | | 4 | 2000 | | | | 5 | 2500 | | | | 6 | 3000
3500
4000 | | | | 7 | | | | | 8 | | | | | 9 | 4500 | | | | 10 | 5000 | | | | 11 | 5500 | | | | 12 | 6000 | | | | 13 | 6500 | | | | 14 | 7000 | | | | 15 | Always ON, LOW Only During TG Period | | | Figure 4. Line Rate Timing Figure 5. Pixel Rate Timing for Devices KLI-8023, KLI-2113 Figure 6. Pixel Summing (2 Pixel Summing Shown) In Binning Modes, the Frequency of the Reset, clamp, sample, A/D, and PIX clocks are decreased in order to allow charge to accumulate on the output node of the CCD before being reset. # **AD9816 REGISTER CONFIGURATION** **Table 8. AD9816 REGISTER CONFIGURATION** | Address | R | egister | Function | Default Programming | |---------|-----------|------------------|-------------------------------|---------------------| | 0 | Configu | ration Register | | | | | Bit 7 MSB | Test Mode Bit | Always 0 | 0 | | | Bit 6 | Test Mode Bit | Always 0 | 0 | | | Bit 5 | CDS Mode Bit | High for CDS | 1 | | | | | Low for SHA Mode | | | | Bit 4 | Input Span | High for 3 V | 1 | | | Bit 3 | Input Span | High for 1.5 V | 0 | | | Bit 2 | Channel Mode | High for 3 Channel | 0 | | | Bit 1 | Channel Mode | High for 1 Channel | 1 | | | Bit 0 | Test Mode Bit | Always 0 | 0 | | 1 | MUX | X Register | | | | | Bit 7 | Test Mode Bit | Always 0 | 0 | | | Bit 6 | Channel Sequence | High for BGR | 0 | | | Bit 5 | Channel Sequence | High for RGB | 0 | | | Bit 4 | Channel Select | High for Red | 0 | | | Bit 3 | Channel Select | High for Green | 1 | | | Bit 2 | Channel Select | High for Blue | 0 | | | Bit 1 | Test Mode Bit | Always 0 | 0 | | | Bit 0 | Test Mode Bit | Always 1 | 1 | | 2 | Red P | GA Register | 1X to 6X
(Note 1) | 0 (1X) | | 3 | Green I | PGA Register | 1X to 6X
(Note 1) | 0 (1X) | | 4 | Blue P | GA Register | 1X to 6X
(Note 1) | 0 (1X) | | 5 | Red Of | fset Register | -100 mv to 100 mv
(Note 2) | 0 (0 mV) | | 6 | Green C | Offset Register | -100 mv to 100 mv
(Note 2) | 0 (0 mV) | | 7 | Blue O | ffset Register | -100 mv to 100 mv
(Note 2) | 0 (0 mV) | * R/W Low for Write, High for Read Figure 7. AD9816 Register Configuration ^{1.} PGA Gain = 1+ (Gain Code / 51.2) 2. 01111111 = +100 mV, 00000000 = 0 mV, 11111111 = -100 mV #### **BOARD INPUTS, OUTPUTS, SWITCHES** **Switches** LINE/SW Selects whether operating modes are controlled via DIO or switches on the board. A/D INT/EXT Selects whether A/D programming is controlled via DIO or switches on the board. INT/EXT_CLK Selects whether Master clock is input via the on board clock IC or external clock source. DIGITAL _OUTPUTS ON enables outputs of AD9816's, OFF tri-states outputs and output drivers CCD [2..0] Sets line length timing for the CCD selected INT_SEL [1..0] Integration timing control settings switch SW_BIN2, SW_BIN4 Binning mode control settings jumper GREEN_LOG [3..0] Green channel exposure control settings switch RED_LOG [3..0] Red channel exposure control settings switch ADDR [2..0] Register select switch for programming of AD9816's (AD INT/EXT = INT) DATA [7..0] Data dipswitch for programming of AD9816's register (AD INT/EXT = INT) BLUE_SEL Enables loading of blue channel A/D converter (AD INT/EXT = INT) RED_SEL Enables loading of red channel A/D converter (AD INT/EXT = INT) GREEN SEL Enables loading of green channel A/D converter (AD INT/EXT = INT) Inputs Master_clk 10X Pixel clock (100 MHz maximum) INT [1..0] DIO Integration timing control lines BIN2, BIN4 DIO Binning mode control lines GLOG [3..0] DIO Green channel exposure control lines RLOG [3..0] DIO Red channel exposure control lines SCLOCK Serial clock for external programming of AD9816's registers SDATA Serial Data for external programming of AD9816's registers SLOAD_R Serial load enable of red channel AD9816 SLOAD_G Serial load enable of green channel AD9816 SLOAD_B Serial load enable of blue channel AD9816 JTAG Header 10 pin header for ISP **Outputs** R11..0](±) 12 Bits Differential TTL Digital information G11..0](±) 12 Bits Differential TTL Digital information B11..0](±) 12 Bits Differential TTL Digital information FRAME (±) Differential TTL frame grabber frame sync signal LINE (±) Differential TTL frame grabber line sync signal PIX (±) Differential TTL frame grabber pixel sync signal CLAMP (±) Differential TTL sync signal SAMPLE (±) Differential TTL sync signal A/D CLOCK (±) Differential TTL sync signal LINE START (±) Differential TTL sync signal # **Table 9. DYNAMIC RANGE** | | Dynamic Range vs. KLI-Series CCD (Frequency = 5 MHz) | | | | | | | |-------------------|--|-------------------------------------|------------------------------------|--------------------------------------|-------------|-----------------------------|--| | KLI-Series
CCD | Maximum Sys-
tem Noise
Floor
(Electrons) | Typical Full
Well
(Electrons) | System
Dynamic
Range
(dB) | System
Dynamic
Range
(Bits) | System Gain | # Electrons
per A/D Unit | | | KLI-2113 | 77 | 170000 | 66.88 | 11.11 | 1X | 64 | | | KLI-8023 | 62 | 185000 | 69.5 | 11.54 | 1X | 52 | | Figure 8. Measured Performance: A/D Programmable Gain Figure 9. VPLUS Regulator Heatsinking Requirements NOTE: Depending on the Operating rate and ambient temperature, a heatsink may be required for the VPLUS positive voltage regulator U3. Figure 9 shows the maximum power the regulator can dissipate without a heatsink (R = 0) and with a heatsink with heatsink-to-ambient thermal resistance equal to 20°C per Watt (R = 20) Figure 10. VPEAK Regulator Heatsinking Requirements NOTE: Depending on the Operating rate and ambient temperature, a heatsink may be required for the VPEAK positive voltage regulator on the CCD Sensor Board. Figure 10 shows the maximum power the regulator can dissipate without a heatsink (R=0) and with heatsinks with heatsink-to-ambient thermal resistance equal to 10 and 12°C per Watt. (R=10, R=12) # **CONNECTOR PINOUTS** Table 10. BOARD INTERFACE CONNECTORS J12, J15 | Connector | Pin | Assignment | Connector | Pin | Assignment | |-----------|-----|------------|-----------|-----|------------| | J12 | 1 | RED_LOG | J15 | 1 | CLAMP_B | | J12 | 2 | VSUB | J15 | 2 | VSUB | | J12 | 3 | GRN_LOG | J15 | 3 | VIDEO_OUTG | | J12 | 4 | VSUB | J15 | 4 | VSUB | | J12 | 5 | H2_OUT | J15 | 5 | N.C. | | J12 | 6 | H1_OUT | J15 | 6 | VSUB | | J12 | 7 | TG1_OUT | J15 | 7 | VIDEO_OUTB | | J12 | 8 | VSUB | J15 | 8 | VSUB | | J12 | 9 | TG2_OUT | J15 | 9 | N.C. | | J12 | 10 | VSUB | J15 | 10 | VSUB | | J12 | 11 | N.C. | J15 | 11 | N.C. | | J12 | 12 | VSUB | J15 | 12 | VSUB | | J12 | 13 | N.C. | J15 | 13 | SAMPLE_B | | J12 | 14 | VSUB | J15 | 14 | VSUB | | J12 | 15 | N.C. | J15 | 15 | N.C. | | J12 | 16 | VSUB | J15 | 16 | VSUB | | J12 | 17 | N.C. | J15 | 17 | RESET CLK | | J12 | 18 | VSUB | J15 | 18 | VSUB | | J12 | 19 | CLAMP_A | J15 | 19 | N.C. | | J12 | 20 | VSUB | J15 | 20 | VSUB | | J12 | 21 | VIDEO_OUTR | J15 | 21 | VMINUS | | J12 | 22 | VSUB | J15 | 22 | VPLUS | | J12 | 23 | N.C. | J15 | 23 | VMINUS | | J12 | 24 | VSUB | J15 | 24 | VPLUS | **Table 11. INPUT CONNECTOR J10** | Pin | Assignment | Pin | Assignment | |-----|------------|-----|------------| | 1 | RLOG0 | 2 | GND | | 3 | RLOG1 | 4 | GND | | 5 | RLOG2 | 6 | GND | | 7 | RLOG3 | 8 | GND | | 9 | GLOG0 | 10 | GND | | 11 | GLOG1 | 12 | GND | | 13 | GLOG2 | 14 | GND | | 15 | GLOG3 | 16 | GND | | 17 | BIN2 | 18 | GND | | 19 | BIN4 | 20 | GND | | 21 | INT0 | 22 | GND | | 23 | INT1 | 24 | GND | | 25 | SCLOCK | 26 | GND | | 27 | SDATA | 28 | GND | | 29 | SLOAD_R | 30 | GND | | 31 | SLOAD_G | 32 | GND | | 33 | SLOAD_B | 34 | GND | | 35 | N.C. | 36 | GND | Table 11. INPUT CONNECTOR J10 (continued) | Pin | Assignment | Pin | Assignment | |-----|-------------|-----|------------| | 37 | N.C. | 38 | GND | | 39 | BOARD_RESET | 40 | GND | Table 12. GREEN OUTPUT CONNECTOR J6 | Connector | Pin | Assignment | Comment | |-----------|-----|------------|---------| | J6 | 1 | G0+ | RS422 | | J6 | 2 | G0- | RS422 | | J6 | 3 | G1+ | RS422 | | J6 | 4 | G1- | RS422 | | J6 | 5 | GND | | | J6 | 6 | G2+ | RS422 | | J6 | 7 | G2- | RS422 | | J6 | 8 | G3+ | RS422 | | J6 | 9 | G3- | RS422 | | J6 | 10 | GND | | | J6 | 11 | G4+ | RS422 | | J6 | 12 | G4- | RS422 | | J6 | 13 | G5+ | RS422 | | J6 | 14 | G5- | RS422 | | J6 | 15 | GND | | | J6 | 16 | G6+ | RS422 | | J6 | 17 | G6- | RS422 | | J6 | 18 | G7+ | RS422 | | J6 | 19 | G7- | RS422 | | J6 | 20 | GND | | | J6 | 21 | G8+ | RS422 | | J6 | 22 | G8- | RS422 | | J6 | 23 | G9+ | RS422 | | J6 | 24 | G9- | RS422 | | J6 | 25 | GND | | | J6 | 26 | G10+ | RS422 | | J6 | 27 | G10- | RS422 | | J6 | 28 | G11+ | RS422 | | J6 | 29 | G11- | RS422 | | J6 | 30 | GND | | | J6 | 31 | FRAME+ | RS422 | | J6 | 32 | FRAME- | RS422 | | J6 | 33 | LINE+ | RS422 | | J6 | 34 | LINE- | RS422 | | J6 | 35 | GND | | | J6 | 36 | PIX+ | RS422 | | J6 | 37 | PIX- | RS422 | | J6 | 38 | N.C. | | | J6 | 39 | N.C. | | | J6 | 40 | N.C. | | **Table 13. RED OUTPUT CONNECTOR J7** | Connector | Pin | Assignment | Comment | |-----------|-----|------------|---------| | J7 | 1 | R0+ | RS422 | | J7 | 2 | R0- | RS422 | | J7 | 3 | R1+ | RS422 | | J7 | 4 | R1- | RS422 | | J7 | 5 | GND | | | J7 | 6 | R2+ | RS422 | | J7 | 7 | R2- | RS422 | | J7 | 8 | R3+ | RS422 | | J7 | 9 | R3- | RS422 | | J7 | 10 | GND | | | J7 | 11 | R4+ | RS422 | | J7 | 12 | R4- | RS422 | | J7 | 13 | R5+ | RS422 | | J7 | 14 | R5- | RS422 | | J7 | 15 | GND | | | J7 | 16 | R6+ | RS422 | | J7 | 17 | R6- | RS422 | | J7 | 18 | R7+ | RS422 | | J7 | 19 | R7- | RS422 | | J7 | 20 | GND | | | J7 | 21 | R8+ | RS422 | | J7 | 22 | R8- | RS422 | | J7 | 23 | R9+ | RS422 | | J7 | 24 | R9- | RS422 | | J7 | 25 | GND | | | J7 | 26 | R10+ | RS422 | | J7 | 27 | R10- | RS422 | | J7 | 28 | R11+ | RS422 | | J7 | 29 | R11- | R\$422 | | J7 | 30 | GND | | | J7 | 31 | FRAME+ | RS422 | | J7 | 32 | FRAME- | R\$422 | | J7 | 33 | LINE+ | R\$422 | | J7 | 34 | LINE- | RS422 | | J7 | 35 | GND | | | J7 | 36 | PIX+ | R\$422 | | J7 | 37 | PIX- | R\$422 | | J7 | 38 | N.C. | | | J7 | 39 | N.C. | | | J7 | 40 | N.C. | | **Table 14. BLUE OUTPUT CONNECTOR J4** | Connector | Pin | Assignment | Comment | |-----------|-----|------------|---------| | J4 | 1 | B0+ | RS422 | | J4 | 2 | B0- | RS422 | | J4 | 3 | B1+ | RS422 | | J4 | 4 | B1- | RS422 | | J4 | 5 | GND | | | J4 | 6 | B2+ | RS422 | | J4 | 7 | B2- | RS422 | | J4 | 8 | B3+ | RS422 | | J4 | 9 | B3- | RS422 | | J4 | 10 | GND | | | J4 | 11 | B4+ | RS422 | | J4 | 12 | B4- | RS422 | | J4 | 13 | B5+ | R\$422 | | J4 | 14 | B5- | RS422 | | J4 | 15 | GND | | | J4 | 16 | B6+ | RS422 | | J4 | 17 | B6- | RS422 | | J4 | 18 | B7+ | RS422 | | J4 | 19 | B7- | R\$422 | | J4 | 20 | GND | | | J4 | 21 | B8+ | RS422 | | J4 | 22 | B8- | RS422 | | J4 | 23 | B9+ | RS422 | | J4 | 24 | B9- | RS422 | | J4 | 25 | GND | | | J4 | 26 | B10+ | RS422 | | J4 | 27 | B10- | RS422 | | J4 | 28 | B11+ | RS422 | | J4 | 29 | B11- | RS422 | | J4 | 30 | GND | | | J4 | 31 | FRAME+ | RS422 | | J4 | 32 | FRAME- | RS422 | | J4 | 33 | LINE+ | RS422 | | J4 | 34 | LINE- | RS422 | | J4 | 35 | GND | | | J4 | 36 | PIX+ | RS422 | | J4 | 37 | PIX- | RS422 | | J4 | 38 | N.C. | | | J4 | 39 | N.C. | | | J4 | 40 | N.C. | | **Table 15. POWER CONNECTOR J11** | Connector | Pin | Assignment | |-----------|-----|--------------------| | J11 | 1 | +5 V | | J11 | 2 | SUPPLY GND | | J11 | 3 | NEG SUPPLY (-20 V) | | J11 | 4 | SUPPLY GND | | J11 | 5 | POS SUPPLY (+20 V) | # **Table 16. JTAG CONNECTOR J8** | Connector | Pin | Assignment | |-----------|-----|------------| | J8 | 1 | TCK | | J8 | 2 | GND | | J8 | 3 | TDO | | J8 | 4 | +5 V | | J8 | 5 | TMS | | J8 | 6 | N.C. | | J8 | 7 | N.C. | | J8 | 8 | N.C. | | J8 | 9 | TDI | | J8 | 10 | GND | # **Table 17. EXT SYNC CONNECTOR J1** | Connector | Pin | Assignment | |-----------|-----|-------------| | J1 | 1 | CLAMP + | | J1 | 2 | CLAMP- | | J1 | 3 | SAMPLE+ | | J1 | 4 | SAMPLE- | | J1 | 5 | AD_CLK+ | | J1 | 6 | AD_CLK- | | J1 | 7 | LINE_START+ | | J1 | 8 | LINE_START- | | J1 | 9 | GND | | J1 | 10 | GND | #### WARNINGS AND ADVISORIES ON Semiconductor is not responsible for customer damage to the Timing Board or Imager Board electronics. The customer assumes responsibility and care must be taken when probing, modifying, or integrating the Truesense Imaging Evaluation Board Kits. When programming the Timing Board, the Imager Board must be disconnected from the Timing Board before power is applied. If the Imager Board is connected to the Timing Board during the reprogramming of the Altera PLD, damage to the Imager Board will occur. Purchasers of a Truesense Imaging Evaluation Board Kit may, at their discretion, make changes to the Timing Generator Board firmware. ON Semiconductor can only support firmware developed by, and supplied by, Truesense Imaging. Changes to the firmware are at the risk of the customer. ### ORDERING INFORMATION Please address all inquiries and purchase orders to: Truesense Imaging, Inc. 1964 Lake Avenue Rochester, New York 14615 Phone: (585) 784–5500 E-mail: info@truesenseimaging.com ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate. #### **REFERENCES** - [1] KLI-2113 and KLI-8023 Device Specifications - [2] KLI-2113/KLI-8023 Evaluation Board Schematics [3] Analog Devices AD9816 Product Data Sheet ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding ### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! # Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А