

PN7462 family NFC Cortex-M0 microcontroller Rev. 4.5 – 14 April 2020

406345

Product data sheet **COMPANY PUBLIC**

General description 1

The PN7462 family is a family of 32-bit Arm Cortex-M0-based NFC microcontrollers offering high performance and low power consumption. It has a simple instruction set and memory addressing along with a reduced code size compared to existing architectures. PN7462 family offers an all in one solution, with features such as NFC, supporting all NFC Forum modes, microcontroller, optional contact smart card reader, and software in a single chip. It operates at CPU frequencies of up to 20 MHz.

Table 1. Comparison of the PN7462 family members

	PN7462AUHN	PN7462AUEV	PN7412AUHN	PN7362AUHN	PN7362AUEV	PN7360AUHN	PN7360AUEV
Contact smart card reader	Class A, B, C	No	Class A, B, C	No	No	No	No
ISO/IEC 7816 UART	Yes	Yes	Yes	No	No	No	No
Contactless interface	Yes	Yes	No	Yes	Yes	Yes	Yes
Available Flash memory	160 kB	160 kB	160 kB	160 kB	160 kB	80 kB	80 kB
SRAM data memory	12 kB	12 kB	12 kB	12 kB	12 kB	12 kB	12 kB
General purposes I/ O	12 up-to 21	14 up-to 21	12 up-to 21	14 up-to 21	14 up-to 21	14 up-to 21	14 up-to 21
Package type	HVQFN64	VFBGA64	HVQFN64	HVQFN64	VFBGA64	HVQFN64	VFBGA64

Having the differences listed in the table above, all products within the PN7462 family are equipped with 12 kB of SRAM data memory and 4 kB EEPROM. All products within the family also include one host interface with either high-speed mode I²C-bus, SPI, USB or high-speed UART, and two master interfaces, SPI and Fast-mode Plus I²C-bus. Four general-purpose counter/timers, a random number generator, one CRC coprocessor and up to 21 general-purpose I/O pins.

The PN7462 family NFC microcontroller offers a one chip solution to build contactless, or contact and contactless applications. It is equipped with a highly integrated high-power output NFC-IC for contactless communication at 13.56 MHz enabling EMV-compliance on RF level, without additional external active components.

By integrating a contact ISO/IEC 7816 interface on a single chip, the PN7462AUHN provides a solution for dual interface smart card readers. Whereas the PN7412AUHN offers a solution for a contact reader only. The PN7462AUHN and PN7412AUHN contact

NFC Cortex-M0 microcontroller

interfaces offer a high level of security for the card by performing current limiting, shortcircuit detection, ESD protection as well as supply supervision. On PN7462AUHN, PN7412AUHN and PN7462AUEV, an additional UART output is also implemented to address applications where more than one contact card slot is needed. It enables an easy connection to multiple smart card slot interfaces like TDA8026.

PN7462AUHN and PN7412AUHN provide thermal and short-circuit protection on all card contacts. It also provides automatic activation and deactivation sequences initiated by software or hardware.

2 Features and benefits

2.1 Integrated contact interface frontend

This chapter applies to the products with contact interface only.

- Class A, B, and C cards can work on 1.8 V, 3 V, and 5 V supply
- Specific ISO UART, variable baud rate through frequency or division ratio programming, error management at character level for T = 0, and extra guard time register
- DC-to-DC converter for class A support starting at 3 V, and class B support starting at 2.7 V
- · Thermal and short-circuit protection on contact cards
- Automatic activation and deactivation sequence, initiated by software or by hardware in case of short-circuit, card removal, overheating, and V_{DD} or V_{DD} drop-out
- Enhanced ESD protection (> 12 kV)
- ISO/IEC 7816 compliant
- Compliance with EMV contact protocol specification
- Clock generation up to 13.56 MHz
- Synchronous card support
- Possibility to extend the number of contact interfaces, with the addition of slot extenders such as TDA8026

2.2 Integrated ISO/IEC 7816-3&4 UART interface

This chapter applies to the products with Integrated ISO/IEC 7816 UART interface only.

The PN7462 family offers the possibility to extend the number of contact interfaces available. It uses an I/O auxiliary interface to connect a slot extension (TDA8035 - 1 slot, TDA8020 - 2 slots, and TDA8026 - 5 slots).

- Class A (5 V), class B (3 V), and class C (1.8 V) smart card supply
- Protection of smart card
- Three protected half-duplex bidirectional buffered I/O lines (C4, C7, and C8)
- Compliant with ISO/IEC 7816 and EMVCo standards

2.3 Integrated contactless interface frontend

This chapter applies to the products with integrated contactless interface only.

- High RF output power frontend IC for transfer speed up to 848 kbit/s
- NFC IP1 and NFC IP2 support
- Full NFC Forum tag support (type 1, type 2, type 3, type 4A, type 4B and type 5)
- P2P active and passive, target, and initiator
- Card emulation ISO14443 type A
- ISO/IEC 14443 type A and type B
- MIFARE products using Crypto 1
- ISO/IEC 15693, and ISO/IEC 18000-3 mode 3
- · Low-power card detection
- Dynamic Power Control (DPC)

- Adaptive Wave Control (AWC)
- Adaptive Range Control (ARC)
- Compliance with EMV contactless protocol specification

2.4 Cortex-M0 microcontroller

- Processor core
 - Arm Cortex: 32-bit M0 processor
 - Built-in Nested Vectored Interrupt Controller (NVIC)
 - Non-maskable interrupt
 - 24-bit system tick timer
 - Running frequency of up to 20 MHz
 - Clock management to enable low power consumption
- Memory
 - Flash: 160 kB / 80 kB
 - SRAM: 12 kB
 - EEPROM: 4 kB
 - 40 kB boot ROM included, including USB mass storage primary boot loader for code download
- Debug option
 - Serial Wire Debug (SWD) interface
- Peripherals
 - Host interface:
 - USB 2.0 full speed with USB 3.0 hub connection capability
 - HSUART for serial communication, supporting standards speeds from 9600 bauds to 115200 bauds, and faster speed up to 1.288 Mbit/s
- SPI with half-duplex and full duplex capability with speeds up to 7 Mbit/s
- I²C supporting standard mode, fast mode, and high-speed mode with multiple address supports
- Master interface:
- SPI with half-duplex capability from 1 Mbit/s to 6.78 Mbit/s
- I²C supporting standard mode, fast mode, fast mode plus, and clock stretching
- Up to 21 General-Purpose I/O (GPIO) with configurable pull-up/pull-down resistors
- GPIO1 to GPIO12 can be used as edge and level sensitive interrupt sources
- Power
 - Two reduced power modes: standby mode and hard power-down mode
 - Supports suspend mode for USB host interface
 - Processor wake-up from hard power-down mode, standby mode, suspend mode via host interface, GPIOs, RF field detection
 - Integrated PMU to adjust internal regulators automatically, to minimize the power consumption during all possible power modes
 - Power-on reset
 - RF supply: external, or using an integrated LDO (TX LDO, configurable with 3 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V)
 - Pad voltage supply: external 3.3 V or 1.8 V, or using an integrated LDO (3.3 V supply)
- Timers
 - Four general-purpose timers

© NXP B.V. 2020. All rights reserved.

NFC Cortex-M0 microcontroller

- Programmable Watchdog Timer (WDT)
- CRC coprocessor
- Random number generator
- Clocks
 - Crystal oscillator at 27.12 MHz
 - Dedicated PLL at 48 MHz for the USB
 - Integrated HFO 20 MHz and LFO 365 kHz
- General
 - HVQFN64 package
 - VFBGA64 package
 - Temperature range: -40 °C to +85 °C

3 Applications

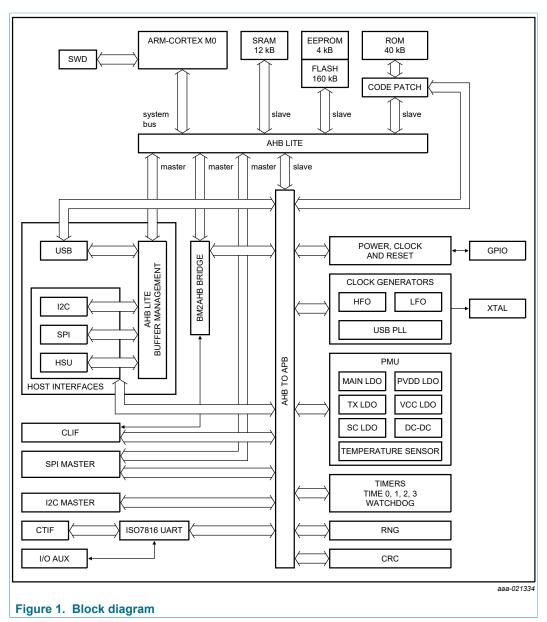
- Physical access control
- Gaming
- USB NFC reader, including dual interface smart card readers
- Home banking, payment readers EMVCo compliant
- High integration devices
- NFC applications

4 Quick reference data

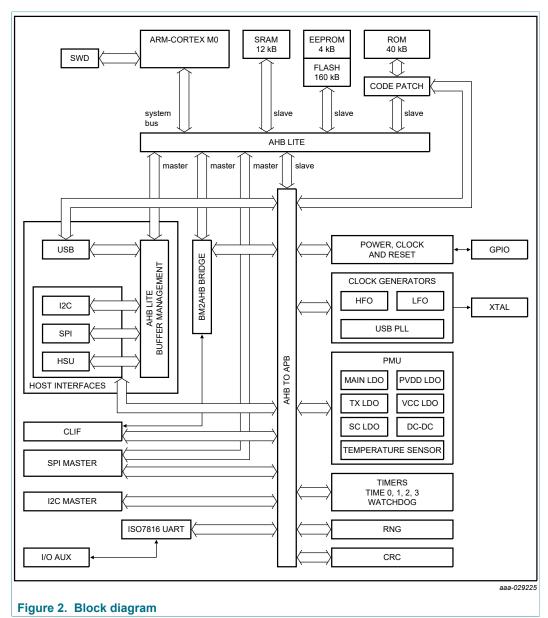
Table 2. Quick reference data

Operating range: -40 °C to +85 °C unless specified; contact interface: $V_{DDP(VBUSP)} = V_{DDP(VBUS)}$; contactless interface: internal LDO not used

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDP(VBUS)}	power supply voltage on pin VBUS	card emulation, passive target (PLM)	2.3	-	5.5	V
		all RF modes; class B and class C contact interface support	2.7	-	5.5	V
		all RF modes; class A, class B and class C contact interface support	3	-	5.5	V
V _{DD(PVDD)}	PVDD supply voltage	1.8 V	1.65	1.8	1.95	V
		3.3 V	3	3.3	3.6	V
I _{DDP(VBUS)}	power supply current on pin VBUS	in hard power-down mode; T = 25 °C; $V_{DDP(VBUS)}$ = 5.5 V; RST_N = 0	-	12	18	μA
		stand by mode; T = 25 °C; V _{DDP(VBUS)} = 3.3 V; external PVDD LDO used	-	18	-	μA
		stand by mode; T = 25 °C; V _{DDP(VBUS)} = 5.5 V; internal PVDD LDO used	-	55	-	μA
		suspend mode, USB interface; V _{DDP(VBUS)} = 5.5 V; external PVDD supply; T = 25 °C	-	120	250	μA
I _{DD(TVDD)}	TVDD supply current	on pin TVDD_IN; maximum supported operating current by the contactless interface	-	-	250	mA
P _{max}	maximum power dissipation		-	-	1050	mW
T _{amb}	ambient temperature	JEDEC PCB	-40	-	+85	°C

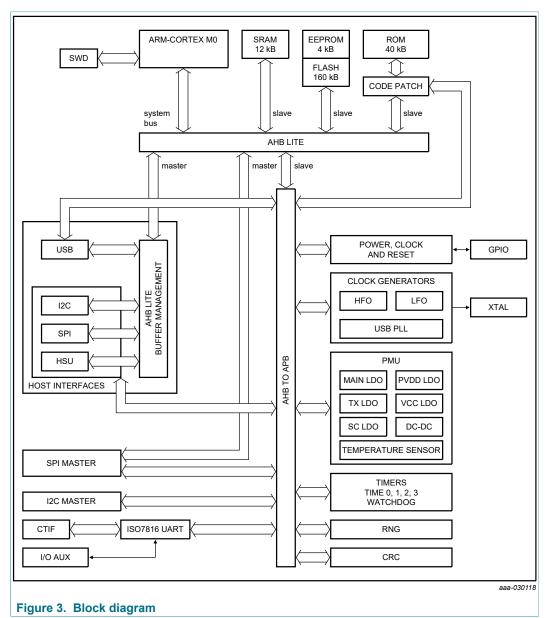

5 Ordering information

The table below lists the ordering information of the PN7462 family.

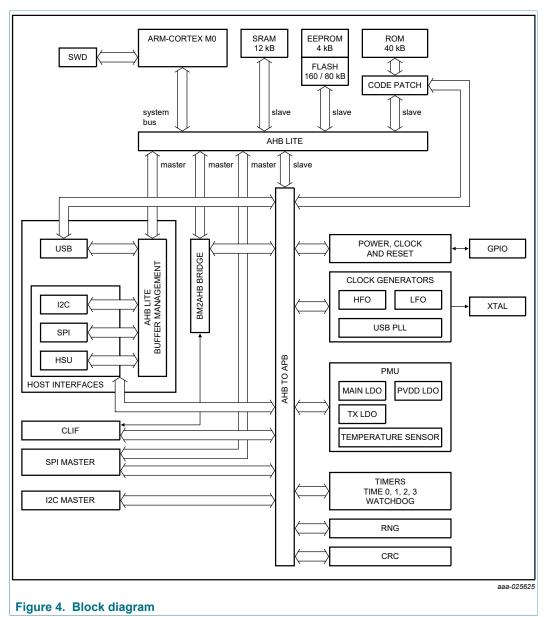

Type number	Package		
	Name	Description	Version
PN7462AUHN	HVQFN64	160 kB memory; contact interface; ISO/IEC 7816-3&4 UART interface; plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body 9 × 9 × 0.85 mm	SOT804-4
PN7462AUEV	VFBGA64	160 kB memory; no contact interface; ISO/IEC 7816-3&4 UART interface; plastic very thin fine-pitch ball grid array package; 64 balls; 4.5 mm x 4.5 mm x 0.80 mm	SOT1307-2
PN7412AUHN	HVQFN64	160 kB memory; contact interface; ISO/IEC 7816-3&4 UART interface; no contactless interface plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body 9 × 9 × 0.85 mm	SOT804-4
PN7362AUHN	HVQFN64	160 kB memory; no contact interface; no ISO/IEC 7816-3&4 UART interface; plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body 9 × 9 × 0.85 mm	SOT804-4
PN7362AUEV	VFBGA64	· · · · ·	
PN7360AUHN	HVQFN64	80 kB memory; no contact interface; no ISO/IEC 7816-3&4 UART interface; plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body 9 × 9 × 0.85 mm	SOT804-4
PN7360AUEV	VFBGA64	80 kB memory; no contact interface; no ISO/IEC 7816-3&4 UART interface; plastic very thin fine-pitch ball grid array package; 64 balls; 4.5 mm x 4.5 mm x 0.80 mm	SOT1307-2

6 Block diagram

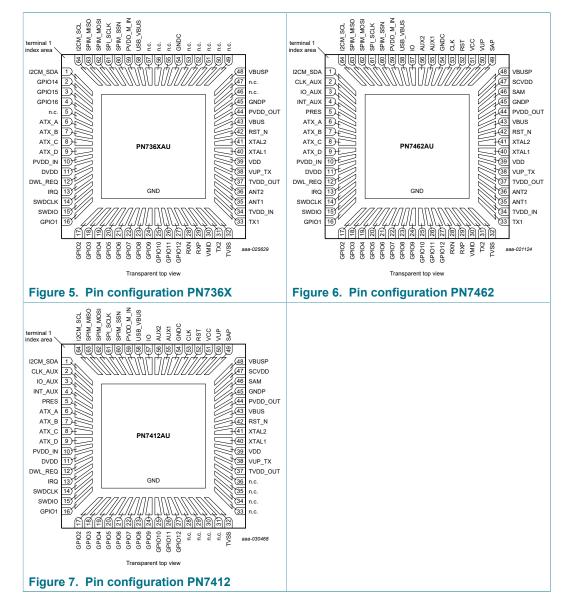
6.1 Block diagram PN7462 HVQFN64



NFC Cortex-M0 microcontroller


6.2 Block diagram PN7462 VFBGA64

NFC Cortex-M0 microcontroller


6.3 Block diagram PN7412 HVQFN64

NFC Cortex-M0 microcontroller

6.4 Block diagram PN736X

7 Pinning information

7.1 Pinning HVQFN64

Important note: the inner leads below the package are internally connected to the PIN. Special care needs to be taken during the design so that no conductive part is present under these PINs, which could cause short cuts.

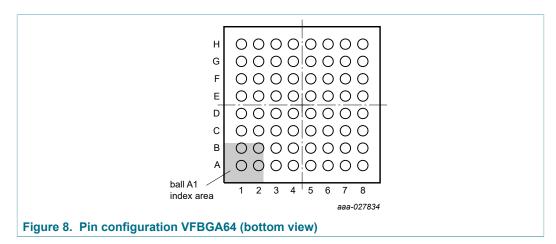
NFC Cortex-M0 microcontroller

7.2 Pin description HVQFN64

Pin	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462	Symbol PN7412	Description PN7412
1	I2CM_ SDA	I ² C-bus serial data I/O master/GPIO13	I2CM_ SDA	I ² C-bus serial data I/O master/GPIO13	I2CM_ SDA	I ² C-bus serial data I/O master/GPIO13
2	CLK_ AUX	GPIO14	CLK_ AUX	auxiliary card contact clock/ GPIO14	CLK_ AUX	auxiliary card contact clock/ GPIO14
3	IO_AUX	GPIO15	IO_AUX	auxiliary card contact I/O/ GPIO15	IO_AUX	auxiliary card contact I/O/ GPIO15
4	INT_ AUX	GPIO16	INT_ AUX	auxiliary card contact interrupt/GPIO16	INT_ AUX	auxiliary card contact interrupt/GPIO16
5	n.c.	not connected	PRES	card presence	PRES	card presence
6	ATX_A	SPI slave select input (NSS_S)/I ² C-bus serial clock input (SCL_S)/ HSUART RX	ATX_A	SPI slave select input (NSS_S)/I ² C-bus serial clock input (SCL_S)/ HSUART RX	ATX_A	SPI slave select input (NSS_S)/I ² C-bus serial clock input (SCL_S)/ HSUART RX
7	ATX_B	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX	ATX_B	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX	ATX_B	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX
8	ATX_C	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/HSUART RTS	ATX_C	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/HSUART RTS	ATX_C	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/HSUART RTS
9	ATX_D	USB D-/SPI clock input (SCK_S)/I ² C-bus address bit1 input/HSUART CTS	ATX_D	USB D-/SPI clock input (SCK_S)/I ² C-bus address bit1 input/HSUART CTS	ATX_D	USB D-/SPI clock input (SCK_S)/l ² C-bus address bit1 input/HSUART CTS
10	PVDD_ IN	pad supply voltage input	PVDD_ IN	pad supply voltage input	PVDD_ IN	pad supply voltage input
11	DVDD	digital core logic supply voltage input	DVDD	digital core logic supply voltage input	DVDD	digital core logic supply voltage input
12	DWL_ REQ	entering in download mode	DWL_ REQ	entering in download mode	DWL_ REQ	entering in download mode
13	IRQ	interrupt request output	IRQ	interrupt request output	IRQ	interrupt request output
14	SWDC LK	SW serial debug line clock	SWDC LK	SW serial debug line clock	SWDC LK	SW serial debug line clock
15	SWDIO	SW serial debug line input/ output	SWDIO	SW serial debug line input/ output	SWDIO	SW serial debug line input/ output
16	GPIO1	general-purpose I/O/SPI master select2 output	GPIO1	general-purpose I/O/SPI master select2 output	GPIO1	general-purpose I/O/SPI master select2 output
17	GPIO2	general-purpose I/O	GPIO2	general-purpose I/O	GPIO2	general-purpose I/O
18	GPIO3	general-purpose I/O	GPIO3	general-purpose I/O	GPIO3	general-purpose I/O
19	GPIO4	general-purpose I/O	GPIO4	general-purpose I/O	GPIO4	general-purpose I/O
20	GPIO5	general-purpose I/O	GPIO5	general-purpose I/O	GPIO5	general-purpose I/O
21	GPIO6	general-purpose I/O	GPIO6	general-purpose I/O	GPIO6	general-purpose I/O

PN7462_FAM

NFC Cortex-M0 microcontroller


Pin	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462	Symbol PN7412	Description PN7412
22	GPIO7	general-purpose I/O	GPIO7	general-purpose I/O	GPIO7	general-purpose I/O
23	GPIO8	general-purpose I/O	GPIO8	general-purpose I/O	GPIO8	general-purpose I/O
24	GPIO9	general-purpose I/O	GPIO9	general-purpose I/O	GPIO9	general-purpose I/O
25	GPIO10	general-purpose I/O	GPIO10	general-purpose I/O	GPIO10	general-purpose I/O
26	GPIO11	general-purpose I/O	GPIO11	general-purpose I/O	GPIO11	general-purpose I/O
27	GPIO12	general-purpose I/O	GPIO12	general-purpose I/O	GPIO12	general-purpose I/O
28	RXN	receiver input	RXN	receiver input	n.c.	See UM10858 for connection details
29	RXP	receiver input	RXP	receiver input	n.c.	See UM10858 for connection details
30	VMID	receiver reference voltage input	VMID	receiver reference voltage input	n.c.	See UM10858 for connection details
31	TX2	antenna driver output	TX2	antenna driver output	n.c.	keep unconnected
32	TVSS	ground for antenna power supply	TVSS	ground for antenna power supply	TVSS	ground for antenna power supply
33	TX1	antenna driver output	TX1	antenna driver output	n.c.	keep unconnected
34	TVDD_ IN	antenna driver supply voltage input	TVDD_ IN	antenna driver supply voltage input	n.c.	Connect to GND
35	ANT1	antenna connection for load modulation in card emulation and P2P passive target modes	ANT1	antenna connection for load modulation in card emulation and P2P passive target modes	n.c.	See UM10858 for connection details
36	ANT2	antenna connection for load modulation in card emulation and P2P passive target modes	ANT2	antenna connection for load modulation in card emulation and P2P passive target modes	n.c.	See UM10858 for connection details
37	TVDD_ OUT	antenna driver supply, output of TX_LDO	TVDD_ OUT	antenna driver supply, output of TX_LDO	TVDD_ OUT	antenna driver supply, output of TX_LDO
38	VUP_ TX	supply of the contactless TX_LDO	VUP_ TX	supply of the contactless TX_LDO	VUP_ TX	supply of the contactless TX_LDO
39	VDD	1.8 V regulator output for digital blocks	VDD	1.8 V regulator output for digital blocks	VDD	1.8 V regulator output for digital blocks
40	XTAL1	27.12 MHz clock input for crystal	XTAL1	27.12 MHz clock input for crystal	XTAL1	27.12 MHz clock input for crystal
41	XTAL2	27.12 MHz clock input for crystal	XTAL2	27.12 MHz clock input for crystal	XTAL2	27.12 MHz clock input for crystal
42	RST_N	reset pin	RST_N	reset pin	RST_N	reset pin
43	VBUS	main supply voltage input of microcontroller	VBUS	main supply voltage input of microcontroller	VBUS	main supply voltage input of microcontroller
44	PVDD_ OUT	output of PVDD_LDO for pad voltage supply	PVDD_ OUT	output of PVDD_LDO for pad voltage supply	PVDD_ OUT	output of PVDD_LDO for pad voltage supply
45	GNDP	Ground	GNDP	Ground	GNDP	Ground

NFC Cortex-M0 microcontroller

Pin	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462	Symbol PN7412	Description PN7412
46	n.c.	not connected	SAM	DC-to-DC converter connection	SAM	DC-to-DC converter connection
47	n.c.	not connected	SCVDD	input LDO for DC-to-DC converter	SCVDD	input LDO for DC-to-DC converter
48	VBUSP	Connected to VBUS	VBUSP	main supply for the contact interface	VBUSP	main supply for the contact interface
49	n.c.	not connected	SAP	DC-to-DC converter connection	SAP	DC-to-DC converter connection
50	n.c.	not connected	VUP	reserved; connected to GND through a decoupling capacitance	VUP	reserved; connected to GND through a decoupling capacitance
51	n.c.	not connected	VCC	card supply output of contact interface	VCC	card supply output of contact interface
52	n.c.	not connected	RST	reset pin of contact interface	RST	reset pin of contact interface
53	n.c.	not connected	CLK	clock pin of contact interface	CLK	clock pin of contact interface
54	GNDC	connected to the ground	GNDC	connected to the ground	GNDC	connected to the ground
55	n.c.	not connected	AUX1	C4 card I/O pin of contact interface	AUX1	C4 card I/O pin of contact interface
56	n.c.	not connected	AUX2	C8 card I/O pin of contact interface	AUX2	C8 card I/O pin of contact interface
57	n.c.	not connected	IO	card I/O	IO	card I/O
58	USB_ VBUS	used for USB VBUS detection	USB_ VBUS	used for USB VBUS detection	USB_ VBUS	used for USB VBUS detection
59	PVDD_ M_IN	pad supply voltage input for master interfaces	PVDD_ M_IN	pad supply voltage input for master interfaces	PVDD_ M_IN	pad supply voltage input for master interfaces
60	SPIM_ SSN	SPI master select 1 output/ GPIO17	SPIM_ SSN	SPI master select 1 output/ GPIO17	SPIM_ SSN	SPI master select 1 output/ GPIO17
61	SPI_ SCLK	SPI master clock output/ GPIO18	SPI_ SCLK	SPI master clock output/ GPIO18	SPI_ SCLK	SPI master clock output/ GPIO18
62	SPIM_ MOSI	SPI master data output/ GPIO19	SPIM_ MOSI	SPI master data output/ GPIO19	SPIM_ MOSI	SPI master data output/ GPIO19
63	SPIM_ MISO	SPI master data input/ GPIO20	SPIM_ MISO	SPI master data input/ GPIO20	SPIM_ MISO	SPI master data input/ GPIO20
64	I2CM_ SCL	I ² C-bus serial clock output master/GPIO21	I2CM_ SCL	I ² C-bus serial clock output master/GPIO21	I2CM_ SCL	I ² C-bus serial clock output master/GPIO21
Die pad	GND	Ground	GND	Ground	GND	Ground

NFC Cortex-M0 microcontroller

7.3 Pinning VFBGA64

7.4 Pin description VFBGA64

Pin	5. Pin descripti		Symbol	Description DN7462
PIN	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462
A1	I2CM_SDA	I ² C-bus serial data I/O master/GPIO13	I2CM_SDA	I ² C-bus serial data I/O master/GPIO13
A2	SPIM_MISO	SPI master data input/GPIO20	SPIM_MISO	SPI master data input/GPIO20
A3	PVDD_M_IN	pad supply voltage input for master interfaces	PVDD_M_IN	pad supply voltage input for master interfaces
A4	VBUSP	Connected to VBUS	VBUSP	Connected to VBUS
A5	VBUS	main supply voltage input of microcontroller	VBUS	main supply voltage input of microcontroller
A6	PVSS	Pad ground	PVSS	Pad ground
A7	PVDD_OUT	output of PVDD_LDO for pad voltage supply	PVDD_OUT	output of PVDD_LDO for pad voltage supply
A8	XTAL2	27.12 MHz clock input for crystal	XTAL2	27.12 MHz clock input for crystal
B1	INT_AUX	GPIO16	INT_AUX	auxiliary card contact interrupt/GPIO16
B2	ATX_A	SPI slave select input (NSS_S)/l ² C-bus serial clock input (SCL_S)/HSUART RX	ATX_A	SPI slave select input (NSS_S)/l ² C-bus serial clock input (SCL_S)/HSUART RX
B3	SPIM_MOSI	SPI master data output/GPIO19	SPIM_MOSI	SPI master data output/GPIO19
B4	SPIM_SSN	SPI master select 1 output/GPIO17	SPIM_SSN	SPI master select 1 output/GPIO17
B5	USB_VBUS	used for USB VBUS detection	USB_VBUS	used for USB VBUS detection
B6	PVSS	Pad ground	PVSS	Pad ground
B7	PVSS	Pad ground	PVSS	Pad ground
B8	XTAL1	27.12 MHz clock input for crystal	XTAL1	27.12 MHz clock input for crystal
C1	CLK_AUX	GPIO14	CLK_AUX	auxiliary card contact clock/GPIO14
C2	ATX_B	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX	ATX_B	SPI slave data input (MOSI_S)/I ² C-bus serial data I/O (SDA_S)/HSUART TX

NFC Cortex-M0 microcontroller

Pin	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462
C3	I2CM_SCL	I ² C-bus serial clock output master/ GPIO21	I2CM_SCL	I ² C-bus serial clock output master/ GPIO21
C4	SPI_SCLK	SPI master clock output/GPIO18	SPI_SCLK	SPI master clock output/GPIO18
C5	DVSS	Digital ground	DVSS	Digital ground
C6	PVSS	Pad ground	PVSS	Pad ground
C7	RST_N	reset pin	RST_N	reset pin
C8	VDD	1.8 V regulator output for digital blocks	VDD	1.8 V regulator output for digital blocks
D1	PVDD_IN	pad supply voltage input	PVDD_IN	pad supply voltage input
D2	ATX_C	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/ HSUART RTS	ATX_C	USB D+/SPI slave data output (MISO_S)/I ² C-bus address bit0 input/ HSUART RTS
D3	IRQ	interrupt request output	IRQ	interrupt request output
D4	IO_AUX	GPIO15	IO_AUX	auxiliary card contact I/O/GPIO15
D5	DVSS	Digital ground	DVSS	Digital ground
D6	PVSS	Pad ground	PVSS	Pad ground
D7	PVSS	Pad ground	PVSS	Pad ground
D8	VUP_TX	supply of the contactless TX_LDO	VUP_TX	supply of the contactless TX_LDO
E1	DVDD	digital core logic supply voltage input	DVDD	digital core logic supply voltage input
E2	ATX_D	USB D-/SPI clock input (SCK_S)/I ² C-bus address bit1 input/HSUART CTS	ATX_D	USB D-/SPI clock input (SCK_S)/l ² C-bus address bit1 input/HSUART CTS
E3	GPIO1	general-purpose I/O/SPI master select2 output	GPIO1	general-purpose I/O/SPI master select2 output
E4	GPIO5	general-purpose I/O	GPIO5	general-purpose I/O
E5	DVSS	Digital ground	DVSS	Digital ground
E6	AVSS	Analog ground	AVSS	Analog ground
E7	ANT2	antenna connection for load modulation in card emulation and P2P passive target modes	ANT2	antenna connection for load modulation in card emulation and P2P passive target modes
E8	TVDD_OUT	antenna driver supply, output of TX_LDO	TVDD_OUT	antenna driver supply, output of TX_LDO
F1	DWL_REQ	entering in download mode	DWL_REQ	entering in download mode
F2	SWDIO	SW serial debug line input/output	SWDIO	SW serial debug line input/output
F3	GPIO6	general-purpose I/O	GPIO6	general-purpose I/O
F4	GPIO9	general-purpose I/O	GPIO9	general-purpose I/O
F5	GPIO12	general-purpose I/O	GPIO12	general-purpose I/O
F6	AVSS	Analog ground	AVSS	Analog ground
F7	ANT1	antenna connection for load modulation in card emulation and P2P passive target modes	ANT1	antenna connection for load modulation in card emulation and P2P passive target modes
F8	TVDD_IN	antenna driver supply voltage input	TVDD_IN	antenna driver supply voltage input

© NXP B.V. 2020. All rights reserved.

NFC Cortex-M0 microcontroller

Pin	Symbol PN736X	Description PN736X	Symbol PN7462	Description PN7462
G1	SWDCLK	SW serial debug line clock	SWDCLK	SW serial debug line clock
G2	GPIO4	general-purpose I/O	GPIO4	general-purpose I/O
G3	GPIO7	general-purpose I/O	GPIO7	general-purpose I/O
G4	GPIO8	general-purpose I/O	GPIO8	general-purpose I/O
G5	GPIO10	general-purpose I/O	GPIO10	general-purpose I/O
G6	GPIO11	general-purpose I/O	GPIO11	general-purpose I/O
G7	AVSS	Analog ground	AVSS	Analog ground
G8	TX1	antenna driver output	TX1	antenna driver output
H1	GPIO3	general-purpose I/O	GPIO3	general-purpose I/O
H2	GPIO2	general-purpose I/O	GPIO2	general-purpose I/O
H3	VMID	receiver reference voltage input	VMID	receiver reference voltage input
H4	RXN	receiver input	RXN	receiver input
H5	RXP	receiver input	RXP	receiver input
H6	TVSS	Antenna driver ground	TVSS	Antenna driver ground
H7	TX2	antenna driver output	TX2	antenna driver output
H8	TVSS	Antenna driver ground	TVSS	Antenna driver ground

8 Functional description

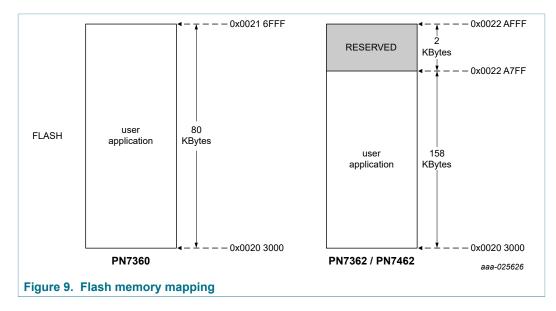
8.1 Arm Cortex-M0 microcontroller

The PN7462 family is an Arm Cortex-M0-based 32-bit microcontroller, optimized for low-cost designs, high energy efficiency, and simple instruction set.

The CPU operates on an internal clock, which can be configured to provide frequencies such as 20 MHz, 10 MHz, and 5 MHz.

The peripheral complement of the PN7462 family includes a 160 kB flash memory, a 12 kB SRAM, and a 4 kB EEPROM. It also includes one configurable host interface (Fast-mode Plus and high-speed I²C, SPI, HSUART, and USB), two master interfaces (Fast-mode Plus I²C, SPI), 4 timers, 12 general-purpose I/O pins, one ISO/IEC 7816 contact card interface (PN7462AUHN only), one ISO/IEC 7816-3&4 UART (PN7462AUHN and PN7462AUEV only) and one 13.56 MHz NFC interface.

8.2 Memories

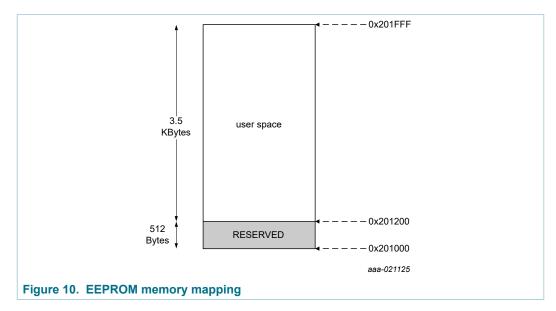

8.2.1 On-chip flash programming memory

The PN7462 family contains160 / 80 kB on-chip flash program memory depending on the version. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot loader software.

The flash memory is divided into two instances of 80 kB each, with each sector consisting of individual pages of 64 bytes.

8.2.1.1 Memory mapping

The flash memory mapping is described in Figure 9.

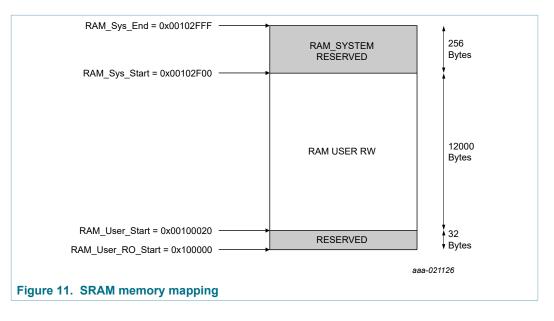

PN7462_FAM Product data sheet COMPANY PUBLIC

8.2.2 EEPROM

The PN7462 family embeds 4 kB of on-chip byte-erasable and byte-programmable EEPROM data memory.

The EEPROM can be programmed using In-System Programming (ISP).

8.2.2.1 Memory mapping



8.2.3 SRAM

The PN7462 family contains a total of 12 kB on-chip static RAM memory.

8.2.3.1 Memory mapping

The SRAM memory mapping is shown in Figure 11.

PN7462_FAM Product data sheet COMPANY PUBLIC © NXP B.V. 2020. All rights reserved.

8.2.4 ROM

The PN7462 family contains 40 kB of on-chip ROM memory. The on-chip ROM contains boot loader, USB mass storage primary download, and the following Application Programming Interfaces (APIs):

- In-Application Programming (IAP) support for flash
- Lifecycle management of debug interface, code write protection of flash memory and USB mass storage primary download
- USB descriptor configuration
- · Configuration of timeout and source of pad supply

8.2.5 Memory map

The PN7462 family incorporates several distinct memory regions. <u>Figure 12</u> shows the memory map, from the user program perspective, following reset.

The APB peripheral area is 512 kB in size, and is divided to allow up to 32 peripherals. Only peripherals from 0 to 15 are accessible. Each peripheral allocates 16 kB, which simplifies the address decoding for the peripherals. APB memory map is described in Figure 13 and Figure 14.

NFC Cortex-M0 microcontroller

PN7462_FAM **Product data sheet COMPANY PUBLIC**

406345

NFC Cortex-M0 microcontroller

APB ID	APB IF name	Connected IP	0x4004 8000
16 to 31	Rese	erved	0x4004 0000
15	Rese	erved	0x4003 C000
14	Rese	erved	0x4003 8000
13	SPIMASTER_APB	SPI Master IF	0x4003 4000
12	I2CMASTER_APB	I2C Master IF	0x4003 0000
11	Rese	erved	0x4002 C00
10	USB_APB	HostIF (USB) IP	0x4002 8000
9	PCR_APB	PowerClockResetModule IP	0x4002 4000
8	HOST_APB	HostIF (I2C/SPI/HSU/BufMgt) IP	0x4002 0000
7	TIMERS_APB	Timer IP	0x4001 C00
6	RNG_APB	RNG IP	0x4001 8000
5	Rese	erved	0x4001 4000
4	CLOCKGEN_APB	Clock Gen module	0x4001 0000
3	CRC_APB	CRC IP	0x4000 C00
2	PMU_APB	PMU modules	0x4000 8000
1	CL_APB	Contactless IP	0x4000 4000
0	Rese	erved	0x4000 0000
0		51700	0x4000 00 aaa-021

Figure 13. APB memory map PN736X

APB ID	APB IF name	Connected IP	0x4004 8000	
16 to 31	Rese	Reserved		
15	Rese	erved	0x4003 C000	
14	Rese	erved	0x4003 8000	
13	SPIMASTER_APB	SPI Master IF	0x4003 4000	
12	I2CMASTER_APB	I2C Master IF	0x4003 0000	
11	Rese	erved	0x4002 C000	
10	USB_APB	HostIF (USB) IP	0x4002 8000	
9	PCR_APB	PowerClockResetModule IP	0x4002 4000	
8	HOST_APB	HostIF (I2C/SPI/HSU/BufMgt) IP	0x4002 0000	
7	TIMERS_APB	Timer IP	0x4001 C000	
6	RNG_APB	RNG IP	0x4001 8000	
5	CTUART_APB	Contact UART IP	0x4001 4000	
4	CLOCKGEN_APB	Clock Gen module	0x4001 0000	
3	CRC_APB	CRC IP	0x4000 C000	
2	PMU_APB	PMU modules	0x4000 8000	
1	CL_APB	Contactless IP	0x4000 4000	
0	Rese	erved	0x4000 0000	
			aaa-028697	

Figure 14. APB memory map PN7462

NFC Cortex-M0 microcontroller

APB ID	APB IF name	Connected IP	0x4004 8000
16 to 31	Rese	erved	0x4004 0000
15	Rese	erved	0x4003 C000
14	Rese	erved	0x4003 8000
13	SPIMASTER_APB	SPI Master IF	0x4003 4000
12	I2CMASTER_APB	I2C Master IF	0x4003 0000
11	Rese	erved	0x4002 C000
10	USB_APB	HostIF (USB) IP	0x4002 8000
9	PCR_APB	PowerClockResetModule IP	0x4002 4000
8	HOST_APB	HostIF (I2C/SPI/HSU/BufMgt) IP	0x4002 0000
7	TIMERS_APB	Timer IP	0x4001 C000
6	RNG_APB	RNG IP	0x4001 8000
5	CTUART_APB	Contact UART IP	0x4001 4000
4	CLOCKGEN_APB	Clock Gen module	0x4001 0000
3	CRC_APB	CRC IP	0x4000 C000
2	PMU_APB	PMU modules	0x4000 8000
1	Rese	erved	0x4000 4000
0	Rese	erved	0x4000 0000
U	Rese	ervea	0x4000 00 aaa-0301

Figure 15. APB memory map PN7412

8.3 Nested Vectored Interrupt Controller (NVIC)

Cortex-M0 includes a Nested Vectored Interrupt Controller (NVIC). The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.

8.3.1 NVIC features

- System exceptions and peripheral interrupts control
- Support 32 vectored interrupts
- · Four interrupt priority levels with hardware priority level masking
- One Non-Maskable Interrupt (NMI) connected to the watchdog interrupt
- Software interrupt generation

8.3.2 Interrupt sources

The following table lists the interrupt sources available in the PN7462 family microcontroller.

Table 6. Interrupt sources

EIRQ#	Source	Description	
0	timer 0/1/2/3	general-purpose timer 0/1/2/3 interrupt	
1	-	reserved	
2	CLIF	NFC interface module interrupt	
3	EECTRL	EEPROM controller	
4	-	reserved	
5	-	reserved	
6	host IF	TX or RX buffer from I ² C, SPI, HSU, or USB module	

NFC Cortex-M0 microcontroller

EIRQ#	Source	Description		
7	contact IF	ISO7816 contact module interrupt		
8	-	reserved		
9	PMU	power management unit (temperature sensor, over current, overload, and VBUS level)		
10	SPI master	TX or RX buffer from SPI master module		
11	I ² C master	TX or RX buffer from I ² C master module		
12	PCR	high temperature from temperature sensor 0 and 1; interrupt to CPU from PCR to indicate wake-up from suspend mode; out of standby; out of suspend; event on GPIOs configured as inputs		
13	PCR	interrupt common GPIO1 to GPIO12		
14	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO1		
15	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO2		
16	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO3		
17	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO4		
18	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO5		
19	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO6		
20	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO7		
21	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO8		
22	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO9		
23	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO10		
24	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO11		
25	PCR	interrupt (rise/fall/both-edge/level-high/level-low interrupt as programmed) GPIO12		
26	-	reserved		
27	-	reserved		
28	-	reserved		
29	-	reserved		
30	-	reserved		
31	-	reserved		
NMI ^[1]	WDT	watchdog interrupt is connected to the non-maskable interrupt pin		

PN7462_FAM Product data sheet COMPANY PUBLIC [1] The NMI is not available on an external pin.

8.4 GPIOs

The PN7462 family has up to 21 general-purpose I/O (GPIO) with configurable pull-up and pull-down resistors, up to 9 of those GPIOs are multiplexed with SPI master, I²C-bus master and AUX pins (if available).

Pins can be dynamically configured as inputs or outputs. GPIO read/write are made by the FW using dedicated registers that allow reading, setting, or clearing inputs. The value of the output register can be read back, as well as the current state of the input pins.

8.4.1 GPIO features

- · Dynamic configuration as input or output
- 3.3 V and 1.8 V signaling
- Programmable weak pull-up and weak pull-down
- Independent interrupts for GPIO1 to GPIO12
- Interrupts: edge or level sensitive
- GPIO1 to GPIO12 can be programmed as wake-up sources
- Programmable spike filter (3 ns)
- Programmable slew rate (3 ns and 10 ns)
- Hysteresis receiver with disable option

8.4.2 GPIO configuration

The GPIO configuration is done through the PCR module (power, clock, and reset).

8.4.3 GPIO interrupts

GPIO1 to GPIO12 can be programmed to generate an interrupt on a level, a rising or falling edge or both.

8.5 CRC engine 16/32 bits

The PN7462 family has a configurable 16/32-bit parallel CRC coprocessor.

The 16-bit CRC is compliant to X.25 (CRC-CCITT, ISO/IEC 13239) standard with a generator polynomial of:

$$g(x) = x^{16} + x^{12} + x^5 + 1$$

The 32-bit CRC is compliant to the ethernet/AAL5 (IEEE 802.3) standard with a generator polynomial of:

$$g(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$

CRC calculation is performed in parallel, meaning that one CRC calculation is performed in one clock cycle. The standard CRC 32 polynomial is compliant with FIPS140-2.

Note: No final XOR calculation is performed.

NFC Cortex-M0 microcontroller

Following are the CRC engine features:

- Configurable CRC preset value
- Selectable LSB or MSB first
- CRC 32 calculation based on 32-bit, 16-bit, and 8-bit words
- CRC16 calculation based on 32-bit, 16-bit, and 8-bit words
- Supports bit order reverse

8.6 Random Number Generator (RNG)

The PN7462 family integrates a random number generator. It consists of an analog True Random Number Generator (TRNG), and a digital Pseudo Random Number Generator (PRNG). The TRNG is used for loading a new seed in the PRNG.

The random number generator features:

- 8-bit random number
- Compliant with FIPS 140-2
- Compliant with BSI AIS20 and SP800-22

8.7 Master interfaces

8.7.1 I²C master interface

8.7.1.1 I²C features

The I²C master interface supports the following features:

- Standard I²C-compliant bus interface with open-drain pins
- Standard-mode, fast mode, and fast mode plus (up to 1 Mbit/s).
- Support I²C master mode only.
- Programmable clocks allowing versatile rate control.
- Clock stretching
- 7-bit and 10-bit I²C slave addressing
- LDM/STM instruction support
- · Maximum data frame size up to 1024 bytes

8.7.2 SPI interface

The PN7462 family contains one SPI master controller and one SPI slave controller.

The SPI master controller transmits the data from the system RAM to the SPI external slaves. Similarly, it receives data from the SPI external slaves and stores them into the system RAM. It can compute a CRC for received frames and automatically compute and append CRC for outgoing frames (optional feature).

8.7.2.1 SPI features

The SPI master interface provides the following features:

- SPI master interface: synchronous, half-duplex
- Supports Motorola SPI frame formats only (SPI block guide V04.0114 (Freescale) specification)
 - · Maximum SPI data rate of 6.78 Mbit/s

NFC Cortex-M0 microcontroller

- Multiple data rates such as 1, 1.51, 2.09, 2.47, 3.01, 4.52, 5.42 and 6.78 Mbit/s
- Up to two slaves select with selectable polarity
- Programmable clock polarity and phase
- · Supports 8-bit transfers only
- Maximum frame size: 511 data bytes payload + 1 CRC byte
- · Optional 1 byte CRC calculation on all data of TX and RX buffer
- AHB master interface for data transfer

8.8 Host interfaces

The PN7462 family embeds four different interfaces for host connection: USB, HSUART, I²C, and SPI.

The four interfaces share the buffer manager and the pins; see Table 7.

Name	SPI	l ² C	USB	HSU
ATX_A	NSS_S	SCL_S	-	HSU_RX
ATX_B	MOSI_S	SDA_S	-	HSU_TX
ATX_C	MISO_S	I ² C_ADR0	DP	HSU_RTS_N
ATX_D	SCK_S	I ² C_ADR1	DM	HSU_CTS_N

Table 7. Pin description for host interface

The interface selection is done by configuring the Power Clock Reset (PCR) registers.

Note: The host interface pins should not be kept floating.

8.8.1 High-speed UART

The PN7462 family has a high-speed UART which can operate in slave mode only.

Following are the HSUART features:

- Standard bit-rates are 9600, 19200, 38400, 57600, 115200, and up to 1.288 Mbit/s
- Supports full duplex communication
- · Supports only one operational mode: start bit, 8 data bits (LSB), and stop bits
- The number of "stop bits" programmable for RX and TX is 1 stop bit or 2 stop bits
- Configurable length of EOF (1-bit to 122-bits)

Table 8. HSUART baudrates

t rate (kBd)	
3	
.2	
.4	
.6	
5.2	
0.4	
0.8	
1.6	
88 K	

© NXP B.V. 2020. All rights reserved.

8.8.2 I²C host interface controller

The I²C-bus is bidirectional and uses only two wires: a Serial Clock Line (SCL) and a Serial Data Line (SDA). I²C standard mode (100 kbit/s), fast mode (400 kbit/s and up to 1 Mbit/s), and high-speed mode (3.4 Mbit/s) are supported.

8.8.2.1 I²C host interface features

The PN7462 family I^2C slave interface supports the following features:

- Support slave I²C bus
- Standard mode, fast mode (extended to 1 Mbit/s support), and high-speed modes
- Supports 7-bit addressing mode only
- Selection of the I²C address done by two pins
 - It supports multiple addresses
 - The upper bits of the I²C slave address are hard-coded. The value corresponds to the NXP identifier for I²C blocks. The value is 0101 0XXb.
- General call (software reset only)
- Software reset (in standard mode and fast mode only)

Table 9. I²C interface addressing

I ² C_ADR1	I ² C_ADR0	l ² C address (R/W = 0, write)	I ² C address (R/W = 0, read)
0	0	0 × 28	0 × 28
0	1	0 × 29	0 × 29
1	0	0 × 2A	0 × 2A
1	1	0 × 2B	0 × 2B

8.8.3 SPI host/Slave interface

The PN7462 family host interface can be used as SPI slave interface.

The SPI slave controller operates on a four wire SSI: Master In Slave Out (MISO), Master Out Slave In (MOSI), Serial Clock (SCK), and Not Slave Select (NSS). The SPI slave select polarity is fixed to positive polarity.

8.8.3.1 SPI host interface features

The SPI host/slave interface has the following features:

- SPI speeds up to 7 Mbit/s
- Slave operation only
- 8-bit data format only
- Programmable clock polarity and phase
- SPI slave select polarity selection fixed to positive polarity
- Half-duplex in HDLL mode
- Full-duplex in native mode

If no data is available, the MISO line is kept idle by making all the bits high (0xFF). Toggling the NSS line indicates a new frame.

Note: Programmable echo-back operation is not supported.

NFC Cortex-M0 microcontroller

Table 10. SPI configuration

connection

CPHA switch: Clock phase: Defines the sampling edge of MOSI data

- CPHA = 1: Data are sampled on MOSI on the even clock edges of SCK, after NSS goes low
- CPHA = 0: Data are sampled on MOSI on the odd clock edges of SCK, after NSS goes low

CPOL switch: Clock polarity

- IFSEL1 = 0: The clock is idle low, and the first valid edge of SCK is a rising one
- IFSEL1 = 0: The clock is idle high, and the first valid edge of SCK is a falling one

8.8.4 USB interface

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and up to 127 peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot-plugging and dynamic configuration of devices. The host controller initiates all transactions. The PN7462 family USB interface consists of a full-speed device controller with on-chip PHY (physical layer) for device functions.

8.8.4.1 Full speed USB device controller

The PN7462 family embeds a USB device peripheral, compliant with USB 2.0 specification, full speed. It is interoperable with USB 3.0 host devices.

The device controller enables 12 Mbit/s data exchange with a USB host controller. It consists of a register interface, serial interface engine, and endpoint buffer memory. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer.

The status of a completed USB transfer or error condition is indicated via status registers. If enabled, an interrupt is generated.

Following are the USB interface features:

- Fully compliant with USB 2.0 specification (full speed)
- Dedicated USB PLL available
- Supports 14 physical (7 logical) endpoints including one control endpoint
- Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types
- Single or double buffering allowed
- · Support wake-up from suspend mode on USB activity and remote wake-up
- Soft-connect supported

8.9 Contact interface

Note: This following chapter applies to PN7462AUHN, PN7412AUHN and PN7462AUEV only. PN7462AUHN and PN7412AUHN embed a contact interface and I/O auxiliary interface. PN7462AUEV embeds the I/O auxiliary interface only.

The PN7462 and PN7412 integrate an ISO/IEC 7816 interface to enable the communication with a contact smart card. It does not require addition of an external contact frontend for reading payment cards, SAM for secure applications, etc. It offers a high level of security for the card by performing current limitation, short-circuit detection, ESD protection as well as supply supervision.

NFC Cortex-M0 microcontroller

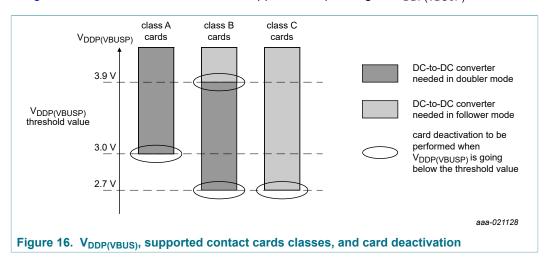
PN7462 and PN7412 also offer the possibility to extend the number of contact interfaces available. They use an I/O auxiliary interface to connect a slot extension (TDA8035 - 1 slot, TDA8020 - 2 slots, and TDA8026 - 5 slots).

- Class A (5 V), class B (3 V), and class C (1.8 V) smart card supply
- Protection of smart card
- Three protected half-duplex bidirectional buffered I/O lines (C4, C7, and C8)
- · Compliant with ISO/IEC 7816 and EMVCo 4.3 standards

8.9.1 Contact interface features and benefits

- · Protection of the smart card
 - Thermal and current limitation in the event of short-circuit (pins I/O, V_{CC})
 - V_{CC} regulation: 5 V, 3 V, and 1.8 V
 - Automatic deactivation initiated by hardware in the event of a short-circuit, card takeoff, overheating, falling of PN7462 supply
 - Enhanced card-side ElectroStatic Discharge (ESD) protection of greater than 8 kV
- Support of class A, class B, and class C contact smart cards
- DC-to-DC converter for V_{CC} generation to enable support of class A and class B cards with low input voltages
- Built-in debouncing on card presence contact
- Compliant with ISO/IEC 7816 and EMVCo 4.3 standards
- Card clock generation up to 13.56 MHz using external crystal oscillator (27.12 MHz); provides synchronous frequency changes of f_{XTAL} / 2, f_{XTAL} / 3, f_{XTAL} / 4, f_{XTAL} / 5, f_{XTAL} / 6, f_{XTAL} / 8, and f_{XTAL} / 16
- Specific ISO/IEC UART with APB access for automatic convention processing, variable baud rate through frequency or division ratio programming, error management at character level for T = 0 and extra guard time register
 - FIFO 1 character to 32 characters in both reception and transmission mode
 - Parity error counter in reception mode and transmission mode with automatic retransmission
 - Cards clock stop (at HIGH or LOW level)
 - Automatic activation and deactivation sequence through a sequencer
 - Supports the asynchronous protocols T = 0 and T = 1 in accordance with ISO/IEC 7816 and EMV
 - Versatile 24-bit timeout counter for Answer To Reset (ATR) and waiting times processing
 - Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT); 22 ETU in T = 1 and 16 ETU in T = 0
 - Supports synchronous cards

8.9.2 Voltage supervisor


The PN7462 integrates a voltage monitor to ensure that sufficient voltage is available for the contact interface; see <u>Section 8.15.4</u> and <u>Section 9.1.3</u>.

In order to provide the right voltage needed for the various ISO/IEC 7816 contact card classes (A, B, or C), the following voltages are needed:

- V_{DDP(VBUSP)} > 2.7 V for support of class B and class C contact cards
- V_{DDP(VBUSP)} > 3 V for support of class A contact cards

 Remark: To support class A cards, DC-to-DC converter is used in doubler mode. To support class B cards with V_{DDP(VBUSP)} < 3.9 V, DC-to-DC converter is used in doubler mode. To support class B cards with V_{DDP(VBUSP)} > 3.9 V, DC-to-DC converter is used in follower mode.

<u>Figure 16</u> shows the classes that are supported, depending on $V_{DDP(VBUSP)}$.

When the $V_{DDP(VBUSP)}$ is going below the threshold value, in the one of the conditions indicated below, a card deactivation is performed:

- Class A card activated, and V_{DDP(VBUSP)} going below 3 V
- Class B card activated, and V_{DDP(VBUSP)} going below 3.9 V (DC-to-DC converter in follower mode)
- Class B card activated, and V_{DDP(VBUSP)} going below 2.7 V (DC-to-DC converter in doubler mode)
- Class C card activated, and V_{DDP(VBUSP)} going below 2.7 V

The VBUSP voltage monitor can be configured so that an automatic "card deactivation" sequence is performed automatically when $V_{\text{DDP(VBUSP)}}$ is going below the threshold value.

8.9.3 Clock circuitry

The card clock is generated from the crystal oscillator, connected on the pin XTAL1 and XTAL2.

The card frequency is configured through the contact interface registers. The following value can be chosen: $f_{XTAL} / 2$, $f_{XTAL} / 3$, $f_{XTAL} / 4$, $f_{XTAL} / 5$, $f_{XTAL} / 6$, $f_{XTAL} / 8$, and $f_{XTAL} / 16$.

It is possible to put the card clock to a logical level 0 or 1 (clock stop feature).

The duty cycle on the pin CLK is between 45 % and 55 %, for all the available clock dividers.

8.9.4 I/O circuitry

The three data lines I/O, AUX1, and AUX2 are identical.

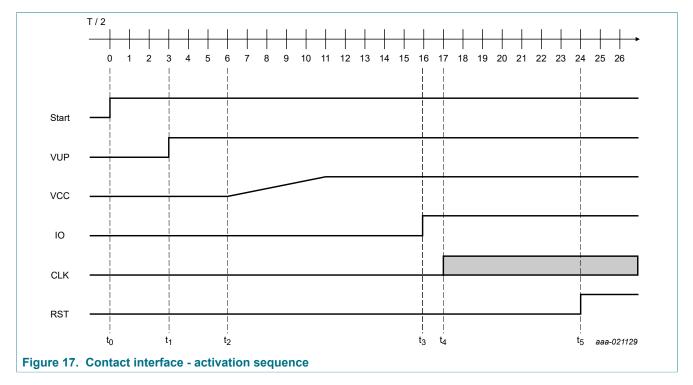
I/O is referenced to V_{CC}. To enter in the idle state, the I/O line is pulled HIGH via a 10 k Ω resistor (I/O to V_{CC}).

The active pull-up feature ensures fast LOW to HIGH transitions. At the end of the active pull-up pulse, the output voltage depends on the internal pull-up resistor and the load current.

The maximum frequency on these lines is 1.5 MHz.

8.9.5 VCC regulator

VCC regulator delivers up to 60 mA for class A cards (0 V to 5 V). It also delivers up to 55 mA for class B cards (0 V to 3 V) and up to 35 mA for class C cards (from 0 V to 1.8 V).


The VCC has an internal overload detection at approximately 110 mA for class A and B, and 90 mA for class C.

This detection is internally filtered, allowing the card to draw spurious current pulses as defined in EMVCo specification, without causing a deactivation. The average current value must remain below the maximum.

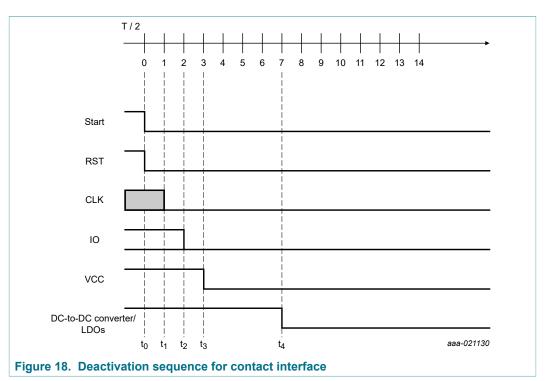
8.9.6 Activation sequence

The presence of a contact card is indicated to PN7462 through PRESN signal. If all supply conditions are met, the PN7462 may start an activation sequence. Figure 17 shows the activation sequence.

The sequencer clock is based on the crystal oscillator: $f_{seq} = f_{XTAL}/10$. When the contact interface is active, the period for activation phases is: T = 64/f_{seq} = 23.6 µs.

Once the activation sequence is triggered, the following sequence takes place:

- Contact LDOs and DC-to-DC converter (when relevant) starts at $t_{\rm 1}$


VCC starts rising from 0 to the required voltage (5 V, 3 V, and 1.8 V) at t₂

- IO rises to VCC at $t_{\rm 3}$
- · CLK starts at t₄
- RST pin is enabled at t₅

8.9.7 Deactivation sequence

When triggered by the PN7462, the deactivation following sequence takes place:

- · Card reset (pin RST) status goes LOW
- Clock (CLK) stopped at LOW level
- Pin IO falls to 0 V
- VCC falls to 0 V

The deactivation sequence is performed in the following cases:

- Removal of card; generated automatically by the PN7462
- Overcurrent detection on pin VCC; generated automatically by the PN7462
- Overcurrent detection on pin IO; generated automatically by the PN7462
- Detection for overheating; generated automatically by the PN7462
- Pin VBUSP going below relevant voltage threshold (optional); part of the pin VBUSP monitor
- Reset request through software

8.9.8 I/O auxiliary - connecting TDA slot extender

To address applications where multiple ISO/IEC 7816 interfaces are needed, the PN7462 integrates the possibility to connect contact slot extenders like TDA8026, TDA8020, or TDA8035.

The following pins are available:

- INT_AUX
- CLK_AUX
- IO_AUX

For more details about the connection, refer to the slot extender documentation.

8.10 Contactless interface - 13.56 MHz

This chapter applies to the products with contactless interface only.

The PN7462 family embeds a high power 13.56 MHz RF frontend. The RF interface implements the RF functionality like antenna driving, the receiver circuitry, and all the low-level functionalities. It helps to realize an NFC forum or an EMVCo compliant reader.

The PN7462 family allows different voltages for the RF drivers. For information related to the RF interface supply, refer <u>Section 8.15</u>.

The PN7462 family uses an external oscillator, at 27.12 MHz. It is a clock source for generating RF field and its internal operation.

Key features of the RF interface are:

- ISO/IEC 14443 type A & B compliant
- MIFARE functionality, including MIFARE Classic encryption in read/write mode
- ISO/IEC 15693 compliant
- NFC Forum NFCIP-1 & NFCIP-2 compliant
 - P2P, active and passive mode
 - reading of NFC forum tag types 1, 2, 3, 4, and 5
- FeliCa
- ISO/IEC 18000-3 mode 3
- EMVCo contactless 2.6
 - RF level can be achieved without the need of booster circuitry (for some antenna topologies the EMV RF-level compliance might physically not be achievable)
- Card mode enabling the emulation of an ISO/IEC 14443 type A card
 - Supports Passive Load Modulation (PLM) and Active Load Modulation (ALM)
- Low Power Card Detection (LPCD)
- Adjustable RX-voltage level

A minimum voltage of 2.3 V helps to use card emulation, and P2P passive target functionality in passive load modulation.

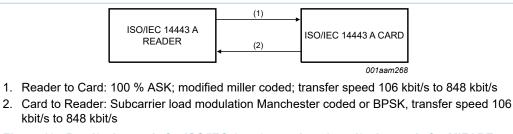
A voltage above 2.7 V enables all contactless functionalities.

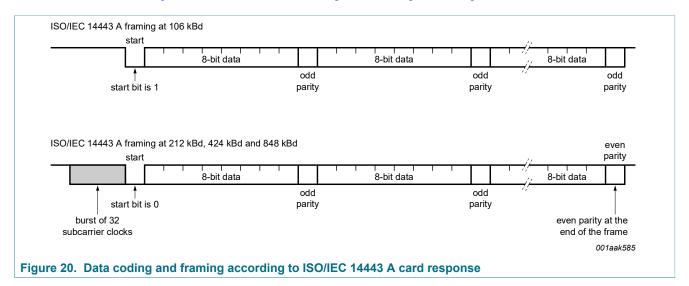
8.10.1 RF functionality

8.10.1.1 Communication mode for ISO/IEC 14443 type A and for MIFARE Classic

The physical level of the communication is shown in Figure 19.

NFC Cortex-M0 microcontroller



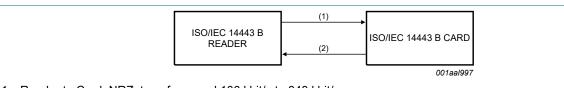

Figure 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic

The physical parameters are described in Table 11

Table 11. Communication overview for ISO/IEC 14443 type A and read/write mode for MIFARE Classic

Communication	Signal type	Transfer speed			
direction		106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s
reader to card (send data from the PN7462 family to a card) f _c = 13.56 MHz	reader side modulation	100 % ASK	100 % ASK	100 % ASK	100 % ASK
	bit encoding	modified miller encoding	modified miller encoding	modified miller encoding	modified miller encoding
	bit rate (kbit/s)	f _c / 128	f _c / 64	f _c / 32	f _c / 16
card to reader (PN7462 family receives data from a card)	card side modulation	sub carrier load modulation			
	subcarrier frequency	f _c / 16			
	bit encoding	Manchester encoding	BPSK	BPSK	BPSK

Figure 20 shows the data coding and framing according to ISO/IEC 14443 A.



The internal CRC coprocessor calculates the CRC value based on the selected protocol. In card mode for higher baudrates, the parity is automatically inverted as end of communication indicator.

PN7462_FAM
Product data sheet
COMPANY PUBLIC

8.10.1.2 ISO/IEC14443 B functionality

The physical level of the communication is shown in Figure 21

1. Reader to Card: NRZ; transfer speed 106 kbit/s to 848 kbit/s

2. Card to reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s

Figure 21. ISO/IEC 14443 B read/write mode communication diagram

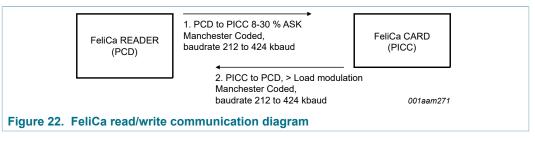

The physical parameters are described in Table 12

Table 12. Communication overview for ISO/IEC 14443 B reader/writer

Communication direction	Signal type	Transfer speed			
		106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s
reader to card (send data from the PN7462 family to a card) f _c = 13.56 MHz	reader side modulation	10 % ASK	10 % ASK	10 % ASK	10 % ASK
	bit encoding	NRZ	NRZ	NRZ	NRZ
	bit rate [kbit/s]	128/f _c	64/f _c	32/f _c	16/f _c
card to reader (PN7462 family receives data from a card)	card side modulation	sub carrier load modulation			
	sub carrier frequency	f _c / 16			
	bit encoding	BPSK	BPSK	BPSK	BPSK

8.10.1.3 FeliCa functionality

The FeliCa mode is a general reader/writer to card communication scheme, according to the FeliCa specification. The communication on a physical level is shown in Figure 22.

The physical parameters are described in <u>Table 13</u>.

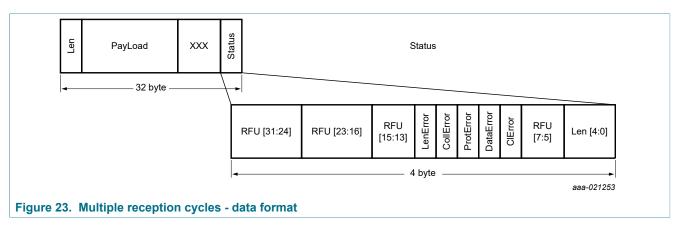

NFC Cortex-M0 microcontroller

Table 13. Communication overview for Felica reader/writer							
Communication direction	Signal type	Transfer speed FeliCa	FeliCa higher transfer speeds				
		212 kbit/s	424 kbit/s				
reader to card (send data	reader side modulation	8 % to 30 % ASK	8 % to 30 % ASK				
from the PN7462 family to a card)	bit encoding	Manchester encoding	Manchester encoding				
f _c = 13.56 MHz	bit rate	f _c / 64	f _c / 32				
card to reader (PN7462	card side modulation	load modulation	load modulation				
family receives data from a card)	bit encoding	Manchester encoding	Manchester encoding				

Table 13. Communication overview for FeliCa reader/writer

Note: The PN7462 family does not manage FeliCa security aspects.

PN7462 family supports FeliCa multiple reception cycles.

8.10.1.4 ISO/IEC 15693 functionality

The physical level of the communication is shown in Figure 24.

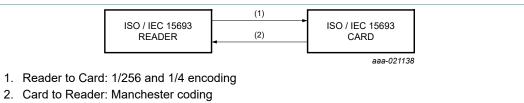


Figure 24. ISO/IEC 15693 read/write mode communication diagram

The physical parameters are described in Table 14.

Table 14. Communication overview for ISO/IEC 15693 reader to label

Communication direction	Signal type	Transfer speed	
		f _c / 8192 kbit/s	f _c / 512 kbit/s
reader to label (send data from the PN7462 family to a card)	reader side modulation	10 % to 30 % ASK or 100 % ASK	10 % to 30 % ASK or 90 % to 100 % ASK
	bit encoding	1/256	1/4
	bit length	4.833 µs	302.08 μs

NFC Cortex-M0 microcontroller

Table 15. Communication overview for ISO/IEC 15693 label to reader

Communication direction	Signal type	Transfer speed			
		6.62 kbit/s	13.24 kbit/s ^[1]	26.48 kbit/s	52.96 kbit/s
(PN7462 family receives data from a card) f _c = 13.56 MHz	card side modulation	not supported	not supported	single (dual) sub carrier load modulation ASK	single sub carrier load modulation ASK
	bit length (µs)	-	-	37.76	18.88
	bit encoding	-	-	Manchester coding	Manchester coding
	subcarrier frequency (MHz)	-	-	f _c / 32	f _c / 32

[1] Fast inventory (page) read command only (ICODE proprietary command).

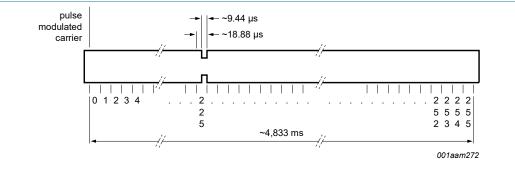


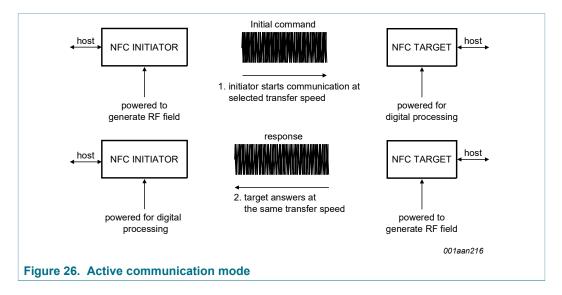
Figure 25. Data coding according to ISO/IEC 15693 standard mode reader to label

8.10.1.5 ISO/IEC18000-3 mode 3 functionality

The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed explanation of the protocol, refer to the ISO/IEC 18000-3 standard.

PN7462 family supports the following features:

- TARI = 9.44 µs or 18.88 µs
- Downlink: Four subcarrier pulse Manchester and two subcarrier pulse Manchester
- Subcarrier: 423 kHz (f_c / 32) with DR = 0 kHz and 847 kHz (f_c / 16) with DR = 1


8.10.1.6 NFCIP-1 modes

The NFCIP-1 communication differentiates between an active and a passive communication mode.

- In active communication mode, both initiator and target use their own RF field to transmit data
- In passive communication mode, the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field
- The initiator generates RF field at 13.56 MHz and starts the NFCIP-1 communication
- In passive communication mode, the target responds to initiator command in load modulation scheme. In active communication mode, it uses a self-generated and self-modulated RF field.

NFC Cortex-M0 microcontroller

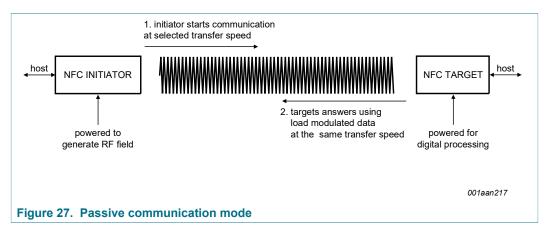

PN7462 family supports NFCIP-1 standard. It supports active and passive communication mode at transfer speeds of 106 kbit/s, 212 kbit/s, and 424 kbit/s, as defined in the NFCIP-1 standard.

Table 16. Communication overview for active communication mode

Communication	Transfer speed		
direction	106 kbit/s	212 kbit/s	424 kbit/s
initiator to target	according to ISO/IEC 14443	according to	according to
target to initiator	A 100 % ASK, modified miller coded	FeliCa, 8-30 % ASK Manchester coded	FeliCa, 8-30 % ASK Manchester coded

Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

NFC Cortex-M0 microcontroller

Table 17. Communication overview for passive communication mode

Communication	Transfer speed	Transfer speed					
direction	106 kbit/s	212 kbit/s	424 kbit/s				
initiator to target	according to ISO/IEC	according to	according to				
	14443 A 100 % ASK,	FeliCa, 8-30 % ASK	FeliCa, 8-30 % ASK				
	modified miller coded	Manchester coded	Manchester coded				
target to initiator	according to ISO/IEC	according to FeliCa, >	according to FeliCa, >				
	14443 A @106 kB	12 % ASK Manchester	12 % ASK Manchester				
	modified miller coded	coded	coded				

The NFCIP-1 protocol is managed in the PN7462 family customer application firmware.

Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.

ISO/IEC14443 A card operation mode

PN7462 family can be addressed as a ISO/IEC 14443 A card. It means that it can generate an answer in a load modulation scheme according to the ISO/IEC 14443 A interface description.

Note: PN7462 family components do not support a complete card protocol. The NFC controller customer application firmware handles it.

The following table describes the physical layer of a ISO/IEC14443 A card mode:

Communication direction	ISO/IEC 14443 A (transfer speed: 106 kbit per second)				
reader/writer to PN7462 family	modulation on reader side	100 % ASK			
	bit coding	modified miller			
	bit length	128/f _c			
PN7462 family to reader/writer	modulation on PN7462 family side	sub carrier load modulation			
	subcarrier frequency	f _c / 16			
	bit coding	Manchester coding			

Table 18. ISO/IEC14443 A card operation mode

NFCIP-1 framing and coding

The NFCIP-1 framing and coding in active and passive communication mode is defined in the NFCIP-1 standard.

PN7462 family supports the following data rates:

Table 19. Framing and coding overview

Transfer speed	Framing and coding
106 kbit/s	according to the ISO/IEC 14443 A/MIFARE scheme
212 kbit/s	according to the FeliCa scheme
424 kbit/s	according to the FeliCa scheme

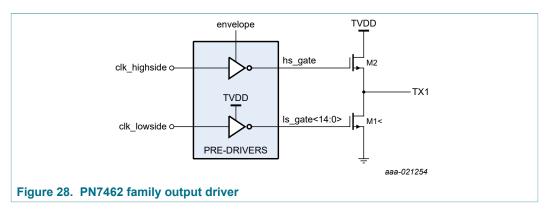
NFCIP-1 protocol support

The NFCIP-1 protocol is not elaborated in this document. The PN7462 family component does not implement any of the high-level protocol functions. These high-level protocol functions are implemented in the microcontroller. For detailed explanation of the protocol, refer to the NFCIP-1 standard. However, the datalink layer is according to the following policy:

- Speed shall not be changed while there is continuous data exchange in a transaction.
- Transaction includes initialization, anticollision methods, and data exchange (in a continuous way means no interruption by another transaction).

In order not to disturb current infrastructure based on 13.56 MHz, the following general rules to start NFCIP-1 communication are defined:

- 1. By default, NFCIP-1 device is in target mode. It means that its RF field is switched off.
- 2. The RF level detector is active.
- 3. Only if the application requires, the NFCIP-1 device switches to initiator mode.
- 4. An initiator shall only switch on its RF field if the RF level detector does not detect external RF field during a time of T_{IDT} .
- 5. The initiator performs initialization according to the selected mode.

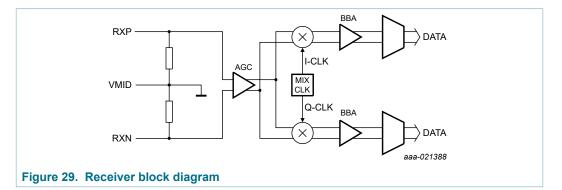

8.10.2 NFC interface

8.10.2.1 Transmitter (TX)

The transmitter is able to drive an antenna circuit connected to outputs TX1 and TX2 with a 13.56 MHz carrier signal. The signal delivered on pins TX1 and pin TX2 is a 13.56 MHz carrier, modulated by an envelope signal for energy and data transmission. It can be used to drive an antenna directly, using a few passive components for matching and filtering. For a differential antenna configuration, either TX1 or TX2 can be configured to put out an inverted clock.

100 % modulation and several levels of amplitude modulation on the carrier can be performed to support 13.56 MHz carrier-based RF-reader/writer protocols. The standards ISO/IEC14443 A and B, FeliCa, and ISO/IEC18092 define the protocols.

The PN7462 family embeds an overshoot and undershoot protection. It is used to configure additional signals on the transmitter output, for controlling the signal shape at the antenna output.


8.10.2.2 Receiver (RX)

In reader mode, the response of the PICC device is coupled from the PCB antenna to the differential input RXP/RXN. The reader mode receiver extracts this signal by first removing the carrier in passive mixers (direct conversion for I and Q). It then filters and amplifies the baseband signal before converting to digital values. The conversion to digital values is done with two separate ADCs, for I and Q channels. Both I and Q channels have a differential structure, which improves the signal quality.

The I/Q mixer mixes the differential input RF-signal down to the baseband. The mixer has a bandwidth of 2 MHz.

The down-mixed differential RX input signals are passed to the BBA and a band-pass filter. For considering all the protocols (type A/B, FeliCa), the high-pass cut-off frequency of BBA is configured between 45 kHz and 250 kHz. The configuration is done in four different steps. The low-pass cut-off frequency is greater than 2 MHz.

The output of band-pass filter is further amplified with a gain factor which is configurable between 30 dB and 60 dB. The baseband amplifier (BBA)/ADC I-channel and Q-channel can be enabled separately. It is required for ADC-based card mode functionality as only the I-channel is used in this case.

VMID

A resistive divider between AVDD and GND generates VMID. The resistive divider is connected to the VMID pin. An external blocking capacitor of typical value 100 nF is connected.

Automatic Gain Control (AGC)

The NFC interface AGC is used to control the amplitude of 13.56 MHz sine-wave input signal received. The signal is received at the antenna connected between the pins RXP and RXN. A comparator is used to compare the peak value of the input signal with a reference voltage.

A voltage divider circuit is used to generate the reference voltage. An external resistor (typically 3.3 k Ω) is connected to the RX input, which forms a voltage divider with an onchip variable resistor. The voltage divider circuit so formed has a 10-bit resolution.

Note: The comparator monitors the RXP signal only.

By varying the on-chip resistor, the amplitude of the input signal can be modified. The value of on-chip resistor is increased or decreased, depending on the output of the sampled comparator. The on-chip resistor value is adjusted until the peak of the input

signal matches the reference voltage. Thus, the AGC circuit automatically controls the amplitude of the RX input.

The internal amplitude controlling resistor in the AGC has a default value of 10 K Ω . It means that, when the resistor control bits in AGC_VALUE_REG <9:0> are all 0, the resistance is 10 K Ω . As the control bits are increased, resistors are switched in parallel to the 10 K Ω resistor. It lowers the resultant resistance value to 5 k Ω (AGC_VALUE_REG <9:0>, all bits set to 1).

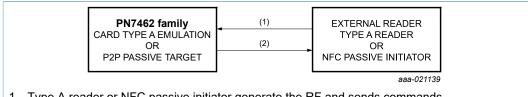
Mode detector

The mode detector is a functional block of the PN7462 family which senses for an RF field generated by another device. The mode detector facilitates to distinguish between type A and FeliCa target mode. The host responds depending on the recognized protocol generated by an initiator peer device.

Note: The PN7462 family emulates type A cards and peer-to-peer active target modes according to ISO / IEC18092.

8.10.3 Low-Power Card Detection (LPCD)

The low-power card detection is an energy saving feature of the PN7462 family. It detects the presence of a card without starting a communication. Communication requires more energy to power the card and takes time, increasing the energy consumption.


It is based on antenna detuning detection. When a card comes close to the reader, it affects the antenna tuning, which is detected by PN7462 family.

The sensitivity can be varied for adjusting to various environment and applications constraints.

Remark: Reader antenna detuning may have multiple sources such as cards and metal near the antenna. Hence it is important to adjust the sensitivity with care to optimize the detection and power consumption. As the generated field is limited, distance for card detection might be reduced compared to normal reader operation. Performances depend on the antenna and the sensitivity used.

8.10.4 Active Load Modulation (ALM)

When PN7462 family is used in card emulation mode or P2P passive target mode, it modulates the field emitted by the external reader or NFC passive initiator.

Type A reader or NFC passive initiator generate the RF and sends commands
 PN7462 family modulates the field of reader for sending its answer

Figure 30. Communication in card emulation of NFC passive target

To modulate the field, PN7462 family offers two possibilities:

• Passive Load Modulation (PLM): The PN7462 family modifies the antenna characteristics, which are detected by the reader through antenna coupling.

 Active Load Modulation (ALM): The PN7462 family generates a small field, in phase opposition with the field emitted by the reader. This modulation is detected by the reader reception stage.

The modulation type to use depends on the external reader and the antenna of PN7462 family and the application.

8.10.5 Dynamic Power Control (DPC)

The PN7462 family supports the Dynamic Power Control (DPC) feature.

A lookup table is used to configure the output voltage and to control the transmitter current. In addition to the control of the transmitter current, wave shaping settings can be controlled as well, depending on the selected protocol and the measured antenna load.

8.10.5.1 RF output control

The DPC controls the RF output current and output voltage depending on the loading condition of the antenna.

8.10.5.2 Adaptive Waveform Control (AWC)

The DPC includes the Adaptive Waveform Control (AWC) feature.

Depending on the level of detected detuning on the antenna, RF wave shaping related register settings can be automatically updated, according to the selected protocol. A lookup table is used to configure the modulation index, the rise time and the fall time.

8.11 Timers

The PN7462 family includes two 12-bit general-purpose timers (on LFO clock domain) with match capabilities. It also includes two 32-bit general-purpose timers (on HFO clock domain) and a Watchdog Timer (WDT).

The timers and WDT can be configured through software via a 32-bit APB slave interface.

Name	Clock source	Frequency	Counter length	Resolution	Maximum delay	Chaining
Timer 0	LFO/2	182.5 kHz	12 bit	300 µs	1.2 s	No
Timer 1	LFO/2	182.5 kHz	12 bit	300 µs	1.2 s	Yes
Timer 2	HFO	20 MHz	32 bit	50 ns	214 s	No
Timer 3	HFO	20 MHz	32 bit	50 ns	214 s	No
Watchdog	LFO/128	2.85 kHz	10 bit	21.5 ms	22 s	No

Table 20. Timer characteristics

8.11.1 Features of timer 0 and timer 1

- 12-bit counters
- One match register per timer, no capture registers and capture trigger pins are needed
- One common output line gathering the four timers (Timer 0, Timer 1, Timer 2, and Timer 3)
- Interrupts

NFC Cortex-M0 microcontroller

- Timer 0 and timer 1 can be concatenated (multiplied)
- Timer 0 and timer 1 have two count modes: single-shot or free-running
- Timer 0 and timer 1 timeout interrupts can be individually masked
- Timer 0 and timer 1 clock source is LFO clock (LFO/2 = 182.5 kHz)

Remark: The timers 0 and 1 are dedicated for NFC communication.

8.11.2 Features of timer 2 and timer 3

- 32-bit counters
- 1 match register per timer, no capture registers and capture trigger pins are needed
- 1 common output line gathering four timers (Timer 0, Timer 1, Timer 2, and Timer 3)
- Interrupts
- Timer 2 and timer 3 have two count modes: single-shot and free-running
- Timer 2 and timer 3 timeout interrupts can be individually masked
- Timer 2 and timer 3 clock source is the system clock

8.12 System tick timer

The PN7462 family microcontroller includes a standard Arm system tick timer (SYSTICK) that generates a dedicated SYSTICK exception.

8.13 Watchdog timer

If the microcontroller enters an erroneous state, the watchdog timer resets the microcontroller. When the watchdog timer is enabled, if the user program fails to "feed" (reload) the watchdog timer within a predetermined time, it generates a system reset.

The watchdog timer can be enabled through software. If there is a watchdog timeout leading to a system reset, the timer is disabled automatically.

- 10-bit counter
- Based on a 2.85 kHz clock
- Triggers an interrupt when a predefined counter value is reached
- Connected to the Arm subsystem NMI (non-maskable interrupt)
- If the watchdog timer is not periodically loaded, it resets PN7462 family

8.14 Clocks

The PN7462 family clocks are based on the following clock sources:

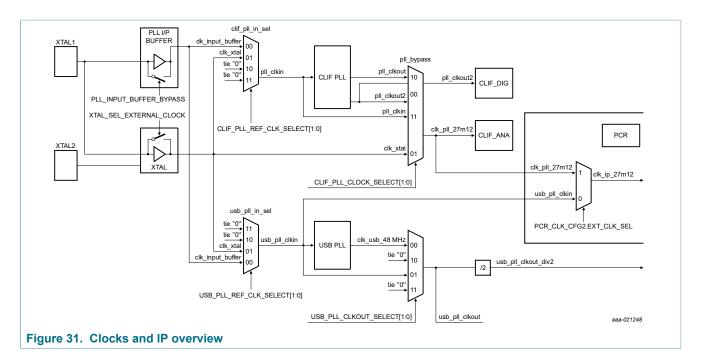

- 27.12 MHz external quartz
- 27.12 MHz crystal oscillator
- Internal oscillator: 20 MHz High Frequency Oscillator (HFO)
- Internal oscillator: 365 kHz Low Frequency Oscillator (LFO)
- Internal PLL at 48 MHz for the USB interface

Figure 31 indicates the clocks used by each IP.

NXP Semiconductors

PN7462 family

NFC Cortex-M0 microcontroller

8.14.1 Crystal oscillator (27.12 MHz)

The 27.12 MHz quartz oscillator is used as a reference for all operations where the stability of the clock frequency is important for reliability. It includes contactless interface, SPI and I^2C master interfaces, USB PLL for the USB interface, and HSUART.

Regular and low-power crystals can be used. <u>Figure 32</u> shows the circuit for generating stable clock frequency. The quartz and trimming capacitors are off-chip.

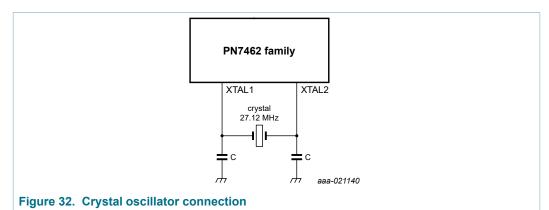


Table 21 describes the levels of accuracy and stability required on the crystal.

Table 21. Crystal requirements

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{xtal}	crystal frequency	ISO/IEC and FCC compliancy		-	27.12	-	MHz
Δf_{xtal}	crystal frequency accuracy		[1]	-50	-	+50	ppm
ESR	equivalent series resistance			-	50	100	Ω

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CL	load capacitance		-	10	-	pF
P _{drive}	drive power		-	-	100	μW

[1] This requirement is according to FCC regulations requirements. The frequency should be +/- 7 kHz.

8.14.2 USB PLL

The PN7462 family integrates a dedicated PLL to generate a low-noise 48 MHz clock, by using the 27.12 MHz from the external crystal. The 48 MHz clock generated is used as the USB main clock.

Following are the USB PLL features:

- · Low-skew, peak-to-peak cycle-to-cycle jitter, 48 MHz output clock
- · Low power in active mode, low power-down current
- On-chip loop filter, external RC components not needed

8.14.3 High Frequency Oscillator (HFO)

The PN7462 family has an internal low-power High Frequency Oscillator (HFO) that generates a 20 MHz clock. The HFO is used to generate the system clock. The system clock default value is 20 MHz, and it can be configured to 10 MHz and 5 MHz for reducing power consumption.

8.14.4 Low Frequency Oscillator (LFO)

The PN7462 family has an internal low-power Low Frequency Oscillator (LFO) that generates a 365 kHz clock. The LFO is used by EEPROM, POR sequencer, NFC interface, timers, and watchdog.

8.14.5 Clock configuration and clock gating

In order to reduce the overall power consumption, the PN7462 family facilitates adjustment of system clock. It integrates clock gating mechanisms.

The system clock can be configured to the following values: 20 MHz, 10 MHz, and 5 MHz.

The clock of the following blocks can be activated or deactivated, depending on the peripherals used:

- NFC interface
- Contact interface
- Host interfaces
- I²C master interface
- SPI master interface
- CRC engine
- Timers
- Random generator
- System clock
- EEPROM
- · Flash memory

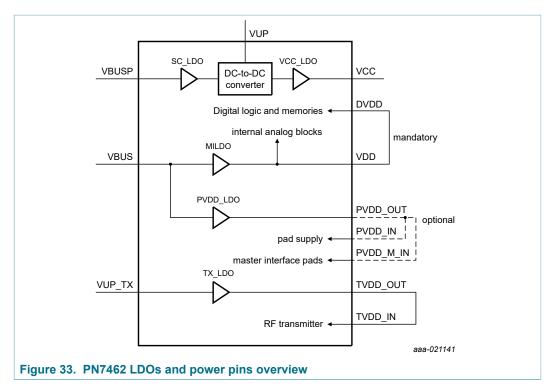
8.15 Power management

8.15.1 Power supply sources

The PN7462 family is powered using the following supply inputs:

- VBUS: main supply voltage for internal analog modules, digital logic, and memories
- VBUSP: supply voltage for the contact interface
- TVDD_IN: supply for the NFC interface
- PVDD_IN: pad voltage reference and supply of the host interface (HSU, USB, I²C, and SPI) and the GPIOs
 PVDD_IN supply voltage is independent from VBUS supply level.
 Note: Any digital IO pad (host interface, GPIO) must not be externally driven, when
 - PVDD IN supply voltage is absent.
- PVDD_M_IN: pad voltage reference and supply for the master interface (SPI and I²C) **Note:** Any digital IO pad (master interface, IO_AUX) must not be externally driven, when PVDD_M_IN supply voltage is absent.
- DVDD: supply for the internal digital blocks

8.15.2 PN7462 Power Management Unit (PMU)


The integrated Power Management Unit (PMU) provides supply for internal analog modules, internal digital logic and memories, pads. It also provides supply voltages for the contactless and contact interface.

It automatically adjusts internal regulators to minimize power consumption during all possible power states.

The power management unit embeds a mechanism to prevent the IC from overheat, overconsumption, or overloading the DC-to-DC converter:

- TXLDO 5 V monitoring
- VCC current limiter
- DC-to-DC converter current overload
- SCVDD current overload
- Temperature sensor

NFC Cortex-M0 microcontroller

PN7462 embeds five Low Drop-Out regulators (LDO) for ensuring the stability of power supply, while the application is running.

- MLDO (main LDO): It provides 1.8 V supply for internal analog, digital and memory modules
- TXLDO: This LDO can be used to supply the RF transmitter
- PVDD_LDO: PVDD_LDO provides 3.3 V that can be used for all pads supply
- SCLDO: This LDO provides a 2.4 V output to be used for contact card supply. The main aim is to be able to address class B operation when the voltage available is below 3.9 V. It is achieved by providing a stable input voltage to the internal DC-to-DC converter.
- VCC_LDO: the VCC_LDO provides the supply for the contact smart card

Some are used while some are optional, like the TX_LDO which is proposed for the RF interface. It is up to the application designer to decide whether LDOs should be used.

8.15.2.1 Main LDO

The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage to the output transistors.

Output supply is available on VDD pin which must be connected externally to the DVDD pin.

Following are the main LDO features:

- Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)
- Current limiter to avoid damaging the output transistors

8.15.2.2 PVDD_LDO

The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also be used to provide 3.3 V power to external components, avoiding an external LDO. It is supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a maximum of 30 mA.

The output pin for PVDD_LDO is PVDD_OUT.

PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad supply for master interfaces).

When an external supply is used, PVDD_OUT must be connected to the ground. When the LDO output is connected to the ground, the chip switches off the PVDD_LDO.

The PVDD_LDO has a low-power mode, which is used automatically when the chip is in standby mode or suspend mode. It facilitates supply to HOST pads and GPIOS, and to detect wake-up signals coming from these interfaces.

Following are the PVDD_LDO features:

- Low-Drop-Out voltage regulator powered by V_{DDP(VBUS)} (external supply)
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance when the LDO is powered up
- Current limiter to avoid damaging the output transistors

Note: When PVDD_LDO is used, there must not be any load current drawn from PVDD_LDO during the soft start of the PVDD_LDO.

8.15.2.3 Contact interface - SCLDO LDO

The SCLDO provides a regulated voltage to the DC-to-DC converter, to enable class B operation when $V_{DDP(VBUS)}$ is in between 2.7 V to 3.9 V.

Following are the contact interface features:

- Current limiter for short circuit protection
- Supports soft-start mode to limit the inrush current during the initial charge of the external capacitance when the LDO is powered up

8.15.2.4 Contact interface DC-to-DC converter

The PN7462 includes a DC-to-DC converter that supports class A and class B cards, when the input voltage $V_{DDP(VBUSP)}$ is not sufficient.

The DC-to-DC converter is a capacitance voltage doubler. It takes power from the SCLDO. The DC-to-DC converter can be bypassed. Its output (VUP) is regulated between 3.3 V to 5.5 V.

The DC-to-DC converter can work in the following modes:

- Follower mode: This mode is used when V_{DDP(VBUSP)} is high enough to provide the desired power to the VCC LDO
- Doubler mode: This mode is used when $V_{\text{DDP}(\text{VBUSP})}$ is not high enough to supply the requested V_{CC} output

The doubler mode is used in the following conditions:

- Class A cards support
- Class B cards support, when $V_{DDP(VBUSP)}$ is less than 3.9 V

For class C cards, the DC-to-DC converter is always in a follower mode.

An external capacitor (470 nF) should be connected between SAM and SAP pins, to ensure the functioning of the DC-to-DC converter.

Supported card	V _{DDP(VBUSP)}	SCLCO mode	DC-to-DC converter mode
Class A	> 3 V	follower mode	doubler mode
Class B	2.7 V < V _{DDP(VBUSP)} < 3.9 V	LDO mode	doubler mode
Class B	> 3.9 V	follower mode	follower mode
Class C	> 2.7 V	follower mode	follower mode

8.15.2.5 VCC LDO

The VCC LDO supplies contact interface supply V_{CC}.

Following are the VCC LDO features:

- · Low drop-out voltage regulator
- · Current limiter for chip and card protection
- · Automatic deactivation in case of overload

8.15.2.6 TXLDO

The PN7462 family consists of an internal transmitter supply LDO. The TXLDO can be used to maintain a constant output voltage for the NFC interface.

The TXLDO is designed to protect the chip from voltage ripple introduced by the power supply on the pin VUP_TX. It is powered through the pin VUP_TX.

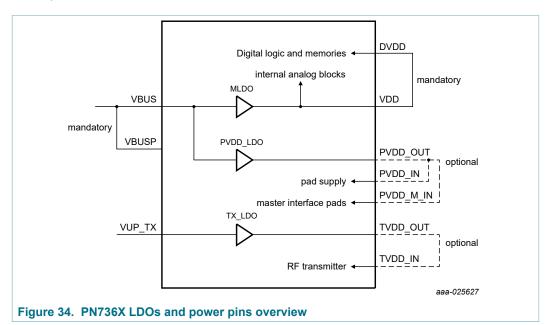
The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.

For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words, to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the voltage is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the pin VUP_TX, lowered of 0.3 V.

When it is not used, TVDD_OUT shall be connected to TVDD_IN and VUP_TX, and TX_LDO shall be turned off. It must be ensured, that TVDD_IN and TVDD_OUT are never higher than VUP_TX.

Following are the TXLDO features:

- Low-Drop-Out (TXLDO) voltage regulator
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance
- Current limiter to avoid damaging the output transistors


8.15.3 PN736X Power Management Unit (PMU)

The integrated Power Management Unit (PMU) provides supply for internal analog modules, internal digital logic and memories, pads. It also provides supply voltages for the contactless interface.

It automatically adjusts internal regulators to minimize power consumption during all possible power states.

The power management unit embeds a mechanism to prevent the IC from overheat, overconsumption, or overloading the DC-to-DC converter:

- TXLDO 5 V monitoring
- Temperature sensor

PN736X embeds three Low Drop-Out regulators (LDO) for ensuring the stability of power supply, while the application is running.

- MLDO (main LDO): It provides 1.8 V supply for internal analog, digital and memory modules
- TXLDO: This LDO can be used to supply the RF transmitter
- PVDD_LDO: PVDD_LDO provides 3.3 V that can be used for all pads supply

Some are used while some are optional, like the TX_LDO which is proposed for the RF interface. It is up to the application designer to decide whether LDOs should be used.

8.15.3.1 Main LDO

The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage to the output transistors.

Output supply is available on VDD pin which must be connected externally to the DVDD pin.

Following are the main LDO features:

- Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)
- Current limiter to avoid damaging the output transistors

8.15.3.2 PVDD_LDO

The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also be used to provide 3.3 V power to external components, avoiding an external LDO. It is supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a maximum of 30 mA.

The output pin for PVDD_LDO is PVDD_OUT.

PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad supply for master interfaces).

When an external supply is used, PVDD_OUT must be connected to the ground. When the LDO output is connected to the ground, the chip switches off the PVDD_LDO.

The PVDD_LDO has a low-power mode, which is used automatically when the chip is in standby mode or suspend mode. It facilitates supply to HOST pads and GPIOS, and to detect wake-up signals coming from these interfaces.

Following are the PVDD_LDO features:

- Low-Drop-Out voltage regulator powered by V_{DDP(VBUS)} (external supply)
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance when the LDO is powered up
- · Current limiter to avoid damaging the output transistors

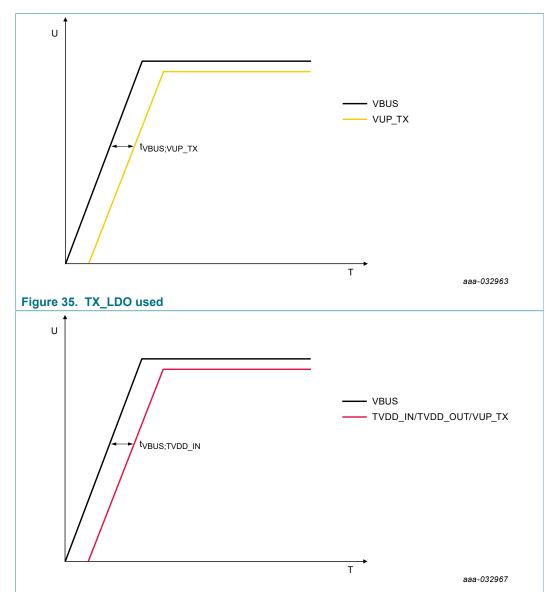
Note: When PVDD_LDO is used, there must not be any load current drawn from PVDD_LDO during the soft start of the PVDD_LDO.

8.15.3.3 TXLDO

The PN7462 family consists of an internal transmitter supply LDO. The TXLDO can be used to maintain a constant output voltage for the NFC interface.

The TXLDO is designed to protect the chip from voltage ripple introduced by the power supply on the pin VUP_TX. It is powered through the pin VUP_TX.

The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.


For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words, to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the voltage is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the pin VUP_TX, lowered of 0.3 V.

When it is not used, TVDD_OUT shall be connected to TVDD_IN and VUP_TX, and TX_LDO shall be turned off. It must be ensured, that TVDD_IN and TVDD_OUT are never higher than VUP_TX.

Following are the TXLDO features:

- · Low-Drop-Out (TXLDO) voltage regulator
- Supports soft-start mode to limit inrush current during the initial charge of the external capacitance
- Current limiter to avoid damaging the output transistors

NFC Cortex-M0 microcontroller

8.15.4 Power-up sequence

Figure 36. TX_LDO not used

Table 23. Power-up sequence							
Symbol	Min	Мах	Description				
t _{VBUS;VUP_TX}	0 µs	-	VUP_TX must not be supplied before VBUS				
t _{VBUS;TVDD_IN}	0 µs	-	TVDD_IN must not be supplied before VBUS				

VUP_TX, TVDD_IN must never rise before VBUS at any time.

TVDD_IN shall be lower or equal to VUP_TX.

8.15.5 Power modes

The PN7462 family offers four different power modes, that enable the user to optimize its energy consumption. They are:

PN7462_FAM Product data sheet COMPANY PUBLIC

- Hard power-down mode
- · Standby mode
- USB suspend mode
- Active mode

8.15.5.1 Active mode

In active mode, all functionalities are available and all IPs can be accessed. It is possible to configure the various clocks (IP clock, system clock) using register settings so that chip consumption is reduced. If IPs are not used, they can be disabled.

8.15.5.2 Standby mode

In standby mode, only a reduced part of the digital and the analog is active. It reduces the chip power consumption. The possible wake-up sources are still powered.

The LFO clock is used to lower the energy needs.

Active part in standby mode: Main LDO is active, in a low-power mode, plus all configured wake-up sources.

Depending on the application requirements, it is possible to configure PVDD_LDO in active mode, low-power mode or shut down mode when PN7462 family is going to standby mode. PVDD_LDO is active in a low-power mode by default.

Entering in standby mode: The application code triggers standby mode. Before entering in standby mode, the PN7462 manages the deactivation of the contact card.

The PN7462 family has two internal temperature sensors. If these sensors detect an overheat, the chip is put into standby mode by the application firmware. It leaves the standby mode when both temperature sensors indicate that the temperature has come below the configured limit.

Limitations: Standby mode is not possible in the following cases:

- A host communication is in progress.
- A wake-up condition is fulfilled. For example, external NFC field presence is a wake-up source, and a field is detected.
- The NFC field detector is a possible wake-up source, and the NFC field detector is disabled.
- PVDD is not present.

8.15.5.3 Suspend mode

In suspend mode, clock sources are stopped except LFO. It reduces the chip power consumption.

Entering in suspend mode: An interrupt indicates to the application firmware when no activity has been detected on the USB port for more that 3 ms. The application code triggers the suspend mode.

Before entering in suspend mode, the PN7462 manages automatically, the deactivation of the contact card.

Limitations: Suspend mode is prevented in the following cases:

- A host communication is in progress.
- A wake-up condition is fulfilled. For example, external RF field presence is a wake-up source, and a field is detected.

- The RF field detector is a possible wake-up source, and the RF field detector is disabled.
- No voltage at pin PVDD.

8.15.5.4 Wake-up from standby mode and suspend mode

PN7462 family can be woken-up from standby mode, and suspend mode, using the following means:

- Host Interface: SPI, HSUART, I²C, and USB if already selected before standby mode (SPI, HSUART, and I²C) or suspend mode (USB).
- RF field detection (presence of a reader or an NFC device in reader mode or P2P initiator)
- GPIO
- Contact card insertion, contact card removal (PN7462AUHN only)
- Interrupt generated on the auxiliary UART interface, through the interrupt pin (PN7462AUHN and PN7462AUEV only)
- · Wake-up counter, for example to timely check for the presence of any contact or contactless card
- Current overconsumption on the PVDD OUT, voltage above 5 V on TVDD IN
- Temperature sensor: When the chip goes in to standby mode because of over-heating, and when the temperature goes below the sensor configured value, it wakes-up automatically. Each temperature sensor can be configured separately.

It is possible to configure the sources as enabled or disabled.

8.15.5.5 Hard Power-Down (HPD) mode

The Hard Power-Down (HPD) reduces the chip power consumption, by powering down most of its blocks. All clocks and LDOs are turned off, except the main LDO which is set in low-power mode.

Entering in HPD mode: If the RST N pin is set to low, the NFC controller enters in to Hard Power Down (HPD) mode. It also enters in to HPD mode if the V_{DDP(VBUS)} goes below the critical voltage necessary for the chip to work (2.3 V) and the auto HPD feature is enabled.

Exiting the HPD mode: The NFC controller leaves the HPD mode, when both RST N pin is set to high level and the $V_{DDP(VBLS)}$ voltage is above 2.3 V.

8.15.6 Voltage monitoring

The voltage monitoring mode detects whether the voltage is within the operational conditions to enable a proper operation of the RF interface or the contact interface. The following power supplies are monitored: VBUS (two voltage monitors), VBUS P (one voltage monitor).

Section 9.1.2 discusses about the minimum voltages necessary for NFC interface operation and <u>Section 9.1.3</u> for the contact interface operation.

Table 24. Threshold configuration for voltage monitor								
Voltage monitor	Threshold 1	Threshold 2	Threshold 3					
VBUSMON1	2.3 V	2.7 V	n.a. ^[1]					
VBUSMON2	2.7 V	4.0 V	n.a. ^[1]					

- ~

NFC Cortex-M0 microcontroller

Voltage monitor	Threshold 1	Threshold 2	Threshold 3
VBUSP	2.7 V	3.0 V	3.9 V

[1] n.a. means not applicable.

8.15.6.1 VBUS monitor

The PN7462 family includes up to two levels (2.3 V or 2.7 V) for monitoring the voltage on the VBUS pin. If this voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the PCR. This signal may be enabled for interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a dedicated status register. Two threshold levels (2.3 V or 2.7 V) can be selected to cause a forced Hard Power-Down (HPD) of chip.

8.15.6.2 VBUSP monitor

The PN7462 family includes three levels (2.7 V, 3.0 V, and 3.9 V) for monitoring the voltage on the VBUSP pin.

In addition to the above, the following applies to products with contact interface: When the voltage falls below the selected threshold value, and CT automatic deactivation is enabled in the PCR system register, hardware automatically de-activates the CT interface. An interrupt signal is also asserted to the PCR. This signal can be enabled for interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Software must check VBUSP monitor levels by reading dedicated status registers before starting card activation sequence.

8.15.6.3 PVDD LDO supply monitor

The PN7462 family includes up to two levels (VBUSMON2: 2.7 V or 4.0 V) for monitoring the voltage on the PVDD LDO input supply. If supply voltage is 4.0 V or above, PVDD LDO can be enabled. The software has to check whether the voltage is sufficient before enabling the LDO.

8.15.7 Temperature sensor

The PN7462 family power management unit provides temperature sensors, associated to the TX_LDO. It detects problems that would result in high power consumption and heating, which could damage the chip and the user device.

Triggering levels are configurable. Following temperatures can be chosen: 135 °C, 130 °C, 125 °C, and 120 °C. By default, the temperature sensor is set to 120 °C.

Once the configured threshold is reached, an interrupt is generated. The application decides whether to enter standby or suspend mode. The triggering temperature sensor is indicated in the interrupt register.

Once the temperature goes below the configured threshold temperature, the NFC controller wakes up automatically.

8.16 System control

8.16.1 Reset

PN7462 family has six possible sources for reset. The list of sources is described in Table 21.

Source	Description
software - PCR	soft reset from the PCR peripheral
software - Arm	software reset form the Arm processor
I ² C interface	I ² C Standard 3.0 defines a method to reset the chip via an I ² C command ^[1]
watchdog	reset the chip if the watchdog threshold is not periodically reloaded
VBUS voltage	power-on reset sequence; if the voltage is above 2.3 V, reset the chip

[1] This feature can be disabled.

The watchdog reset, I²C reset and soft resets from PCR and Arm processor resets the chip except the PCR and the Arm debug interface. The Power-On Reset (POR) resets the complete chip including the PCR and Arm debug interface.

Upon reset, the processor executes the first instruction at address 0, which is initially the reset vector mapped from the boot block. At that point, all the processor and peripheral registers are initialized to predetermined values.

8.16.2 Brown-Out Detection (BOD)

The PN7462 family includes up to two levels for monitoring the voltage on the VBUS pin. If this voltage falls below one of the selected voltages (2.3 V or 2.7 V), the BOD asserts an interrupt signal to the PCR. This signal can be enabled for interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a dedicated status register. Two threshold levels (2.3 V and 2.7 V) can be selected to cause a forced Hard Power-Down (HPD) of the chip.

8.16.3 APB interface and AHB-Lite

All APB peripherals are connected to one APB bus.

The AHB-Lite connects the AHB masters. The AHB masters include the CPU bus of the Arm Cortex-M0, host interface, NFC interface, SPI interface to the flash memory. It also includes EEPROM memory, SRAM, ROM, and AHB to APB bridge.

8.16.4 External interrupts

PN7462 family enables the use of 12 GPIOs as edge or level sensitive inputs (GPIO1 to GPIO12).

8.17 SWD debug interface

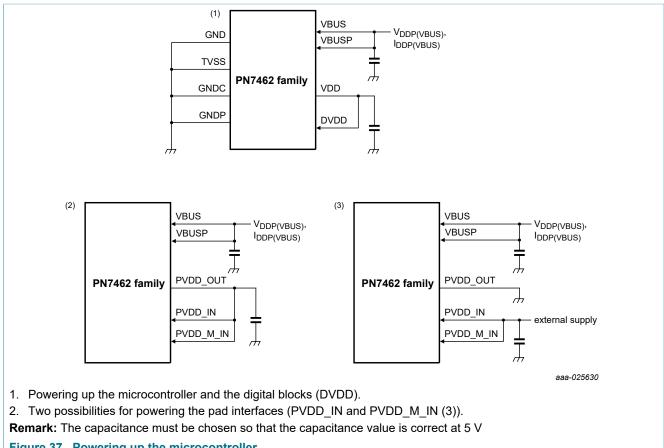
The Cortex-M0 processor-based devices use serial wire Arm CoreSightTM Debug technology. The PN7462 family is configured to support four break points and two watch points.

The SWD interface can be disabled for having code (or data) read/write access protection. A dedicated SWD disable bit is available in the protected area of the

EEPROM memory. Once the SWD interface is disabled, it is not possible to enable it anymore.

8.17.1 SWD interface features

- Run control of the processor allowing to start and stop programs
- Single step one source or assembler line
- · Set breakpoints while the processor is running
- · Read/write memory contents and peripheral registers on-the-fly
- "printf" like debug messages through the SWD interface


9 Application design-in information

9.1 Power supply connection

The following table indicates the power sources for all the PN7462 family power inputs.

Table 26. Power supply connection							
Power inputs	Power sources	Comment					
VBUS	external source						
VBUSP	external source; connected to VBUS	VBUSP is connected to VBUS, with the addition of a decoupling capacitor					
TVDD_IN	external supply or using the TX_LDO						
PVDD_IN	external supply or using PVDD_LDO	$\label{eq:VDD_LDO} \mbox{ can be used, when } V_{\mbox{DDP(VBUS)}} > 4 \mbox{ V. It} \\ \mbox{makes a regulated 3.3 V supply available to GPIO} \\ \mbox{and host interface pads, without the addition of an} \\ \mbox{external LDO} \\ $					
		for 1.8 V, external supply has to be used					
PVDD_M_IN	external supply or using PVDD_LDO	$PVDD_LDO$ can be used, when $V_{DDP(VBUS)} > 4$ V. It makes a regulated 3.3 V supply available to GPIO and host interface pads, without the addition of an external LDO					
		for 1.8 V, external supply has to be used					
DVDD	connected to the VDD output	VDD provides 1.8 V stabilized supply, out of the MAIN_LDO					

Note: When PVDD_IN and PVDD_M_IN are externally supplied, PVDD_OUT must be connected to ground, with a ground resistance of less than 10 Ω .

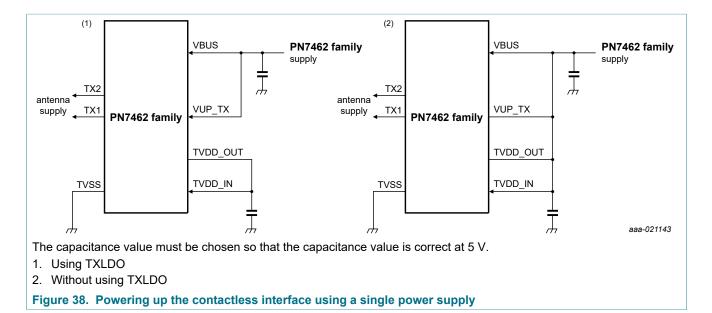
9.1.1 Powering up the microcontroller

Figure 37. Powering up the microcontroller

The schematics in Figure 37 describe the power supply of the chip (V_{DDP(VBUS)}), including the digital blocks supply (DVDD). It indicates two possibilities to supply the pads, using the internal LDO, or using an external supply. The internal LDO requires that $V_{DDP(VBUS)} > 4$ V. It avoids the requirement of a separate LDO when $V_{DDP(VBUS)}$ has a sufficient voltage.

Power supply is available to pads through PVDD IN (host interface). Similarly, power supply is available to master interface pads through PVDD M IN. When PVVD LDO is used, maximum total current available from PVDD OUT for the pads supply is 30 mA.

When an external source is used for PVDD IN and PVDD M IN, PVDD OUT must be connected to the ground, with a ground resistance of less than 10 Ω .


9.1.2 Powering up the contactless interface

Powering of contactless interface is done though TVDD IN. Internal LDO (TXLDO) or external supply can be used.

NXP Semiconductors

PN7462 family

NFC Cortex-M0 microcontroller

(2) (1) VBUS VBUS PN7462 family PN7462 family supply supply TX2 TX2 antenna antenna PN7462 family VUP TX VUP_TX TX1 TX1 supply supply RF transmitter PN7462 family PN7462 family supply TVDD_OUT TVDD_OUT PN7462 family TVDD IN TVDD IN TVSS TVSS **RF** transmitter supply aaa-021144

The capacitance value must be chosen so that the capacitance value is correct at 5 V.

- 1. Using TXLDO.
- 2. Without using TXLDO.

Figure 39. Powering up the contactless interface using an external RF transmitter supply

Note: The TVDD_OUT pin must not be left floating. It should be at the same voltage as the TVDD_IN pin.

The power design must be designed properly to be able to deliver a clean power supply voltage.

In any case (external TVDD or internal TX_LDO internal supply), TVDD_IN supply must be stable before turning on the RF field. The capacitor shall be 6.8 μ F or higher (up to 10 μ F)

Every noise level on top of the supply voltage can disturb the RF communication performance of the PN7462 family. Therefore, special attention must be paid to the filtering circuit.

When powering up the device through the USB interface, TVDD capacitor value shall be chosen so that the maximum capacitance on VBUS remains as per the USB specification.

9.1.3 Powering up the contact interface

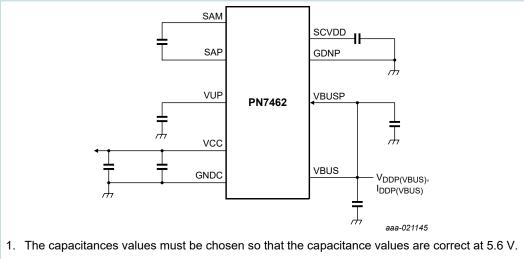
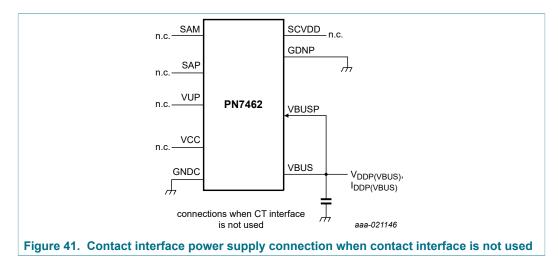


Figure 40. Powering up the contact interface


Contact interface is powered through VBUSP. VBUSP must be connected to VBUS, as per the schematic in Figure 40.

In order to provide the right voltage needed for the various ISO/IEC 7816 contact card classes (A, B, or C), the following voltages are needed:

- V_{DDP(VBUSP)} > 2.7 V: Support of class B and class C contact cards
- V_{DDP(VBUSP)} > 3 V: Support of class A contact cards

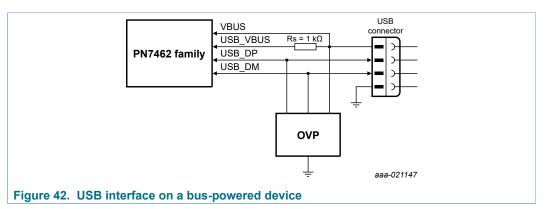
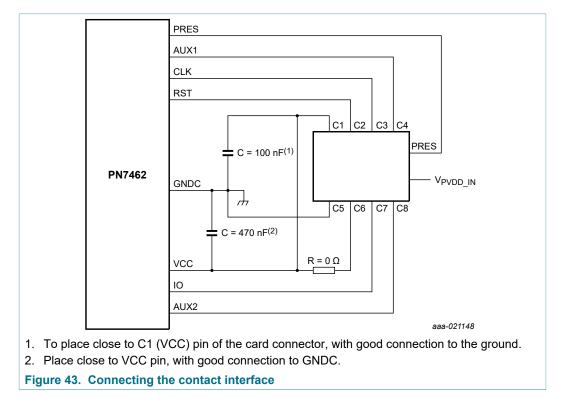

Remark: To support class A cards, DC-to-DC converter is used. To support class B cards with $V_{DDP(VBUSP)} < 3.9 V$, DC-to-DC converter is used.

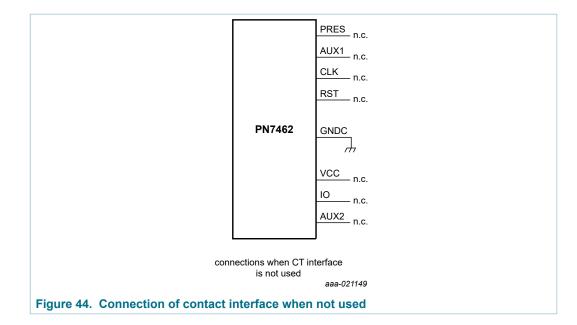
Figure 41 indicates the method to connect the pins related to contact interfaces, when no contact interface is used.

NFC Cortex-M0 microcontroller

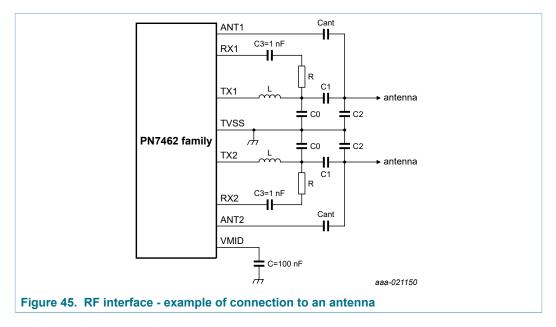
9.2 Connecting the USB interface



The resistor R_s is used to minimize the impact of transient responses on the USB line.


When the USB interface is not used, the USB_VBUS pin shall be connected to the ground.

9.3 Connecting the contact interface


The following diagrams indicate the method to connect the contact interface, when the contact interface is used, and when it is not used.

NFC Cortex-M0 microcontroller

9.4 Connecting the RF interface

9.5 Unconnected I/Os

When not used, the following pins need to be "not connected":

- I2C Master interface: I2CM_SDA, I2CM_SCL
- SPI Master interface: SPIM_SSN, SPIM_SCLK, SPIM_MOSI, SPIM_MISO
- AUX interface: INT_AUX, IO_AUX, CLK_AUX (PN7462 only)

Pads have to be configured in GPIO mode, pad input and output driver need to be disabled.

10 Limiting values

Table 27. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM)				
		on card pins IO, RST, VCC, AUX1, CLK, AUX2, PRESN	[1]	-12	+12	kV
		on all pins except contact interface pins	[1]	-2	+2	kV
		Charged Device Model (CDM)				
		on all pins	[2]	-1	+1	kV
T _{stg}	storage temperature	non-operating		-55	+150	°C
T _{j(max)}	maximum junction temperature			-	+125	°C
P _{tot}	total power dissipation	reader mode; $V_{DDP(VBUS)}$ = 5.5 V		-	1050	mW

ANSI/ESDA/JEDEC JS-001 ANSI/ESDA/JEDEC JS-002 [1]

[2]

Table 28. Limiting values for GPIO1 to GPIO12

Symbol	Parameter	Conditions	Min	Max	Unit
V _i	input voltage		-0.3	4.2	V

Table 29. Limiting values for I²C master pins (i2cm_sda, i2cm_scl)

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	input voltage		-0.3	4.2	V

Table 30. Limiting values for SPI master pins (spim_nss, spim_miso, spim_mosi and spi_clk)

Symbol	Parameter	Conditions	Min	Мах	Unit
Vi	input voltage		-0.3	4.2	V

Table 31. Limiting values for host interfaces atx_a, atx_b, atx_c, atx_d in all configurations (USB, HSUART, SPI and I^2C

Symbol	Parameter	Conditions	Min	Max	Unit
V _i	input voltage		-0.3	4.2	V

Table 32. Limiting values for crystal oscillator

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	high-level input voltage	XTAL1, XTAL2	0	2.2	V

Table 33. Limiting values for power supply

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DDP(VBUS)}	power supply voltage on pin VBUS		[1]	-0.3	7	V
V _{DDP(VBUSP)}	power supply voltage on pin VBUSP		[1]	-0.3	7	V
pin supply v	voltage for host interface and GPIOs	(on pin PVDD_IN)				
V _{DD(PVDD)}	PVDD supply voltage	on pin PVDD_IN; power supply for host interfaces and GPIOs	[1]	-0.3	4.2	V
pin supply v	voltage for master interfaces (on pin	PVDD_M_IN)				
V _{DD(PVDD)}	PVDD supply voltage	on pin PVDD_M_IN; power supply for master interfaces	[1]	-0.3	4.2	V
RF interface	LDO (pin VUP_TX)	1				
V _{I(LDO)}	LDO input voltage	for RF interface LDO	[1]	-0.3	7	V
RF transmit	ter (pin TVDD_IN)					
V _{DD(TVDD)}	TVDD supply voltage	for RF interface transmitter	[1]	-0.3	6	V

[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.

Table 34. Limiting values for contact interface

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	high-level input voltage	on card pins IO, RST, AUX1, AUX2, CLK	-0.3	5.75	V

Table 35. Protection and limitations for contact interface

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{Olim}	output current limit on IO, C4, C8	class A, B, C	5	8	15	mA
I _{sd}	shutdown current	on pin V _{CC} = 5 V	70	85	110	mA
		on pin V_{CC} = 3 V (doubler mode)	75	90	110	mA
		on pin V_{CC} = 3 V (follower mode)	75	90	110	mA
		on pin V _{CC} = 1.8 V	60	70	90	mA

Table 36. Limiting values for RF interface

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	input voltage	on pins RXN and RXP	0	2.2	V

1. Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.

Table 37. Limiting values for USB interface

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{DDP(USB_VBUS)}	Voltage on pin USB_VBUS		[1]	-0.3	7	V

[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.

NFC Cortex-M0 microcontroller

11 Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb}	ambient temperature	JDEC PCB - 0.5	-40	25	85	°C
V _{DDP(VBUS)}	power supply voltage on pin VBUS	external PVDD supply, card emulation and passive target (PLM)	2.3	-	5.5	V
		external PVDD supply, reader mode, NFC initiator and passive/ active target mode (ALM and PLM)	2.7	-	5.5	V
		internal PVDD_LDO supply, reader mode, NFC initiator and passive/active target mode (ALM and PLM)	4	-	5.5	V
V _{DDP(VBUSP)}	power supply voltage on pin VBUSP	class B and class C contact card	2.7	-	5.5	V
		class A, class B, and class C contact card	3	-	5.5	V
host interfac	e and GPIOs pin power supply (pin I	PVDD_IN)				
V _{DD(PVDD)}	PVDD supply voltage	for digital pins				
		1.8 V pin supply	1.65	1.8	5.5	V
		3.3 V pin supply	3	3.3	3.6	V
SPI master a	nd I ² C master interfaces pin power s	supply (on pin PVDD_M_IN)	I			
V _{DD(PVDD)}	PVDD supply voltage	for master pins				
		1.8 V pin supply	1.65	1.8	1.95	V
		3.3 V pin supply	3	3.3	3.6	V
RF interface	LDO (pin VUP_TX)					
V _{I(LDO)}	LDO input voltage	TX_LDO supply for powering up RF interface	3	5	5.5	V
RF interface	transmitter	· · · · · · · · · · · · · · · · · · ·				
I _{DD(TVDD)}	TVDD supply current	on pin TVDD_IN	-	-	250	mA

NFC Cortex-M0 microcontroller

12 Thermal characteristics

Symbol	Parameter	Conditions	Typical VFBGA64 package	Typical HVQFN64 package	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air with exposed pad soldered on a four-layer JEDEC PCB	53.4	40.0	°K/W
Ψ _{j-top}	thermal characterization parameter from junction to top	not dependend on PCB	11.2	5.75	°K/W

Table 39. Thermal characteristics

13 Characteristics

13.1 Static characteristics

Table 40. Static characteristics for RST_N input pin

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	٦	Гур	Мах	Unit
V _{IH}	high-level input voltage		1.1	-		V _{DDP(VBUS)}	V
V _{IL}	low-level input voltage		0	-		0.4	V
I _{IH}	high-level input current	$V_i = V_{DDP(VBUS)}$	-	-		1	μA
I _{IL}	low-level input current	V _i = 0 V	-1	-		-	μA
C _{in}	input capacitance		-	5	5	-	pF

Table 41. Static characteristics for IRQ output pin

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V _{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	20	pF
R _{pull-down}	extra pull-down	extra pull-down is activated in HDP	0.45	-	0.8	ΜΩ

Table 42. Static characteristics for DWL_REQ

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	high-level input voltage	VV _{PVDD_IN} = 1.8 V	0.65 × V _{PVDD_IN}	-	-	V
V _{IL}	high-level input voltage	VV _{PVDD_IN} = 1.8 V	-	-	0.35 × V _{PVDD_IN}	V
V _{IH}	high-level input voltage	VV _{PVDD_IN} = 3.3 V	2	-	-	V
V _{IL}	high-level input voltage	VV _{PVDD_IN} = 3.3 V	-	-	0.8	V
I _{IH}	high-level input current	V _I = PVDD_IN	-	-	1	μA
I _{IL}	low-level input current	V _I = 0 V	-1	-	-	μA
CL	load capacitance		-	5	-	pF

NFC Cortex-M0 microcontroller

13.1.1 GPIO static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V _{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OH} < 3 mA	0	-	0.4	V
V _{IH}	high-level input voltage	V _{PVDD_IN} = 3.3 V	2	-	-	V
		V _{PVDD_IN} = 1.8 V	0.65 × V _{PVDD_IN}	-	-	V
V _{IL}	low-level input voltage	V _{PVDD_IN} = 3.3 V	-	-	0.8	V
		V _{PVDD_IN} = 1.8 V	-	-	0.35 × V _{PVDD_IN}	V
V _{hys}	hysteresis voltage	V_{PVDD_IN} = 1.8 V and V_{PVDD_IN} = 3.3 V	0.1 × V _{PVDD_IN}	-	-	V
I _{OZ}	OFF-state output current	$V_O = 0 V; V_O = V_{PVDD_IN};$ on-chip pull- up/pull-down resistors disabled	-	-	1000	nA
R _{pd}	pull-down resistance	V _{PVDD_IN} = 3.3 V	65	90	120	kΩ
		V _{PVDD_IN} = 1.8 V	65	90	120	kΩ
R _{pu}	pull-up resistance	V _{PVDD_IN} = 3.3 V	65	90	120	kΩ
		V _{PVDD_IN} = 1.8 V	65	90	120	kΩ
I _{OSH}	short circuit current output high	Drive high; cell connected to ground; $V_{PVDD_{IN}} = 3.3 V$	-	-	58	mA
		Drive low; cell connected to PVDD_IN; V _{PVDD_IN} = 1.8 V	-	-	30	mA
I _{OSL}	short circuit current output low	V _{OH} = V _{PVDD_IN} = 3.3 V	-	-	54	mA
		V _{OH} = V _{PVDD_IN} = 1.8 V	-	-	37	mA
I _{IL}	low-level input current	V _I = 0 V	-1	-	-	μA
I _{IH}	high-level input current	V _I = V _{PVDD_IN}	-	-	1	μA
I _{ОН}	high-level output current	V _{OH} = V _{PVDD_IN}	-	-	3	mA
I _{OL}	low-level output current	V _{OL} = 0 V	-	-	3	mA

NFC Cortex-M0 microcontroller

13.1.2 Static characteristics for I²C master

Table 44. Static characteristics for I²CM_SDA, I²CM_SCL - S

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	0.7 × V _{PVDD_M_IN}	-	V _{PVDD_M_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	10	pF
V _{IH}	High-level input voltage		0.7 × V _{PVDD_M_IN}	-	-	V
V _{IL}	low-level input voltage		-	-	0.3 × V _{PVDD_M_IN}	V
I _{IH}	high-level input current	$V_{I} = V_{PVDD_M_{IN}}$	-	-	1	μA
I _{IL}	low-level input current	V _I = 0 V	-1	-	-	μA
C _{in}	input capacitance		-	5	-	pF

13.1.3 Static characteristics for SPI master

Table 45. Static characteristics for SPIM_MOSI

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_M_IN} - 0.4	-	V _{PVDD_M_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load Capacitance		-	-	20	pF

Table 46. Static characteristics for SPIM_NSS

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_M_IN} - 0.4	-	V _{PVDD_M_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load Capacitance		-	-	20	pF

Table 47. Static characteristics for SPIM_MISO

Symbol	Parameter	Conditions	ſ	Min	Тур	Max	Unit
VIH	high-level input voltage	$V_{PVDD_M_IN} = 1.8 V$	($0.65 \times V_{PVDD_M_IN}$	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN}$ = 1.8 V	-	-	-	$0.35 \times V_{PVDD_M_IN}$	V
V _{IH}	high-level input voltage	$V_{PVDD_M_IN}$ = 3.3 V	2	2	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN}$ = 3.3 V	-		-	0.8	V
I _{IH}	high-level input current	$V_i = V_{PVDD_M_{IN}}$	-		-	1	μA
I _{IL}	low-level input current	V _i = 0 V	-	-1	-	-	μA
C _{in}	input capacitance		-		5	-	pF

Table 48. Static characteristics for SPI_SCLK										
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit			
V _{OH}	high-level output voltage	I _{OH} < 3 mA		V _{PVDD_M_IN} - 0.4	-	V _{PVDD_M_IN}	V			
V _{OL}	low-level output voltage	I _{OL} < 3 mA		0	-	0.4	V			
CL	load capacitance			-	-	20	pF			

13.1.4 Static characteristics for host interface

Table 49. Static characteristics for ATX_ used as SPI_NSS, ATX_ used as I²CADR0, ATX_ used as SPI_SCK, ATX_ used as SPI_MOSI

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	high-level input voltage	V _{PVDD_IN} = 1.8 V	$0.65 \times V_{PVDD_M_IN}$	-	-	V
VIL	low-level input voltage	V _{PVDD_IN} = 1.8 V	-	-	$0.35 \times V_{PVDD_M_IN}$	V
VIH	high-level input voltage	$V_{PVDD_{IN}} = 3.3 V$	2	-	-	V
V _{IL}	low-level input voltage	V _{PVDD_IN} = 3.3 V	-	-	0.8	V
I _{IH}	high-level input current	$V_i = V_{PVDD_IN}$	-	-	1	μA
I _{IL}	low-level input current	V _i = 0 V	-1	-	-	μA
C _{in}	input capacitance		-	5	-	pF

Table 50. Static characteristics of ATX_ used as I^2 CSDA, ATX_ used as I^2 CSCL

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	0.7 >	· V _{PVDD_IN} -	V _{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	10	pF
V _{IH}	high-level input voltage		0.7 >	• V _{PVDD_IN} -	-	V
V _{IL}	low-level input voltage		-	-	0.3 × V _{PVDD_IN}	V
I _{IH}	high-level input current	$V_i = V_{PVDD_IN}$	-	-	1	μA
IIL	low-level input current	V _i = 0 V	-1	-	-	μA
C _{in}	Input capacitance		-	5	-	pF

Table 51. Static characteristics of ATX_ used as SPIMISO

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V _{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	20	pF

NFC Cortex-M0 microcontroller

Table 52. USB characteristics

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _{oz}	OFF-state output current	0 V < V _i < 3.3 V	-10	-	10	μA
V _{DDP(VBUS)}	power supply voltage on pin VBUS		4	-	5.5	V
V _{DI}	differential input sensitivity voltage	(D+) - (D-)	0.2	-	-	V
V _{CM}	differential common mode voltage range	includes V _{DI} range	0.8	-	2.5	V
V _{th(rs)se}	single-ended receiver switching threshold voltage		0.8	-	2	V
V _{OL}	low-level output voltage	for low-speed or full-speed; R_L of 1.5 k Ω to 3.6 V	-	-	0.3	V
V _{OH}	high-level output voltage	driven; for low- speed or full-speed; R_L of 15 k Ω to GND	2.8	-	V _{PVDD_IN}	V
C _{trans}	transceiver capacitance	pin to GND	-	15	-	pF
Z _{DRV}	driver output impedance for driver which is not high-speed capable	with 33 Ω series resistor; steady state drive	28	-	44	Ω
V _{CRS}	output signal crossover voltage		1.3	-	2	V

Table 53. Static characteristics of HSU_TX and HSU RTS pin

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OH}	high-level output voltage	I _{OH} < 3 mA	V _{PVDD_IN} - 0.4	-	V _{PVDD_IN}	V
V _{OL}	low-level output voltage	I _{OL} < 3 mA	0	-	0.4	V
CL	load capacitance		-	-	20	pF

Table 54. Static characteristics of HSU_RX, HSU_CTS

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IH}	high-level input voltage	V _{PVDD_M_IN} = 1.8 V	0.65 × V _{PVDD_IN}	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN}$ = 1.8 V	-	-	$0.35 \times V_{PVDD_{IN}}$	V
V _{IH}	high-level input voltage	$V_{PVDD_M_IN}$ = 3.3 V	2	-	-	V
V _{IL}	low-level input voltage	$V_{PVDD_M_IN}$ = 3.3 V	-	-	0.8	V
I _{IH}	high-level input current		-	-	1	μA
I _{IL}	low-level input current		-1	-	-	μA

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CL	load capacitance		-	5	-	pF

13.1.5 Clock static characteristics

Table 55. Static characteristics of XTAL pin (XTAL1, XTAL2)

 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Symbol	Parameter ^[1]	Conditions	Min	Typ ^[2]	Max	Unit
Input cloc	ck characteristics on XTA	_1 when using PLL				
V _{i(p-p)}	peak-to-peak input voltage		0.2	-	1.65	V
XTAL pin	characteristics XTAL PLL	. input			1	
I _{IH}	high-level input current	$V_i = V_{DD}$	-	-	1	μA
IIL	low-level input current	V _i = 0 V	-1	-	-	μA
Vi	input voltage		-	-	V _{DD}	V
V _{AL}	input voltage amplitude		200	-	-	mV
C _{in}	input capacitance	all power modes	-	2	-	pF
Pin chara	cteristics for 27.12 MHz c	rystal oscillator				
C _{in}	input capacitance	pin XTAL1	-	2	-	pF
C _{in}	input capacitance	pin XTAL2	-	2	-	pF

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.

13.1.6 Static characteristics - power supply

Table 56. Static characteristics for power supply

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DDP(VBUSP)}	power supply current on pin VBUSP	external supply current for contact interface, in operating mode	-	-	200	mA
pin supply: P\	/DD_LDO	1				
V _{O(LDO)}	LDO output voltage	$V_{DDP(VBUS)} >= 4.0 \text{ V}, I_{PVDDOUT} <= 30 \text{ mA}$	3	3.3	3.6	V
I _{DD(PVDD_OUT)}	maximum supply current	for pin PVDD_OUT	-	-	30	mA
pin supply for	host interface and GPIC	Ds (on pin PVDD_IN)	-	1		
I _{DD(PVDD)}	PVDD supply current		-	-	25	mA
pin supply for	master interfaces (on p	in PVDD_M_IN)	-	1		
I _{DD(PVDD)}	PVDD supply current		-	-	25	mA
NFC interface	TX_LDO (pins VUP_TX	, TVDD_OUT)		·		
V _{I(LDO)}	LDO input voltage		3	-	5.5	V

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{O(LDO)}	LDO output voltage	DC output voltage (target: 3.0 V) 5.5 V > $V_{I(LDO)}$ > 3.3 V	2.8	3	3.25	V
		DC output voltage (target: 3.0 V) 3.3 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} - 0.3	-	V
		DC output voltage (target: 3.3 V) 5.5 V > $V_{I(LDO)}$ > 3.6 V	3.1	3.3	3.55	V
		DC output voltage (target: 3.3 V) 3.6 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} - 0.3	-	V
		DC output voltage (target: 3.6 V) 5.5 V > $V_{I(LDO)}$ > 3.9 V	3.4	3.6	3.95	V
		DC output voltage (target: 3.6 V) 3.9 V > $V_{I(LDO)}$ > 2.7 V	-	V _{I(LDO)} - 0.3	-	V
		DC output voltage (target: 4.5 V) 5.5 V > $V_{I(LDO)}$ > 5.0 V	4.3	4.5	4.9	V
		DC output voltage (target: 4.75 V) 5.5 V > $V_{I(LDO)}$ > 5.0 V	4.55	4.75	5.2	V
I _{O(LDO)}	LDO output current	V _{I(LDO)} = 5.5 V	-	-	225	mA
I _{O(LDO)}	LDO peak output current	V _{I(LDO)} = 5.5 V	-	-	275	mA
NFC interfac	ce: RF transmitter (on pin	TVDD_IN)				
I _{DD(TVDD)}	maximum continuous TVDD supply current		-	-	250	mA
I _{DD(TVDD)}	maximum peak TVDD supply current		-	-	275	mA
Contact Inte	erface: smart card power s	upply (pin VCC)	·		·	
C _{dec}	decoupling capacitance	connected on pin VCC (220 nF + 220 nF 10 %)	396	570	1000	nF
V _{CC}	supply voltage	class A; I _{CC} < 60 mA	4.75	5	5.25	V
		class B; I _{CC} < 50 mA	2.85	3	3.15	V
		class C; I _{CC} < 30 mA	1.71	1.8	1.89	V
		class A; current pulses of 40 nA with I_{CC} < 200 mA, t_w < 400 ns	4.6	-	5.4	V
		class B; current pulses of 40 nA with I_{CC} < 200 mA, t_w < 400 ns	2.76	-	3.24	V
		class C; current pulses of 12 nA with I_{CC} < 200 mA, $t_{\rm w}$ < 400 ns	1.66	-	1.94	V
V _{ripple(p-p)}	peak-to-peak ripple voltage	from 20 kHz to 200 MHz	-	-	350	mV
SR	slew rate on pin VCC	5 V, class A cards	0.02	-	0.025	V/µs
		3 V, class B cards	0.012	-	0.015	V/µs
		1.8 V, class C cards	0.0072	-	0.009	V/µs

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	class A	-	-	60	mA
		class B	-	-	55	mA
		class C	-	-	35	mA
		Pin VCC shorted to ground	-	-	110	mA
Contact inte	erface: DC-to-DC converte	r				
V _{SAP}	SAP (DC-to-DC converter) - high-level	$V_{DDP(VBUSP)}$ = 5 V, V_{CC} = 5 V; I _{CC} < 60 mA DC	-	-	9	V
	output voltage	V _{DDP(VBUSP)} = 5 V, V _{CC} = 3 V; I _{CC} < 55 mA DC	-	-	5	V
		V _{DDP(VBUSP)} = 5 V, V _{CC} = 1.8 V; I _{CC} < 35 mA DC	-	-	5	V
		V _{DDP(VBUSP)} = 3.3 V, V _{CC} = 5 V; I _{CC} < 60 mA DC	-	-	9	V
		V _{DDP(VBUSP)} = 3.3 V, V _{CC} = 3 V; I _{CC} < 55 mA DC	-	-	9	V
		V _{DDP(VBUSP)} = 3.3 V, V _{CC} = 1.8 V; I _{CC} < 35 mA DC	-	-	3.3	V
V _{UP}	V _{UP} - high-level output voltage	Class A; $V_{DDP(VBUSP)}$ = 3 V to 5 V, I _{CC} < 60 mA	5.35	-	5.9	V
		Class B; I _{CC} < 55 mA	3.53	-	5.5	V
		Class C, $V_{DDP(VBUSP)}$ = 2.7 V to 5.5 V, I _{CC} < 35 mA DC	2.4	-	5.5	V
C _{SAPSAM}	DC-to-DC converter capacitance	connected between SAP and SAM with $V_{DDP(VBUSP)} = 3 V$	300	470	600	nF
C _{VUP}	DC-to-DC converter capacitance	connected on pin VUP	1.5	2.7	4.7	μF
Voltage det	ector for the DC-to-DC cor	nverter		I	I	
V _{det}	detection voltage	on pin VBUSP for doubler selection, follower/doubler for class B card	3.775	3.9	4.2	V

Table 57. Static characteristics for voltage monitors

T_{amb} = -40 °C to +85 °C

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V _{(th)HL}	negative-going	VBUS monitor	VBUS monitor					
	threshold voltage	set to 2.3 V	2.15	2.3	2.45	V		
		set to 2.7 V	2.6	2.75	2.95	V		
		set to 4.0 V	3.6	3.8	3.9	V		
V _{hys}	hysteresis voltage	VBUS monitor						
		set to 2.3 V	100	150	200	mV		
		set to 2.7 V	100	150	200	mV		
PN7462_FAM	I	All information provided in this document is subject to leg	al disclaimers.		© NXP B.V. 202	0. All rights rese		

406345

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
		set to 4.0 V		40	80	100	mV	
V _{(th)HL}	negative-going	VBUSP monitor	VBUSP monitor					
	threshold voltage	set to 2.7 V		2.45	2.56	2.65	V	
		set to 3.0 V		2.68	2.825	2.95	V	
		set to 3.9 V		3.7	3.9	4.1	V	
V _{hys}	hysteresis voltage	VBUSP monitor						
		set to 2.7 V		12	25	35	mV	
		set to 3.0 V		14	30	40	mV	
		set to 3.9 V		20	35	55	mV	

13.1.7 Static characteristics for power modes

Table 58. Static characteristics for power modes

 T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDP(VBUS)}	power supply current on pin VBUS	active mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, external TVDD, all IP clocks disabled code while(1){} executed from flash;	-	6.5	-	mA
		active mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, external TVDD, all IP clocks enabled code while(1){} executed from flash;	-	8.5	-	mA
		suspend mode; V _{DDP(VBUS)} = 5.5 V, external PVDD, T = 25 °C	-	120	250	μA
		V _{BUS} = 5.5 V, T = 25 °C, internal PVDD LDO, including D+ and D- pull-up	-	360	440	μA
		standby mode; V _{DDP(VBUS)} = 3.3 V; external PVDD supply; T _{amb} = 25 °C	-	18	-	μA
		standby mode; V _{DDP(VBUS)} = 5.5 V; V _{internal} PVDD supply; T _{amb} = 25 °C	-	55	-	μA
		hard power down; V _{DDP(VBUS)} = 5.5 V; RST_N = 0 V; T _{amb} = 25 °C	-	12	18	μA

13.1.8 Static characteristics for contact interface

Table 59. Static characteristics for contact interface

 $T_{amb} = -40 \ ^{\circ}C \ to \ +80 \ ^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Data line	es (pins IO, AUX1, AUX2)					
Vo	output voltage on pin IO	inactive mode, no load	0	-	0.1	V
		inactive mode, I _{I/O} = 1 mA	0	-	0.3	V
V _{OL}	low-level output voltage	pin IO Configured as output I _{OL} = 1 mA (class A,B), 500 μA (class C)	0	-	0.15 × V _{CC}	V
		pin IO configure as output, I _{OL} < 15 mA	0	-	0.4	V
V _{он}	high-level output voltage	pin IO configure as output, I_{OH} < -200 $\mu A,V_{CC}$ = 5 V, 3 V and 1.8 V; active pull-up	0.9 × V _{CC}	-	V _{CC}	V
		pin IO configure as output, I_{OH} < -20 μ A; V _{CC} = 1.8 V	$0.8 \times V_{CC}$	-	V _{CC}	V
		pin IO configure as output, I _{OH} < 15 mA	0	-	0.4	V
V _{IL}	low-level input voltage	pin IO configure as input	0	-	$0.2 \times V_{CC}$	V
V _{IH}	high-level input voltage		$0.6 \times V_{CC}$	-	V _{CC}	V
V _{hys}	hysteresis voltage	on pin IO	20	75	120	mV
IIL	low-level input current	on pin IO; V _{IL} = 0 V	-	-	750	μA
I _{LH}	high-level leakage current	on pin IO; V _{IH} = V _{CC}	-	-	10	μA
R _{pu}	pull-up resistance	connected to V _{CC}	7	10	13	kΩ
Reset o	utput to the card	· · · · ·				
Vo	output voltage	inactive mode; no load	0	-	0.1	V
		inactive mode; I _o = 1 mA	0	-	0.3	V
V _{OL}	low-level output voltage	I_{OL} = 200 $\mu A, V_{CC}$ = 5 V and V_{CC} = 3 V	0	-	0.3	V
		I _{OL} = 200 μA, V _{CC} = 1.8 V	0	-	0.1 × V _{CC}	V
V _{OH}	high-level output voltage	I _{OH} = -200 μA	$0.9 \times V_{CC}$	-	V _{CC}	V
Clock o	utput to the card					
Vo	output voltage	inactive mode; no load	0	-	0.1	V
		inactive mode; I _o = 1 mA	0	-	0.3	V
V _{OL}	low-level output voltage	I _{OL} = 200 μA	0	-	minimum (0.1 × V _{CC} ; 0.3)	V
V _{OH}	high-level output voltage	I _{OH} = -200 μA	$0.9 \times V_{CC}$	-	V _{CC}	V
Card pre	esence input	·				
V _{IL}	low-level input voltage		-0.3	-	0.3 × V _{PVDD_IN}	V

PN7462_FAM Product data sheet COMPANY PUBLIC

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	high-level input voltage		0.7 × V _{PVDD_IN}	-	V _{PVDD_IN} + 0.3	V
V _{hys}	hysteresis voltage		0.03 × V _{PVDD_IN}	-	-	V
I _{LL}	low-level leakage current	V _{IL} = 0	-	-	1	μA
I _{LH}	high-level leakage current	V _{IH} = V _{PVDD_IN}	-	-	5	μA

13.1.9 Static characteristics NFC interface

Table 60. Static characteristics for NFC interface

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
pins ANT1	and ANT2	· · ·				
Z	impedance	between ANT1 and ANT2; low impedance	-	10	17	Ω
pins RXN	and RXP		I		1	
V _{i(dyn)}	dynamic input voltage	on pins RXN and RXP	-	-	V _{DD} - 0.05	V
C _{in}	input pin capacitance	on pins RXN and RXP	-	12	-	pF
Z	impedance	between pins RX to VMID; reader, card emulation and P2P modes	0	-	15	kΩ
V _{det}	detection voltage	card emulation and target modes; configuration for 19 mV threshold	-	-	30	mV _(p-p)
pins TX1 a	and TX2	1	I		I	
V _{OH}	high-level output voltage	pins TX1 and TX2; T_{VDD_IN} = 3.1 V and I _{OH} = 30 mA	V _{TVDD_IN} - 150	-	-	mV
V _{OL}	low-level output voltage	pins TX1 and TX2; $T_{VDD_{IN}}$ = 3.1; I_{TX} = 30 mA	-	-	200	mV
R _{OL}	low-level output resistance	$V_{TX} = V_{TVDD}$ - 100 mV; CWGsN = 01h	-	-	80	Ω
		V _{TX} = V _{TVDD} - 100 mV; CWGsN = 0Fh	-	-	10	Ω
R _{OH}	high-level output resistance	V _{TX} = V _{TVDD} - 100 mV	-	-	10	Ω

13.2 Dynamic characteristics

Table 61. Dynamic characteristics for IRQ output pin

Data are given for T_{amb} = -40 °C to +85 °C; unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _f	fall time	high speed; C_L = 12 pF; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns

PN7462_FAM	
Product data sheet	
COMPANY PUBLIC	

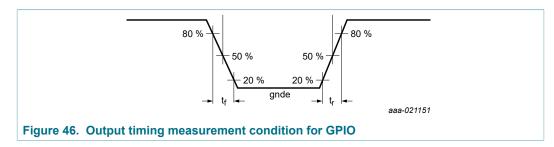
PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		high speed; C _L = 12 pF; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns
t _f fall	fall time	slow speed; C _L = 12 pF; V _{PVDD_IN} = 3.3 V	3	-	10	ns
		slow speed; C _L = 12 pF; V _{PVDD_IN} = 1.8 V	2	-	10	ns
t _r	rise time	high speed: C _L = 12 pF; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns
		high speed: C _L = 12 pF; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns
t _r	rise time	slow speed: C _L = 12 pF; V _{PVDD_IN} = 3.3 V	3	-	10	ns
		slow speed: C_L = 12 pF; V _{PVDD_IN} = 1.8 V	2	-	10	ns

13.2.1 Flash memory dynamic characteristics

Table 62. Dynamic characteristics for flash memory

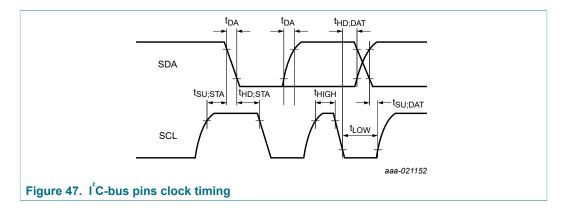

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	programming time	1 page (64 bytes); slow clock	-	-	2.5	ms
N _{Endu}	endurance		200	500	-	Kcycle
t _{ret}	retention time		-	20	-	year

13.2.2 EEPROM dynamic characteristics

Table 63. Dynamic characteristics for EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{prog}	programming time	1 page (64 bytes)	-	2.8	-	ms
N _{Endu}	endurance		300	500	-	Kcycle
t _{ret}	retention time		-	20	-	year

13.2.3 GPIO dynamic characteristics



NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Мах	Unit
t _r rise time	rise time	C_L = 12 pF; PVDD = 1.8 V; slow speed	2.0	10.0	ns
		C _L = 12 pF; PVDD = 1.8 V; fast speed	1.0	3.5	ns
		C _L = 12 pF; PVDD = 3.3 V; slow speed	3.0	10.0	ns
		C_L = 12 pF; PVDD = 3.3 V; fast speed	1.0	3.5	ns
t _f fall time	fall time	C _L = 12 pF; PVDD = 1.8 V; slow speed	2.0	10.0	ns
		C _L = 12 pF; PVDD = 1.8 V; fast speed	1.0	3.5	ns
		C_L = 12 pF; PVDD = 3.3 V; slow speed	3.0	10.0	ns
	C _L = 12 pF; PVDD = 3.3 V; fast speed	1.0	3.5	ns	

Table 64. Dynamic characteristics for GPIO1 to GPIO21 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

13.2.4 Dynamic characteristics for I²C master

Table 65. Timing specification for fast mode plus $\mathbf{l}^{2}\mathbf{C}$

$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCL}	SCL clock frequency	fast mode plus; C _b < 100 pF	0	1	MHz
t _{SU;STA}	set-up time for a (repeated) START condition	fast mode plus; C _b < 100 pF	260	-	ns
t _{HD;STA}	hold time (repeated) START condition	fast mode plus; C _b < 100 pF	260	-	ns
t _{LOW}	low period of the SCL clock	fast mode plus; C _b < 100 pF	500	-	ns
t _{HIGH}	high period of the SCL clock	fast mode plus; C _b < 100 pF	260	-	ns
t _{SU;DAT}	data set-up time	fast mode plus; C _b < 100 pF	50	-	ns

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Max	Unit
t _{HD;DAT}	data hold time	fast mode plus; C _b < 100 pF	0	-	ns
t _{r(SDA)}	SDA rise time	fast mode plus; C _b < 100 pF	-	120	ns
t _{f(SDA)}	SDA fall time	fast mode plus; C _b < 100 pF	-	120	ns
V _{hys}	hysteresis of Schmitt trigger inputs	fast mode plus; C _b < 100 pF	0.1 × V _{PVDD_M_IN}	-	V

Table 66. Timing specification for fast mode I^2 **C** T_{amb} = -40 °C to +85 °C

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCL}	SCL clock frequency	fast mode; C _b < 400 pF	0	400	kHz
t _{SU;STA}	set-up time for a (repeated) START condition	fast mode; C _b < 400 pF	600	-	ns
t _{HD;STA}	hold time (repeated) START condition	fast mode; C _b < 400 pF	600	-	ns
t _{LOW}	low period of the SCL clock	fast mode; C _b < 400 pF	1.3	-	μs
t _{HIGH}	high period of the SCL clock	fast mode; C _b < 400 pF	600	-	ns
t _{SU;DAT}	data set-up time	fast mode; C _b < 400 pF	100	-	ns
t _{hd;dat}	data hold time	fast mode; C _b < 400 pF	0	900	ns
t _{r(SDA)}	SDA rise time	fast mode plus; C _b < 100 pF	30	250	ns
t _{f(SDA)}	SDA fall time	fast mode plus; C _b < 100 pF	30	250	ns
V _{hys}	hysteresis of Schmitt trigger inputs	fast mode; C _b < 400 pF	0.1 × V _{PVDD_IN}	-	V

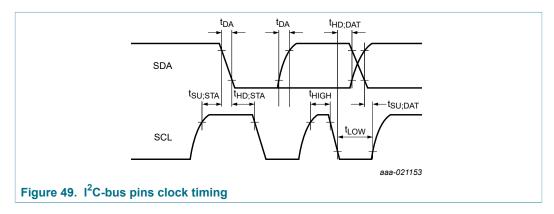
PN7462 family NFC Cortex-M0 microcontroller

T_{cy(clk)} SCK (CPOL = 0) SCK (CPOL = 1) - t_{h(Q)} t_{v(Q)} -DATA VALID DATA VALID MOSI CPHA = 1 t_{DS} t_{DH} DATA VALID DATA VALID MISO t_{v(Q)} → — t_{h(Q)} DATA VALID DATA VALID MOSI t_{DS} t_{DH} CPHA = 0 DATA VALID DATA VALID MISO 002aae829

13.2.5 Dynamic characteristics for SPI

Figure 48. SPI master timing

Table 67. Dynamic characteristics and Timing specification for SPI master interface


Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SCK frequency	controlled by the host	0	6.78	MHz
t _{DS}	data set-up time		25	-	ns
t _{DH}	data hold time		25	-	ns
t _{v(Q)}	data output valid time		-	25	ns
t _{h(Q)}	data output hold time		-	25	ns
Dynamic	characteristics for SPI_SC	LK, SPIM_NSS, SPIM_MOSI	·		
t _f	fall time	C_L = 12 pF; high speed; V_{PVDD_IN} = 3.3 V	1	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 3.3 V	3	10	ns
t _r	rise time	C_L = 12 pF; high speed; V_{PVDD_IN} = 3.3 V	1	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 3.3 V	3	10	ns
t _f	fall time	C_L = 12 pF; high speed; V_{PVDD_IN} = 1.8 V	1	3.5	ns
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 1.8 V	2	10	ns
t _r	rise time	C_L = 12 pF; high speed; V_{PVDD_IN} = 1.8 V	1	3.5	ns

PN7462_FAM	All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2020. All rights reserved.
Product data sheet	Rev. 4.5 — 14 April 2020	
COMPANY PUBLIC	406345	87 / 108

NFC Cortex-M0 microcontroller

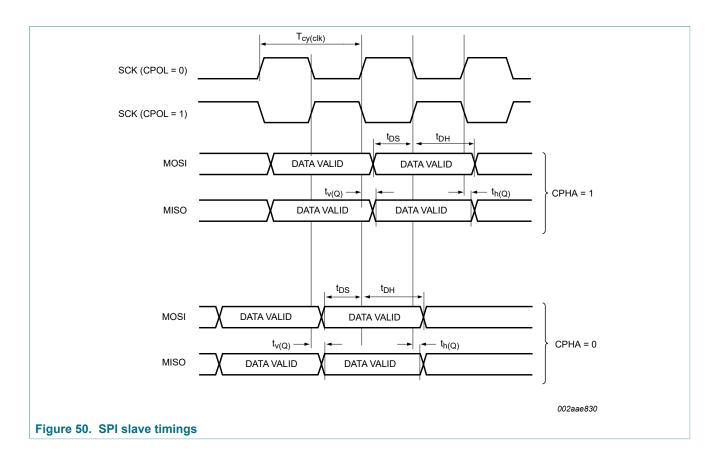
Symbol	Parameter	Conditions	Min	Max	Unit
		C_L = 12 pF; slow speed; V_{PVDD_IN} = 1.8 V	2	10	ns

13.2.6 Dynamic characteristics of host interface

Table 68. Timing specification for I2C high speed

$T_{amb} = -40$	°C to	+85	°C
-----------------	-------	-----	----

Symbol	Parameter	Conditions	Min	Max	Unit
f _{scl}	clock frequency	high speed; C _b < 100 pF	0	3.4	MHz
t _{SU;STA}	set-up time for a (repeated) START condition	high speed; C _b < 100 pF	160	-	ns
t _{HD;STA}	hold time (repeated) START condition	high speed; C _b < 100 pF	160	-	ns
t _{LOW}	low period of the SCL clock	high speed; C _b < 100 pF	160	-	ns
t _{HIGH}	high period of the SCL clock	high speed; C _b < 100 pF	60	-	ns
t _{SU;DAT}	data set-up time	high speed; C _b < 100 pF	10	-	ns
t _{HD;DAT}	data hold time	high speed; C _b < 100 pF	0	-	μs
t _{r(SDA)}	SDA rise time	high speed; C _b < 100 pF	10	80	ns
t _{f(SDA)}	SDA fall time	high speed; C _b < 100 pF	10	80	ns
V _{hys}	hysteresis of Schmitt trigger inputs	high speed; C _b < 100 pF	0.1 × V _{PVDD_IN}	-	V


Table 69. Dynamic characteristics for the I²C slave interface: ATX_B used as I²C_SDA, ATX_A used as I²C_SCL

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _f fall time	C_L = 100 pF, $R_{pull-up}$ = 2 K, standard and fast mode	30	-	250	ns	
		C_L = 100 pF, $R_{pull-up}$ = 1 K, high speed	10	-	80	ns
t _r	rise time	$C_L = 100 \text{ pF}, R_{\text{pull-up}} = 2 \text{ K},$ standard and fast mode	30	-	250	ns

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		C_L = 100 pF, $R_{pull-up}$ = 1 K, high speed	10	-	100	ns

Table 70. Dynamic characteristics for SPI slave interface

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SCK frequency	controlled by the host	0	7	MHz
t _{DS}	data set-up time		25	-	ns
t _{DH}	data hold time		25	-	ns
t _{v(Q)}	data output valid time		-	25	ns
t _{h(Q)}	data output hold time		-	25	ns

Table 71. Dynamic characteristics for SPI slave interface: ATX_C as SPI_MISO

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _f	fall time	C_L = 12 pF; high speed; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns
		C_L = 12 pF; slow speed; V _{PVDD_IN} = 3.3 V	3	-	10	ns

89 / 108

© NXP B.V. 2020. All rights reserved.

PN7462 family

NFC Cortex-M0 microcontroller

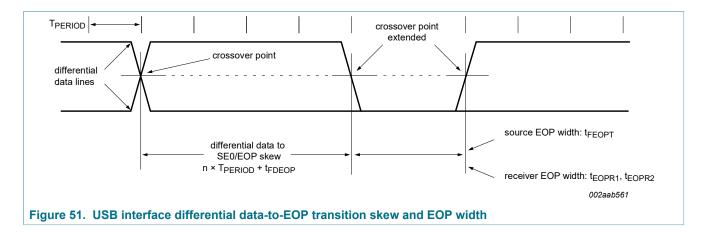
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
t _r rise time	rise time	C_L = 12 pF; high speed; V _{PVDD_IN} = 3.3 V	1	-	3.5	ns	
		C_L = 12 pF; slow speed; V _{PVDD_IN} = 3.3 V	3	-	10	ns	
t _f fa	t _f	fall time	C_L = 12 pF; high speed; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns
		C_L = 12 pF; slow speed; V _{PVDD_IN} = 1.8 V	2	-	10	ns	
t _r	rise time	C_L = 12 pF; high speed; V _{PVDD_IN} = 1.8 V	1	-	3.5	ns	
		C_L = 12 pF; slow speed; V _{PVDD_IN} = 1.8 V	2	-	10	ns	

Table 72. Dynamic characteristics for HSUART ATX_ as HSU_TX, ATX_ as HSU_RTS

Symbol	Parameter	Conditions ^[1]	Min	Тур	Мах	Unit	
t _f	fall time	high speed; V_{PVDD_IN} = 3.3 V	1	-	3.5	ns	
		slow speed; V_{PVDD_IN} = 3.3 V	3	-	10	ns	
t _r	t _r	rise time	high speed; V_{PVDD_IN} = 3.3 V	1	-	3.5	ns
		slow speed; V_{PVDD_IN} = 3.3 V	3	-	10	ns	
t _f	fall time	high speed; $V_{PVDD_{IN}}$ = 1.8 V	1	-	3.5	ns	
		slow speed; V_{PVDD_IN} = 1.8 V	2	-	10	ns	
t _r		high speed; $V_{PVDD_{IN}}$ = 1.8 V	1	-	3.5	ns	
		slow speed; V_{PVDD_IN} = 1.8 V	2	-	10	ns	

[1] C_L=12 pF maximum.

Table 73. Dynamic characteristics for USB interface


$C_L = 50 \ pF; \ R_{pu} = 1.5 \ k\Omega \ on \ D+ to \ VBUS$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	10 % to 90 %	4	-	20	ns
t _f	fall time	10 % to 90 %	4	-	20	ns
t _{FRFM}	differential rise and fall time matching	t _r / t _f	-	-	109	%
V _{CRS}	output signal crossover voltage		1.3	-	2	V
t _{FEOPT}	source SE0 interval of EOP	T = 25 °C; see <u>Figure 51</u>	160	-	175	ns
t _{FDEOP}	source jitter for differential transition to SE0 transition	T = 25 °C; see <u>Figure 51</u>	-2	-	+5	ns
t _{JR1}	receiver jitter to next transition	T = 25 °C	-18.5	-	+18.5	ns
t _{JR2}	receiver jitter for paired transitions	10 % to 90 %; T = 25 °C	-9	-	+9	ns

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{FEOPR}	receiver SE0 interval of EOP	must accept as EOP; see Figure 51	82	-	-	ns

13.2.7 Clock dynamic characteristics

Table 74. Dynamic characteristics for internal oscillators

 T_{amb} = -40 °C to +85 °C

Symbol	Parameter ^[1]	Conditions	Min	Typ ^[2]	Max	Unit			
low frequency oscillator									
f _{osc(int)}	internal oscillator frequency	$V_{DDP(VBUS)} = 3.3 V$	300	365	400	kHz			
high frequ	high frequency oscillator								
f _{osc(int)}	internal oscillator frequency	V _{DDP(VBUS)} = 3.3 V	18	20	22	MHz			

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.

Table 75. Dynamic characteristics for PLL

 $T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Symbol	Parameter ^[1]	Conditions	Min	Typ ^[2]	Max	Unit
Δf	frequency deviation	deviation added to CLK_ XTAL1 frequency on transmitter frequency generated using PLL	-50	-	50	ppm

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.

13.2.8 Dynamic characteristics for power supply

Table 76. Dynamic characteristics for power supply

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
DC-to-DC i	nternal oscillator		_				
PN7462_FAM		All information provided in this document is subject to legal disclaimers.			© N>	(P B.V. 2020. A	II rights reserved
Data data Andre Are	a la se se la seconda de la						

Product data sheet COMPANY PUBLIC

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{osc(int)}	internal oscillator frequency	DC-to-DC converter	-	3.39	-	MHz
Main sup	ply (pin VBUS)					
SR	slew rate	rise and fall	-	-	2.75	V/µs
RF interfa	ce LDO supply (pin VUP_TX)	1				
SR	slew rate	rise and fall	-	-	2.75	V/µs
Supply co	ontact interface (pin VBUSP)			1		
SR	slew rate	rise and fall	-	-	2.75	V/µs

13.2.9 Dynamic characteristics for boot and reset

Table 77. Dynamic characteristics for boot and reset

Symbol	Parameter	Conditions	Mi	n	Тур	Max	Unit
$t_{wL(RST_N)}$	RST_N Low pulse width time		10		-	-	μs
t _{boot}	boot time	external PVDD supply; supply is stable at reset	-		-	320	μs
		internal PVDD_LDO supply; supply is stable at reset	-		-	2.2	ms

13.2.10 Dynamics characteristics for power mode

Table 78. Power modes - wake-up timings

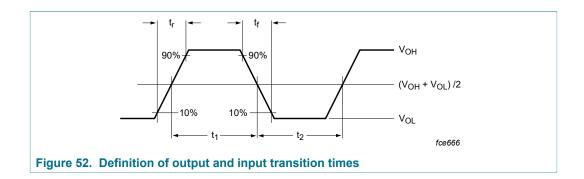
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{wake}	wake-up time	standby mode	[1]	-	-	500	μs
		suspend mode	[1]	-	-	150	μs

[1] Wake-up timings are measured from the wake-up event to the point in which the user application code reads the first instruction.

13.2.11 Dynamic characteristics for contact interface

Table 79. Dynamic characteristics for contact interface

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Data lines (pins IO, AUX1, AUX2)										
f _{data}	data rate	on data lines	-	-	1.5	Mbps				
t _{r(i)}	input rise time	from V _{IL} maximum to V _{IH} minimum	-	-	1.2	μs				
t _{f(i)}	input fall time	from V _{IL} maximum to V _{IH} minimum	-	-	1.2	μs				
t _{r(o)}	output rise time	C_L < = 80 pF; 10 % to 90 % from 0 to V_{CC}	-	-	0.1	μs				
t _{f(o)}	output fall time	$C_{\rm L}$ < = 80 pF; 10 % to 90 % from 0 to $V_{\rm CC}$	-	-	0.1	μs				
t _{w(pu)}	pull-up pulse width		-	295	-	ns				
Reset ou	tput to the card	, , , , , , , , , , , , , , , , , , ,	I.	I						

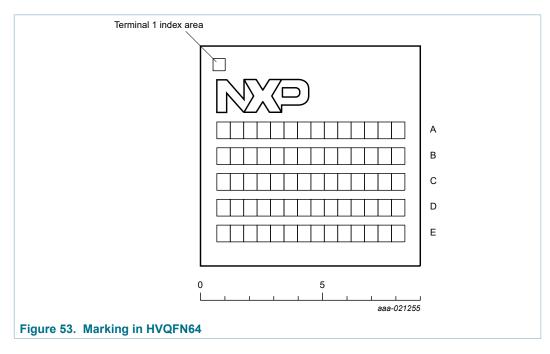

PN7462_FAM Product data sheet COMPANY PUBLIC

PN7462 family

NFC Cortex-M0 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _r	rise time	C _L = 100 pF		-	-	0.1	μs
t _f	fall time	C _L = 100 pF		-	-	0.1	μs
Clock out	put to the card (CLK)						
t _r	rise time	C _L = 30 pF; f _{CLK} = 10 MHz	[1]	-	-	8	ns
t _r	rise time	C _L = 30 pF; f _{CLK} = 5 MHz	[1]	-	-	16	ns
t _f	fall time	C _L = 30 pF; f _{CLK} = 10 MHz	[1]	-	-	8	ns
t _f	fall time	C _L = 30 pF; f _{CLK} = 5 MHz	[1]	-	-	16	ns
f _{CLK}	frequency on pin CLK	operational		0	-	13.56	MHz
δ	duty cycle	C _L = 30 pF	[1]	45	-	55	%
SR	slew rate	rise and fall; C _L = 30 pF; V _{CC} = +5 V		0.2	-	-	V/ns
		rise and fall; C _L = 30 pF; V _{CC} = +3 V		0.12	-	-	V/ns
		rise and fall; C _L = 30 pF; V _{CC} = +1.8 V		0.072	-	-	V/ns
PRESN		/ /					
t _{deb}	debounce time	on pin PRESN		-	6	-	ms
Timings		· · ·					
t _{act}	activation time	see figure below; T = 25 °C		11	-	22	ms
t _{deact}	deactivation time	see figure below; T = 25 °C		60	100	250	μs

[1] The transition time and duty factor definitions are shown in Figure below.

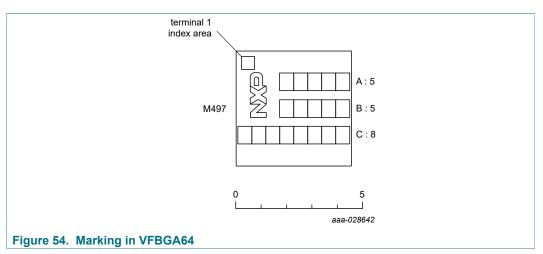


14 Marking

14.1 Marking HVQFN64

Table 80. Marking cod	les	
Type number	Line	Marking code
PN7462AUHN	Line A	7462AU-00
PN7362AUHN		7362AU-00
PN7360AUHN		7360AU-00
PN7412AUHN		7412AU-00
Common	Line B	Diffusion Batch ID, Assembly Sequence ID
	Line C	Characters: Diffusion and assembly location, date code, product version (indicated by mask version), product life cycle status. This line includes the following elements at 8 positions: 1. Diffusion center code: Z 2. Assembly center code: S 3. RHF-2006 indicator: D "Dark Green" 4. Year code (Y) 1 5. Year code (Y) 2 6. Week code (W) 1 7. Week code (W) 2 8. HW version
	Line D	Empty
	Line E	Empty

14.1.1 Package marking drawing



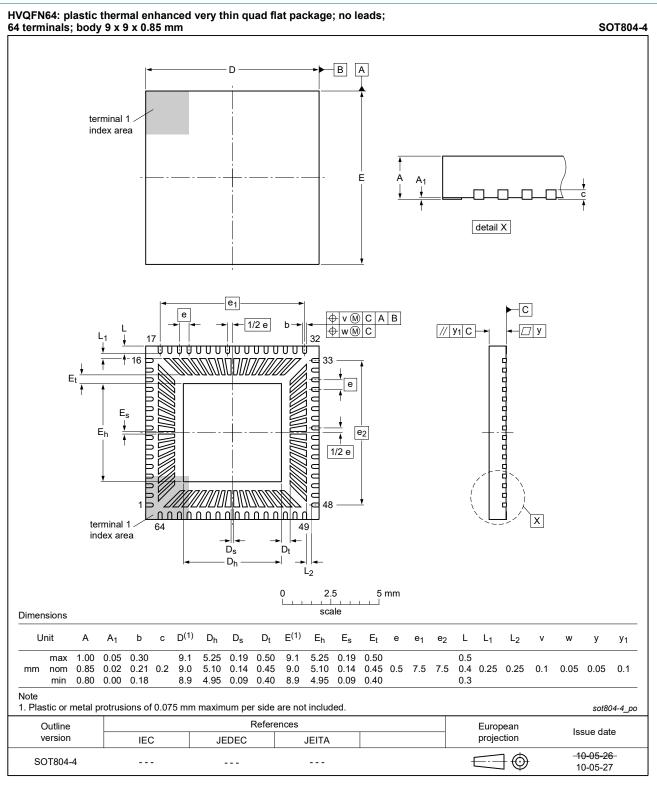
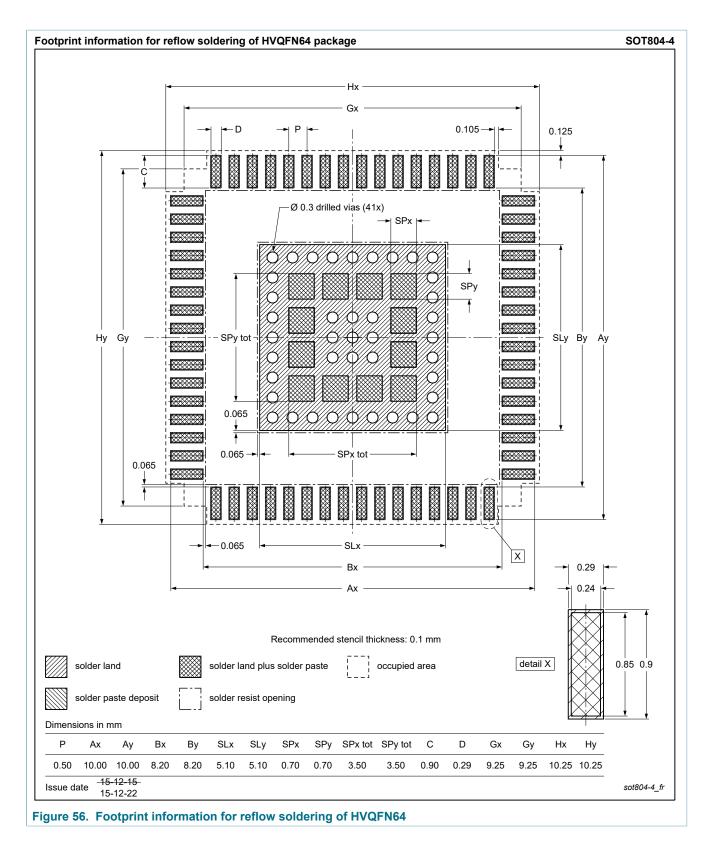
NFC Cortex-M0 microcontroller

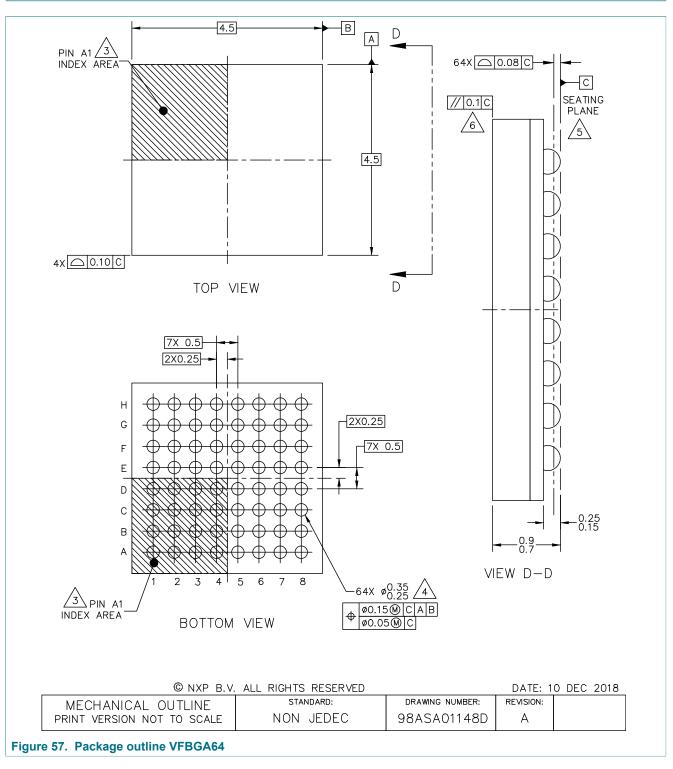
14.2 Marking VFBGA64

Type number	Line	Marking code
PN7462AUEV	Line A	7462x x: means version number
PN7362AUEV		7362x x: means version number
PN7360AUEV		7360x x: means version number
Common	Line B	DBID+ASID Diffusion batch, 2 digits + Assembly batch, 2 digits
	Line C	 ZSDyywwX Manufacturing code including: Diffusion center code, 1 digit (Z for SSMC) Assembly center code, 1 digit (S for ATKH) RoHS compliancy indicator, 1 digit (D: Dark Green; fully compliant RoHS and no halogen and antimony) Manufacturing year and week, digits: YY: production year WW: production week code Product life cycle status code, 1 digit: X: means not qualified product nothing means released product

14.2.1 Package marking drawing

15 Package outline HVQFN64


Figure 55. Package outline HVQFN64

PN7462_FAM Product data sheet COMPANY PUBLIC

NFC Cortex-M0 microcontroller

NFC Cortex-M0 microcontroller

16 Package outline VFBGA64

PN7462_FAM Product data sheet COMPANY PUBLIC

NFC Cortex-M0 microcontroller

17 Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices. Such precautions are described in the *ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A* or equivalent standards.

18 Packing information

18.1 Packing information HVQFN64

Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC J-STD-020C. MSL for this package is level 3 which means 260 °C Pb-free convection reflow maximum temperature peak.

Dry packing is required with following floor conditions: 168 hours out of bag floor life at maximum ambient temperature 30 $^{\circ}$ C/60 $^{\circ}$ RH.

For information on packing, refer to the PIP relating to this product at http://www.nxp.com.

18.2 Packing information VFBGA64

Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC J-STD-020C. MSL for this package is level 3 which means 260 °C Pb-free convection reflow maximum temperature peak.

Dry packing is required with following floor conditions: 168 hours out of bag floor life at maximum ambient temperature $30^{\circ}C/60 \%$ RH.

For information on packing, refer to the PIP relating to this product at http:// www.nxp.com.

NFC Cortex-M0 microcontroller

19 Abbreviations

Acronym	Description
ADC	Analog to Digital Convertor
ALM	Active Load Modulation
ASK	Amplitude Shift Keying
BPSK	Binary Phase Shift Keying
CLIF	Contactless Interface
CRC	Cyclic Redundancy Check
DPC	Dynamic Power Control
EEPROM	Electrically Erasable Programmable Read-Only Memory
GPIO	General-Purpose Input Output
l ² C	Inter-Interchanged Circuit
IC	Integrated Circuit
IAP	In-Application Programming
ISP	In-System Programming
LDO	Low DropOut
LPCD	Low-Power Card Detection
MSL	Moisture Sensitivity Level
NFC	Near Field Communication
NRZ	Non-Return to Zero
NVIC	Nested Vectored Interrupt Controller
P2P	Peer-to-Peer
PLL	Phase-Locked Loop
PLM	Passive Load Modulation
SPI	Serial Peripheral Interface
SWD	Serial Wire Debug
UART	Universal Asynchronous Receiver Transmitter

20 Revision history

Table 83. Revision hi	story			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PN7462_FAM v. 4.5	20200414	Product data sheet	-	PN7462_FAM v. 4.4
Modifications:	 <u>Section 8.15.1</u>: Notes Figure 35, Figure 36 a <u>Table 23</u>: PVDD_IN r 	and <u>Figure 45</u> : updated		
PN7462_FAM v. 4.4	20190611	Product data sheet	-	PN7462_FAM v. 4.3
Modifications:	 Clarified chapter about Added information ab Added thermal characteristics 	out peak current at Trans	mitter LDO and RF Tran	smitter.
PN7462_FAM v. 4.3	20190124	Product data sheet	-	PN7462_FAM v. 4.2
Modifications:	 Added Slew Rates for Added OVP to USB s Added diagrams for F 		BUSP	not used
PN7462_FAM v. 4.2	20180910	Product data sheet	-	PN7462_FAM v. 4.1
Modifications:	Marking code of HVQ	FN64 package in <u>Section</u>	14.1 corrected	
PN7462_FAM v. 4.1	20180628	Product data sheet	-	PN7462_FAM v. 4.0 and PN7462_FAM incl PN7412 v.3.0
Modifications:	New type PN7412AUCombined data sheet	HN added s PN7462_FAM and PN7	462_FAM incl PN7412	
PN7462_FAM v. 4.0	20180201	Product data sheet	-	PN7462 v. 3.2 and PN736X v. 3.3
Modifications:		ts PN736X and PN7462. out VFBGA64 package ve	ersions.	
PN736X v. 3.3	20170907	Product data sheet	-	PN736X v.3.2
Modifications:	product.Updated Pin descriptiUpdated <u>Section 9.5</u>	"I/O auxiliary - ISO/IEC 7 ion, removed pin fuinction "Unconnected I/O's", removed which is not available on the second	ality INT_AUX , CLK_AL oved description of AUX	JX and IO_AUX
PN736X v. 3.2	20161213	Product data sheet	-	PN746X_736X v.3.1
Modifications:	 Product name title an Editorial changes	d Descriptive title updated	Ĺ	,
PN746X_736X v.3.1	20160405	Product data sheet	-	PN746X_736X v.3.0
Modifications:	 Descriptive title update Section 1 "General description 1" 			
PN746X_736X v.3.0	20160330	Product data sheet	-	-
			ļ	1

21 Legal information

21.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] [3] The term 'short data sheet' is explained in section "Definitions".

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

21.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

 $\ensuremath{\mathsf{Applications}}$ — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

PN7462 FAM

Product data sheet COMPANY PUBLIC

PN7462 family

NFC Cortex-M0 microcontroller

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of nonautomotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security - While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

21.4 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is

RATP/Innovatron Technology

licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B. The license includes the right to use the IC in systems and/or end-user equipment.

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/ IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

21.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

ICODE and I-CODE — are trademarks of NXP B.V.

MIFARE Classic — is a trademark of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile - are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

FeliCa — is a trademark of Sony Corporation.

NFC Cortex-M0 microcontroller

Tables

Tab. 1. Tab. 2. Tab. 3. Tab. 4.	Comparison of the PN7462 family members1 Quick reference data
Tab. 5.	Pin description
Tab. 5. Tab. 6.	Interrupt sources
Tab. 7.	Pin description for host interface
Tab. 8.	HSUART baudrates
Tab. 9.	I2C interface addressing
Tab. 10.	SPI configuration
Tab. 11.	Communication overview for ISO/IEC 14443
	type A and read/write mode for MIFARE Classic
Tab. 12.	Communication overview for ISO/IEC 14443 B reader/writer
Tab. 13.	Communication overview for FeliCa reader/ writer
Tab. 14.	Communication overview for ISO/IEC 15693 reader to label
Tab. 15.	Communication overview for ISO/IEC 15693 label to reader40
Tab. 16.	Communication overview for active
140.10.	communication mode
Tab. 17.	Communication overview for passive
rub. III.	communication mode
Tab. 18.	ISO/IEC14443 A card operation mode42
Tab. 19.	Framing and coding overview
Tab. 20.	Timer characteristics
Tab. 20.	Crystal requirements
Tab. 21.	SCLDO and DC-to-DC converter modes53
Tab. 23.	Power-up sequence
Tab. 24.	Threshold configuration for voltage monitor 58
Tab. 25.	Reset sources
Tab. 26.	Power supply connection
Tab. 27.	Limiting values
Tab. 28.	Limiting values for GPIO1 to GPIO12
Tab. 29.	Limiting values for I2C master pins (i2cm
	sda, i2cm_scl)
Tab. 30.	Limiting values for SPI master pins (spim_
	nss, spim_miso, spim_mosi and spi_clk) 68
Tab. 31.	Limiting values for host interfaces atx_a,
	atx_b, atx_c, atx_d in all configurations
	(USB, HSUART, SPI and I2C)68
Tab. 32.	Limiting values for crystal oscillator69
Tab. 33.	Limiting values for power supply69
Tab. 34.	Limiting values for contact interface69
Tab. 35.	Protection and limitations for contact interface
Tab. 36.	Limiting values for RF interface70
Tab. 37.	Limiting values for USB interface70
Tab. 38.	Operating conditions71
Tab. 39.	Thermal characteristics72
Tab. 40.	Static characteristics for RST_N input pin73
Tab. 41.	Static characteristics for IRQ output pin73
Tab. 42.	Static characteristics for DWL_REQ73
Tab. 43.	Static characteristics for GPIO1 to GPIO2174
PN7462_FAM	All information provided in this do

Tab. 44.	Static characteristics for I2CM_SDA, I2CM_	
	SCL - S	
Tab. 45.	Static characteristics for SPIM_MOSI	
Tab. 46.	Static characteristics for SPIM_NSS	
Tab. 47.	Static characteristics for SPIM_MISO	75
Tab. 48.	Static characteristics for SPI SCLK	76
Tab. 49.	Static characteristics for ATX used as SPI	
	NSS, ATX used as I2CADR0, ATX used	
	as SPI_SCK, ATX_ used as SPI_MOSI	
Tab. 50.	Static characteristics of ATX_ used as	
145.00.	I2CSDA, ATX_ used as I2CSCL	76
Tab. 51.	Static characteristics of ATX_ used as	
Tab. 51.	SPIMISO	76
Tab. 52.	USB characteristics	
-	Obd Characteristics of UCLL TV and UCLL	/ /
Tab. 53.	Static characteristics of HSU_TX and HSU	
	RTS pin	/ /
Tab. 54.	Static characteristics of HSU_RX, HSU_	
	CTS	77
Tab. 55.	Static characteristics of XTAL pin (XTAL1,	
	XTAL2)	
Tab. 56.	Static characteristics for power supply	
Tab. 57.	Static characteristics for voltage monitors	80
Tab. 58.	Static characteristics for power modes	81
Tab. 59.	Static characteristics for contact interface	82
Tab. 60.	Static characteristics for NFC interface	83
Tab. 61.	Dynamic characteristics for IRQ output pin	
Tab. 62.	Dynamic characteristics for flash memory	
Tab. 63.	Dynamic characteristics for EEPROM	
Tab. 64.	Dynamic characteristics for GPIO1 to	
100. 04.	GPIO21	
Tab. 65.	Timing specification for fast mode plus I2C	
Tab. 66.	Timing specification for fast mode I2C	86
Tab. 67.	Dynamic characteristics and Timing	
	specification for SPI master interface	87
Tab. 68.	Timing specification for I2C high speed	
Tab. 69.	Dynamic characteristics for the I2C slave	
	interface: ATX_B used as I2C_SDA, ATX_A	
	used as I2C_SCL	88
Tab. 70.	Dynamic characteristics for SPI slave	00
Tab. 70.	interface	80
Tab. 71.	Dynamic characteristics for SPI slave	09
Tap. / T.	interface: ATX_C as SPI_MISO	00
Tab. 72.	Dynamic characteristics for HSUART ATX_	09
Tap. 72.		~~
T 1 T 0	as HSU_TX, ATX_ as HSU_RTS	
Tab. 73.	Dynamic characteristics for USB interface	90
Tab. 74.	Dynamic characteristics for internal	
	oscillators	
Tab. 75.	Dynamic characteristics for PLL	
Tab. 76.	Dynamic characteristics for power supply	
Tab. 77.	Dynamic characteristics for boot and reset	
Tab. 78.	Power modes - wake-up timings	92
Tab. 79.	Dynamic characteristics for contact interface	
Tab. 80.	Marking codes	
Tab. 81.	Marking codes	
Tab. 82.	Abbreviations	
Tab. 83.	Revision history	
iub. 00.		. 102

© NXP B.V. 2020. All rights reserved.

NFC Cortex-M0 microcontroller

Figures

Fig. 2. Block diagram 10 Fig. 3. Block diagram 11 Fig. 3. Block diagram 12 Fig. 5. Pin configuration PN736X 13 Fig. 6. Pin configuration PN7462 13 Fig. 7. Pin configuration PN7462 13 Fig. 8. Pin configuration VFBGA64 (bottom view) 17 Fig. 9. Flash memory mapping 20 Fig. 10. EEPROM memory mapping 21 Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for ISO/IEC 14443 type A 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 </th <th>Fig. 1.</th> <th>Block diagram9</th>	Fig. 1.	Block diagram9
Fig. 4.Block diagram12Fig. 5.Pin configuration PN736X13Fig. 6.Pin configuration PN746213Fig. 7.Pin configuration PN741213Fig. 8.Pin configuration VFBGA64 (bottom view)17Fig. 9.Flash memory mapping20Fig. 10.EEPROM memory mapping21Fig. 11.SRAM memory mapping21Fig. 12.PN7462 family memory map23Fig. 13.APB memory map PN736X24Fig. 14.APB memory map PN746224Fig. 15.APB memory map PN746224Fig. 16.VDDP(VBUS), supported contact cards classes, and card deactivation33Fig. 17.Contact interface - activation sequence34Fig. 18.Deactivation sequence for contact interface35Fig. 19.Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic37Fig. 20.Data coding and framing according to ISO/ IEC 14443 A card response37Fig. 21.ISO/IEC 14443 B read/write mode communication diagram38Fig. 23.Multiple reception cycles - data format39Fig. 24.ISO/IEC 15693 standard mode reader to label40Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC	Fig. 2.	Block diagram 10
Fig. 5.Pin configuration PN736X13Fig. 6.Pin configuration PN746213Fig. 7.Pin configuration PN741213Fig. 8.Pin configuration VFBGA64 (bottom view)17Fig. 9.Flash memory mapping20Fig. 10.EEPROM memory mapping21Fig. 11.SRAM memory mapping21Fig. 12.PN7462 family memory map23Fig. 13.APB memory map PN736X24Fig. 14.APB memory map PN746224Fig. 15.APB memory map PN746224Fig. 16.VDDP(VBUS), supported contact cards classes, and card deactivation33Fig. 17.Contact interface - activation sequence34Fig. 18.Deactivation sequence for contact interface35Fig. 19.Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic37Fig. 20.Data coding and framing according to ISO/ IEC 14443 A card response37Fig. 21.ISO/IEC 15693 read/write communication diagram38Fig. 23.Multiple reception cycles - data format39Fig. 24.ISO/IEC 15693 standard mode reader to label40Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC	Fig. 3.	Block diagram 11
Fig. 6. Pin configuration PN7462 13 Fig. 7. Pin configuration PN7412 13 Fig. 8. Pin configuration VFBGA64 (bottom view) 17 Fig. 9. Flash memory mapping 20 Fig. 10. EEPROM memory mapping 21 Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 21. ISO/IEC 14443 A card response 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25.	Fig. 4.	
Fig. 7. Pin configuration PN7412 13 Fig. 8. Pin configuration VFBGA64 (bottom view) 17 Fig. 9. Flash memory mapping 20 Fig. 10. EEPROM memory mapping 21 Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to lab	Fig. 5.	Pin configuration PN736X13
Fig. 8. Pin configuration VFBGA64 (bottom view)17 Fig. 9. Flash memory mapping	Fig. 6.	
Fig. 9. Flash memory mapping 20 Fig. 10. EEPROM memory mapping 21 Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 38 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26.	Fig. 7.	Pin configuration PN7412 13
Fig. 10. EEPROM memory mapping 21 Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 38 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. </td <td>Fig. 8.</td> <td>Pin configuration VFBGA64 (bottom view) 17</td>	Fig. 8.	Pin configuration VFBGA64 (bottom view) 17
Fig. 11. SRAM memory mapping 21 Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 38 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. Passive communication mode 41 Fig.	Fig. 9.	Flash memory mapping20
Fig. 12. PN7462 family memory map 23 Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. Passive communication mode 41 Fig. 28. PN7462 family output driver 43 <	Fig. 10.	EEPROM memory mapping21
Fig. 13. APB memory map PN736X 24 Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7462 24 Fig. 15. APB memory map PN7412 25 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. Passive communication mode 41 Fig. 28. PN7462 family output driver 43 F	Fig. 11.	SRAM memory mapping21
Fig. 14. APB memory map PN7462 24 Fig. 15. APB memory map PN7412 25 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC 44	Fig. 12.	PN7462 family memory map23
Fig. 15. APB memory map PN7412 25 Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC 44	Fig. 13.	APB memory map PN736X24
Fig. 16. VDDP(VBUS), supported contact cards classes, and card deactivation 33 Fig. 17. Contact interface - activation sequence 34 Fig. 18. Deactivation sequence for contact interface 35 Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC	Fig. 14.	APB memory map PN746224
classes, and card deactivation33Fig. 17.Contact interface - activation sequence34Fig. 18.Deactivation sequence for contact interface35Fig. 19.Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic37Fig. 20.Data coding and framing according to ISO/ IEC 14443 A card response37Fig. 21.ISO/IEC 14443 B read/write mode communication diagram38Fig. 22.FeliCa read/write communication diagram38Fig. 23.Multiple reception cycles - data format39Fig. 24.ISO/IEC15693 read/write mode communication diagram39Fig. 25.Data coding according to ISO/IEC 15693 standard mode reader to label40Fig. 26.Active communication mode41Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC	Fig. 15.	
Fig. 17. Contact interface - activation sequence	Fig. 16.	VDDP(VBUS), supported contact cards
Fig. 18.Deactivation sequence for contact interface35Fig. 19.Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic37Fig. 20.Data coding and framing according to ISO/ IEC 14443 A card response		classes, and card deactivation
Fig. 19. Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE Classic 37 Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC	Fig. 17.	Contact interface - activation sequence
and read/write mode for MIFARE Classic	Fig. 18.	Deactivation sequence for contact interface 35
Fig. 20. Data coding and framing according to ISO/ IEC 14443 A card response	Fig. 19.	
IEC 14443 A card response 37 Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. Passive communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC		and read/write mode for MIFARE Classic 37
Fig. 21. ISO/IEC 14443 B read/write mode communication diagram 38 Fig. 22. FeliCa read/write communication diagram 38 Fig. 23. Multiple reception cycles - data format 39 Fig. 24. ISO/IEC 15693 read/write mode communication diagram 39 Fig. 25. Data coding according to ISO/IEC 15693 standard mode reader to label 40 Fig. 26. Active communication mode 41 Fig. 27. Passive communication mode 41 Fig. 28. PN7462 family output driver 43 Fig. 29. Receiver block diagram 44 Fig. 30. Communication in card emulation of NFC	Fig. 20.	Data coding and framing according to ISO/
communication diagram38Fig. 22.FeliCa read/write communication diagram38Fig. 23.Multiple reception cycles - data format39Fig. 24.ISO/IEC15693read/writemodecommunication diagram39Fig. 25.Data coding according to ISO/IEC15693standard mode reader to label40Fig. 26.Active communication mode41Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC		
Fig. 22. FeliCa read/write communication diagram	Fig. 21.	
Fig. 23.Multiple reception cycles - data format		
Fig. 24.ISO/IEC15693read/writemodecommunication diagram	Fig. 22.	
communication diagram39Fig. 25.Data coding according to ISO/IEC 15693 standard mode reader to label40Fig. 26.Active communication mode41Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC	Fig. 23.	
Fig. 25.Data coding according to ISO/IEC 15693 standard mode reader to label	Fig. 24.	
standard mode reader to label40Fig. 26.Active communication mode41Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC		
Fig. 26.Active communication mode	Fig. 25.	
Fig. 27.Passive communication mode41Fig. 28.PN7462 family output driver43Fig. 29.Receiver block diagram44Fig. 30.Communication in card emulation of NFC		
Fig. 28.PN7462 family output driver		
Fig. 29.Receiver block diagram	Fig. 27.	
Fig. 30. Communication in card emulation of NFC	Fig. 28.	
•	-	
passive target45	Fig. 30.	
		passive target45

Fig. 31.	Clocks and IP overview	48
Fig. 32.	Crystal oscillator connection	48
Fig. 33.	PN7462 LDOs and power pins overview	51
Fig. 34.	PN736X LDOs and power pins overview	54
Fig. 35.	TX_LDO used	56
Fig. 36.	TX_LDO not used	56
Fig. 37.	Powering up the microcontroller	63
Fig. 38.	Powering up the contactless interface using	
	a single power supply	64
Fig. 39.	Powering up the contactless interface using	
	an external RF transmitter supply	64
Fig. 40.	Powering up the contact interface	65
Fig. 41.	Contact interface power supply connection	
	when contact interface is not used	65
Fig. 42.	USB interface on a bus-powered device	
Fig. 43.	Connecting the contact interface	66
Fig. 44.	Connection of contact interface when not	
	used	67
Fig. 45.	RF interface - example of connection to an	
	antenna	67
Fig. 46.	Output timing measurement condition for	
	GPIO	
Fig. 47.	I ² C-bus pins clock timing	
Fig. 48.	SPI master timing	
Fig. 49.	I2C-bus pins clock timing	
Fig. 50.	SPI slave timings	89
Fig. 51.	USB interface differential data-to-EOP	
	transition skew and EOP width	
Fig. 52.	Definition of output and input transition times	
Fig. 53.	Marking in HVQFN64	
Fig. 54.	Marking in VFBGA64	
Fig. 55.	Package outline HVQFN64	96
Fig. 56.	Footprint information for reflow soldering of	
	HVQFN64	
Fig. 57.	Package outline VFBGA64	98

NFC Cortex-M0 microcontroller

Contents

1	General description	1	8.
2	Features and benefits		8.
2.1	Integrated contact interface frontend		8.
2.2	Integrated ISO/IEC 7816-3&4 UART		8.
	interface	3	8.
2.3	Integrated contactless interface frontend		8.
2.4	Cortex-M0 microcontroller		8.
3	Applications		8.
4	Quick reference data	7	8.
5	Ordering information		0.
6	Block diagram		8.
6.1	Block diagram PN7462 HVQFN64		8.
6.2	Block diagram PN7462 VFBGA64		8.
6.3	Block diagram PN7412 HVQFN64		8.
6.4	Block diagram PN736X		8.
7.	Pinning information		8.
7.1	Pinning HVQFN64		8.
7.2	Pin description HVQFN64		8.
7.3	Pinning VFBGA64		8.
7.4	Pin description VFBGA64		8.
8	Functional description		8.
o 8.1	Arm Cortex-M0 microcontroller	20	о. 8.
8.2			о. 8.
	Memories		
8.2.1 8.2.1.1	On-chip flash programming memory		8.
8.2.2	Memory mapping		8.
	EEPROM		8.
8.2.2.1	Memory mapping		8.
8.2.3	SRAM		8.
8.2.3.1	Memory mapping		8.
8.2.4	ROM		8.
8.2.5	Memory map		8.
8.3	Nested Vectored Interrupt Controller (NVIC)		8.
8.3.1	NVIC features		8.
8.3.2	Interrupt sources		8.
8.4	GPIOs		8.
8.4.1	GPIO features		8.
8.4.2	GPIO configuration		8.
8.4.3	GPIO interrupts		8.
8.5	CRC engine 16/32 bits	27	8.
8.6	Random Number Generator (RNG)	28	8.
8.7	Master interfaces		8.
8.7.1	I2C master interface		8.
8.7.1.1	I2C features		8.
8.7.2	SPI interface		8.
8.7.2.1	SPI features		8.
8.8	Host interfaces		8.
8.8.1	High-speed UART		8.
8.8.2	I2C host interface controller		8.
8.8.2.1	I2C host interface features		8.
8.8.3	SPI host/Slave interface		8.
8.8.3.1	SPI host interface features		8.
8.8.4	USB interface		8.
8.8.4.1	Full speed USB device controller		8.
8.9	Contact interface		_
8.9.1	Contact interface features and benefits		8.
8.9.2	Voltage supervisor	32	8.
PN7462_FAM	All information provided	in this do	cument is

9.3	Clock circuitry	. 33
9.4	I/O circuitry	. 33
9.5	VCC regulator	34
9.6	Activation sequence	34
9.7	Deactivation sequence	. 35
9.8	I/O auxiliary - connecting TDA slot extender	35
10	Contactless interface - 13.56 MHz	36
10.1	RF functionality	36
10.1.1	Communication mode for ISO/IEC 14443	
	type A and for MIFARE Classic	36
10.1.2	ISO/IEC14443 B functionality	. 38
10.1.3	FeliCa functionality	. 38
10.1.4	ISO/IEC 15693 functionality	39
10.1.5	ISO/IEC18000-3 mode 3 functionality	40
10.1.6	NFCIP-1 modes	40
10.2	NFC interface	. 43
10.2.1	Transmitter (TX)	. 43
10.2.2	Receiver (RX)	44
10.3	Low-Power Card Detection (LPCD)	45
10.4	Active Load Modulation (ALM)	
10.5	Dynamic Power Control (DPC)	
10.5.1	RF output control	46
10.5.2	Adaptive Waveform Control (AWC)	46
11	Timers	
11.1	Features of timer 0 and timer 1	
11.2	Features of timer 2 and timer 3	
12	System tick timer	
13	Watchdog timer	
14		
14.1 14.2	Crystal oscillator (27.12 MHz)	
14.2	USB PLL	
14.3	High Frequency Oscillator (HFO)	
14.4	Low Frequency Oscillator (LFO) Clock configuration and clock gating	
14.5	Power management	
15.1	Power supply sources	
15.2	PN7462 Power Management Unit (PMU)	
15.2.1	Main LDO	
15.2.2	PVDD LDO	
15.2.3	Contact interface - SCLDO LDO	
15.2.4	Contact interface DC-to-DC converter	
15.2.5	VCC LDO	53
15.2.6	TXLDO	
15.3	PN736X Power Management Unit (PMU)	
15.3.1	Main LDO	
15.3.2	PVDD_LDO	
15.3.3	TXLDO	55
15.4	Power-up sequence	56
15.5	Power modes	
15.5.1	Active mode	
15.5.2	Standby mode	
15.5.3	Suspend mode	. 57
15.5.4	Wake-up from standby mode and suspend	
4	mode	
15.5.5	Hard Power-Down (HPD) mode	
15.6	Voltage monitoring	58

© NXP B.V. 2020. All rights reserved.

NFC Cortex-M0 microcontroller

0 45 0 4		50
8.15.6.1 8.15.6.2	VBUS monitor VBUSP monitor	
8.15.6.3		59
8.15.7		
	Temperature sensor	
8.16	System control	
8.16.1	Reset	
8.16.2	Brown-Out Detection (BOD)	
8.16.3	APB interface and AHB-Lite	
8.16.4	External interrupts	
8.17	SWD debug interface	60
8.17.1	SWD interface features	
	Application design-in information	
9.1	Power supply connection	
9.1.1	Powering up the microcontroller	
9.1.2	Powering up the contactless interface	
9.1.3	Powering up the contact interface	
9.2	Connecting the USB interface	
9.3	Connecting the contact interface	
9.4	Connecting the RF interface	
9.5	Unconnected I/Os	
	Limiting values	
	Recommended operating conditions	
	Thermal characteristics	
	Characteristics	
13.1	Static characteristics	
13.1.1	GPIO static characteristics	
13.1.2	Static characteristics for I2C master	
13.1.3	Static characteristics for SPI master	
13.1.4	Static characteristics for host interface	
13.1.5	Clock static characteristics	
13.1.6	Static characteristics - power supply	
13.1.7	Static characteristics for power modes	
13.1.8	Static characteristics for contact interface	
13.1.9	Static characteristics NFC interface	
13.2	Dynamic characteristics	
13.2.1	Flash memory dynamic characteristics	
13.2.2	EEPROM dynamic characteristics	
13.2.3	GPIO dynamic characteristics	
13.2.4	Dynamic characteristics for I2C master	
13.2.5	Dynamic characteristics for SPI	
13.2.6	Dynamic characteristics of host interface	
13.2.7	Clock dynamic characteristics	
13.2.8	Dynamic characteristics for power supply	
13.2.9	Dynamic characteristics for boot and reset	
13.2.10	Dynamics characteristics for power mode	
13.2.11	Dynamic characteristics for contact interface .	
	Marking	
14.1	Marking HVQFN64	
14.1.1	Package marking drawing	
14.2	Marking VFBGA64	95
14.2.1	Package marking drawing	
	Package outline HVQFN64	
	Package outline VFBGA64	
	Handling information	
	Packing information	.100
18.1	Packing information HVQFN64	.100

18.2	Packing information VFBGA64100
19	Abbreviations 101
20	Revision history102
21	Legal information103

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2020.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А