

Fast Recovery Epitaxial Diode (FRED)

ECO-PAC 2

Preliminary Data Sheet

V _{RSM}	V _{RRM}	Тур
600	600	DSEI 2x161-06P

		2.1.0 171.10			
Symbol	Conditions			Maximum Ratings	
I _{FRMS}	$T_{VJ} = T_{VJM}$			270	А
I _{FAVM} *	T _C = 70°C; rectangular	r; d = 0.5		147	Α
I _{FSM}	$T_{VJ} = 45^{\circ}C; V_{R} = 0 V;$	t = 10 ms	(50 Hz), sine	1200	Α
		t = 8.3 ms	(60 Hz), sine	1300	Α
	$T_{VJ} = 125^{\circ}C; V_R = 0 V;$	t = 10 ms	(50 Hz), sine	1080	А
			(60 Hz), sine		Α
l ² dt	$T_{VJ} = 45^{\circ}C; V_{R} = 0 V;$	t = 10 ms	(50 Hz), sine	7200	A ² s
		t = 8.3 ms	(60 Hz), sine	7100	A^2s
	$T_{VJ} = 125^{\circ}C; V_R = 0 V;$	t = 10 ms	(50 Hz), sine	5800	A ² s
		t = 8.3 ms	(60 Hz), sine	5700	A^2s
T _{VJ}				-40 + 150	°C
T_{VJM}				150	°C
T _{stg}				-40 + 125	°C
V _{ISOL}	50/60 Hz, RMS	t = 1 min		2500	V ~
	$I_{ISOL} \leq 1 \text{ mA}$	t = 1 s		3600	V ~
M _d	Mounting torque	(M4)		1.5-2.0	Nm
				14-18	lb.in.
Weight	typ.			20	g
Cumbal	Conditions Characteristic Value				

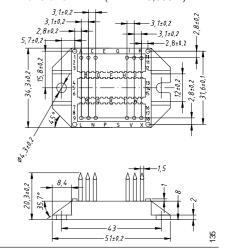
Symbol	ymbol Conditions Ch min.			aracteristic Values typ. max.		
I _R	$T_{VJ} = 25^{\circ}C; V_{R} = V_{RRM}$ $T_{VJ} = 25^{\circ}C; V_{R} = 0.8 V_{RRM}$ $T_{VJ} = 125^{\circ}C; V_{R} = 0.8 V_{RRM}$			12 3 80	mA mA mA	
V _F	I _T = 200 A; T _{VJ} = 25°C			1.45	V	
V _{TO}	For power-loss calculations only			0.85 2.7	V mΩ	
R _{thJC}	per Diode per Diode		0.2	0.29	K/W K/W	
I _{RM}	$\begin{split} I_F = & 100 \text{ A}; \ -di_F/d_t = 200 \text{ A/}\mu\text{s}; \ V_R = 100 \text{ V} \\ L & \leq 0.05 \text{ mH}; \ T_{VJ} = 100^{\circ}\text{C} \\ I_F = & 1 \text{ A}; \ -di_F/d_t = 400 \text{ A/}\mu\text{s}; \end{split}$		45		A	
	$V_R = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$		35		ns	
d _s d _A a	Creeping distance on surface Creeping distance in air Max. allowable acceleration	11.2 11.2		50	mm mm m/s²	

 $^{^{\}star}$ I_{FAVM} rating includes reverse blocking losses at T_{VJM}; V_R = 0.8 V_{RRM}; d = 0.5 IXYS reserves the right to change limits, test conditions and dimensions.

$$\begin{split} I_{\text{FAVM}} &= 2x147 \text{ A} \\ V_{\text{RRM}} &= 600 \text{ V} \\ t_{\text{rr}} &= 35 \text{ ns} \end{split}$$

Features

- 2 indpendent FRED in 1 package
- Isolation voltage 3600 V~
- · Planar glass passivated chips
- Low forward voltage drop
- · Leads suitable for PC board soldering
- Very short recovery time
- · Soft recovery behaviour


Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- · Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Advantages

- Easy to mount with two screws
- Space and weight savings
- · Improved temperature and power cycling
- · Low noise switching
- · Small and light weight

Dimensions in mm (1 mm = 0,0394")

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А