

Machine Learning Demo User's Guide

This document describes the available Machine Learning demos from Lattice. These demos operate on Lattice's Embedded Vision Development Kit, featuring the Lattice CrossLink pASSP and ECP5 FPGA.

The implementation of this demo in ECP5-85 consists of 8 Neuro Network engines (NN) engines. The size can be reduced to fit a smaller device with some tradeoffs. The implemented Neuro Network, the socalled LatticeNET1 allows a 90x90 RGB Input with 8 convolution layers.

Two demonstrations are available:

Face Detection

Face Tracking

Table of Contents

Demo Requirements	
Hardware Requirements	
Software and Firmware Requirements	
Initial Setup4	
ECP5 Programing4	
Erase the ECP5 prior to re-programming4	
Program the ECP5 VIP Processor Board5	
Programing Crosslink	
Erase the CrossLink prior to re-programming8	
Program the CrossLink VIP Input Bridge Board9	
Micro-SD Card Adpater	
Materials Required11	
Assembly instructions11	
Connect the Micro-SD Card Adapter and write flash image Error! Bookmark not defined.	
Writing the image to the Micro-SD Card12	
Demos	

Demo 1 / Face Detection (LatticeNET1 CNN)	14
Demo Face Tracking (LatticeNET2 CNN)	15
FAQ	16

Demo Requirements

The following items are required:

Hardware Requirements

- Lattice Embedded Vision Development Kit (LF-EVDK1-EVN)
 - Mini-USB Cable (Included with Kit)
 - 12 V Power Supply (Included with Kit)
- HDMI Cable
- HDMI Monitor (1080p60)
- Micro-SD Card Adapter (this is a customized item, see below for detils)
- Micro-SD Card (standard only less than 2GB, not SDHC/SDXC/etc)

Software and Firmware Requirements

- Diamond Programmer (<u>www.latticesemi.com/programmer</u>)
- Programming files for Embedded Vision Develoopment Kit
 - Dual_Camera_to_Parallel_Crosslink.bit (targets CrossLink)
 - vip_face_box_det_v2_125MHz_agc.bit (targets ECP5)
- Micro-SD card Image writer software (Win32diskimager)
 - o URL link: https://sourceforge.net/projects/win32diskimager/
- Micro-SD card image
 - $\circ \quad prog_facebox_v3_0.bin$
 - \circ prog_facedet.bin

Initial Setup

ECP5 Programing

Erase the ECP5 prior to re-programming

If the ECP5 is already programmed (either directly, or loaded from SPI Flash), you'll need to follow this procedure to first erase the ECP5 SRAM memory, then program the ECP5's SPI Flash in the next section. If you are doing this, keep the board powered when re-programming the SPI Flash in the next section.

- 1. Connect the 12V power supply to the barrel plug at J4.
- 2. Ensure SW2 on ECP5 board is ON to power the board. (LEDs should be ON)
- 3. Connect mini-USB cable from PC to mini-USB connector on ECP5 VIP Processor Board
- 4. Launch Diamond Programmer with "Create a new blank project"
- 5. Make the following selections in Diamond Programmer for Device Family and Device v Design Window Help

6. For Operation, select Erase Only

Enable	Status	Device Family	Device	Operation	File Name
V	PASS	ECP5UM	LFE5UM-85F	Erase Only	uments/VIP/LF-EVDK1-EVN-
S EC	CP5UM ·	- LFE5UM-85F - D	evice Properties		8 23
G	eneral	Device Informatio	n		
	Device O	peration			
	Access m	node:		JTAG 1532 Mode	
	Operatio	n:		Erase Only	
П ⁻					
				ОК	Cancel
Ļ					

7. Click the Program button in Diamond Programmer to start the Erase sequence.

(If you power off/on the board, the SPI Flash will program the ECP5 again, and you'll have to repeat steps 1 through 7)

Program the ECP5 VIP Processor Board

 Double-click the selection in the Operation box and change "Access mode" to SPI Flash Background Programming to bring up the below dialog, make the selections as shown. Noted that in the "Programming File" section, select the file "vip_face_box_det_v2_125MHz_agc.bitbit". Click OK.

Device Operation			
Access mode:		SPI Flash Background	Programming 🔹
Operation:		SPI Flash Erase,Prog	ram,Verify 🔻
Programming Options			
Programming file: rs/jle	y/Documents/VIP/LF-E	VDK1-EVN-test/LF-EVD	K1-EVN-ECP5-2.bit
Device Options			
Reinitialize part on pro	gram error		
SPI Flash Options			
Family:		SPI Serial Flash	•
Vendor:		Micron	•
Device:		SPI-N25Q128A	•
Package:		8-pin SO8	•
SPI Programming			
Data file size (Bytes):	1948905		Load from File
Start address (Hex):		0x0000000	•
End address (Hex):		0x001D0000	_
Erase SPI part on p	programming error		
📃 Secure SPI flash go	olden pattern sectors		

Note: instead of entering the Data file size, click "Load from File".

9. Click the Program button in Diamond Programmer to start the programming sequence.

10. Successful programming will display as below in the programmer output console

Output	
Disabing	-
Verifying	
Finalizing	
INFO - Execution time: 00 min : 08 sec	
INFO - Elapsed time: 00 min : 08 sec	
INFO - Operation: successful.	E
	-
Output Td Console	

Programing Crosslink

Erase the CrossLink prior to re-programming

If the CrossLink is already programmed (either directly, or loaded from SPI Flash), you'll need to follow this procedure to first erase the CrossLink SRAM memory before reprogramming the CrossLink's SPI Flash. If you are doing this, you need to keep the board powered when re-programming the SPI Flash (so it doesn't re-load on re-boot).

- 11. Launch Diamond Programmer with "Create a new blank project"
- 12. Make the following selections in Diamond Programmer for Device Family and Device

Design Window Help				
😫 🐼 🖨 🥵 🚳	LOG			
Device Family	Device			
LIFMD	LIF-MD6000 -			
	LIF-MD6000			
	LIA-MD6000			

13. Make the following selections in Diamond Programmer:

Status	Device Family	Device	Operation	File Name		
PASS	LIFMD	LIF-MD6000	Erase Only			
(🔒 🗆	🚱 LIFMD - LIF-MD6000 - Device Properties					
G	eneral Device I	information				
ll la	Device Operation					
	Access mode:		SSPI SRAM Programmir	ng 🔻		
	Operation:		Er	ase Only 🔹		
ШЧ						
OK Cancel						
De	vice Family	Device	Opera	tion		
LIFM	1D	LIF-MD6000	Erase Only			

14. Click the Program button in Diamond Programmer to start the Erase sequence. (If you power off/on the board, the SPI Flash will program the ECP5 again, and you'll have to repeat steps 11 through 14).

Program the CrossLink VIP Input Bridge Board

15. Double-click the selection in the Operation box and change "Access mode" to SPI Flash Background Programming to bring up the below dialog, make the selections as shown. Noted that in the "Programming File" section, select the file Dual_Camera_to_Parallel_Crosslink.bit", Click OK.

eneral Device Information		
Device Operation		
Access mode:	SPI Flash Back	ground Programming 🔹 🔻
Operation:	SPI	Flash Erase, Program, Verify 🔻
Programming Options		
Dragsamming flag I TE MD60	0 Masterial Piancias DUAL DOUV	
Programming hie: LIF-MD60	U Masterlink Binaries/DUAL_DPHT	_2_DPHY_CAMERA_HS.DIT
Device Options		
Reinitialize part on program	n error	
SPI Flash Options		
Family:	SPI Serial Flash	• •
Vendor:	Micron	······································
Device:	SPI-M25PX16	•
Package:	8-pin VEOEPN	3 🔹
SPI Programming		
Data file size (Bytes): 16	3501	Load from File
Start address (Hex):	0x00000000	•
End address (Hex):	0x00020000	•
Erase SPI part on prog	ramming error	
Secure SPI flash golde	n pattern sectors	

Note: instead of entering the Data file size, just click "Load from File".

16. Click the Program button in Diamond Programmer to start the programming sequence.

17. Successful programming will display as below in the programmer output console

Output	
Disabling	^
Verifying	
Finalizing	
INFO - Execution time: 00 min : 08 sec	
INFO - Elapsed time: 00 min : 08 sec	
INFO - Operation: successful.	E
	-
Output Td Console	

Micro-SD Card Adpater

This demo requires a Micro-SD Card Adapter. This is a custom item for use with the Lattice Embedded Vision Develoment Kit.

If you do not have this item, contact your local Lattice representative, or follow the below instructions to build your own.

Materials Required

You will need the following materials to make your own Micro-SD Card Adapter

- Adafruit Micro-SD Card Breakout Board+ <u>http://adafru.it/254</u>
- 2x5 female header
- Short wire

Assembly instructions

Solder the header to the Micro-SD Card Breakout Board+ as shown in the image; connecting one side of the header to Micro-SD Card Breakout Board+ in the following locations:

CS, DI, DO, CLK, GND.

Solder the wire as shown, connecting the pin shown closest in the photo to 3v on the Micro-SD Card Breakout Board+

Write the image to the Micro-SD Card

Download and install the Win32diskimager Image Writer software from the following link:

https://sourceforge.net/projects/win32diskimager/

Use Win32diskimager to write the apropriate flash image file to the SD memorycard. Depending on your PC, you may need a separate adapter (not described in this document) to physically connect to the card. See Demo section below to determine which file to use for the demo you want to run.

Connect the Micro-SD Card Adapter

Connect as shown in the picture

Page | 13

	Win32 Disk Imager - 1.0	
1) Select	Image File Device	
Image file	C:/Users/jhyi/Workspace/vip_face_det/ml_prog/facedet_cnn.bin	
inage ine	Hash	2) Select
	None Generate Copy	Card reader
	Read Only Allocated Partitions	
	Progress	
	Cancel Read Write Verify Only Exit	
	Waiting for a task.	
]		
	3) Write	
L		

Demo Operation

There are two demos available. Both demos use the same bitstream files for ECP5 and CrossLink. The NN are reconfigured through the content in the Micro-SD card. In addition, the Micro-SD card also stores the learning data.

Procedure to run either demo:

- 1. Write the appropriate file to the Micro-SD card:
 - a. Face Detection / Demo 1 = prog_facedet.bin
 - b. Face Tracking / Demo 2 = prog_facebox_v3_0.bin
- 2. Insert the configured Micro-SD Card into the Micro-SD Card Adapter, and connect to the Embedded Vision Development Kit.
- 3. Cycle the power on Embedded Vision Development Kit to allow ECP5 and Crosslink to be reconfigured from Flash.
- 4. Connect the Embedded Vision Development Kit to the HDMI monitor. Camera image should be displayed on monitor.
- 5. Depending on the selected demo the output should be visible.

Note: As all demo firmware/information is written to non-volatile Flash memory, either demo will run at power-up.

Demo 1 / Face Detection

Demo 1 provides an example of object/facial detection. A green box will appear around an objects and indicates if a human face is detected in the image. Two green bars on the left indicate the propability that a face is either detected or not detected in the image.

The demo 1 operates at 7 fps but it is possible to increase the frame rate to 200fps with a 32x32RGB input. The ECP5 consumes aproximately 0.85W of power.

Demo Face Tracking

Demo 2 provides an example of object/facial tracking application. A green box will appear around an objects and indicates if a human face is detected in the image. This green box will follow the human face in the image and track the movement.

Page | 16

Green box indicates location of the face

FAQ

Question: Object\facial recognition does not work all the time.

Answer 1: The human face needs to consume 30% to 100% of the image height. Ensure that you are close enough to the image sensor.

Answer 2: 50% or more of the face needs to be in the image for proper detection.

Answer 3: Detection is sensitive to rotation of the camera. We recommend that rotation on all axis relative to the face is maintained to less than 25%.

Answer 4: Lighting needs to be neutral. In particular avoid large differences in lighting across the image.

Question: My board was working first but when I cycle the power it does not work anymore.

Answer: There is a known warm issue caused by a boot from flash.

Problem description: Some boards are failing to configure from SPI Flash after the board has been running for a period of time and has become warmer. Once the board cools down, the configuration is successful.

Workaround: The problem is believed to be caused by the loading on the SPI interface. Removing the connection to the downstream board appears to solve the issue. On the ECP5 board, remove pins 27 (SCLK) and 31 (MISO) from the inside of connector J12.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А