PTN3360A

Enhanced performance HDMI/DVI level shifter with inverting HPD

Rev. 02 — 8 October 2009

Product data sheet

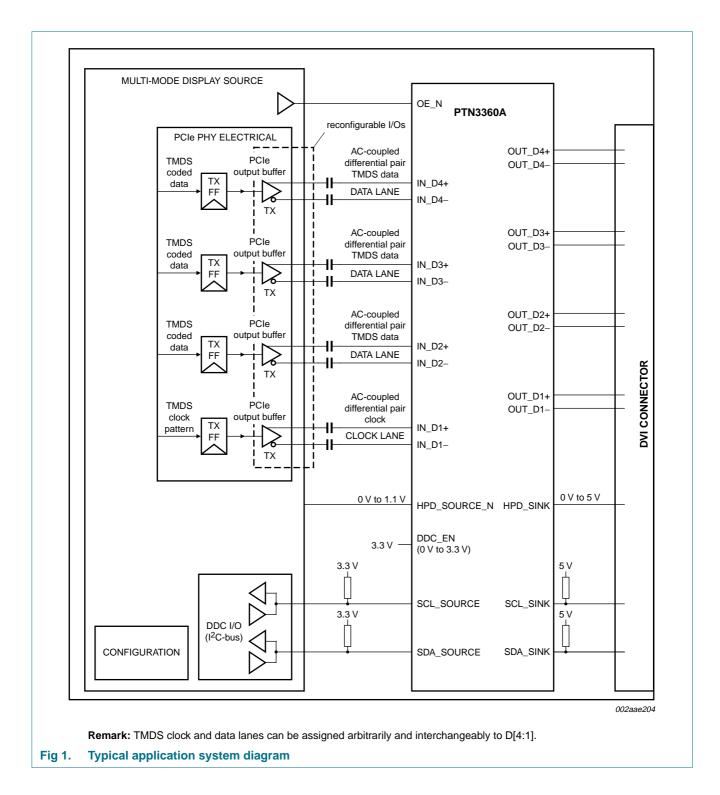
1. General description

The PTN3360A is a high-speed level shifter device which converts four lanes of low-swing AC-coupled differential input signals to DVI v1.0 and HDMI v1.3a compliant open-drain current-steering differential output signals, up to 2.5 Gbit/s per lane. Each of these lanes provides a level-shifting differential buffer to translate from low-swing AC-coupled differential signaling on the source side, to TMDS-type DC-coupled differential current-mode signaling terminated into 50 Ω to 3.3 V on the sink side. Additionally, the PTN3360A provides a single-ended active buffer for voltage translation of the HPD signal from 5 V on the sink side to 1.1 V on the source side and provides a channel for level shifting of the DDC channel (consisting of a clock and a data line) between 3.3 V source-side and 5 V sink-side. The DDC channel is implemented using pass-gate technology providing level shifting as well as disablement (isolation between source and sink) of the clock and data lines.

The low-swing AC-coupled differential input signals to the PTN3360A typically come from a display source with multi-mode I/O, which supports multiple display standards, e.g., DisplayPort, HDMI and DVI. While the input differential signals are configured to carry DVI or HDMI coded data, they do not comply with the electrical requirements of the DVI v1.0 or HDMI v1.3a specification. By using PTN3360A, chip set vendors are able to implement such reconfigurable I/Os on multi-mode display source devices, allowing the support of multiple display standards while keeping the number of chip set I/O pins low. See Figure 1.

The PTN3360A main high-speed differential lanes feature low-swing self-biasing differential inputs which are compliant to the electrical specifications of *DisplayPort Standard v1.1* and/or *PCI Express Standard v1.1*, and open-drain current-steering differential outputs compliant to DVI v1.0 and HDMI v1.3a electrical specifications. The I²C-bus channel level-translates the DDC signals between 3.3 V (source) and 5.0 V (sink).

The PTN3360A is a fully featured HDMI as well as DVI level shifter. It is functionally equivalent to PTN3300A but provides higher speed performance and higher ESD robustness. The PTN3360A is also equivalent to PTN3360B with the exception that PTN3360A provides inverting level shifting on the HPD channel.


PTN3360A is powered from a single 3.3 V power supply consuming a small amount of power (120 mW typ.) and is offered in a 48-terminal HVQFN48 package.

NXP Semiconductors

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD

Product data sheet

2. Features

2.1 High-speed TMDS level shifting

- Converts four lanes of low-swing AC-coupled differential input signals to DVI v1.0 and HDMI v1.3a compliant open-drain current-steering differential output signals
- TMDS level shifting operation up to 2.5 Gbit/s per lane (250 MHz character clock)
- Integrated 50 Ω termination resistors for self-biasing differential inputs
- Back-current safe outputs to disallow current when device power is off and monitor is on
- Disable feature to turn off TMDS inputs and outputs and to enter low-power state

2.2 DDC level shifting

- Integrated DDC level shifting (3.3 V source to 5 V sink side)
- 0 Hz to 400 kHz I²C-bus clock frequency
- Back-power safe sink-side terminals to disallow backdrive current when power is off or when DDC is not enabled

2.3 HPD level shifting

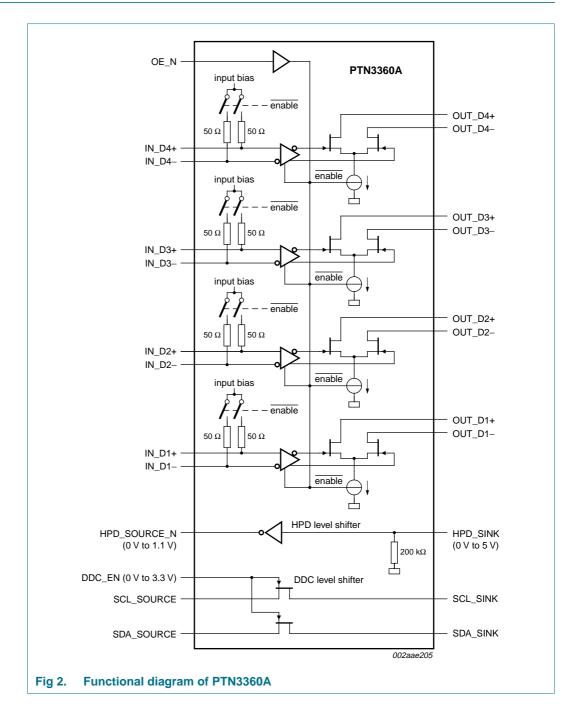
- HPD inverting level shift from 0 V on the sink side to 1.1 V on the source side, or from 5 V on the sink side to 0 V on the source side
- Integrated 200 kΩ pull-down resistor on HPD sink input guarantees 'input LOW' when no display is plugged in
- Back-power safe design on HPD_SINK to disallow backdrive current when power is off

2.4 General

- Power supply 3.3 V \pm 10 %
- ESD resilience to 8 kV HBM, 500 V CDM
- Power-saving modes (using output enable)
- Back-current-safe design on all sink-side main link, DDC and HPD terminals
- Transparent operation: no re-timing or software configuration required

3. Ordering information

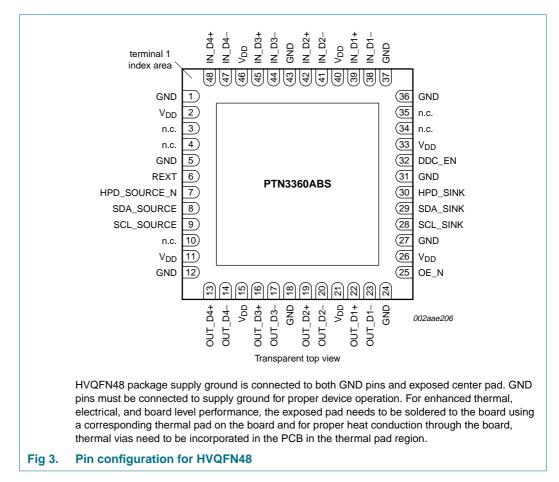
Table 1.Ordering information


Type number	Package		
	Name	Description	Version
PTN3360ABS	HVQFN48	plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body 7 \times 7 \times 0.85 mm	SOT619-1

NXP Semiconductors

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD


4. Functional diagram

PTN3360A

5. Pinning information

5.1 Pinning

5.2 Pin description

Symbol	Pin	Туре	Description
•	and OUT_Dx s		
OE_N	25	3.3 V low-voltage CMOS single-ended	Output Enable and power saving function for high-speed differential level shifter path.
		input	When OE_N = HIGH:
			IN_Dx termination = high-impedance
			OUT_Dx outputs = high-impedance; zero output current
			When OE_N = LOW:
			IN_Dx termination = 50 Ω
			OUT_Dx outputs = active
IN_D4+	48	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D4+ makes a differential pair with IN_D4–. The input to this pin must be AC coupled externally.
IN_D4-	47	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D4– makes a differential pair with IN_D4+. The input to this pin must be AC coupled externally.
IN_D3+	45	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D3+ makes a differential pair with IN_D3 The input to this pin must be AC coupled externally.
IN_D3-	44	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D3– makes a differential pair with IN_D3+. The input to this pin must be AC coupled externally.
IN_D2+	42	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D2+ makes a differential pair with IN_D2–. The input to this pin must be AC coupled externally.
IN_D2-	41	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D2– makes a differential pair with IN_D2+. The input to this pin must be AC coupled externally.
IN_D1+	39	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D1+ makes a differential pair with IN_D1–. The input to this pin must be AC coupled externally.
IN_D1-	38	Self-biasing differential input	Low-swing differential input from display source with PCI Express electrical signalling. IN_D1– makes a differential pair with IN_D1+. The input to this pin must be AC coupled externally.
OUT_D4+	13	TMDS differential output	HDMI compliant TMDS output. OUT_D4+ makes a differential pair with OUT_D4 OUT_D4+ is in phase with IN_D4+.
OUT_D4–	14	TMDS differential output	HDMI compliant TMDS output. OUT_D4– makes a differential pair with OUT_D4+. OUT_D4– is in phase with IN_D4–.
OUT_D3+	16	TMDS differential output	HDMI compliant TMDS output. OUT_D3+ makes a differential pair with OUT_D3 OUT_D3+ is in phase with IN_D3+.
OUT_D3-	17	TMDS differential output	HDMI compliant TMDS output. OUT_D3– makes a differential pair with OUT_D3+. OUT_D3– is in phase with IN_D3–.
OUT_D2+	19	TMDS differential output	HDMI compliant TMDS output. OUT_D2+ makes a differential pair with OUT_D2 OUT_D2+ is in phase with IN_D2+.
OUT_D2-	20	TMDS differential output	HDMI compliant TMDS output. OUT_D2– makes a differential pair with OUT_D2+. OUT_D2– is in phase with IN_D2–.

NXP Semiconductors

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD

Table 2.	Pin description	oncontinued	
Symbol	Pin	Туре	Description
OUT_D1+	22	TMDS differential output	HDMI compliant TMDS output. OUT_D1+ makes a differential pair with OUT_D1 OUT_D1+ is in phase with IN_D1+.
OUT_D1-	23	TMDS differential output	HDMI compliant TMDS output. OUT_D1– makes a differential pair with OUT_D1+. OUT_D1– is in phase with IN_D1–.
HPD and D	DC signals		
HPD_SINK	30	5 V CMOS single-ended input	0 V to 5 V (nominal) input signal. This signal comes from the DVI or HDMI sink. A HIGH value indicates that the sink is connected; a LOW value indicates that the sink is disconnected. HPD_SINK is pulled down by an integrated 200 k Ω pull-down resistor.
HPD_SOU N	RCE_ 7	1.1 V CMOS single-ended output	0 V to 1.1 V (nominal) output signal. This is level-shifted t logic-inverted version of the HPD_SINK signal.
SCL_SOU	RCE 9	single-ended 3.3 V open-drain DDC I/C	3.3 V source-side DDC clock I/O. Pulled up by external termination to 3.3 V.
SDA_SOU	RCE 8	single-ended 3.3 V open-drain DDC I/C	3.3 V source-side DDC data I/O. Pulled up by external termination to 3.3 V.
SCL_SINK	28	single-ended 5 V open-drain DDC I/C	5 V sink-side DDC clock I/O. Pulled up by external termination to 5 V.
SDA_SINK	29	single-ended 5 V open-drain DDC I/C	5 V sink-side DDC data I/O. Pulled up by external termination to 5 V.
DDC_EN	32	3.3 V CMOS input	Enables the DDC buffer and level shifter.
			When DDC_EN = LOW, buffer/level shifter is disabled.
			When DDC_EN = HIGH, buffer and level shifter are enabled.
Supply an	d ground		
V _{DD}	2, 11, 21, 26 40, 46	6, 33,	Supply voltage; 3.3 V \pm 10 %.
V _{CC}	-		
GND ^[1]	1, 5, 7 18, 24 31, 36 43	4, 27,	Supply ground. All GND pins must be connected to ground for proper operation.
Feature co	ontrol signals		
REXT	6	analog I/O	Current sense port used to provide an accurate current reference for the differential outputs OUT_Dx. For best output voltage swing accuracy, use of a 10 k Ω resistor (1 % tolerance) from this terminal to GND is recommended. May also be left open-circuit or tied to either V _{DD} or GND. See <u>Section 6.2</u> for details.
Miscellane	ous		
n.c.	3, 4, 1	10, no connection	Not connected. May be left open-circuit or tied to GND or V _{DD} either

[1] HVQFN48 package supply ground is connected to both GND pins and exposed center pad. GND pins must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the PCB in the thermal pad region.

6. Functional description

Refer to Figure 2 "Functional diagram of PTN3360A".

The PTN3360A level shifts four lanes of low-swing AC-coupled differential input signals to DVI and HDMI compliant open-drain current-steering differential output signals, up to 2.5 Gbit/s per lane. It has integrated 50 Ω termination resistors for AC-coupled differential input signals. An enable signal OE_N can be used to turn off the TMDS inputs and outputs, thereby minimizing power consumption. The TMDS outputs, HPD_SINK input and DDC_SINK I/Os are back-power safe to disallow current flow from a powered sink while the PTN3360A is unpowered.

The PTN3360A's DDC channel provides active level shifting and buffering, allowing 3.3 V source-side termination and 5 V sink-side termination. The sink-side DDC ports are equipped with a rise time accelerator enabling drive of long cables or high bus capacitance. This enables the system designer to isolate bus capacitance to meet HDMI DDC version 1.3a distance specification. The PTN3360A offers back-power safe sink-side I/Os to disallow backdrive current from the DDC clock and data lines when power is off or when DDC is not enabled. An enable signal DCC_EN enables the DDC level shifter block.

The PTN3360A also provides voltage translation for the Hot Plug Detect (HPD) signal from 0 V to 5 V on the sink side, inverting and level-shifting to 1.1V/0 V on the source side.

The PTN3360A does not re-time any data. It contains no state machines except for the DDC/I²C-bus block. No inputs or outputs of the device are latched or clocked. Because the PTN3360A acts as a transparent level shifter, no reset is required.

6.1 Enable and disable features

PTN3360A offers different ways to enable or disable functionality, using the Output Enable (OE_N) and DDC Enable (DDC_EN) inputs. Whenever the PTN3360A is disabled, the device will be in Standby mode and power consumption will be minimal; otherwise the PTN3360A will be in Active mode and power consumption will be nominal. These two inputs each affect the operation of PTN3360A differently: OE_N affects only the TMDS channels, and DDC_EN affects only the DDC channel. HPD_SINK does not affect either of the channels. The following sections and truth table describe their detailed operation.

6.1.1 Hot plug detect

The HPD channel of PTN3360A functions as a level-shifting buffer to pass the HPD logic signal from the display sink device (via input HPD_SINK) on to the display source device (via output HPD_SOURCE_N).

The output logic state of HPD_SOURCE_N output always follows the inverse logic state of input HPD_SINK, regardless of whether the device is in Active or Standby mode.

6.1.2 Output Enable function (OE_N)

When input OE_N is asserted (active LOW), the IN_Dx and OUT_Dx signals are fully functional. Input termination resistors are enabled and the internal bias circuits are turned on.

When OE_N is de-asserted (inactive HIGH), the OUT_Dx outputs are in a high-impedance state and drive zero output current. The IN_Dx input buffers are disabled and IN_Dx termination is disabled. Power consumption is minimized.

Remark: Note that OE_N has no influence on the HPD_SINK input, HPD_SOURCE_N output, or the SCL and SDA level shifters. OE_N only affects the high-speed TMDS channel.

6.1.3 DDC channel enable function (DDC_EN)

The DDC_EN pin is active HIGH and can be used to isolate a badly behaved slave. When DDC_EN is LOW, the DDC channel is turned off. The DDC_EN input should never change state during an I²C-bus operation. Note that disabling DDC_EN during a bus operation will hang the bus, while enabling DDC_EN during bus traffic would corrupt the I²C-bus operation. Hence, DDC_EN should only be toggled while the bus is idle. (See I²C-bus specification).

6.1.4 Enable/disable truth table

Inputs			Channels					
HPD_SINK	OE_N [1]	DDC_EN	IN_Dx	OUT_Dx ^[3]	DDC[4]	HPD_SOURCE_N		
LOW	LOW	LOW	50 Ω termination to $V_{RX(bias)}$	enabled	high-impedance	HIGH	Active; DDC disabled	
LOW	LOW	HIGH	50 Ω termination to $V_{RX(bias)}$	enabled	SDA_SINK connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE	HIGH	Active; DDC enabled	
LOW	HIGH	LOW	high-impedance	high-impedance; zero output current	high-impedance	HIGH	Standby	
LOW	HIGH	HIGH	high-impedance	high-impedance; zero output current	SDA_SINK connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE	HIGH	Standby DDC enabled	
HIGH	LOW	LOW	50 Ω termination to $V_{RX(bias)}$	enabled	high-impedance	LOW	Active; DDC disabled	
HIGH	LOW	HIGH	50 Ω termination to $V_{RX(bias)}$	enabled	SDA_SINK connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE	LOW	Active; DDC enabled	
HIGH	HIGH	LOW	high-impedance	high-impedance; zero output current	high-impedance	LOW	Standby	
HIGH	HIGH	HIGH	high-impedance	high-impedance; zero output current	SDA_SINK connected to SDA_SOURCE and SCL_SINK connected to SCL_SOURCE	LOW	Standby DDC enabled	

Table 3. HPD_SINK, OE_N and DDC_EN enabling truth table

[1] A HIGH level on input OE_N disables only the TMDS channels.

[2] A LOW level on input DDC_EN disables only the DDC channel.

[3] OUT_Dx channels 'enabled' means outputs OUT_Dx toggling in accordance with IN_Dx differential input voltage switching.

[4] DDC channel 'enabled' means SDA_SINK is connected to SDA_SOURCE and SCL_SINK is connected to SCL_SOURCE.

[5] The HPD_SOURCE_N output logic state always follows the inverse of the HPD_SINK input logic state.

6.2 Analog current reference

The REXT pin (pin 6) is an analog current sense port used to provide an accurate current reference for the differential outputs OUT_Dx. For best output voltage swing accuracy, use of a 10 k Ω resistor (1 % tolerance) connected between this terminal and GND is recommended.

If an external 10 k $\Omega \pm 1$ % resistor is not used, this pin can be left open-circuit, or connected to GND or V_{DD}, either directly (0 Ω) or using pull-up or pull-down resistors of value less than 10 k Ω . In any of these cases, the output will function normally but at reduced accuracy over voltage and temperature of the following parameters: output levels (V_{OL}), differential output voltage swing, and rise and fall time accuracy.

6.3 Backdrive current protection

The PTN3360A is designed for backdrive prevention on all sink-side TMDS outputs, sink-side DDC I/Os and the HPD_SINK input. This supports user scenarios where the display is connected and powered, but the PTN3360A is unpowered. In these cases, the PTN3360A will sink no more than a negligible amount of leakage current, and will block the display (sink) termination network from driving the power supply of the PTN3360A or that of the inactive DVI or HDMI source.

7. Limiting values

Table 4

1. See Street and the set

Iable 4. In accorda	Limiting values ance with the Absolute Max	imum Rating System (IE	C 60134).		
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.3	+4.6	V
VI	input voltage	3.3 V CMOS inputs	-0.3	V _{DD} + 0.5	V
		5.0 V CMOS inputs	-0.3	6.0	V
T _{stg}	storage temperature		-65	+150	°C
V _{ESD}	electrostatic discharge	HBM	<u>[1]</u> _	8000	V
	voltage	CDM	[2] _	500	V

 Human Body Model: ANSI/EOS/ESD-S5.1-1994, standard for ESD sensitivity testing, Human Body Model -Component level; Electrostatic Discharge Association, Rome, NY, USA.

[2] Charged-Device Model: ANSI/EOS/ESD-S5.3-1-1999, standard for ESD sensitivity testing, Charged-Device Model - Component level; Electrostatic Discharge Association, Rome, NY, USA.

8. Recommended operating conditions

Table 5.	Recommended oper	ating conditions				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	supply voltage		3.0	3.3	3.6	V
VI	input voltage	3.3 V CMOS inputs	0	-	3.6	V
		5.0 V CMOS inputs	0	-	5.5	V
V _{I(AV)}	average input voltage	IN_Dn+, IN_Dn- inputs	<u>[1]</u> _	0	-	V
R _{ref(ext)}	external reference resistance ^[2]	connected between pin REXT (pin 6) and GND	-	10 ± 1 %	-	kΩ
T _{amb}	ambient temperature	operating in free air	-40	-	+85	°C

[1] Input signals to these pins must be AC-coupled.

[2] Operation without external reference resistor is possible but will result in reduced output voltage swing accuracy. For details, see <u>Section 6.2</u>.

8.1 Current consumption

Table 6. Current consumption

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD} supply current	OE_N = 0; Active mode	10	35	50	mA	
	DD Supply current	OE_N = 1 and DDC_EN = 0; Standby mode	-	0.8	1.5	mA

9. Characteristics

9.1 Differential inputs

Table 7.	Differential input characteristics for IN_D	x signals					
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
UI	unit interval ^[1]		[2]	360	-	4000	ps
V _{RX_DIFFp-p}	differential input peak-to-peak voltage		[3]	0.175	-	1.200	V
T _{RX_EYE}	receiver eye time	minimum eye width at IN_Dx input pair		0.8	-	-	UI
V _{i(cm)M(AC)}	peak common-mode input voltage (AC)	includes all frequencies above 30 kHz	[4]	-	-	100	mV
Z _{RX_DC}	DC input impedance			40	50	60	Ω
V _{RX(bias)}	bias receiver voltage		[5]	1.0	1.2	1.4	V
Z _{I(se)}	single-ended input impedance	inputs in high-impedance state	[6]	100	-	-	kΩ

[1] UI (unit interval) = t_{bit} (bit time).

[2] UI is determined by the display mode. Nominal bit rate ranges from 250 Mbit/s to 2.5 Gbit/s per lane. Nominal UI at 2.5 Gbit/s = 400 ps. 360 ps = 400 ps - 10 %.

[5] Intended to limit power-up stress on chip set's PCIe output buffers.

[6] Differential inputs will switch to a high-impedance state when OE_N is LOW.

9.2 Differential outputs

The level shifter's differential outputs are designed to meet HDMI version 1.3 and DVI version 1.0 specifications.

 Table 8.
 Differential output characteristics for OUT_Dx signals

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH(se)}	single-ended HIGH-level output voltage		<u>[1]</u>	V _{TT} – 0.01	V _{TT}	V _{TT} + 0.01	V
V _{OL(se)}	single-ended LOW-level output voltage		[2]	$V_{TT}-0.60$	$V_{TT} - 0.50$	$V_{TT} - 0.40$	V
$\Delta V_{O(se)}$	single-ended output voltage variation	logic 1 and logic 0 state applied respectively to differential inputs IN_Dn; R _{ref(ext)} connected; see <u>Table 5</u>	<u>[3]</u>	400	500	600	mV
I _{OZ}	OFF-state output current	single-ended		-	-	10	μΑ
t _r	rise time	20 % to 80 %	[4]	75	-	160	ps
t _f	fall time	80 % to 20 %	[4]	75	-	160	ps
t _{sk}	skew time	intra-pair	[5]	-	-	10	ps
		inter-pair	[6]	-	-	250	ps
t _{jit}	jitter time	jitter contribution	[7]	-	-	7.4	ps

[1] V_{TT} is the DC termination voltage in the HDMI or DVI sink. V_{TT} is nominally 3.3 V.

[2] The open-drain output pulls down from V_{TT} .

[3] Swing down from TMDS termination voltage (3.3 V \pm 10 %).

[4] Maximum rise/fall time at 2.5 Gbit/s = 400 ps. 360 ps = 400 ps - 10 %.

[5] This differential skew budget is in addition to the skew presented between IN_D+ and IN_D- paired input pins.

[6] This lane-to-lane skew budget is in addition to skew between differential input pairs.

[7] Jitter budget for differential signals as they pass through the level shifter.

9.3 HPD_SINK input, HPD_SOURCE_N output

Table 9.	HPD characteristics					
Symbol	Parameter	Conditions	Mi	n Typ	Max	Unit
V _{IH}	HIGH-level input voltage	HPD_SINK	[<u>1]</u> 2.0	5.0	5.3	V
V _{IL}	LOW-level input voltage	HPD_SINK	0	-	0.8	V
I _{LI}	input leakage current	HPD_SINK	[2] _	-	10	μA
V _{OH}	HIGH-level output voltage	HPD_SOURCE_N; I _{OH} = 100 μA; HPD_SINK = LOW	0.7	-	1.1	V
V _{OL}	LOW-level output voltage	HPD_SOURCE_N; I _{OH} = 100 μA; HPD_SINK = HIGH	0	-	0.2	V
t _{PD}	propagation delay	from HPD_SINK to HPD_SOURCE_N; 50 % to 50 %; $C_L = 10 \text{ pF}$	<u>[3]</u>	-	200	ns
t _t	transition time	HPD_SOURCE_N rise/fall; 10 % to 90 %; C _L = 10 pF	<u>[4]</u> 1	-	20	ns
R _{pd}	pull-down resistance	HPD_SINK input pull-down resistor	[5] 100	200	300	kΩ

[1] Low-speed input changes state on cable plug/unplug.

[2] Measured with HPD_SINK at V_{IH} maximum and V_{IL} minimum.

[3] Time from HPD_SINK changing state to HPD_SOURCE_N changing state. Includes HPD_SOURCE_N rise/fall time.

[4] Time required to transition from V_{OH} to V_{OL} or from V_{OL} to V_{OH} .

[5] Guarantees HPD_SINK is LOW when no display is plugged in.

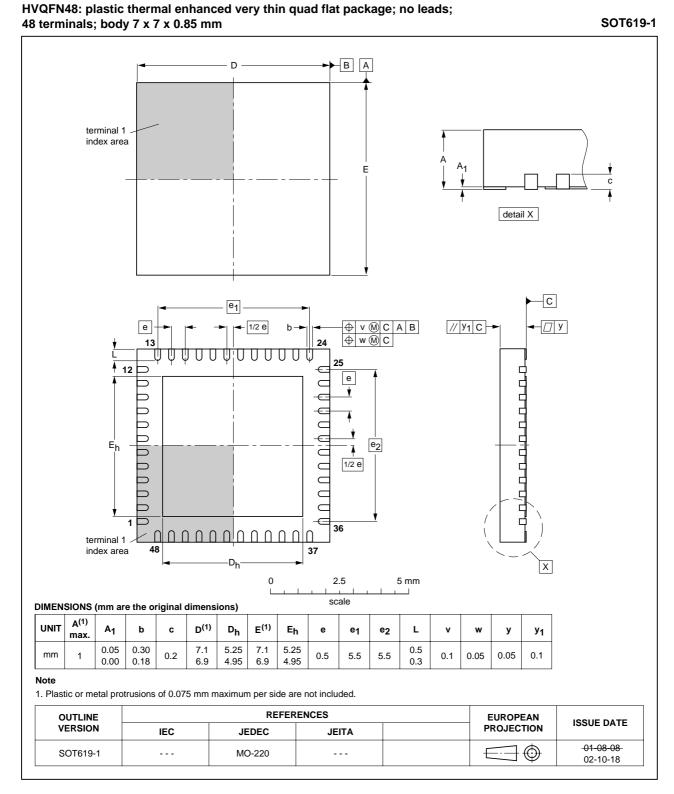
9.4 OE_N, DDC_EN inputs

Table 10. OE_N, DDC_EN and DDET input characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{LI}	input leakage current	OE_N pin	<u>[1]</u> _	-	10	μΑ

[1] Measured with input at V_{IH} maximum and V_{IL} minimum.

9.5 DDC characteristics


Table 11.	DDC characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{clk}	clock frequency	SCL_SOURCE, SDA_SOURCE, SCL_SINK, SDA_SINK	-	-	400	kHz
ON state	(DDC_EN = HIGH)					
R _{ON}	ON resistance	pass gate in ON state; $I_O = 15 \text{ mA}$; $V_O = 0.4 \text{ V}$	-	7	30	Ω
V _{O(sw)}	switch output voltage	source side; V _I = 3.3 V; I _O = $-100 \ \mu A$	1.7	2.1	2.5	V
		sink side; V_I = 5.0 V; I_O = -100 μA	1.7	2.1	2.5	V
Cio	input/output capacitance	V _I = 3.3 V	-	5	10	pF
OFF state	e (DDC_EN = LOW)					
ILI	input leakage current	source side; 0 V < V_I < 3.3 V	-10	-	+10	μΑ
		sink side; $0 V < V_{I} < 5.0 V$	-10	-	+10	μΑ
Cio	input/output capacitance	V _I = 3.3 V	-	1	5	pF
PTN3360A_2				©NX	P B.V. 2009. All	rights reserve

NXP Semiconductors

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD

10. Package outline

Fig 4. Package outline SOT619-1 (HVQFN48)

11. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

11.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

11.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

11.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

11.4 Reflow soldering

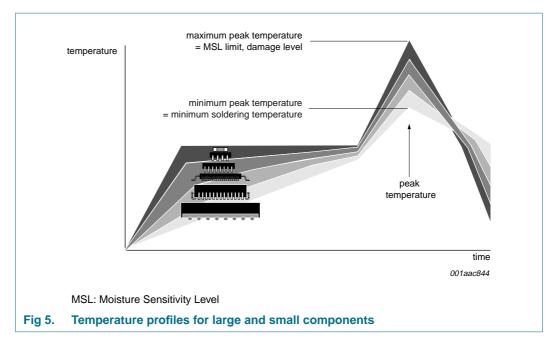
Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 5</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)	
	Volume (mm ³)	
	< 350	≥ 350
< 2.5	235	220
≥ 2.5	220	220

Table 13. Lead-free process (from J-STD-020C)


Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 5.

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

12. Abbreviations

Table 14. Abbreviations		
Acronym	Description	
CDM	Charged-Device Model	
DDC	Data Display Channel	
DVI	Digital Visual Interface	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
HDMI	High-Definition Multimedia Interface	
HPD	Hot Plug Detect	
I ² C-bus	Inter-IC bus	
I/O	Input/Output	
TMDS	Transition Minimized Differential Signaling	

13. Revision history

Table 15. Revision I	nistory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PTN3360A_2	20091008	Product data sheet	-	PTN3360A_1
Modifications:	• Table 8 "Diffe sentence	erential output characteristics f	or OUT_Dx signals",	Table note [7]: deleted second
PTN3360A_1	20090504	Product data sheet	-	-

14. Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

14.4 Licenses

Purchase of NXP ICs with HDMI technology

Use of an NXP IC with HDMI technology in equipment that complies with the HDMI standard requires a license from HDMI Licensing LLC, 1060 E. Arques Avenue Suite 100, Sunnyvale CA 94085, USA, e-mail: admin@hdmi.org.

14.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PTN3360A

Enhanced HDMI/DVI level shifter with inverting 1.1 V HPD

16. Contents

1	General description 1
2	Features 3
2.1	High-speed TMDS level shifting 3
2.2	DDC level shifting 3
2.3	HPD level shifting 3
2.4	General 3
3	Ordering information 3
4	Functional diagram 4
5	Pinning information 5
5.1	Pinning 5
5.2	Pin description 6
6	Functional description 8
6.1	Enable and disable features 8
6.1.1	Hot plug detect 8
6.1.2	Output Enable function (OE_N) 9
6.1.3	DDC channel enable function (DDC_EN) 9
6.1.4	Enable/disable truth table
6.2 6.3	Analog current reference
7	Limiting values
8	Recommended operating conditions 12
8.1	Current consumption 12
9	Characteristics
9.1	Differential inputs
9.2 9.3	Differential outputs
9.3 9.4	HPD_SINK input, HPD_SOURCE_N output . 15 OE_N, DDC_EN inputs
9. 4 9.5	DDC characteristics
10	Package outline
11	Soldering of SMD packages 17
11.1	Introduction to soldering
11.2	Wave and reflow soldering
11.3	Wave soldering
11.4	Reflow soldering
12	Abbreviations
13	Revision history 19
14	Legal information
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Licenses
14.5	Trademarks 20
15	Contact information 20
16	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 8 October 2009 Document identifier: PTN3360A_2

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: <u>PTN3360ABS,518</u>

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А