

16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Motor Control and Advanced Analog

Operating Conditions

- 3.0V to 3.6V, -40°C to +150°C, DC to 20 MIPS
- 3.0V to 3.6V, -40°C to +125°C, DC to 40 MIPS

Core: 16-bit dsPIC33F CPU

- Code-efficient (C and Assembly) architecture
- Two 40-bit wide accumulators
- Single-cycle (MAC/MPY) with dual data fetch
- Single-cycle mixed-sign MUL plus hardware divide

Clock Management

- ±2% internal oscillator
- · Programmable PLLs and oscillator clock sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timer (WDT)
- Fast wake-up and start-up

Power Management

- Low-power management modes (Sleep, Idle, Doze)
- · Integrated Power-on Reset and Brown-out Reset
- 1.35 mA/MHz dynamic current (typical)
- 55 µA IPD current (typical)

Motor Control PWM

- Up to four PWM generators with eight outputs
- Dead Time for rising and falling edges
- 12.5 ns PWM resolution
- PWM support for Motor Control: BLDC, PMSM, ACIM, and SRM
- Programmable Fault inputs
- Flexible trigger for ADC conversions and configurations

Advanced Analog Features

- Two ADC modules:
 - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
 - 18 analog inputs on 64-pin devices and up to 32 analog inputs on 100-pin devices
- · Flexible and independent ADC trigger sources

Timers/Output Compare/Input Capture

- Up to nine 16-bit timers/counters. Can pair up to make four 32-bit timers.
- Eight Output Compare modules configurable as timers/counters
- Eight Input Capture modules

Communication Interfaces

- Two UART modules (10 Mbps)
 - With support for LIN 2.0 protocols and $\text{IrDA}^{\textcircled{R}}$
- Two 4-wire SPI modules (15 Mbps)
- Up to two I²C[™] modules (up to 1 Mbaud) with SMBus support
- Up to two Enhanced CAN (ECAN) modules (1 Mbaud) with 2.0B support
- Quadrature Encoder Interface (QEI) module
- Data Converter Interface (DCI) module with I²S codec support

Input/Output

- Sink/Source up to 10 mA (pin specific) for standard VOH/VOL, up to 16 mA (pin specific) for nonstandard VOH1
- 5V-tolerant pins
- Selectable open drain, pull-ups, and pull-downs
- · Up to 5 mA overvoltage clamp current
- · External interrupts on all I/O pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1 -40°C to +125°C)
- AEC-Q100 REVG (Grade 0 -40°C to +150°C)
- Class B Safety Library, IEC 60730

Debugger Development Support

- · In-circuit and in-application programming
- · Two program and two complex data breakpoints
- IEEE 1149.2-compatible (JTAG) boundary scan
- Trace and run-time watch

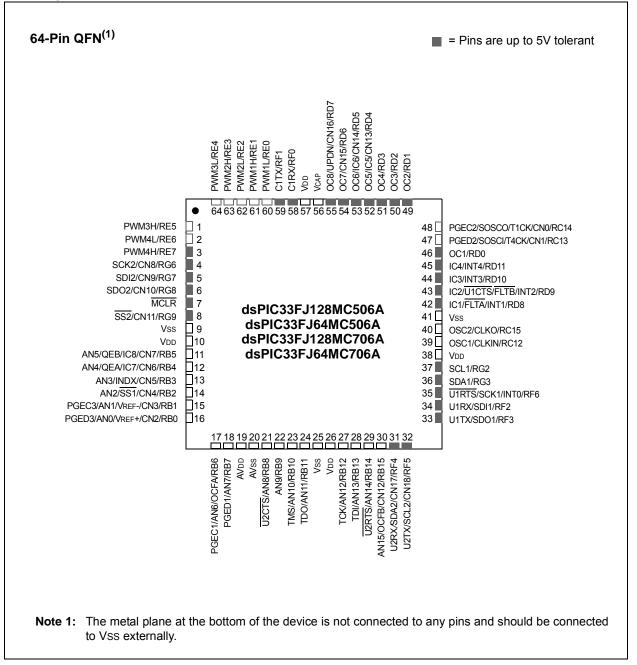
Туре	QFN	TQFP	TQFP	TQFP
Pin Count	64	64	80	100
Contact Lead/Pitch	0.50	0.50	0.50	0.40
I/O Pins	53	53	69	85
Dimensions	9x9x0.9	10x10x1	12x12x1	14x14x1

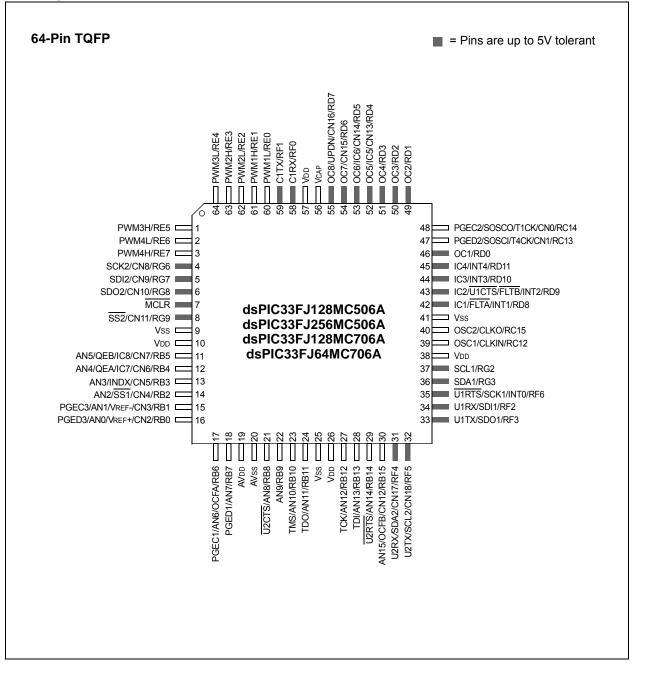
Note: All dimensions are in millimeters (mm) unless specified.

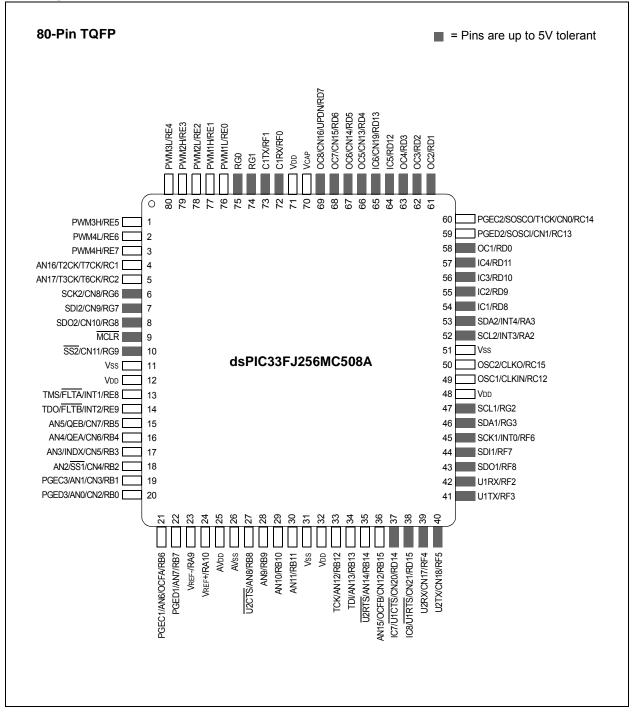
dsPIC33F PRODUCT FAMILIES

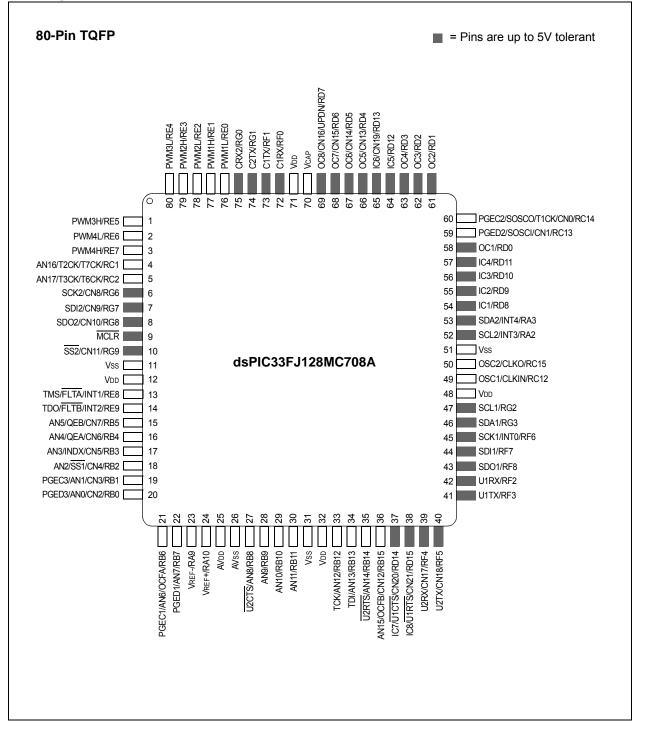
The dsPIC33FJXXXMCX06A/X08A/X10A family of devices supports a variety of motor control applications, such as brushless DC motors, single and 3-phase induction motors and switched reluctance motors. The dsPIC33F Motor Control products are also well-suited for Uninterrupted Power Supply (UPS), inverters, Switched mode power supplies, power factor correction and also for controlling the power management module in servers, telecommunication equipment and other industrial equipment.

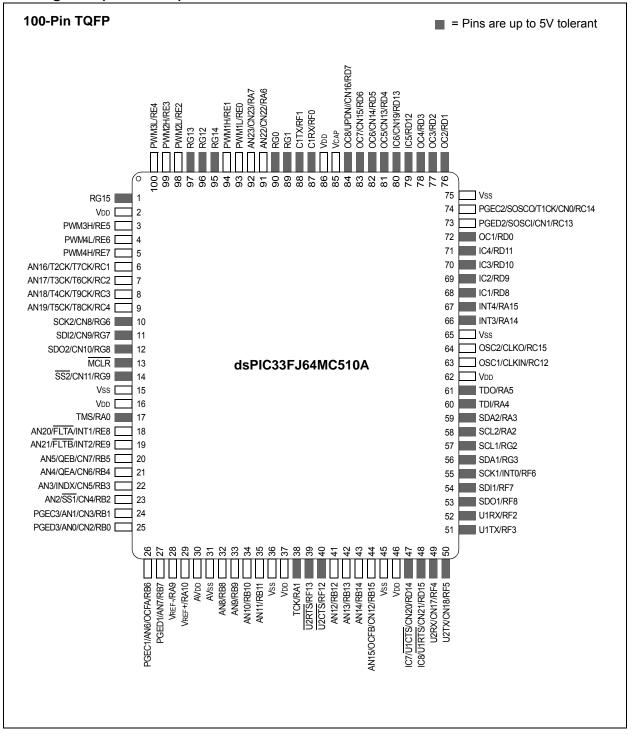
The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

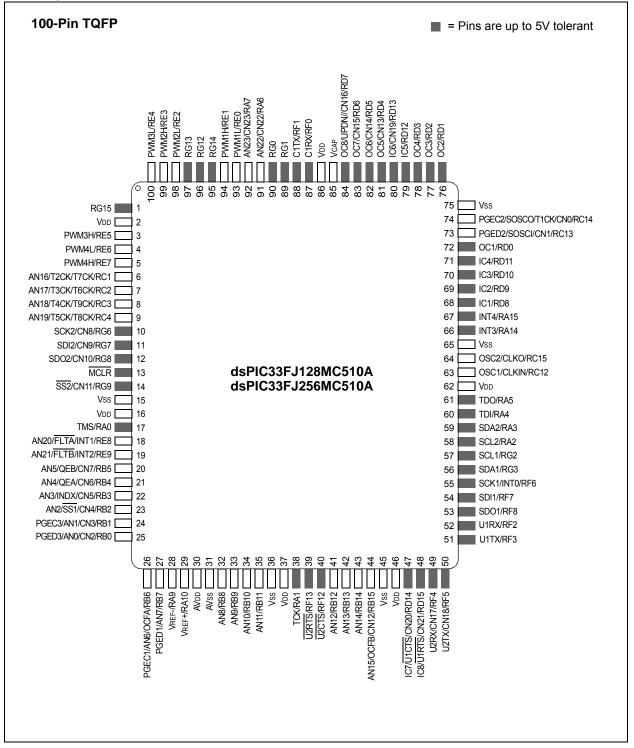

dsPIC33FJXXXMCX06A/X08A/X10A Controller Families


Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Timer 16-bit	Input Capture	Output Compare Std. PWM	Motor Control PWM	Quadrature Encoder Interface	Codec Interface	ADC	UART	SPI	I²C™	Enhanced CAN	I/O Pins (Max) ⁽²⁾	Packages
dsPIC33FJ64MC506A	64	64	8	9	8	8	8 ch	1	0	1 ADC, 16 ch	2	2	2	1	53	PT, MR
dsPIC33FJ64MC508A	80	64	8	9	8	8	8 ch	1	0	1 ADC, 18 ch	2	2	2	1	69	PT
dsPIC33FJ64MC510A	100	64	8	9	8	8	8 ch	1	0	1 ADC, 24 ch	2	2	2	1	85	PF, PT
dsPIC33FJ64MC706A	64	64	16	9	8	8	8 ch	1	0	2 ADC, 16 ch	2	2	2	1	53	PT, MR
dsPIC33FJ64MC710A	100	64	16	9	8	8	8 ch	1	0	2 ADC, 24 ch	2	2	2	2	85	PF, PT
dsPIC33FJ128MC506A	64	128	8	9	8	8	8 ch	1	0	1 ADC, 16 ch	2	2	2	1	53	PT, MR
dsPIC33FJ128MC510A	100	128	8	9	8	8	8 ch	1	0	1 ADC, 24 ch	2	2	2	1	85	PF, PT
dsPIC33FJ128MC706A	64	128	16	9	8	8	8 ch	1	0	2 ADC, 16 ch	2	2	2	1	53	PT, MR
dsPIC33FJ128MC708A	80	128	16	9	8	8	8 ch	1	0	2 ADC, 18 ch	2	2	2	2	69	PT
dsPIC33FJ128MC710A	100	128	16	9	8	8	8 ch	1	0	2 ADC, 24 ch	2	2	2	2	85	PF, PT
dsPIC33FJ256MC510A	100	256	16	9	8	8	8 ch	1	0	1 ADC, 24 ch	2	2	2	1	85	PF, PT
dsPIC33FJ256MC710A	100	256	30	9	8	8	8 ch	1	0	2 ADC, 24 ch	2	2	2	2	85	PF, PT


Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.


2: Maximum I/O pin count includes pins shared by the peripheral functions.


Pin Diagrams



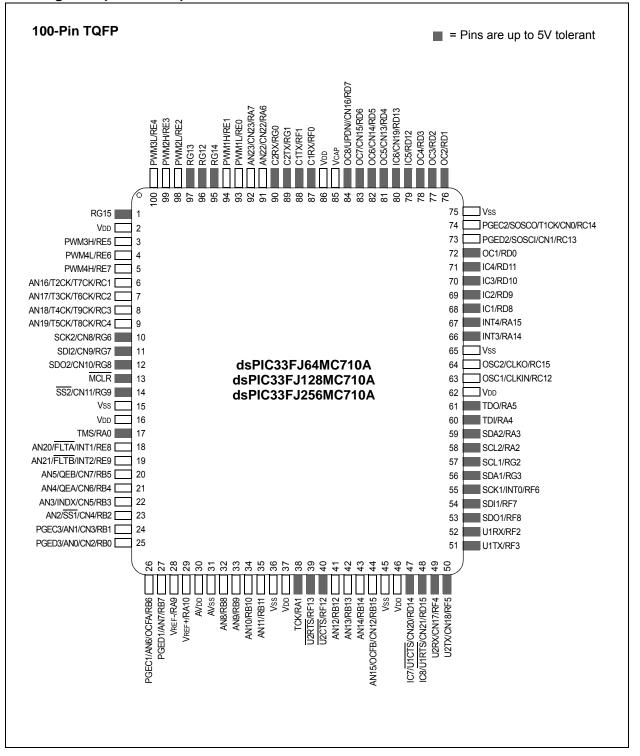


Table of Contents

dsPI	C33F Product Families	
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	19
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	73
6.0	Reset	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	133
9.0	Oscillator Configuration	
10.0	Power-Saving Features	153
	I/O Ports	
12.0	Timer1	
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	
14.0	Input Capture	
	Output Compare	
16.0	Motor Control PWM Module	
17.0		
	Serial Peripheral Interface (SPI)	
19.0	Inter-Integrated Circuit (I ² C™)	
20.0	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN Module	
22.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	
23.0	Special Features	
24.0	Instruction Set Summary	
25.0	Development Support	
26.0	Electrical Characteristics	
	High Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
	ndix A: Migrating from dsPIC33FJXXXMCX06/X08/X10 Devices to dsPIC33FJXXXMCX06A/X08A/X10A Devices	
	ndix B: Revision History	
	Nicrochip Web Site	
	omer Change Notification Service	
	omer Support	
	er Response	
Prod	uct Identification System	371

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256MC710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

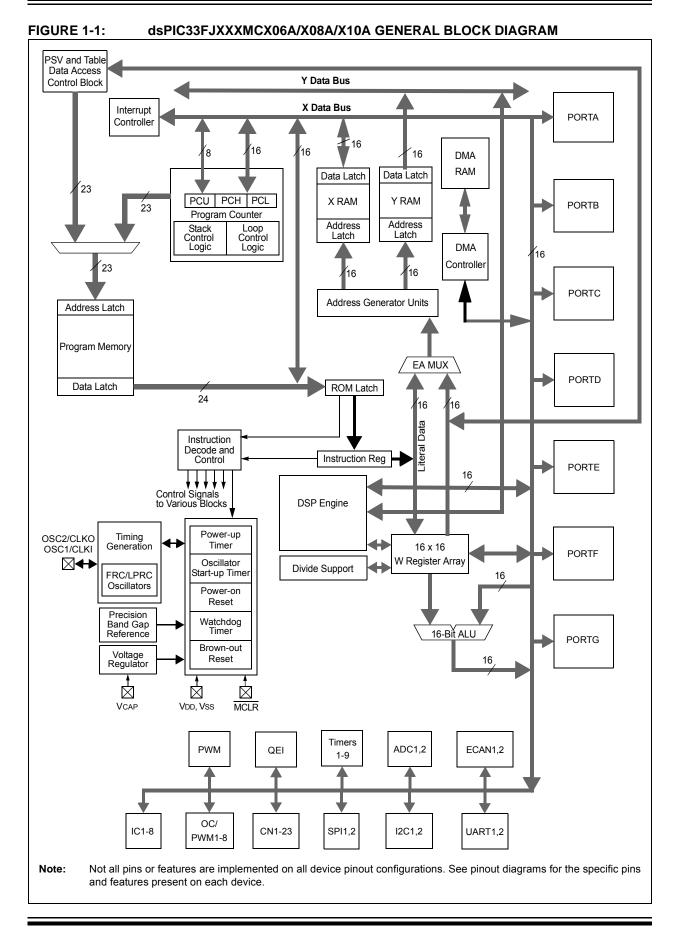
In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 14. "Motor Control PWM" (DS70187)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70208)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I2C™)" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Section 22. "Direct Memory Access (DMA)" (DS70182)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the following devices:


- dsPIC33FJ64MC506A
- dsPIC33FJ64MC508A
- dsPIC33FJ64MC510A
- dsPIC33FJ64MC706A
- dsPIC33FJ64MC710A
- dsPIC33FJ128MC506A
- dsPIC33FJ128MC510A
- dsPIC33FJ128MC706A
- dsPIC33FJ128MC708A
- dsPIC33FJ128MC710A
- dsPIC33FJ256MC510A
- dsPIC33FJ256MC710A

The dsPIC33FJXXXMCX06A/X08A/X10A includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes).

These features make this family suitable for a wide variety of high-performance, digital signal control applications. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXMCX06A/X08A/X10A family of devices employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together, the dsPIC33FJXXXMCX06A/X08A/X10A provide Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXMCX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXMCX06A/X08A/X10A devices.

ABLE 1-1: PINOUT I/O DESCRIPTIONS							
Pin Name	Pin Type	Buffer Type	Description				
AN0-AN31	I	Analog	Analog input channels.				
AVdd	Р	Р	Positive supply for analog modules. This pin must be connected at all times.				
AVss	Р	Р	Ground reference for analog modules.				
CLKI CLKO	I O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.				
C1RX C1TX	I O	ST —	ECAN1 bus receive pin. ECAN1 bus transmit pin.				
C2RX	I	ST	ECAN2 bus receive pin.				
C2TX	0	—	ECAN2 bus transmit pin.				
PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3	I/O I I/O I I/O I	ST ST ST ST ST ST	Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.				
IC1-IC8	1	ST	Capture Inputs 1 through 8.				
	-						
INDX QEA		ST ST	Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock gate input in Timer mode.				
QEB	I	ST	Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock gate input in Timer mode.				
UPDN	0	CMOS	Position up/down counter direction state.				
INT0	I	ST	External Interrupt 0.				
INT1		ST	External Interrupt 1.				
INT2		ST	External Interrupt 2.				
INT3 INT4		ST ST	External Interrupt 3. External Interrupt 4.				
FLTA		ST	PWM Fault A input.				
FLTB		ST	PWM Fault B input.				
PWM1L	Ö	_	PWM1 low output.				
PWM1H	Ō	_	PWM1 high output.				
PWM2L	0		PWM2 low output.				
PWM2H	0		PWM2 high output.				
PWM3L	0	_	PWM3 low output.				
PWM3H	0	_	PWM3 high output.				
PWM4L	0	_	PWM4 low output.				
PWM4H	0	—	PWM4 high output.				
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
OCFA	I	ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).				
OCFB	I	ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8).				
OC1-OC8	0	_	Compare outputs 1 through 8.				
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	I/O	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
Legend: CMC	OS = CMO	S compatible	e input or output Analog = Analog input P = Power				

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output Ana ST = Schmitt Trigger input with CMOS levels O =

Analog = Analog input ls O = Output

Pin Name	Pin Type	Buffer Type	Description
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.
RA9-RA10	I/O	ST	
RA12-RA15	I/O	ST	
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4	I/O	ST	PORTC is a bidirectional I/O port.
RC12-RC15	I/O	ST	
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.
RE0-RE9	I/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8	I/O	ST	PORTF is a bidirectional I/O port.
RF12-RF13			
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.
RG6-RG9	I/O	ST	
RG12-RG15	I/O	ST	
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
SDI1	1	ST	SPI1 data in.
SDO1	Ō	_	SPI1 data out.
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SDI2	I	ST	SPI2 data in.
SDO2	0	—	SPI2 data out.
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	32.768 kHz low-power oscillator crystal output.
TMC	I	ST	JTAG Test mode select pin.
		ST	JTAG test clock input pin.
TMS TCK	I		
TCK TDI	I	ST	JTAG test data input pin.
TCK TDI	 0	ST —	JTAG test data input pin. JTAG test data output pin.
TCK TDI TDO	 0 	ST — ST	
		— ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input.
TCK TDI TDO T1CK		ST	JTAG test data output pin. Timer1 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK		— ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK		— ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK		U ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input.
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS		U ST ST ST ST ST ST ST	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send.
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK <u>J1CTS</u> J1RTS J1RTS J1RX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 receive.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit.
TCK TDI TDO T1CK T2CK T3CK T4CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS U2RTS U2RX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send. UART2 ready to send. UART2 receive.
TCK TDI TDO T1CK T2CK T3CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RX U1RX U1RX U1RX U1RX U1RX U2CTS U2RX U2RX U2TX			JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 receive. UART2 transmit.
TCK TDI TDO T1CK T2CK T3CK T4CK T5CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX	 		JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 transmit. Positive supply for peripheral logic and I/O pins.
TCK TDI TDO T1CK T2CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RTS U1RX U2CTS U2RX U2RX U2TX		 ST ST ST ST ST ST ST ST ST ST ST 	JTAG test data output pin. Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 receive. UART2 transmit.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	Description				
Vss	Р	_	Ground reference	Ground reference for logic and I/O pins.			
VREF+	1	Analog	Analog voltage reference (high) input.				
VREF-	I	Analog	Analog voltage reference (low) input.				
	end: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels			Analog = Analog input O = Output	P = Power I = Input		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXMCX06A/X08A/X10A family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

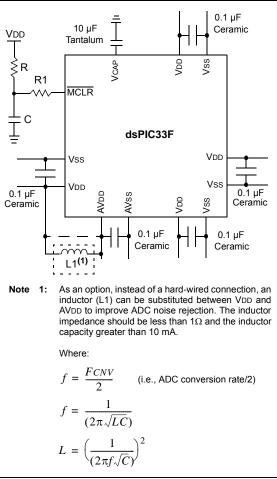
- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	independent		of	the	ADC
	voltage reference source.						


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

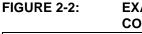
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

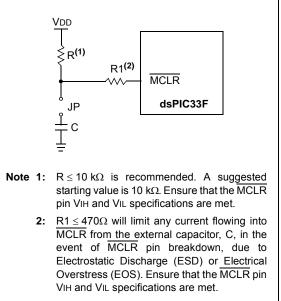
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

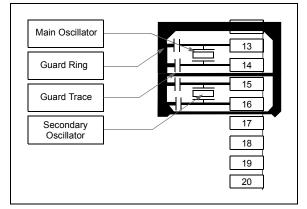
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the MPLAB[®] ICD 3 or REAL ICE™ in-circuit emulator.

For more information on the ICD 3 and REAL ICE in-circuit emulator connection requirements, refer to the following documents that are available on the Microchip web site.


- *"Using MPLAB[®] ICD 3"* (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to \leq 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If the MPLAB ICD 3 or REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by the MPLAB ICD 3 or REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When the MPLAB ICD 3 or REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pins.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70204) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXMCX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum 'C' compiler efficiency. For most instructions, the dsPIC33FJXXXMCX06A/X08A/X10A devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1 and the programmer's model for the dsPIC33FJXXXMCX06A/X08A/X10A is shown in Figure 3-2.

3.1 Data Addressing Overview

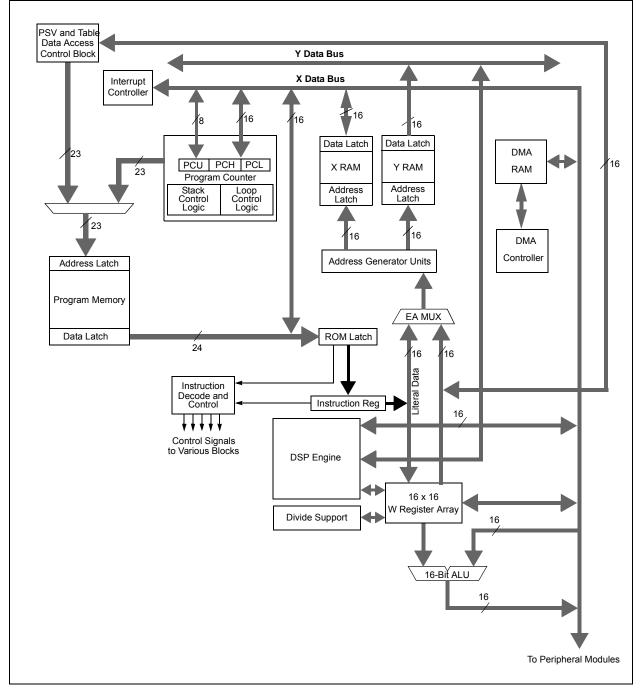
The data space can be addressed as 32K words or 64 Kbytes, and is split into two blocks referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

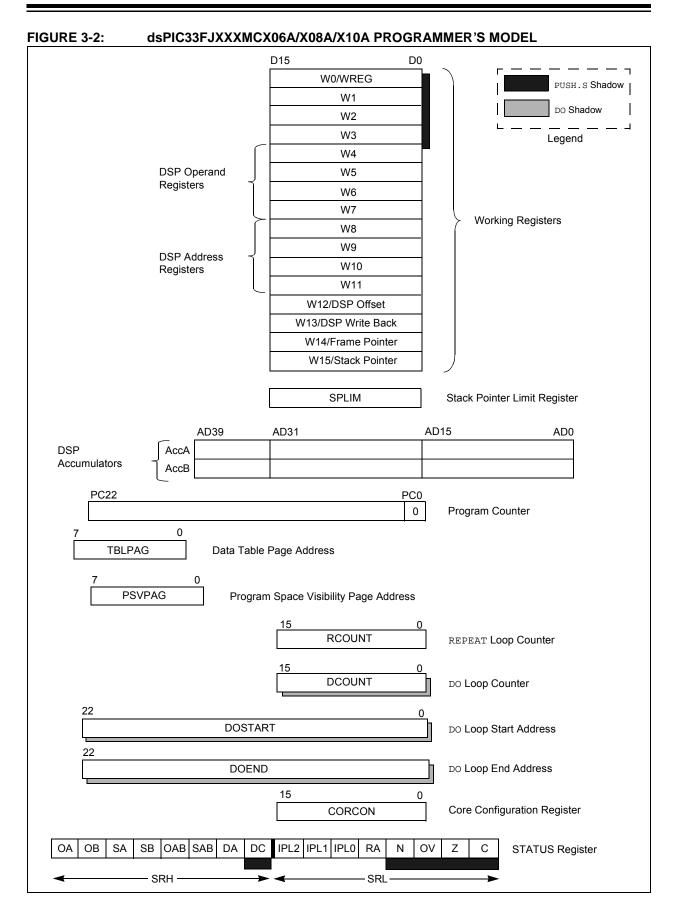
The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers but may be used as general purpose RAM.

3.2 DSP Engine Overview


The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers, and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features


The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ⁽⁴⁾	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit (
Legend:							
C = Cleara	ble bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'	
S = Settabl	e bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is s	set	'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15		ator A Overflov					
		ator A overflowe ator A has not c					
bit 14		ator B Overflov					
DIL 14		ator B overflowe					
		ator B has not c					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
		ator A is saturat ator A is not sat		en saturated at	t some time		
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾			
		ator B is saturat ator B is not sat		en saturated at	t some time		
bit 11	0AB: 0A C	B Combined A	ccumulator O	verflow Status	bit		
		ators A or B have					
		ccumulators A			(4)		
bit 10		B Combined A				4 ¹	1
		ccumulator A or			urated at some	time in the pas	t
bit 9	DA: DO Loop						
	1 = DO loop in						
hit 0	•	ot in progress U Half Carry/Bo					
bit 8	1 = A carry-o	out from the 4th		for byte-sized	data) or 8th low-	order bit (for wo	ord-sized data
	0 = No carry	sult occurred -out from the 4 he result occur		oit (for byte-siz	ed data) or 8th	low-order bit (for word-sized
Note 1:	This bit may be rea	ad or cleared (r	not set).				
2:	The IPL<2:0> bits level. The value in	are concatenat	ed with the IF				
	IPL<3> = 1. The IPI <2:0> Stat	ue bite are rear					
3:	The IPL<2:0> Stat	us bits are read	a only when N	ופותופ = 1 (IN	1100NT<152).		

4: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	111 = CPU interrupt priority level is 7 (15), user interrupts disabled
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation which affects the Z bit has set it at some time in the past
	0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** This bit may be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - 4: This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_		—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7					I		bit (
Legend:		C = Clearabl	a hit				
R = Readabl	e bit	W = Writable		-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle		'x = Bit is unk			mented bit, read		
					,		
bit 15-13	-	ted: Read as					
bit 12		tiply Unsigned	•	ol bit			
	U U	ne multiplies a ne multiplies a	0				
bit 11	•	C Loop Termina	•	_{oit} (1)			
	•	•		f current loop it	eration		
	0 = No effect	J					
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops active					
	•						
	001 = 1 DO lo	op active					
	000 = 0 DO lo	ops active					
bit 7		Saturation Ena					
		ator A saturation ator A saturation					
bit 6		Saturation Ena					
		ator B saturatio					
	0 = Accumula	ator B saturatio	on disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
		ce write satura					
bit 4		ce write satura cumulator Satu		Soloct bit			
		ration (super s					
		ration (normal					
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 (2)			
		rupt priority le	U U				
1.11.0		rupt priority le					
bit 2	-	-	•	ace Enable bit			
	•	space visible i space not visit	•	се			
bit 1	-	ng Mode Sele	-				
		onventional) re		ed			
		(convergent)	-				
bit 0	•	Fractional Mu	•				
		ode enabled for I mode enable					
		i noue enable	יווח אפת וחו	upiy ops			

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXMCX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's *Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXMCX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXMCX06A/X08A/X10A devices are a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

- 1. Fractional or integer DSP multiply (IF)
- 2. Signed or unsigned DSP multiply (US)
- 3. Conventional or convergent rounding (RND)
- 4. Automatic saturation on/off for AccA (SATA)
- 5. Automatic saturation on/off for AccB (SATB)
- 6. Automatic saturation on/off for writes to data memory (SATDW)
- 7. Accumulator Saturation mode selection (ACCSAT)

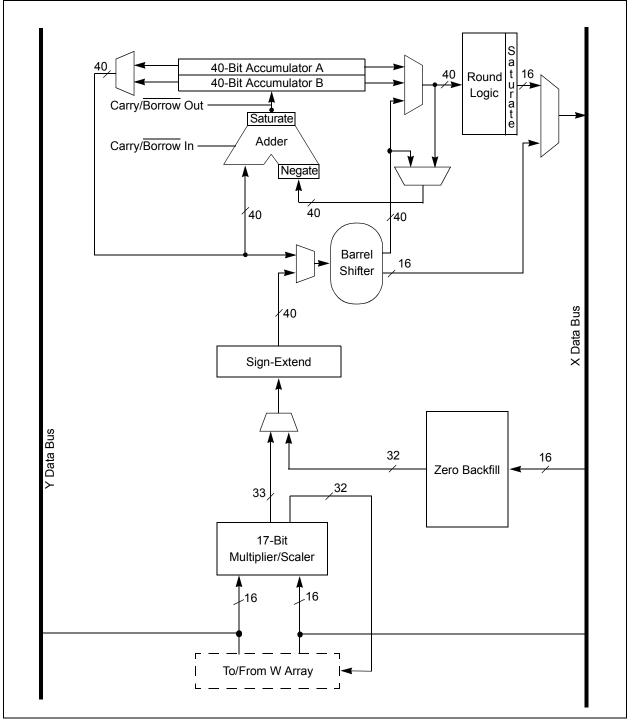

Table 2-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	SUMMARY	IONS	
			•

.

Instruction	Algebraic Operation	ACC Write Back	
CLR	A = 0	Yes	
ED	$A = (x - y)^2$	No	
EDAC	$A = A + (x - y)^2$	No	
MAC	$A = A + (x \bullet y)$	Yes	
MAC	$A = A + x^2$	No	
MOVSAC	No change in A	Yes	
MPY	$A = x \bullet y$	No	
MPY	$A = x^2$	No	
MPY.N	$A = -x \bullet y$	No	
MSC	$A = A - x \bullet y$	Yes	

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518 x 10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented); whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- 1. OA: AccA overflowed into guard bits
- OB: AccB overflowed into guard bits
- 3. SA:

AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- 4. SB:
 - AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

5. OAB:

Logical OR of OA and OB

6. SAB:

Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when they and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic, which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- 2. Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow:

The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- 1. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts.

NOTES:

4.0 MEMORY ORGANIZATION

Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06A/X08A/X10A architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

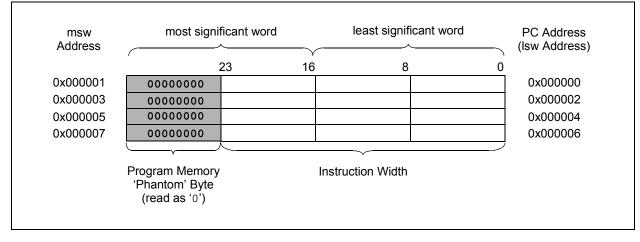
The program address memory space of the dsPIC33FJXXXMCX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices is shown in Figure 4-1.

	dsPIC33FJ64MCXXXA	dsPIC33FJ128MCXXXA	dsPIC33FJ256MCXXXA	
A	GOTO Instruction	GOTO Instruction	GOTO Instruction	0x000000 - 0x000002
User Memory Space	Reset Address	Reset Address	Reset Address	- 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FE
	Reserved	Reserved	Reserved	0x000100 0x000104
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table	0x0001FE
	User Program Flash Memory (22K instructions)	User Program Flash Memory (44K instructions)	User Program Flash Memory (88K instructions)	0x000200 0x00ABFE 0x00AC00
	Unimplemented (Read '0's)			0x0157FE 0x015800
		Unimplemented (Read '0's)	Unimplemented	0x013800 0x02ABFE 0x02AC00
			(Read '0's)	0x7FFFFE 0x800000
Configuration Memory Space	Reserved	Reserved	Reserved	
	Device Configuration	Device Configuration	Device Configuration	0xF7FFFE 0xF80000
	Registers	Registers	Registers	0xF80017
	Reserved	Reserved	Reserved	0xF80010
Con		DEVID (2)	DEVID (2)	0xFEFFFE 0xFF0000

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXMCX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXMCX06A/X08A/X10A devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33FJXXXMCX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

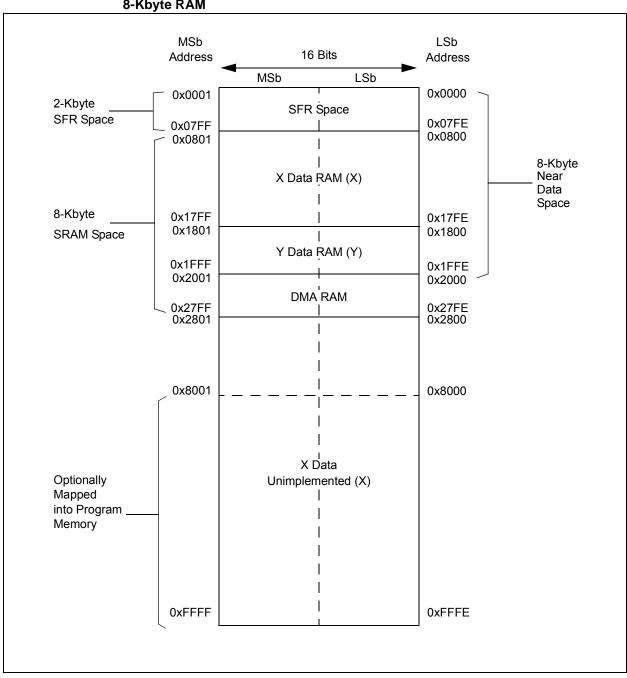
To maintain backward compatibility with PIC[®] microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

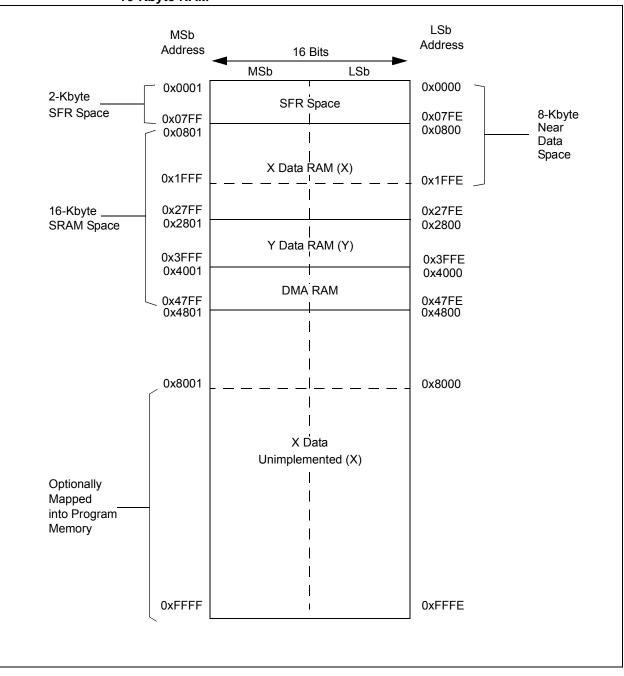
A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06A/X08A/X10A core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.


4.2.4 NEAR DATA SPACE

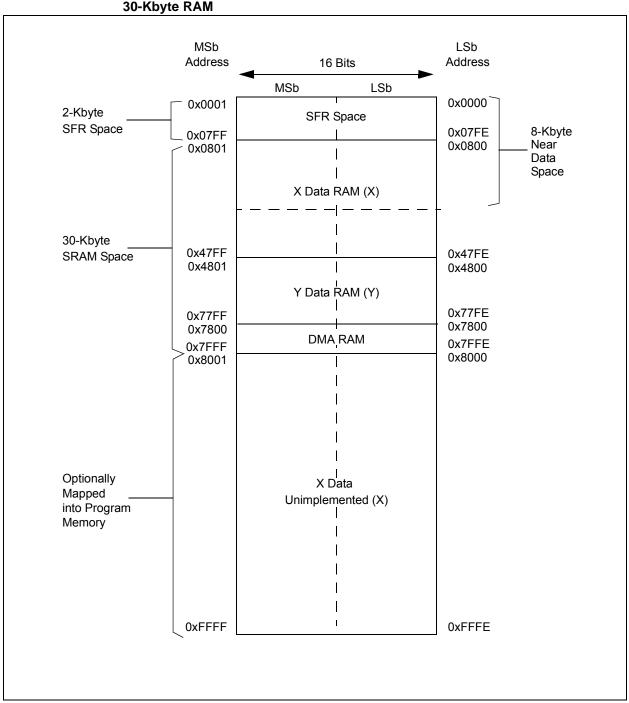

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 8-Kbyte RAM

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 16-Kbyte RAM

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces: X and Y. These data spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXMCX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory location is part of Y data RAM and is in the DMA RAM space, and is accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
WREG0	0000								Working R	egister 0								xxxx
WREG1	0002								Working R	egister 1								xxxx
WREG2	0004								Working R	egister 2								xxxx
WREG3	0006								Working R	egister 3								XXXX
WREG4	8000								Working R	egister 4								xxxx
WREG5	000A								Working R	egister 5								XXXX
WREG6	000C								Working R	egister 6								xxxx
WREG7	000E								Working R	egister 7								xxxx
WREG8	0010								Working R	egister 8								XXXX
WREG9	0012								Working R	egister 9								XXXX
WREG10	0014								Working Re	egister 10								xxxx
WREG11	0016								Working Re	egister 11								xxxx
WREG12	0018								Working Re	egister 12								XXXX
WREG13	001A								Working Re	egister 13								xxxx
WREG14	001C		Working Register 14 Working Register 15															xxxx
WREG15	001E																	0800
SPLIM	0020		Stack Pointer Limit Register															xxxx
ACCAL	0022		Stack Pointer Limit Register Accumulator A Low Word Register															0000
ACCAH	0024		°															0000
ACCAU	0026							Accum	ulator A Upp	er Word Re	egister							0000
ACCBL	0028							Accur	nulator B Lov	w Word Reg	gister							0000
ACCBH	002A							Accun	nulator B Hig	h Word Reo	gister							0000
ACCBU	002C							Accum	ulator B Upp	er Word Re	egister							0000
PCL	002E						_	Progra	n Counter Lo	ow Word Re	egister							0000
PCH	0030	—	—	_	—	_	—	—	_			Progra	am Counter I	ligh Byte R	legister			0000
TBLPAG	0032	_	_	_	_	_	_	_	_			Table	Page Addres	s Pointer R	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		Prog	ram Memor	y Visibility Pa	ge Address	s Pointer R	egister		0000
RCOUNT	0036					-		Rep	eat Loop Co	unter Regis	ster							XXXX
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A						_	DOS	STARTL<15	:1>							0	xxxx
DOSTARTH	003C	_	_	_	_	_	—	-	_	_	_			DOSTAR	TH<5:0>			00xx
DOENDL	003E							DC	ENDL<15:1	>							0	xxxx
DOENDH	0040	—	_	—	—	_	_	_	—	_	—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	—	—		BWN	/<3:0>			YWN	/<3:0>	-		XWN	<3:0>		0000
XMODSRT	0048								XS<15:1>								0	XXXX
XMODEND	004A								XE<15:1>								1	xxxx

TABLE 4-1: CPU CORE REGISTERS MAP

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXMCX06A/X08A/X10A

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							<u> </u>											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
YMODSRT	004C			YS<15:1> YE<15:1>														
YMODEND	004E		YE<15:1>															xxxx
XBREV	0050	BREN								XB<14:0>								xxxx
DISICNT	0052	_	_						Disab	e Interrupts	s Counter F	Register						xxxx
BSRAM	0750	_	_	_	_	_	_	_	_	_	_	_	_	_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	-	_	_	_	_	_	_	_	_	_	_	_	_	IW_SSR	IR_SSR	RL_SSR	0000
			- ·															

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	_	_	_	_		_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	_	_	_	_	_	—	_	_		CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06A DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_		_	_	_	_	_	_	_	_	CN21IE	CN20IE	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	-	_	—	—	_	-	-	CN21PUE	CN20PUE	-	CN18PUE	CN17PUE	CN16PUE	0000

TABLE 4-5:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

IADLL	т Ј.				NOLLEN				-									
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	FLTAIF	_	DMA5IF	_	_	QEIIF	PWMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	_	_	_	_	_	_	_	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	FLTBIF	0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	FLTAIE	_	DMA5IE	_	_	QEIIE	PWMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C	_			—	_		_		C2TXIE	C1TXIE	DMA7IE	DMA6IE	_	U2EIE	U1EIE	FLTBIE	0000
IPC0	00A4	_		T1IP<2:0>	>		(OC1IP<2:()>			IC1IP<2:0>		_	11	NT0IP<2:0>	•	4444
IPC1	00A6	_		T2IP<2:0>	>	_	(OC2IP<2:()>			IC2IP<2:0>		_	D	MA0IP<2:0	>	4444
IPC2	00A8	_	ι	J1RXIP<2:(0>	_		SPI1IP<2:0)>		:	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	00AA	_			—		D	MA1IP<2:	0>			AD1IP<2:0>	•	_	U	1TXIP<2:0	>	0444
IPC4	00AC	_		CNIP<2:0>	>	_		_			I	MI2C1IP<2:0	>	_	SI	2C1IP<2:0	>	4044
IPC5	00AE	_		IC8IP<2:0	>			IC7IP<2:0	>			AD2IP<2:0>	•	_	11	NT1IP<2:0>	•	4444
IPC6	00B0	_		T4IP<2:0>	>		(OC4IP<2:()>			OC3IP<2:0>	•	_	D	MA2IP<2:0	>	4444
IPC7	00B2	_	ι	J2TXIP<2:0)>	_	U	J2RXIP<2:	0>	_		INT2IP<2:0>	>	_		T5IP<2:0>		4444
IPC8	00B4	_		C1IP<2:0>	>		C	C1RXIP<2:	0>			SPI2IP<2:0>	>	_	SI	PI2EIP<2:0	>	4444
IPC9	00B6	_		IC5IP<2:0>	>			IC4IP<2:0	>			IC3IP<2:0>		_	D	MA3IP<2:0	>	4444
IPC10	00B8	_		OC7IP<2:0)>		(OC6IP<2:()>			OC5IP<2:0>	•	_	I	C6IP<2:0>		4444
IPC11	00BA	_		T6IP<2:0>	>		D	MA4IP<2:	0>		—	-		_	C)C8IP<2:0>	•	4404
IPC12	00BC	_		T8IP<2:0>	>		N	112C2IP<2	:0>			SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13	00BE	_	(C2RXIP<2:0	0>	_	I	NT4IP<2:0)>	-		INT3IP<2:0>	>	_		T9IP<2:0>		4444
IPC14	00C0	_	_	_	_	_		QEIIP<2:0	>	-		PWMIP<2:0	>	_		C2IP<2:0>		0444
IPC15	00C2		I	FLTAIP<2:0)>					_		DMA5IP<2:0	>	_		—	—	4040
IPC16	00C4	_		—	—	_	- U2EIP<2:0>					U1EIP<2:0>		_	F	LTBIP<2:0>	>	0444
IPC17	00C6		(C2TXIP<2:0)>	_				_		DMA7IP<2:0	>	_	D	MA6IP<2:0	>	4444
INTTREG	00E0	_	—	—	—		ILR<	3:0>					VE	CNUM<6:0>				0000

TABLE	4-6:		RREG	ISTER N	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	_	_	_	—		TGATE	TCKP	S<1:0>	_	TSYNC	TCS		0000
TMR2	0106							•	Timer2	Register				•				0000
TMR3HLD	0108						Tim	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKP	S<1:0>	—	_	TCS	_	0000
TMR4	0114		Timer4 Register Timer5 Holding Register (for 32-bit operations only) Timer5 Position															0000
TMR5HLD	0116																	xxxx
TMR5	0118		Timer5 Holding Register (for 32-bit operations only) Timer5 Register															0000
PR4	011A		Timer5 Register Period Register 4															FFFF
PR5	011C		Timer5 Register															FFFF
T4CON	011E	TON		TSIDL				_			TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T5CON	0120	TON		TSIDL				_			TGATE	TCKP	S<1:0>	_	_	TCS		0000
TMR6	0122								Timer6	Register								0000
TMR7HLD	0124						Т	limer7 Holdi	ng Register	(for 32-bit o	perations onl	y)						xxxx
TMR7	0126								Timer7	Register								0000
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7					-			FFFF
T6CON	012C	TON	_	TSIDL	—	_	_	—	_	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T7CON	012E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								0000
TMR9HLD	0132						Т	Timer9 Holdi	ng Register	(for 32-bit o	perations onl	y)						xxxx
TMR9	0134								Timer9	Register								0000
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	_	—	—		—	_	TGATE	TCKP	S<1:0>	T32	_	TCS		0000
T9CON	013C	TON	_	TSIDL	_	_	_		_	_	TGATE	TCKP	S<1:0>	_	—	TCS	—	0000

TABLE 4-6: TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
IC1BUF	0140								Input 1 Ca	pture Regis	er							xxxx			
IC1CON	0142	_	_	ICSIDL	_	_		—	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC2BUF	0144								Input 2 Ca	pture Regis	er							xxxx			
IC2CON	0146	-	_	ICSIDL	_	_	_		_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC3BUF	0148		•					•	Input 3 Ca	pture Regis	er		•					xxxx			
IC3CON	014A														0000						
IC4BUF	014C	Input 4 Capture Register															xxxx				
IC4CON	014E	_	_	ICSIDL	_	_		—	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC5BUF	0150								Input 5 Ca	pture Regis	er							xxxx			
IC5CON	0152	_	_	ICSIDL	_	_		—	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC6BUF	0154								Input 6 Ca	pture Regis	er							xxxx			
IC6CON	0156	_	_	ICSIDL	_	_		—	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC7BUF	0158								Input 7 Ca	pture Regis	er							xxxx			
IC7CON	015A	_		ICSIDL	—		_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000			
IC8BUF	015C								Input 8 Ca	pture Regis	er							xxxx			
IC8CON	015E	_		ICSIDL	_	_		_	Input 8 Capture Register — — ICSIDL — — — ICI<1:0> ICOV ICBNE ICM<2:0>												

TABLE 4-7: INPUT CAPTURE REGISTER MAP

8: C	Nadar Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 10 Bit 10 1180																
SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0180	Bit 15Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 1Bit 10Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 1Bit 10Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 3Bit 2Bit 1Bit 1Bit 10Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 3Bit 2Bit 1Bit 1Bit 10Colleptic 10 <t< td=""><td></td><td>xxxx</td></t<>															xxxx	
0182								Output Co	ompare 1 Re	egister							xxxx
0184	—	_	OCSIDL	—	_	—	—	—	—	_	—	OCFLT	OCTSEL		OCM<2:0>		0000
0186							Out	put Compar	e 2 Second	ary Register	r						xxxx
0188								Output Co	ompare 2 Re	egister							xxxx
018A	—	—	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
018C		Output Compare 3 Register															xxxx
018E		Output Compare 3 Register — OCSIDL — — — — OCFLT OCTSEL OCM<2:0>															xxxx
0190	—	OCSIDL OCFLT OCTSEL OCM<2:0>															0000
0192		Output Compare 4 Secondary Register															xxxx
0194		Output Compare 4 Secondary Register Output Compare 4 Register															xxxx
0196	—	—	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
0198							Out	put Compar	e 5 Second	ary Register	r						xxxx
019A		-	_	-		_	-	Output Co	ompare 5 Re	egister	-						xxxx
019C	—	_	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
019E							Out	put Compar	e 6 Second	ary Register	r						xxxx
01A0		-	_	-		_	-	Output Co	ompare 6 Re	egister	-						xxxx
01A2	—	_	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
01A4							Out	put Compar	e 7 Second	ary Register	r						xxxx
01A6								Output Co	ompare 7 Re	egister							xxxx
01A8	—	—	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000
01AA							Out	put Compar	e 8 Second	ary Register	r						xxxx
01AC								Output Co	ompare 8 Re	egister							xxxx
01AE	—	− − − − − − − − OCFLT OCTSEL OCM<2:0> Output Compare 4 Secondary Register − − − − − OCFLT OCTSEL OCM<2:0> − − − − − − − OCFLT OCTSEL OCM<2:0> − − − − − − − OCFLT OCTSEL OCM<2:0> Output Compare 5 Secondary Register − − − − − OCFLT OCTSEL OCM<2:0> Output Compare 5 Register − − − − OCFLT OCTSEL OCM<2:0> Output Compare 6 Register − − − − OCFLT OCTSEL OCM<2:0> Output Compare 7 Register − − − − OCFLT OCTSEL OCM<2:0> Output Compare 7 Register − − − − OCFLT OCTSEL OCM<2:0>													0000		
	SFR Addr 0180 0182 0184 0186 0188 018A 018C 018C 0190 0192 0194 0196 0194 0196 0198 019A 0196 0198 0194 0196 0194 0196 0194 0196 0194 0196 0140 0142 01A4 01A6 01A8 01AA	SFR Addr Bit 15 0180	SFR Addr Bit 15 Bit 14 0180	SFR Addr Bit 15 Bit 14 Bit 13 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0180 $$	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0180 Output Compare 1 Second Output Compare 1 Second Output Compare 1 R Output Compare 2 R Output Compare 2 Second Output Compare 2 Second Output Compare 2 R Output Compare 3 R Output Compare 3 Second Output Compare 3 Second Output Compare 3 R Output Compare 3 R Output Compare 4 R Output Compare 4 R Output Compare 4 R Output Compare 5 Second Output Compare 5 Second Output Compare 5 R Output Compare 5 R Output Compare 5 R Output Compare 5 R Output Compare 6 R Output Compare 6 R Output Compare 7 R Output Compare 8 R Output Compare 7 R Output Compare 8 R Output Comp	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0180 Output Compare 1 Secondary Register Output Compare 1 Register Output Compare 1 Register 0184 — — OCSIDL — …	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0180 Output Compare 1 Secondary Register Output Compare 1 Register Output Compare 1 Register 0184 — — OCSIDL — …	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0180 Output Compare 1 Secondary Register Output Compare 1 Register Output Compare 1 Register 0182 Output Compare 1 Register Output Compare 2 Register OCSIDL — — — — — OCFLT 0184 — — OCSIDL — — — — — OCFLT 0184 — — OCSIDL — — — — — OCFLT 0184 — — OCSIDL — — — — — OCFLT 0184 — — OCSIDL — — — OUtput Compare 3 Register OCFLT 0182 — — — — — — — OCFLT 0192 — — OCSIDL — — — — O	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0180 Output Compare 1 Secondary Register 0180 Output Compare 1 Secondary Register 0184 — — OCSIDL — — — — OCFLT OCFLT	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0180 Output Compare 1 Secondary Register 0180 Output Compare 1 Secondary Register 0184 — — OCSIDL — — — — OCFLT OCTEL OCTEL 0186 — — — — — — OUtput Compare 2 Register 0187 Dital — — — — — OCFLT OCTEL OCTEL 0186 — — OUTput Compare 2 Register OUtput Compare 3 Register OCFLT OCTEL OTTEL 0180 — — — — — — OCFLT OCTEL OTTEL 0190 — — OCSIDL — — — — OUtput Compare 4 Register 0191 — OCSIDL —	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0180	SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0180

_ . _ . E 4 0 AUTOUT AANDA DE DEALATED MAD

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A

TABLE 4-9: 8-OUTPUT PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	R PWM Timer Count Value Register IR PWM Timer Base Period Register IR PMOD4 PMOD2 PMOD1 PEN4H PEN2H PEN2L PEN2L IR P P P PEN3H PEN2H PEN3L PEN3L <t< td=""><td>D<1:0></td><td>0000 0000 0000 0000</td></t<>												D<1:0>	0000 0000 0000 0000		
P1TMR	01C2	PTDIR						F	WM Time	r Count Val	ue Registe	er						0000 0000 0000 0000
P1TPER	01C4	_						F	PWM Time	Base Perio	od Registe	r						0000 0000 0000 0000
P1SECMP	01C6	SEVTDIR						PW	M Special	Event Corr	pare Regi	ster						0000 0000 0000 0000
PWM1CON1	01C8	-	_	_	_	PMOD4	PMOD3	PMOD2	PMOD1	PEN4H	PEN3H	PEN2H	PEN1H	PEN4L	PEN3L	PEN2L	PEN1L	0000 0000 1111 1111
PWM1CON2	01CA	-	_	_	_		SEVOP	°S<3:0>		-	_	_	_	_	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS	6<1:0>														0000 0000 0000 0000	
P1DTCON2	01CE	-	_	_	_	_	_	_	_	DTS4A	DTS4I	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	_	_	_	FAEN4	FAEN3	FAEN2	FAEN1	0000 0000 0000 0000
P1FLTBCON	01D2	FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM	_	_	_	FBEN4	FBEN3	FBEN2	FBEN1	0000 0000 0000 0000
P10VDCON	01D4	POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	1111 1111 0000 0000
P1DC1	01D6							PW	/I Duty Cyc	le #1 Regis	ster							0000 0000 0000 0000
P1DC2	01D8							PW	/I Duty Cyc	le #2 Regi	ster							0000 0000 0000 0000
P1DC3	01DA							PW	/I Duty Cyc	le #3 Regi	ster							0000 0000 0000 0000
P1DC4	01DC							PWM	/ Duty Cyc	le #4 Regis	ster							0000 0000 0000 0000

Legend: u = uninitialized bit, - = unimplemented, read as '0'

TABLE 4-10: QEI REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset State	e
QEI1CON	01E0	CNTERR	—	QEISIDL	INDX	UPDN											0000	0000 000	0 0000	
DFLT1CON	01E2	_	—	_	_	_										0000	0000 000	0 0000		
POS1CNT	01E4								Po	sition Cou	nter<15:0>							0000	0000 000	0 0000
MAX1CNT	01E6								Ма	ximum Co	unt<15:0>							1111	1111 111	1 1111

Legend: u = uninitialized bit, — = unimplemented, read as '0'

TABLE 4-11: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C1RCV	0200	_		_			_						I2C1 Recei	ive Register				0000	
I2C1TRN	0202	_	_	_	_	_	_	_	_	I2C1 Transmit Register									
I2C1BRG	0204	—	_	_	-		—	—	Baud Rate Generator Register										
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000	
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000	
I2C1MSK	020C	—	_	_	_	_	—	I2C1 Address Register I2C1 Address Mask Register											

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
I2C2RCV	0210	—	-	—	—	—	—	—	_				I2C2 Recei	ve Register				0000		
I2C2TRN	0212	_	_	_	_	_	_	_	_	I2C2 Transmit Register										
I2C2BRG	0214	_	_	_	_	_	_	_		Baud Rate Generator Register										
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000		
I2C2ADD	021A	_	_	_	_	_	_					I2C2 Addre	ss Register					0000		
I2C2MSK	021C	—			—	-			I2C2 Address Register I2C2 Address Mask Register											

TABLE 4-13: UART1 REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
0220	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000		
0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF												
0224	_		_	_	_	-					UART1	Transmit Re	egister				xxxx		
0226	_		_	_	_	-					UART1	Receive Re	gister				0000		
0228							Bau	d Rate Ger	nerator Preso	aler							0000		
	Addr 0220 0222 0224 0226	Addr Bit 15 0220 UARTEN 0222 UTXISEL1 0224 — 0226 —	Addr Bit 15 Bit 14 0220 UARTEN — 0222 UTXISEL1 UTXINV 0224 — — 0226 — —	Addr Bit 15 Bit 14 Bit 13 0220 UARTEN — USIDL 0222 UTXISEL1 UTXINV UTXISEL0 0224 — — — 0226 — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 0220 UARTEN — USIDL IREN 0222 UTXISEL1 UTXINV UTXISEL0 — 0224 — — — — 0226 — — — — 0226 — — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0220 UARTEN — USIDL IREN RTSMD 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK 0224 — — — — — — 0226 — — — — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0220 UARTEN — USIDL IREN RTSMD — 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN 0224 — — — — — — — 0226 — — — — — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0220 UARTEN — USIDL IREN RTSMD — UEN1 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF 0224 — — — — — — — 0226 — — — — — — — 0226 — — — — — — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 9 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT 0224 — — — — — — — — 0226 — — — — — — — — — 0226 — — — — — — — — —	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE 0222 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISE 0224 — … <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 9 Bit 8 Bit 7 Bit 6 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK 0220 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> 0224 — … … … … … … … … … … …<td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK ABAUD 0220 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN 0224 — — — — — — — UTXIFT URXISEL IDEN ADDEN 0224 — — — — — — — UXTIFT UTXISEL1 UXXISEL0 IDEN <t< td=""><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 40220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINV0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLE0224UARTITIAnsmit Re0226UARTITIAnsmit Re</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 30220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGH0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISLL<1:0>ADDENRIDLEPERR0224UARTINI VARTINIT0226UARTINI VARTINIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEI0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLEPERRFERR0224UARTINININIVARTINININININININININININININININININININ</td><td>AddrBit 15Bit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 120220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEL<1:>0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:>ADDENRIDLEPERRFERROERR0224UTXISELUARTITIANSMITURXISELVARTITIANSMIT0226UARTITIANSMITUARTITIANSMITUARTITIANSMIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 2Bit 2Bit 10Bit 00220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLEPERRFERROERRURXDA0224UARTINIUARTININURXISEL0URXDA0226UARTININUARTININUARTININURXDA0226UARTININUARTININUARTININ</td></t<></td></td>	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 9 Bit 8 Bit 7 Bit 6 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK 0220 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> 0224 — … … … … … … … … … … … <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK ABAUD 0220 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN 0224 — — — — — — — UTXIFT URXISEL IDEN ADDEN 0224 — — — — — — — UXTIFT UTXISEL1 UXXISEL0 IDEN <t< td=""><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 40220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINV0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLE0224UARTITIAnsmit Re0226UARTITIAnsmit Re</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 30220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGH0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISLL<1:0>ADDENRIDLEPERR0224UARTINI VARTINIT0226UARTINI VARTINIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEI0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLEPERRFERR0224UARTINININIVARTINININININININININININININININININININ</td><td>AddrBit 15Bit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 120220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEL<1:>0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:>ADDENRIDLEPERRFERROERR0224UTXISELUARTITIANSMITURXISELVARTITIANSMIT0226UARTITIANSMITUARTITIANSMITUARTITIANSMIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 2Bit 2Bit 10Bit 00220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLEPERRFERROERRURXDA0224UARTINIUARTININURXISEL0URXDA0226UARTININUARTININUARTININURXDA0226UARTININUARTININUARTININ</td></t<></td>	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0220 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 WAKE LPBACK ABAUD 0220 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN 0224 — — — — — — — UTXIFT URXISEL IDEN ADDEN 0224 — — — — — — — UXTIFT UTXISEL1 UXXISEL0 IDEN IDEN <t< td=""><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 40220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINV0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLE0224UARTITIAnsmit Re0226UARTITIAnsmit Re</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 30220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGH0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISLL<1:0>ADDENRIDLEPERR0224UARTINI VARTINIT0226UARTINI VARTINIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEI0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLEPERRFERR0224UARTINININIVARTINININININININININININININININININININ</td><td>AddrBit 15Bit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 120220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEL<1:>0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:>ADDENRIDLEPERRFERROERR0224UTXISELUARTITIANSMITURXISELVARTITIANSMIT0226UARTITIANSMITUARTITIANSMITUARTITIANSMIT</td><td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 2Bit 2Bit 10Bit 00220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLEPERRFERROERRURXDA0224UARTINIUARTININURXISEL0URXDA0226UARTININUARTININUARTININURXDA0226UARTININUARTININUARTININ</td></t<>	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 40220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINV0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLE0224UARTITIAnsmit Re0226UARTITIAnsmit Re	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 9Bit 8Bit 7Bit 6Bit 5Bit 5Bit 4Bit 30220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGH0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISLL<1:0>ADDENRIDLEPERR0224UARTINI VARTINIT0226UARTINI VARTINIT	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEI0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISELADDENRIDLEPERRFERR0224UARTINININIVARTINININININININININININININININININININ	AddrBit 15Bit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 3Bit 2Bit 120220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSEL<1:>0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:>ADDENRIDLEPERRFERROERR0224UTXISELUARTITIANSMITURXISELVARTITIANSMIT0226UARTITIANSMITUARTITIANSMITUARTITIANSMIT	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 6Bit 5Bit 4Bit 3Bit 2Bit 2Bit 10Bit 00220UARTEN-USIDLIRENRTSMD-UEN1UEN0WAKELPBACKABAUDURXINVBRGHPDSE-1:0>STSEL0222UTXISEL1UTXINVUTXISEL0-UTXBRKUTXENUTXBFTRMTURXISEL<1:0>ADDENRIDLEPERRFERROERRURXDA0224UARTINIUARTININURXISEL0URXDA0226UARTININUARTININUARTININURXDA0226UARTININUARTININUARTININ		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	(BF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA									
U2TXREG	0234	_	_	_	_	_		_				UART2	Transmit R	egister				xxxx
U2RXREG	0236	_	_	_	_	—	_	_				UART2	Receive R	egister				0000
U2BRG	0238							Baud	Rate Gen	erator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL		—	_				SPIROV	_	_	_	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_		_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Red	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN		SPISIDL	_	_	_		_	—	SPIROV	—	_			SPITBF	SPIRBF	0000
SPI2CON1	0262		_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Trans	smit and Re	ceive Buffer	Register							0000

TABLE 4-17: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Dat	a Buffer 0								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	_	CSCNA CHPS<1:0> SAMC<4:0> — CH123NB<1:0> CH12				BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_		S	AMC<4:0>						ADCS	<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	VB<1:0>	CH123SB	_	_	_	_	_	CH123I	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_		С	H0SB<4:0>	>		CH0NA	_	_		C	CH0SA<4:0)>		0000
AD1PCFGH ⁽¹⁾	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH(1)	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	_	_	-	_	_	_	_	_	_	—		0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Not all ANx inputs are available on all devices. Refer to the device pin diagrams for available ANx inputs.

TABLE 4-18: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC2 Data	Buffer 0								xxxx
AD2CON1	0360	ADON	—	ADSIDL	ADDMABM	_	AD12B	FOR	VI<1:0>	;	SSRC<2:0>	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362		VCFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC	_	_		S	AMC<4:0>						ADC	S<7:0>				0000
AD2CHS123	0366	_	_	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	NA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	_	_		CH0S	B<3:0>		CH0NA	_	_	_		CH0S	SA<3:0>		0000
Reserved	036A		_		—		—					—	—	_		—	—	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E		_		—		—					—	—	_		—	—	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_	_	_	_	_	_	_	_	_	_	_	_	_		DMABL<2:	0>	0000

TADLE 4-19. DIVIA REGISTER IVIAR	TABLE 4-19:	DMA REGISTER MAP
----------------------------------	-------------	------------------

IABLE 4	1 -19:	DIVIA	REGIS							1								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_		AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S	STB<15:0>								0000
DMA0PAD	0388								F	AD<15:0>								0000
DMA0CNT	038A	—	—	_	_	—	_					CN	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	—	_	_	—	_	_	_	_			I	RQSEL<6:0	>			0000
DMA1STA	0390								S	STA<15:0>								0000
DMA1STB	0392								S	STB<15:0>								0000
DMA1PAD	0394								F	AD<15:0>								0000
DMA1CNT	0396	_	_	_	_	_	—					CN	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF NULLW - - - - MODE<1:0> - - - - - - MODE<1:0>													0000
DMA2REQ	039A	FORCE																0000
DMA2STA	039C	STA<15:0>															0000	
DMA2STB	039E																0000	
DMA2PAD	03A0								F	PAD<15:0>								0000
DMA2CNT	03A2	—	—	—		_	—					CN	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW		_				AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	_	_	_	_	_	_	_	_			l	RQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	STB<15:0>								0000
DMA3PAD	03AC								F	PAD<15:0>								0000
DMA3CNT	03AE	—	—	—		_	—					CN	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_		—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	_	_	_	_	_	_	_	_			l	RQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	STB<15:0>								0000
DMA4PAD	03B8								F	PAD<15:0>								0000
DMA4CNT	03BA	—	—	—	_	_	—					CN	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	_	_	_	_	_	_	_	—		•		RQSEL<6:0	>			0000
DMA5STA	03C0									STA<15:0>	•							0000
DMA5STB	03C2								S	STB<15:0>								0000
L																		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-19:	DIVIA	REGIS			NTINUE	U)											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								P	AD<15:0>								0000
DMA5CNT	03C6	_	_	_	_	_	_					CNT	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA6REQ	03CA	FORCE	—	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE		STB<15:0> PAD<15:0>															0000
DMA6PAD	03D0		PAD<15:0>															0000
DMA6CNT	03D2	_																0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	—	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	—		_	_	_					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	_	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS.	ADR<15:0>								0000

TABLE 4-19: DMA REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXMCX06A/X08A/X10A

TABLE 4-20: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
C1CTRL1	0400	-	_	CSIDL	ABAT	—	RE	QOP<2:0	>	OPI	MODE<2:0	>	-	CANCAP	_	_	WIN	0480	
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		DI	NCNT<4:0	>		0000	
C1VEC	0404	_	_	_		FI	ILHIT<4:0>			_			I	CODE<6:0>	>			0000	
C1FCTRL	0406	D	MABS<2:0	>	—	− − − − − FSA<4:0> FBP<5:0> − − FNRB<5:0>							0000						
C1FIFO	0408	_	—			FBP<	5:0>			—	—			FNRB	<5:0>			0000	
C1INTF	040A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	0000			
C1INTE	040C	_	—	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE				
C1EC	040E				TERRCN	T<7:0>							RERRCN	T<7:0>				0000	
C1CFG1	0410	_	—	_	_	_	_	_	_	SJW<1	1:0>			BRP<	:5:0>			0000	
C1CFG2	0412	_	WAKFIL	_	_	_	SE	G2PH<2:0	>	SEG2PHTS	SAM	SI	EG1PH<2:	:0>	Р	RSEG<2:0)>	0000	
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	SEG2PH<2:0> TEN11 FLTEN10 FLTEN9 FLTEN			FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF	
C1FMSKSEL1	0418	F7MSk	<<1:0>	F6MSI	K<1:0>	F5MS	K<1:0>	F4MSH	<1:0>	F3MSK<	<1:0>	F2MSK	<1:0>	F1MSK	<1:0>	F0MS	K<1:0>	0000	
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSK	(<1:0>	F8MS	K<1:0>	0000	

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	81<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	81<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	81<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	81<1:0>	xxxx
C1RXD	0440							EC	AN1 Receiv	ved Data W	ord							xxxx
C1TXD	0442							EC	CAN1 Trans	mit Data Wo	ord							xxxx

Legend:

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	tion when V	WIN = x							
C1BUFPNT1	0420		F3BF	?<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	°<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	D<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15BI	><3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>		-		xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>		-		xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A				EID<	:15:8>			<u>.</u>			<u> </u>	EID<	7:0>	<u> </u>			xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22:	ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)
--------------------	---

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	10:3>					SID<2:0>			EXIDE		EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	10:3>					SID<2:0>			EXIDE		EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	10:3>					SID<2:0>			EXIDE		EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	10:3>					SID<2:0>			EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	15:8>							EID<	7:0>	•	•		xxxx

All

TABLE 4-23: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33FJXXXMC708A/710A DEVICES File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 2 Bit 11

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
C2CTRL1	0500	_	_	CSIDL	ABAT		RI	EQOP<2:0	>	OPN	/IODE<2:0	>		CANCAP		_	WIN	0480
C2CTRL2	0502	_	—	—	_	_	—	_	_	—	—	—		D	NCNT<4:0	>		0000
C2VEC	0504	_	—	—		FI	LHIT<4:0>			—				ICODE<6:0)>			0000
C2FCTRL	0506	C	DMABS<2:0	>	—	_	—	_	_	—	—	—			FSA<4:0>			0000
C2FIFO	0508	_	—		FBP<5:0> — — FNRB<5:0>									0000				
C2INTF	050A	_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF					0000	
C2INTE	050C	—	—	—	_	_	—	_	_	IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	T<7:0>							RERRC	NT<7:0>				0000
C2CFG1	0510	_	—	—	_	_	—	_	_	SJW<	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	—	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SE	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	<<1:0>	F6MSI	K<1:0>	F5MSI	<<1:0>	F4MSI	<<1:0>	F3MSK	<1:0>	F2MSH	<1:0>	F1MSł	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSł	< <1:0>	F8MS	K<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33FJXXXMC708A/710A DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	edefinition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7 TX7PRI<1:0>			TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540							EC	AN2 Reciev	ved Data W	ord							xxxx
C2TXD	0542							EC	CAN2 Trans	mit Data Wo	ord							xxxx

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E		-					Se	e definitior	when WIN	= x							
C2BUFPNT1	0520		F3BF	><3:0>			F2BF	^D <3:0>			F1BF	P<3:0>			F0BF	² <3:0>		0000
C2BUFPNT2	0522		-	><3:0>				P<3:0>				P<3:0>				2<3:0>		0000
C2BUFPNT3	0524		F11B	P<3:0>			F10B	P<3:0>			F9BF	><3:0>			F8BF	<3:0>		0000
C2BUFPNT4	0526		F15B	P<3:0>			F14B	P<3:0>			F13BI	D<3:0>			F12BI	><3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID	<7:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID	<7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C2RXM2EID	053A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF0SID	0540				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF0EID	0542				EID<	15:8>							EID	<7:0>		_		xxxx
C2RXF1SID	0544				SID<	10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C2RXF1EID	0546				EID<	15:8>							EID	<7:0>				xxxx
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	15:8>							EID	<7:0>		1		xxxx
C2RXF4SID	0550				SID<						SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF4EID	0552				EID<								EID	<7:0>				xxxx
C2RXF5SID	0554					10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF5EID	0556					15:8>							EID	<7:0>				XXXX
C2RXF6SID	0558					10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	xxxx
C2RXF6EID	055A					15:8>							EID	<7:0>				xxxx
C2RXF7SID	055C					10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF7EID	055E					15:8>							EID	<7:0>				xxxx
C2RXF8SID	0560				SID<						SID<2:0>			EXIDE	—	EID<	17:16>	xxxx
C2RXF8EID	0562				EID<						010.0.5		EID	<7:0>				xxxx
C2RXF9SID	0564				SID<						SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C2RXF9EID	0566				EID<					 			EID	<7:0>			17 10:	XXXX
C2RXF10SID	0568				SID<						SID<2:0>			EXIDE	—	EID<	17:16>	XXXX
C2RXF10EID	056A				EID<	15:8>							EID	<7:0>				XXXX

TABLE 4-25: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33FJXXXMC708A/710A DEVICES

TABLE 4-25:ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		-	EXIDE	—	EID<1	7:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF12EID	0572				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID<	<7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF15EID	057E				EID<	15:8>							EID<	<7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	-	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA ⁽²⁾	06C0	ODCA15	ODCA14	—	—	-		-	-	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_			_	_		TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_		_	_		_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_	_		_	_	-	LATC4	LATC3	LATC2	LATC1	_	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	—	_	_		-	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	01FF
PORTE	02DA	—	—	_	—	_	—	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-31: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	—	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	_	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	-	—	LATF13	LATF12		_		LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	_	ODCF13	ODCF12	_	_	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-32: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	—	_	TRISG9	TRISG8	TRISG7	TRISG6	—	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-33: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	—	—	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_	(COSC<2:0>	>	—	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	—	LPOSCEN	OSWEN	0300 (2)
CLKDIV	0744	ROI	[DOZE<2:0>	•	DOZEN	F	RCDIV<2:0)>	PLLPOS	T<1:0>	_		F	PLLPRE<4:	:0>		3040
PLLFBD	0746		—	_	_	—		—				F	PLLDIV<8:0	>				0030
OSCTUN	0748		—	_	_	_	_	_		—	—			TUN	l<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and type of Reset.

TABLE 4-34: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	_	_	_	_	ERASE	_	-		NVMO	P<3:0>		0000 (1)
NVMKEY	0766			_		_	—		_				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

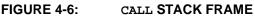
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

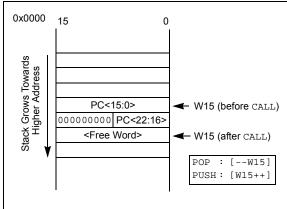
TABLE 4-35: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD		I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	_	-	_	_	_	—	-	-	—	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for high pin count devices.

4.2.7 SOFTWARE STACK


In addition to its use as a working register, the W15 register in the dsPIC33FJXXXMCX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33FJXXXMCX06A/X08A/X10A devices support data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-36 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the following form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note:	Not all instructions support all the
	addressing modes given above. Individ-
	ual instructions may support different
	subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (register offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 will always be directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9, and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

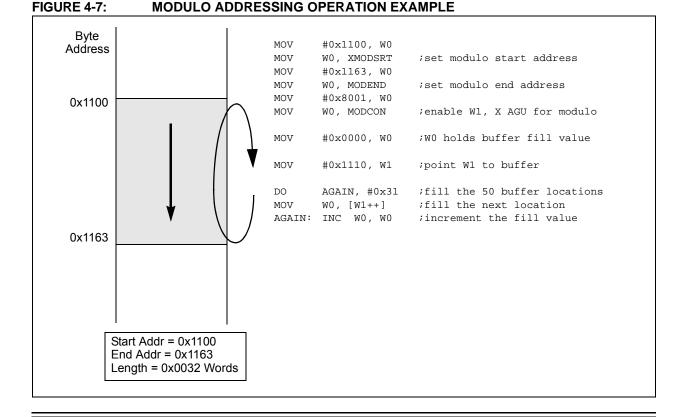
In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).


The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON<14>.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

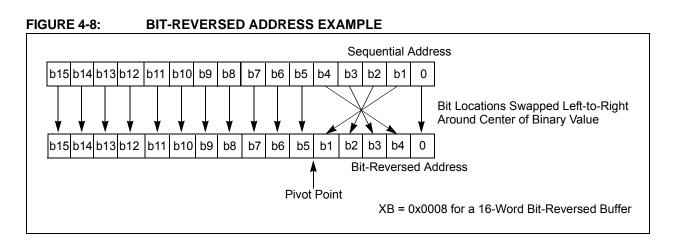
The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order; thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when the following conditions exist:

- The BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.


XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data; normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed Addressing should not be enabled								
	together. In the event that the user								
	attempts to do so, Bit-Reversed Address-								
	ing will assume priority for the X WAGU,								
	and X WAGU Modulo Addressing will be								
	disabled. However, Modulo Addressing will								
	continue to function in the X RAGU.								

If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV<15>), then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

	Normal Address				Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	1	0	0	0	8	
0	0	1	0	2	0	1	0	0	4	
0	0	1	1	3	1	1	0	0	12	
0	1	0	0	4	0	0	1	0	2	
0	1	0	1	5	1	0	1	0	10	
0	1	1	0	6	0	1	1	0	6	
0	1	1	1	7	1	1	1	0	14	
1	0	0	0	8	0	0	0	1	1	
1	0	0	1	9	1	0	0	1	9	
1	0	1	0	10	0	1	0	1	5	
1	0	1	1	11	1	1	0	1	13	
1	1	0	0	12	0	0	1	1	3	
1	1	0	1	13	1	0	1	1	11	
1	1	1	0	14	0	1	1	1	7	
1	1	1	1	15	1	1	1	1	15	

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJXXXMCX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJXXXMCX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full, 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

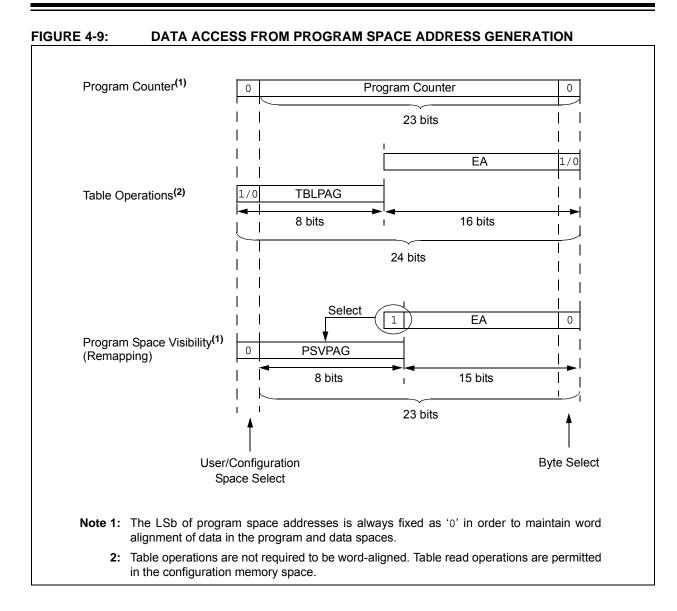

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-38 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-38: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0	PC<22:1> 0						
(Code Execution)		0xxx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxxx xxxx xxxx					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1	xxx xxxx	xxxx x	xxxx xxxx xxxx xxxx				
Program Space Visibility	User	0	PSVPAG<	2:0> Data EA<14:0>(1)					
(Block Remap/Read)		0	xxxx xxx	х	XXX XXXX XXXX XXXX				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

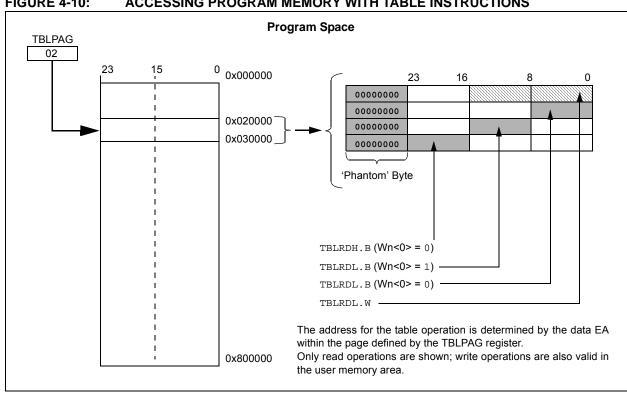
DATA ACCESS FROM PROGRAM 4.6.2 MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).


In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS FIGURE 4-10:

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

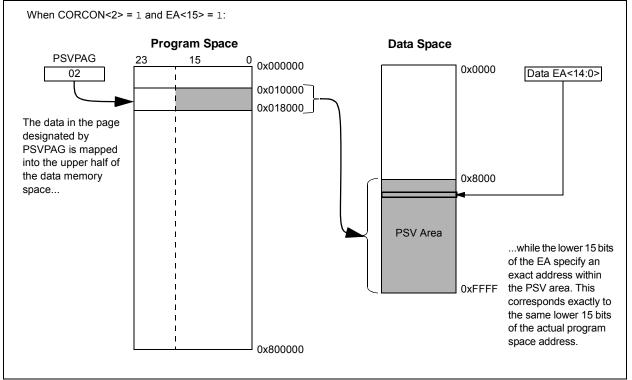
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

© 2009-2012 Microchip Technology Inc.

NOTES:

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

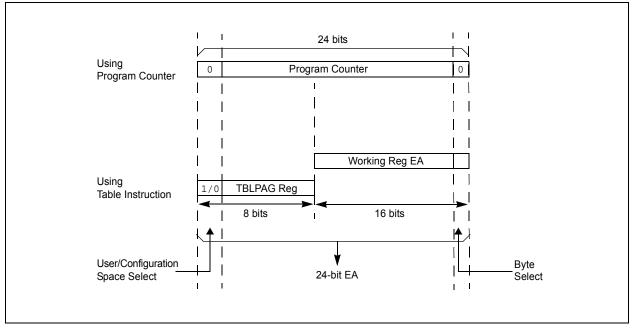
Flash memory can be programmed in two ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and

three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or 'rows') of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

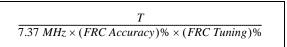
FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33FJXXXMCX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory at a time, which consists of eight rows (512 instructions), and to program one row or one word at a time. Table 26-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundaries.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the row write time, page erase time and word write cycle time parameters (see Table 26-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0		
WR	WREN	WRERR	_	_	_				
bit 15					•		bit		
	D 444 o(1)			D 444 o(1)	D # 44 o(1)	D # 4 (a (1)	D (1)		
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾		
	ERASE		—		NVMOF	><3:0> ⁽²⁾			
bit 7							bit		
Legend:		SO = Settable	e Only bit						
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	WR: Write Co	ontrol bit							
			v program o	r erase operatio	on. The operation	on is self-timed	and the hit i		
		by hardware on							
	0 = Program	or erase opera	ition is compl	ete and inactive	е				
bit 14	WREN: Write	e Enable bit							
		lash program/e							
		ash program/er	-	ns					
bit 13	WRERR: Write Sequence Error Flag bit								
	 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 								
			•	,	1				
bit 12-7	0 = The program or erase operation completed normally								
bit 6	Unimplemented: Read as '0' ERASE: Erase/Program Enable bit								
bit 0	1 = Perform the erase operation specified by NVMOP<3:0> on the next WR comm					t WR command	I		
	 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command 								
bit 5-4		ted: Read as '	-	,					
bit 3-0	-	>: NVM Operat		_S (2)					
	If ERASE = 1								
	1111 = Memory bulk erase operation								
	1110 = Reserved								
	1101 = Erase General Segment 1100 = Erase Secure Segment								
	1011 = Rese	•	ent						
	0011 = No o								
		ory page erase	operation						
	0001 = No operation								
	0000 = Erase a single Configuration register byte								
	<u>If ERASE = 0:</u>								
	1111 = No oj								
	1110 = Reserved								
	1101 = No operation 1100 = No operation								
	1011 = Rese								
		ory word progra	am operation						
	0010 = No o								
		ory row program		aiotor buto					
	0000 = Progi	ram a single Co	miguration re	egister byte					
Note 1: The	ese bits can onl	ly be reset on F	OR.						

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store it in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMC	ON for block erase operation	
MOV	#0x4042, W0	;
MOV	W0, NVMCON	; Initialize NVMCON
; Init pointe	r to row to be ERASED	
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;
MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	; Initialize in-page EA[15:0] pointer
TBLWT	L WO, [WO]	; Set base address of erase block
DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the erase
NOP		; command is asserted

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCO	N for row programming operations	3	
MOV	#0x4001, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Set up a poi	nter to the first program memory	/ loc	ation to be written
; program memo	ry selected, and writes enabled		
MOV	#0x0000, W0	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	#0x6000, W0	;	An example program memory address
; Perform the	TBLWT instructions to write the	latc	hes
; 0th_program_	word		
MOV	#LOW_WORD_0, W2	;	
MOV	#HIGH_BYTE_0, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 1st_program_	word		
MOV	#LOW_WORD_1, W2	;	
MOV	#HIGH_BYTE_1, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; 2nd_program	_word		
	#LOW_WORD_2, W2	;	
	<pre>#HIGH_BYTE_2, W3</pre>	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
•			
•			
•			
; 63rd_program	—		
MOV	#LOW_WORD_31, W2	;	
MOV	#HIGH_BYTE_31, W3	;	
	W2, [W0]		Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

NOTES:

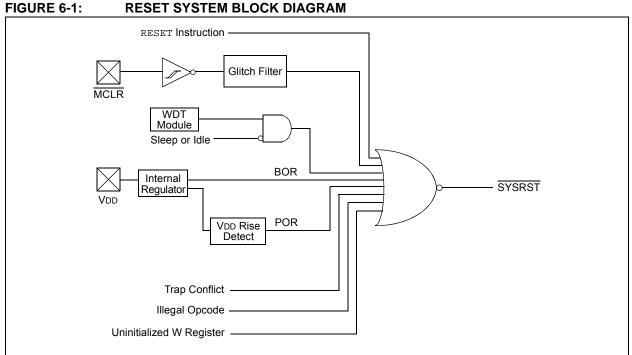
6.0 RESET

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprereference hensive source To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W **Register Reset**

A simplified block diagram of the Reset module is shown in Figure 6-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Refer to the specific peripheral or CPU Note: section of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits except for the POR bit (RCON<0>), which is set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

The status bits in the RCON register Note: should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR	—	_	—	—	—	VREGS ⁽³⁾
bit 15				·	•		bit
R/W-0		R/W-0					
EXTR	R/W-0 SWR	SWDTEN ⁽²⁾	R/W-0 WDTO	R/W-0 SLEEP	R/W-0 IDLE	R/W-1 BOR	R/W-1 POR
bit 7	onne	onbien		ULL.		Bon	bit
Legend:	L. L.'4		.:.			(O)	
R = Readab		W = Writable k	DIT	-	mented bit, read		
-n = Value a	IPOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	1 = A Trap C	onflict Reset has					
	-	onflict Reset has					
bit 14		gal Opcode or			•		
	0	al opcode detect Pointer caused	· ·	gal address m	ode or uninitia	lized W regist	er used as a
		l opcode or unir		Reset has not o	ccurred		
bit 13-9	Unimplemented: Read as '0'						
bit 8	VREGS: Voltage Regulator Standby During Sleep bit ⁽³⁾						
	 1 = Voltage regulator is active during Sleep mode 0 = Voltage regulator goes into Standby mode during Sleep 						
bit 7	EXTR: Extern	nal Reset (MCLI	R) Pin bit				
	 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred 						
bit 6	SWR: Softwa	are Reset (Instru	ction) Flag b	it			
		instruction has					
0 = A RESET instruction has not been executed bit 5 SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾							
bit 5			Jisable of W				
	1 = WDT is e 0 = WDT is d						
bit 4		hdog Timer Tim	e-out Flag bi	t			
		e-out has occurr		-			
	0 = WDT time	e-out has not oc	curred				
bit 3	SLEEP: Wak	e-up from Sleep	Flag bit				
		as been in Sleep					
		as not been in S	•				
bit 2		up from Idle Fla	g bit				
		as in Idle mode as not in Idle me	ode				
	Il of the Reset sta	•	set or cleare	d in software. S	Setting one of th	nese bits in soft	ware does no
	ause a device Re		(1) /			a a la la servició de	
2: If	the FWDTEN Co	ontiguration bit i	s 1 (unprog	rammed), the V	VUT IS alwavs (enabled, redard	ness of the

- 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- **3:** For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** For dsPIC33FJ256MCX06A/X08A/X10A devices, this bit is unimplemented and reads back a programmed value.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	_
POR (RCON<0>)	POR	_

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to Section 9.0 "Oscillator Configuration" for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The System Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	See Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	Tpor + Tstartup + Trst	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	Tpor + Tstartup + Trst	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST		_	3
	ECPLL, FRCPLL	TSTARTUP + TRST	Тьоск	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Тоѕт	TFSCM	3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	TFSCM	3, 4, 5, 6
MCLR	Any Clock	TRST	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	TRST	—	_	3
Uninitialized W	Any Clock	TRST	—	_	3
Trap Conflict	Any Clock	Trst	—		3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode if the regulator is enabled.

3: TRST = Internal state Reset time (20 µs nominal).

4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.

5: TLOCK = PLL lock time (20 μs nominal).

6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70184) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The interrupt controller for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXMCX06A/X08A/X10A CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address. The dsPIC33FJXXXMCX06A/X08A/X10A family of devices implement up to 67 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXMCX06A/X08A/X10A device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

Decreasing Natural Order Priority	Reset – GOTO Instruction Reset – GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~	0x000000 0x00002 0x000004 0x000014	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~	0x000004 0x000014	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector DMA Error Trap Vector DMA Error Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x000014	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Stack Error Trap Vector Math Error Trap Vector DMA Error Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Math Error Trap Vector DMA Error Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	DMA Error Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Reserved Interrupt Vector 0 Interrupt Vector 1 ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Interrupt Vector 0 Interrupt Vector 1 ~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Interrupt Vector 1	0x00007C 0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	~ ~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	~ Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 ~ ~ ~	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Interrupt Vector 53 Interrupt Vector 54 ~ ~ ~	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ng Natural Order Priority	Interrupt Vector 54 ~ ~ ~		
ng Natural Order Priorit	~	0x000080	
ng Natural Order Pri	~ ~	-	
ng Natural Order	~	1	
ng Natural Ord	~		
ng Natural C	Internet Ventor 110	0x0000FC	
ng Natura	Interrupt Vector 116 Interrupt Vector 117	0x0000FC	
ng Na		0x0000FE	
БL	Reserved		
	Reserved	0x000102	
asii	Reserved		
Les	Oscillator Fail Trap Vector	_	
Dec	Address Error Trap Vector	_	
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector	_	
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	_	
	~	_	
	~	_	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	~	0x00017C	Alternate interrupt vector Table (AIVI)
	Interrupt Vector 52		
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~	_	
	~	-	
	~ Interrupt Vector 116	-	
	Interrupt Vector 116	0x0001FE	
★			
•	Start of Code	0x000200	

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source	
8	0	0x000014	0x000114	INT0 – External Interrupt 0	
9	1	0x000016	0x000116	IC1 – Input Capture 1	
10	2	0x000018	0x000118	OC1 – Output Compare 1	
11	3	0x00001A	0x00011A	T1 – Timer1	
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0	
13	5	0x00001E	0x00011E	IC2 – Input Capture 2	
14	6	0x000020	0x000120	OC2 – Output Compare 2	
15	7	0x000022	0x000122	T2 – Timer2	
16	8	0x000024	0x000124	T3 – Timer3	
17	9	0x000026	0x000126	SPI1E – SPI1 Error	
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done	
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver	
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter	
21	13	0x00002E	0x00012E	ADC1 – ADC 1	
22	14	0x000030	0x000130	DMA1 – DMA Channel 1	
23	15	0x000032	0x000132	Reserved	
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events	
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events	
26	18	0x000038	0x000138	Reserved	
27	19	0x00003A	0x00013A	Change Notification Interrupt	
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1	
29	21	0x00003E	0x00013E	ADC2 – ADC 2	
30	22	0x000040	0x000140	IC7 – Input Capture 7	
31	23	0x000042	0x000142	IC8 – Input Capture 8	
32	24	0x000044	0x000144	DMA2 – DMA Channel 2	
33	25	0x000046	0x000146	OC3 – Output Compare 3	
34	26	0x000048	0x000148	OC4 – Output Compare 4	
35	27	0x00004A	0x00014A	T4 – Timer4	
36	28	0x00004C	0x00014C	T5 – Timer5	
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2	
38	30	0x000050	0x000150	U2RX – UART2 Receiver	
39	31	0x000052	0x000152	U2TX – UART2 Transmitter	
40	32	0x000054	0x000154	SPI2E – SPI2 Error	
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done	
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready	
43	35	0x00005A	0x00015A	C1 – ECAN1 Event	
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3	
45	37	0x00005E	0x00015E	IC3 – Input Capture 3	
46	38	0x000060	0x000160	IC4 – Input Capture 4	
47	39	0x000062	0x000162	IC5 – Input Capture 5	
48	40	0x000064	0x000164	IC6 – Input Capture 6	
49	41	0x000066	0x000166	OC5 – Output Compare 5	
50	42	0x000068	0x000168	OC6 – Output Compare 6	
51	43	0x00006A	0x00016A	OC7 – Output Compare 7	
52	44	0x00006C	0x00016C	OC8 – Output Compare 8	
53	45	0x00006E	0x00016E	Reserved	

TABLE 7-1: INTERRUPT VECTORS

© 2009-2012 Microchip Technology Inc.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source	
54	46	0x000070	0x000170	DMA4 – DMA Channel 4	
55	47	0x000072	0x000172	T6 – Timer6	
56	48	0x000074	0x000174	T7 – Timer7	
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events	
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events	
59	51	0x00007A	0x00017A	T8 – Timer8	
60	52	0x00007C	0x00017C	T9 – Timer9	
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3	
62	54	0x000080	0x000180	INT4 – External Interrupt 4	
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready	
64	56	0x000084	0x000184	C2 – ECAN2 Event	
65	57	0x000086	0x000186	PWM – PWM Period Match	
66	58	0x000088	0x000188	QEI – Position Counter Compare	
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5	
70	62	0x000090	0x000190	Reserved	
71	63	0x000092	0x000192	FLTA – MCPWM Fault A	
72	64	0x000094	0x000194	FLTB – MCPWM Fault B	
73	65	0x000096	0x000196	U1E – UART1 Error	
74	66	0x000098	0x000198	U2E – UART2 Error	
75	67	0x00009A	0x00019A	Reserved	
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6	
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7	
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request	
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request	
80-125	72-117	0x0000A4- 0x0000FE	0x0001A4- 0x0001FE	Reserved	

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32 in the following pages.

SR: CPU STATUS REGISTER⁽¹⁾ **REGISTER 7-1:**

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	C
bit 7							bit 0

Legend:			
C = Clearable bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Settable bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU interrupt priority level is 7 (15), user interrupts disabled

110 = CPU interrupt priority level is 6 (14)

101 = CPU interrupt priority level is 5 (13)

100 = CPU interrupt priority level is 4 (12)

- 011 = CPU interrupt priority level is 3 (11)
- 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9)
- 000 = CPU interrupt priority level is 0 (8)
- Note 1: For complete register details, see Register 3-1: "SR: CPU STATUS Register".
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

CORCON: CORE CONTROL REGISTER⁽¹⁾ **REGISTER 7-2:**

0' = Bit is cleared 'x = Bit is unknow		nown	U = Unimpler	nented bit, rea	d as '0'		
R = Readable bit		W = Writable bit		-n = Value at POR '1' = Bit is		'1' = Bit is set	
Legend:		C = Clearable	e bit				
bit 7	-	-	- -				bit 0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
bit 15		-					bit 8
—	_	_	US	EDT		DL<2:0>	
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7	-3: INTCC	DN1: INTERR	UPT CONTR		EK 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7			I				bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	1 = Interrupt	errupt Nesting D nesting is disat nesting is enab	oled				
bit 14	1 = Trap was	ccumulator A O caused by ove not caused by	rflow of Accur	nulator A			
bit 13	OVBERR: Act 1 = Trap was	ccumulator B O caused by ove not caused by	verflow Trap F rflow of Accur	lag bit nulator B			
bit 12	COVAERR: A 1 = Trap was	Accumulator A caused by cata not caused by	Catastrophic (astrophic over	Dverflow Trap F flow of Accum	ulator A		
bit 11	COVBERR: A 1 = Trap was	Accumulator B caused by cata not caused by	Catastrophic (astrophic over	Dverflow Trap I flow of Accum	Flag bit ulator B		
bit 10	OVATE: Accu	umulator A Ove	rflow Trap En				
bit 9		umulator B Ove rflow of Accumu bled		able bit			
bit 8	COVTE: Catastrophic Overflow Trap Enable bit 1 = Trap on catastrophic overflow of Accumulator A or B enabled 0 = Trap disabled						
bit 7	1 = Math erro	Shift Accumula or trap was caus or trap was not	sed by an inva	lid accumulato			
bit 6	DIV0ERR: Ar	rithmetic Error S or trap was caus or trap was not	Status bit sed by a divide	e by zero			
bit 5	DMACERR: 1 1 = DMA con	DMA Controller troller error trap troller error trap	Error Status I has occurred	pit I			
bit 4	MATHERR: A	Arithmetic Error	Status bit				

- $\ensuremath{\mathtt{l}}$ = Math error trap has occurred
- 0 = Math error trap has not occurred

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	 Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		ole Alternate In	•	lable bit			
		nate Interrupt \ lard (default) v					
bit 14		struction Statu					
		ruction is activ					
	0 = DISI inst	ruction is not a	ictive				
bit 13-5	Unimplemen	ted: Read as '	0'				
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Select	bit		
		on negative ed					
	-	on positive edg					
bit 3		•	•	Polarity Select	bit		
		on negative ed on positive edg					
bit 2	-			Polarity Select	bit		
SIT Z		on negative ed	•		. Dit		
		on positive edg					
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit						
1 = Interrupt on negative edge							
	•	on positive edg					
bit 0				Polarity Select	bit		
		on negative ed					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7	L.		1				bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as	ʻ0'				
bit 14	-		ata Transfer C	omplete Interro	upt Flag Status	s bit	
		request has oc					
	•	request has no					
bit 13			Complete Interr	upt Flag Status	s bit		
		request has oc request has no					
bit 12	•		r Interrupt Flag	g Status bit			
		request has oc					
	-	request has no					
bit 11			nterrupt Flag S	Status bit			
		request has oc request has no					
bit 10	•	•	ot Flag Status b	oit			
		request has oc					
	-	request has no					
bit 9			pt Flag Status I	bit			
		request has oc request has no					
bit 8	•	Interrupt Flag					
		request has oc					
	•	request has no					
bit 7		Interrupt Flag					
		request has oc request has no					
bit 6	-	-	nannel 2 Interru	upt Flag Status	bit		
		request has oc					
	•	request has no					
bit 5	•	-	el 2 Interrupt F	lag Status bit			
		request has oc request has no					
bit 4	-	-	ata Transfer C	omplete Interri	upt Flag Status	s bit	
		request has oc					
	-	request has no					
bit 3		Interrupt Flag request has or					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 15		RT2 Transmitte	-	g Status bit				
		request has oc request has no						
bit 14	•	RT2 Receiver I		Status bit				
		request has oc request has no						
bit 13	•	nal Interrupt 2		t				
		request has oc						
	0 = Interrupt	request has no	t occurred					
bit 12		Interrupt Flag						
		request has oc request has no						
bit 11	-	Interrupt Flag						
	1 = Interrupt	request has oc request has no	curred					
bit 10		ut Compare Ch		upt Flag Status	s bit			
	1 = Interrupt	request has oc request has no	curred					
bit 9	•	ut Compare Ch		upt Flag Status	s bit			
	1 = Interrupt	request has oc request has no	curred					
bit 8				Complete Interi	rupt Flag Status	bit		
	1 = Interrupt	request has oc	curred		opti lag etate			
	•	request has no						
bit 7	-	C8IF: Input Capture Channel 8 Interrupt Flag Status bit = Interrupt request has occurred						
		request has oc request has no						
bit 6	-	Capture Chann		-lag Status bit				
		request has oc request has no						
bit 5	AD2IF: ADC2	2 Conversion C	Complete Inter	rupt Flag Statu	ıs bit			
	1 = Interrupt	request has oc request has no	curred	-				
bit 4	•	nal Interrupt 1		t				
	1 = Interrupt	request has oc	curred					
	0 = Interrupt (request has no	t occurred					

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF		
bit 7					I		bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15	T6IF: Timer6	Interrupt Flag	Status bit						
		request has oc request has no							
bit 14		•		Complete Interi	rupt Flag Status	bit			
		request has oc request has no		·					
bit 13		ted: Read as '							
bit 12	OC8IF: Outpu	ut Compare Ch	annel 8 Interr	upt Flag Status	s bit				
		request has oc request has no							
bit 11	OC7IF: Outpu	ut Compare Ch	annel 7 Interr	upt Flag Status	s bit				
	1 = Interrupt request has occurred								
		request has no							
bit 10	•	F: Output Compare Channel 6 Interrupt Flag Status bit nterrupt request has occurred							
		request has oc request has no							
bit 9	-	utput Compare Channel 5 Interrupt Flag Status bit							
		request has oc request has no							
bit 8		Capture Chann		-lag Status hit					
bit o	1 = Interrupt	request has oc request has no	curred	lag Status bit					
bit 7	•	Capture Chann		-lao Status bit					
	•	request has oc	•						
		request has no							
bit 6	IC4IF: Input C	Capture Chann	el 4 Interrupt I	-lag Status bit					
		request has oc							
bit 5	-	request has no Capture Chann		- Elaa Status hit					
bit 5	1 = Interrupt	request has oc request has no	curred	ay status bit					
bit 4	•	•		omnlete Inter	rupt Flag Status	hit			
	1 = Interrupt	request has oc request has no	curred		apting Status	JA			
bit 3	-	l Event Interrup		bit					
Sit U		-	-						
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
FLTAIF	_	DMA5IF		_	QEIIF	PWMIF	C2IF				
bit 15					•	· · · · · · · · · · · · · · · · · · ·	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF				
bit 7						0.202.11	bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	FLTAIF: PWN	/I Fault A Interr	upt Flag Statu	ıs bit							
		request has oc									
	•	request has no									
bit 14	-	ted: Read as '									
bit 13				Complete Interr	upt Flag Status	bit					
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 12-11	•	ted: Read as '									
bit 10	QEIIF: QEI Event Interrupt Flag Status bit										
		1 = Interrupt request has occurred									
	0 = Interrupt r	0 = Interrupt request has not occurred									
bit 9		PWMIF: PWM Interrupt Flag Status bit									
		1 = Interrupt request has occurred									
bit 8	•	0 = Interrupt request has not occurred									
		C2IF: ECAN2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred										
bit 7	C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	-	request has not		_							
bit 6		INT4IF: External Interrupt 4 Flag Status bit									
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred										
bit 5	INT3IF: External Interrupt 3 Flag Status bit										
		1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred										
bit 4	T9IF: Timer9 Interrupt Flag Status bit										
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 3	-	Interrupt Flag									
		request has oc request has not									
bit 2	-	2 Master Even		ad Status bit							
5.11 L			-								
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 T7IF: Timer7 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—	_	—	—		_					
bit 15				· · · · · · · · · · · · · · · · · · ·			bit					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	FLTBIF					
bit 7							bit					
Legend:												
R = Readab		W = Writable		•	nented bit, read							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-8	Unimplomon	tod: Dood op (٦ '									
bit 7	-	Unimplemented: Read as '0'										
		C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 6	C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit											
		1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred											
bit 5	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit											
	 I = Interrupt request has occurred I = Interrupt request has not occurred 											
bit 4	DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											
bit 3	Unimplemen	ted: Read as '	כי									
bit 2	U2EIF: UART2 Error Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
1.11.4	0 = Interrupt request has not occurred											
bit 1	U1EIF: UART1 Error Interrupt Flag Status bit											
		 I = Interrupt request has occurred Interrupt request has not occurred 										
bit 0	-	-		ıs bit								
bit 0				FLTBIF: PWM Fault B Interrupt Flag Status bit 1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred											

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

1 = Interrupt request enabled0 = Interrupt request not enabled	R/W-0 T1IE U = Unimple '0' = Bit is cle r Complete Inter errupt Enable bit nable bit	rrupt Enable bit	SPI1EIE R/W-0 IC1IE	T3IE bit 8 R/W-0 INTOIE bit 0								
R/W-0 R/W-0 R/W-0 R/W-0 T2IE OC2IE IC2IE DMA0IE bit 7 Legend: W = Writable bit OP R = Readable bit W = Writable bit Intervention -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete Interrupt request not enabled bit 13 AD1IE: UART1 Transmitter Interrupt Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt Interrupt Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled	U = Unimple '0' = Bit is clo r Complete Inter errupt Enable bi Enable bit	OC1IE emented bit, read eared	IC1IE	R/W-0 INTOIE bit 0								
T2IE OC2IE IC2IE DMA0IE bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt II 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled <td>U = Unimple '0' = Bit is clo r Complete Inter errupt Enable bi Enable bit</td> <td>OC1IE emented bit, read eared</td> <td>IC1IE</td> <td>INTOIE bit 0</td>	U = Unimple '0' = Bit is clo r Complete Inter errupt Enable bi Enable bit	OC1IE emented bit, read eared	IC1IE	INTOIE bit 0								
T2IE OC2IE IC2IE DMA0IE bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt In 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	U = Unimple '0' = Bit is clo r Complete Inter errupt Enable bi Enable bit	OC1IE emented bit, read eared	IC1IE	INTOIE bit 0								
bit 7 Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfe 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Transmitter Interrupt In 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1E: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	U = Unimple '0' = Bit is clu r Complete Inter errupt Enable bi	emented bit, read eared rrupt Enable bit	d as '0'	bit 0								
Legend: R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfe 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Transmitter Interrupt II 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled	'0' = Bit is clu r Complete Inter errupt Enable bi Enable bit	eared										
R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transferent 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete Interrupt request not enabled bit 13 AD1IE: UART1 Conversion Complete Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt Interrupt Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	'0' = Bit is clu r Complete Inter errupt Enable bi Enable bit	eared		nown								
R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transferent 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete Interrupt request not enabled bit 13 AD1IE: UART1 Conversion Complete Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt Interrupt Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	'0' = Bit is clu r Complete Inter errupt Enable bi Enable bit	eared		nown								
-n = Value at POR '1' = Bit is set bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request not enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	'0' = Bit is clu r Complete Inter errupt Enable bi Enable bit	eared		nown								
bit 15 Unimplemented: Read as '0' bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled bit 11 U1RXIE: SPI1 Receiver Interrupt Enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled	r Complete Inter errupt Enable bi nable bit	rrupt Enable bit										
bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	errupt Enable bi nable bit able bit	·										
bit 14 DMA1IE: DMA Channel 1 Data Transfer 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	errupt Enable bi nable bit able bit	·										
1 = Interrupt request enabled 0 = Interrupt request not enabled bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 1 bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0	errupt Enable bi nable bit able bit	·										
bit 13 AD1IE: ADC1 Conversion Complete In 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt II 1 = Interrupt request enabled 0 = Interrupt request enabled bit 12 U1TXIE: UART1 Transmitter Interrupt II 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt En 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	nable bit able bit	it										
1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled	nable bit able bit	it										
0 = Interrupt request not enabled bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt En 1 = Interrupt request enabled 0 = Interrupt request enabled bit 11 U1RXIE: UART1 Receiver Interrupt En 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request not enabled 0 = Interrupt request not enabled	able bit											
bit 12 U1TXIE: UART1 Transmitter Interrupt I 1 = Interrupt request enabled 0 0 = Interrupt request not enabled 0 bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 0 = Interrupt request enabled 0 0 = Interrupt request enabled 0 0 = Interrupt request not enabled 0 bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request not enabled 0 bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled 0 bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 o = Interrupt request not enabled 0	able bit											
1 = Interrupt request enabled 0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt Enabled 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled	able bit											
0 = Interrupt request not enabled bit 11 U1RXIE: UART1 Receiver Interrupt En 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bi 1 = Interrupt request enabled 0 = Interrupt request enabled bit 10 SPI1EIE: SPI1 Event Interrupt Enable bi 1 = Interrupt request not enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bi 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled												
1 = Interrupt request enabled 0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled												
0 = Interrupt request not enabled bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled												
bit 10 SPI1IE: SPI1 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled												
1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable b 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled												
0 = Interrupt request not enabled bit 9 SPI1EIE: SPI1 Error Interrupt Enable b 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled	SPI1IE: SPI1 Event Interrupt Enable bit											
bit 9 SPI1EIE: SPI1 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request enabled 0 = Interrupt request not enabled 1 = Interrupt request enabled 0 = Interrupt request not enabled 0 = Interrupt request not enabled												
0 = Interrupt request not enabled bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled	SPI1EIE: SPI1 Error Interrupt Enable bit											
bit 8 T3IE: Timer3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled	1 = Interrupt request enabled											
1 = Interrupt request enabled0 = Interrupt request not enabled												
0 = Interrupt request not enabled												
1 = Interrupt request enabled	•											
0 = Interrupt request not enabled	0 = Interrupt request not enabled											
	OC2IE: Output Compare Channel 2 Interrupt Enable bit											
	1 = Interrupt request enabled											
	0 = Interrupt request not enabled											
1 = Interrupt request enabled	IC2IE: Input Capture Channel 2 Interrupt Enable bit											
0 = Interrupt request not enabled												
bit 4 DMA0IE: DMA Channel 0 Data Transfe	r Complete Inter	rrupt Enable bit										
1 = Interrupt request enabled												
0 = Interrupt request not enabled												
bit 3 T1IE: Timer1 Interrupt Enable bit												
0 = Interrupt request enabled	1 = Interrupt request enabled 0 = Interrupt request not enabled											

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

© 2009-2012 Microchip Technology Inc.

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

REGISTER 7-11: IEC	1: INTERRUPT ENABLE CONTROL REGISTER 1
--------------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE			
bit 15	•	·	•		•	•	bit 8			
			DAMO	DAMO						
R/W-0 IC8IE	R/W-0	R/W-0 AD2IE	R/W-0 INT1IE	R/W-0	U-0	R/W-0	R/W-0 SI2C1IE			
bit 7	IC7IE	ADZIE		CNIE	—	MI2C1IE	bit 0			
Legend:										
R = Readable		W = Writable		-	mented bit, read					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 15	U2TXIE: UAR	RT2 Transmitter	r Interrupt Ena	able bit						
		request enable								
		request not ena								
bit 14	U2RXIE: UAF	RT2 Receiver Ir	nterrupt Enabl	le bit						
		request enable								
bit 13	•	request not ena								
DIL 13	INT2IE: External Interrupt 2 Enable bit 1 = Interrupt request enabled									
	0 = Interrupt request on abled									
bit 12	T5IE: Timer5 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 11	T4IE: Timer4 Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit									
	1 = Interrupt request enabled 0 = Interrupt request not enabled									
bit 9	 0 = Interrupt request not enabled OC3IE: Output Compare Channel 3 Interrupt Enable bit 									
bit 5	1 = Interrupt request enabled									
	0 = Interrupt request enabled									
bit 8	DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit									
	1 = Interrupt request enabled									
bit 7	 0 = Interrupt request not enabled IC8IE: Input Capture Channel 8 Interrupt Enable bit 									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 6	IC7IE: Input Capture Channel 7 Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 5		2 Conversion C		rupt Enable bit						
bit 5		equest enable	•							
	•	request not ena								
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit							
		request enable								
	0 = Interrupt r	request not ena	abled							

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 - Interrupt request enabled

1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER 7-12:	IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
----------------	---

-	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T6IE	DMA4IE		OC8IE	OC7IE	OC6IE	OC5IE	IC6IE			
bit 15		·					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE			
bit 7	I						bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15	T6IE: Timer6	Interrupt Enabl	e bit							
		request enabled								
	0 = Interrupt r	request not ena	bled							
bit 14		A Channel 4 D		Complete Interr	rupt Enable bit					
		request enableo request not ena								
bit 13		ted: Read as '								
bit 12	-			unt Enable bit						
	OC8IE: Output Compare Channel 8 Interrupt Enable bit 1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 11	OC7IE: Output Compare Channel 7 Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 10	OC6IE: Output Compare Channel 6 Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 9	OC5IE: Output Compare Channel 5 Interrupt Enable bit									
	1 = Interrupt request enabled 0 = Interrupt request not enabled									
bit 8	 Interrupt request not enabled IC6IE: Input Capture Channel 6 Interrupt Enable bit 									
bit o	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 7	IC5IE: Input Capture Channel 5 Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 6	 Interrupt request not enabled IC4IE: Input Capture Channel 4 Interrupt Enable bit 									
	1 = Interrupt request enabled									
	0 = Interrupt request not enabled									
bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 4	DMA3IE: DM	A Channel 3 D	ata Transfer C	Complete Interr	rupt Enable bit					
	1 = Interrupt r	request enable	b							
	-	request not ena								
	CALE. ECANIA		t Enchlo hit							
bit 3		Event Interrup								

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

bit 2	C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 0	SPI2EIE: SPI2 Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 FLTAIE DMA5IE ____ QEIIE **PWMIE** C2IE ____ ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLTAIE: PWM Fault A Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 14 Unimplemented: Read as '0' bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 12-11 Unimplemented: Read as '0' bit 10 **QEIIE:** QEI Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 9 **PWMIE:** PWM Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 8 C2IE: ECAN2 Event Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 7 C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 6 INT4IE: External Interrupt 4 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 5 INT3IE: External Interrupt 3 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 4 **T9IE:** Timer9 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 3 **T8IE:** Timer8 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled bit 2 MI2C2IE: I2C2 Master Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

bit 1	SI2C2IE: I2C2 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

- bit 0 T7IE: Timer7 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	—	—	—	—	_			
bit 15			•	•			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	FLTBIE			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-8 bit 7	•	ted: Read as '		nterrunt Enabl	e hit					
bit 7	C2TXIE: ECA	N2 Transmit D	ata Request li	nterrupt Enable	e bit					
		request enable request not ena								
bit 6	C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit									
		request enable request not ena								
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	complete Enab	le Status bit					
		request enable request not ena								
bit 4	DMA6IE: DM	DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit								
		request enable request not ena								
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	U2EIE: UART	Γ2 Error Interru	pt Enable bit							
		request enable request not ena								
bit 1	•	T1 Error Interru								
	1 = Interrupt ı	request enable request not ena	d							
bit 0	•	V Fault B Interr								
-	ו = Interrupt ו	request enable request not ena	d							

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		T1IP<2:0>		—		OC1IP<2:0>							
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		IC1IP<2:0>				INT0IP<2:0>							
bit 7							bit						
Legend:													
R = Readab	le bit	W = Writable I	oit	U = Unimplei	mented bit, rea	id as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own						
bit 15	Unimpleme	nted: Read as 'o)'										
bit 14-12	T1IP<2:0>:	T1IP<2:0>: Timer1 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•	•											
		upt is priority 1											
		upt source is dis											
bit 11	-	nted: Read as '			11 I.11								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	• 001 = Interrupt is priority 1												
		upt is priority i upt source is disa	abled										
bit 7		nted: Read as '											
bit 6-4	-			errupt Priority b	oits								
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•												
	001 = Interr	• 001 = Interrupt is priority 1											
	000 = Interr	upt source is dis	abled										
bit 3	-	nted: Read as 'o											
bit 2-0		External Interr											
	111 = Interr	upt is priority 7 (I	nighest priorit	ty interrupt)									
	•												
	•												
		upt is priority 1 upt source is disa	ablad										
	000 = interr	uor source is disa	anien										

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T2IP<2:0>		—		OC2IP<2:0>						
bit 15							bit					
	-											
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		IC2IP<2:0>		—		DMA0IP<2:0>	L :4					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	Unimpleme	nted: Read as '	o'									
bit 14-12	-	T2IP<2:0>: Timer2 Interrupt Priority bits										
		upt is priority 7 (I	•	v interrupt)								
	•											
	•											
	• 001 = Intern	upt is priority 1										
		upt source is dis	abled									
bit 11	Unimpleme	nted: Read as 'd	כ'									
bit 10-8	OC2IP<2:0>	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits										
	111 = Interru	upt is priority 7 (I	nighest priority	v interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis	abled									
bit 7	Unimpleme	nted: Read as 'o	כ'									
bit 6-4	IC2IP<2:0>:	Input Capture C	Channel 2 Inter	rrupt Priority b	its							
	111 = Interru	upt is priority 7 (I	highest priority	v interrupt)								
	•											
	•											
	001 = Interru	upt is priority 1										
		upt source is dis	abled									
bit 3	Unimpleme	nted: Read as 'o	כ'									
bit 2-0	DMA0IP<2:0	0>: DMA Channe	el 0 Data Tran	sfer Complete	Interrupt Price	ority bits						
	111 = Interru	upt is priority 7 (I	highest priority	v interrupt)								
	•											
	•											
	- 001 - Intorn											
		upt is priority 1										

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		U1RXIP<2:0>		—		SPI1IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		SPI1EIP<2:0>				T3IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	ented: Read as 'o	כי								
bit 14-12	U1RXIP<2:	0>: UART1 Rece	eiver Interrup	t Priority bits							
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•										
	•										
		rupt is priority 1									
		rupt source is dis									
bit 11	-	ented: Read as 'o									
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 7		-									
bit 6-4		Unimplemented: Read as '0'									
	SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•			.,							
	•										
	• 001 = Interi	rupt is priority 1									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3	Unimpleme	ented: Read as '	כי								
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits								
	111 = Interi	rupt is priority 7 (I	highest priori	ty interrupt)							
	•										
	•										
		rupt is priority 1									
		rupt source is dis									

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
—	—	—	—	—		DMA1IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		AD1IP<2:0>		—		U1TXIP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-11	Unimpleme	nted: Read as 'o	o'								
bit 10-8	DMA1IP<2:0	0>: DMA Channe	el 1 Data Tra	nsfer Complete	e Interrupt Prior	ity bits					
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)	-	-					
	•										
	•										
		upt is priority 1 upt source is dis	abled								
bit 7		nted: Read as '(
bit 6-4	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interru	upt is priority 1									
		upt source is dis	abled								
bit 3	Unimpleme	nted: Read as '	כי								
bit 2-0	U1TXIP<2:0	>: UART1 Trans	smitter Interru	upt Priority bits							
	111 = Interru	upt is priority 7 (I	highest priori	ty interrupt)							
	•										
	•										
		upt is priority 1 upt source is dis									

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_		CNIP<2:0>		—		—						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	MI2C1IP<2:0>SI2C1IP<2:0>											
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	-	nented: Read as 'o										
bit 14-12		CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Inte	errupt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
		errupt is priority 1										
	000 = Inte	errupt source is dis	abled									
bit 11-7	Unimplem	nented: Read as 'o	כ'									
bit 6-4	MI2C1IP<	MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Inte	errupt is priority 1										
		errupt source is dis	abled									
bit 3	Unimplem	nented: Read as 'o	כ'									
bit 2-0	SI2C1IP<	2:0>: I2C1 Slave E	Events Interru	pt Priority bits								
	111 = Inte	errupt is priority 7 (I	highest priori	ty interrupt)								
	•											
	•											
	- 001 - Inte											
		errupt is priority 1										

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 IC7IP<2:0> IC8IP<2:0> _ ____ bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 AD2IP<2:0> INT1IP<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T4IP<2:0>		—		OC4IP<2:0>				
bit 15							bit 8			
						DAMO				
U-0	R/W-1	R/W-0 OC3IP<2:0>	R/W-0	U-0	R/W-1	R/W-0 DMA2IP<2:0>	R/W-0			
 bit 7		00317~2.02				DIVIAZIF \2.02	bit (
							DILC			
Legend:										
R = Readab	le bit	W = Writable I		U = Unimple	mented bit, re	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	Unimpleme	nted: Read as '()'							
bit 14-12										
		upt is priority 7 (ł	-	ty interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
		upt source is dis	abled							
bit 11	Unimpleme	nted: Read as '0)'							
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits									
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)						
	•									
	•									
		upt is priority 1								
L:1 7		upt source is dis								
bit 7	-	nted: Read as '		Laterry at Drie	it. , la ita					
bit 6-4		Output Compa upt is priority 7 (I)		-	ity bits					
	•		lighest phon	ty interrupt)						
	•									
	• 001 - Interr	unt in priority 1								
		upt is priority 1 upt source is disa	abled							
bit 3		nted: Read as '0								
bit 2-0	-	0>: DMA Channe		nsfer Complete	e Interrupt Pric	ority bits				
		upt is priority 7 (ł			·	-				
	•									
	•									
	001 = Interr	upt is priority 1								
		upt source is dis								

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0

R/W-1 R/W-0 R/W-0 R/W-1 R/W-0 U2TXIP<2:0> U2RXIP<2:0> ____ ____ bit 15 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 INT2IP<2:0> T5IP<2:0>

		INTZIPS2.02		151P<2.0>	
bit 7					bit C
Legend:					
R = Readab	e bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
-n = Value a	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 15	-	emented: Read as '0'			
bit 14-12		<2:0>: UART2 Transmitter Ir iterrupt is priority 7 (highest p			
	•	iterrupt is priority 7 (flighest p	bhonty interrupt)		
	•				
	•				
		Iterrupt is priority 1 Iterrupt source is disabled			
bit 11	Unimple	emented: Read as '0'			
bit 10-8	U2RXIP	<2:0>: UART2 Receiver Inte	errupt Priority bits		
	111 = In	terrupt is priority 7 (highest p	priority interrupt)		
	•				
	•				
	001 = In	Iterrupt is priority 1			
		terrupt source is disabled			
bit 7	Unimple	emented: Read as '0'			
bit 6-4	INT2IP<	2:0>: External Interrupt 2 Pr	iority bits		
	111 = In	terrupt is priority 7 (highest p	priority interrupt)		
	•				
	•				
	001 = In	Iterrupt is priority 1			
		terrupt source is disabled			
bit 3	Unimple	emented: Read as '0'			
bit 2-0	T5IP<2:0	0>: Timer5 Interrupt Priority	bits		
	111 = In	terrupt is priority 7 (highest p	priority interrupt)		
	•				
	•				
	001 = In	Iterrupt is priority 1			
		terrupt source is disabled			

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0

R/W-0

R/W-0

bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		C1IP<2:0>				C1RXIP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		SPI2IP<2:0>		_		SPI2EIP<2:0>						
bit 7							bit					
Legend:												
R = Readabl	le bit	W = Writable k	bit	U = Unimplei	mented bit, rea	id as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	Unimpleme	ented: Read as '0	,									
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Priori	ity bits								
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)								
	•											
	•											
		upt is priority 1 upt source is disa	abled									
bit 11		ented: Read as '0										
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
		upt is priority 1 upt source is disa	abled									
bit 7		ented: Read as '0										
bit 6-4	-	>: SPI2 Event Int		y bits								
	111 = Interr	upt is priority 7 (h	ighest priori	ty interrupt)								
	•											
	•											
	001 = Interr	upt is priority 1										
		upt source is disa										
bit 3	-	ented: Read as '0										
bit 2-0		0>: SPI2 Error In	-	-								
	111 = Interr	upt is priority 7 (h	lighest priori	ty interrupt)								
	•											
	•											
		upt is priority 1 upt source is disa	abled									
			11151									

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
-		IC5IP<2:0>		_		IC4IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC3IP<2:0>		_		DMA3IP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	-	ented: Read as '0			.,		
bit 14-12		: Input Capture C			its		
	111 = Interr	rupt is priority 7 (h	lignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1	- la la al				
		upt source is disa					
bit 11	•	ented: Read as 'o			.,		
bit 10-8		: Input Capture C			its		
	111 = Interr •	rupt is priority 7 (h	lignest priorit	y interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 7		ented: Read as '(
bit 6-4	-	: Input Capture C		rrunt Priority b	ite		
		upt is priority 7 (h			113		
	•	aptio phonty i (i	ignoot priorit	y meenape)			
	•						
	• 001 — Interr	runt in priority 1					
		upt is priority 1 upt source is disa	abled				
bit 3		ented: Read as '(
bit 2-0		0>: DMA Channe		nsfer Complete	Interrupt Pric	prity bits	
5.1.2.0		rupt is priority 7 (h		-	, interrupt i ne		
	•	, , , (.	0	, <u></u> ,			
	•						
	• 001 - Intorr	upt is priority 1					
		upt is priority i upt source is disa	abled				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		OC7IP<2:0>		—		OC6IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		OC5IP<2:0>				IC6IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	nted: Read as '	٦ '								
bit 14-12	-	: Output Compa		' Interrupt Prio	ritv bits						
		upt is priority 7 (I		-							
	•		•	• • • •							
	•										
	001 = Interru	upt is priority 1									
		upt source is dis	abled								
bit 11	Unimpleme	nted: Read as 'o	כ'								
bit 10-8	OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
		upt is priority 1 upt source is dis	ablod								
bit 7		nted: Read as '									
bit 6-4	-	: Output Compa		Interrunt Prio	rity hits						
		upt is priority 7 (I		•							
	•		5	,,							
	•										
	• 001 = Interri	upt is priority 1									
		upt source is dis	abled								
bit 3	Unimpleme	nted: Read as 'o	כ'								
bit 2-0	IC6IP<2:0>:	Input Capture C	Channel 6 Inte	errupt Priority I	oits						
	111 = Interru	upt is priority 7 (I	highest priorit	y interrupt)							
	•										
	•										
	001 = Interru	unt in priority 1									
		upt source is dis									

REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

REGISTER 7-26: IPC11: INTERRUPT PRIC	ORITY CONTROL REGISTER 11
--------------------------------------	---------------------------

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		T6IP<2:0>				DMA4IP<2:0>					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_		_	_	_		OC8IP<2:0>					
bit 7					I		bit				
Legend:											
R = Readab		W = Writable I	oit	-	mented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	-	ented: Read as 'o									
bit 14-12	T6IP<2:0>: Timer6 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)							
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
		•									
bit 11	Unimplemented: Read as '0'										
bit 10-8	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 7-3	Unimpleme	ented: Read as '0)'								
bit 2-0	OC8IP<2:0	: Output Compa	re Channel 8	Interrupt Prior	ity bits						
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	•										
	• 001 = Interr	upt is priority 1									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T8IP<2:0>				MI2C2IP<2:0>						
bit 15	·				•		bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		SI2C2IP<2:0>		—		T7IP<2:0>	1.11					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown					
bit 15	Unimpleme	ented: Read as '()'									
bit 14-12	Unimplemented: Read as '0' T8IP<2:0>: Timer8 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Inter	rupt is priority 1										
	000 = Inter	rupt source is disa	abled									
bit 11	Unimpleme	ented: Read as 'o)'									
bit 10-8	MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits											
	 111 = Interrupt is priority 7 (highest priority interrupt) 											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7		ented: Read as '0										
bit 6-4	-			unt Priority hite								
DIL 0-4	SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 3	Unimpleme	ented: Read as 'o)'									
bit 2-0	T7IP<2:0>:	Timer7 Interrupt	Priority bits									
	111 = Inter	rupt is priority 7 (h	nighest priori	ty interrupt)								
	•											
	•											
	001 = Inter	rupt is priority 1										
		rupt source is disa										

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		C2RXIP<2:0>	1011 0	_		INT4IP<2:0>	10110						
bit 15							bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		INT3IP<2:0>		—		T9IP<2:0>							
bit 7							bit 0						
Legend:													
R = Readab	le bit	W = Writable t	bit	U = Unimple	mented bit, rea	ad as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own						
bit 15	Unimplom	ented: Read as 'o	`										
bit 13	-			adv Interrunt Pi	riority hits								
	C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)												
	•												
	•	•											
	• 001 = Inter	rupt is priority 1											
		rupt source is disa	abled										
bit 11	Unimpleme	ented: Read as 'o)'										
bit 10-8	INT4IP<2:0>: External Interrupt 4 Priority bits												
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>												
	•												
		rupt is priority 1											
		rupt source is disa											
bit 7	-	ented: Read as 'o											
bit 6-4		INT3IP<2:0>: External Interrupt 3 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	⊥⊥⊥ = inten •	rupt is priority 7 (r	lignest priori	ty interrupt)									
	•												
	•												
		rupt is priority 1 rupt source is disa	abled										
bit 3		ented: Read as '0											
bit 2-0	-	Timer9 Interrupt											
	111 = Inter	rupt is priority 7 (h	nighest priori	ty interrupt)									
	•												
	•												
	001 = Inter	rupt is priority 1											
		rupt source is disa	abled										
			abled										

REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_		QEIIP<2:0>					
bit 15		÷					bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		PWMIP<2:0>		—		C2IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15-11	-	nted: Read as '									
bit 10-8		QEI Interrupt P	•								
	111 = Interru	pt is priority 7 (I	highest priorit	ty interrupt)							
	•										
	•	•									
		pt is priority 1									
	000 = Interru	pt source is dis	abled								
bit 7	Unimplemer	nted: Read as '	כ'								
bit 6-4	PWMIP<2:0>: PWM Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
	000 = Interrupt source is disabled										
bit 3	Unimplemented: Read as '0'										
bit 2-0	C2IP<2:0>: E	C2IP<2:0>: ECAN2 Event Interrupt Priority bits									
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	• 001 = Interru	unt in priority 1									

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_		FLTAIP<2:0>		_	—	—				
bit 15	·			·		•	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-1	U-0	U-0			
—		DMA5IP<2:0>					—			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitn = Value at POR'1' = Bit is set				U = Unimpler	mented bit, rea	id as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimpleme	ented: Read as '	0'							
bit 14-12	FLTAIP<2:0	D>: PWM Fault A	Interrupt Pri	ority bits						
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Interrupt is priority 1									
	000 = Inter	rupt source is dis	abled							
bit 11-7	Unimpleme	ented: Read as '	0'							
bit 6-4	DMA5IP<2	:0>: DMA Chann	el 5 Data Tra	nsfer Complete	Interrupt Prior	rity bits				
	111 = Inter	rupt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
		rupt is priority 1								
	000 = Inter	rupt source is dis	abled							
bit 3-0	Unimpleme	ented: Read as '	0'							

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_		_	_	_		U2EIP<2:0>					
bit 15					•		bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		U1EIP<2:0>		—		FLTBIP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15-11	Unimplemented: Read as '0' U2EIP<2:0>: UART2 Error Interrupt Priority bits										
bit 10-8			•	•							
	111 = Interru	pt is priority 7 (I	highest priorit	ty interrupt)							
	•										
	•										
		pt is priority 1 pt source is dis	abled								
bit 7	Unimplemer	nted: Read as ')'								
bit 6-4	U1EIP<2:0>:	U1EIP<2:0>: UART1 Error Interrupt Priority bits									
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)									
	•	•									
	•										
	001 = Interru	• 001 = Interrupt is priority 1									
		000 = Interrupt source is disabled									
bit 3	Unimplemented: Read as '0'										
bit 2-0	FLTBIP<2:0>	>: PWM Fault B	Interrupt Price	ority bits							
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	•										
	001 = Interru	pt is priority 1									

REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

						DAMA						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
-		C2TXIP<2:0>		—		C1TXIP<2:0>	1.1.0					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		DMA7IP<2:0>				DMA6IP<2:0>						
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own					
bit 15	Unimpleme	ented: Read as '	ı'									
bit 14-12	-			auest Interrupt	Priority bits							
···· ·· · -		C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•	•										
	001 = Inter	rupt is priority 1										
		rupt source is dis	abled									
bit 11	Unimpleme	ented: Read as ')'									
bit 10-8	C1TXIP<2:	C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits										
	<pre>111 = Interrupt is priority 7 (highest priority interrupt) .</pre>											
	•											
	•											
	001 = Interrupt is priority 1											
		rupt source is dis										
bit 7	-	ented: Read as '										
bit 6-4	DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits											
	⊥⊥⊥ = inter •	 111 = Interrupt is priority 7 (highest priority interrupt) 										
	•											
	•	nund in uni-uitur 4										
		rupt is priority 1 rupt source is dis	abled									
bit 3		ented: Read as '										
bit 2-0	-	:0>: DMA Channe		nsfer Complete	e Interrunt Prio	ritv bits						
		rupt is priority 7 (I		•		.,						
	•		U	- 1/								
	•											
	• 001 = Inter	rupt is priority 1										
		rupt source is dis	abled									

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
	_	_	_		ILF	<3:0>					
oit 15		1					bit 8				
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
—				VECNUM<6:0>	>						
oit 7							bit (
_egend:	la hit	$\lambda = \lambda / ritable$	h:t		opted bit rea	ad aa (0)					
R = Readable bit W = Writable bit n = Value at POR '1' = Bit is set				U = Unimplem							
n = value a	IPOR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN				
oit 15-12	Unimpleme	ented: Read as the	0'								
pit 11-8	•	New CPU Interru		el bits							
		J interrupt priorit									
	•										
	•										
	• 0001 - CP	J interrupt priorit	v lovol is 1								
		J interrupt priorit									
oit 7	Unimpleme	ented: Read as '	0'								
oit 6-0	VECNUM<	VECNUM<6:0>: Vector Number of Pending Interrupt bits									
		0111111 = Interrupt vector pending is number 135									
	•	•									
	•										
	•	Interrupt vector	nondina in nu	mbor 0							
	0000001 =	Interrupt vector	penuing is hu								

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source, do the following:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are								
	initialized	such	that	all	user	interrupt			
	sources are assigned to priority level 4.								

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

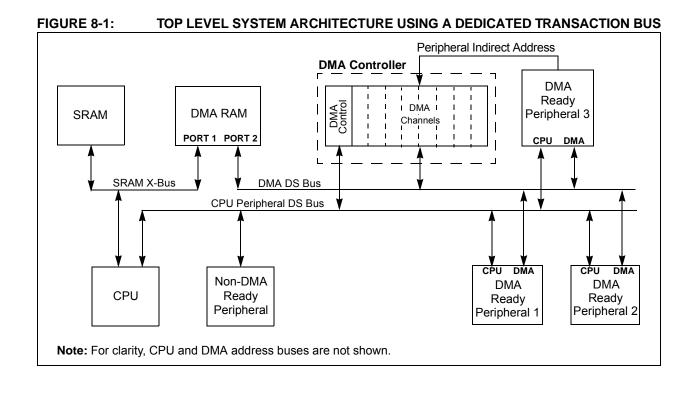
8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 2: Some registers and associated bits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., the UART Receive register and Input Capture 1 buffer) and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers, and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJXXXMCX06A/X08A/X10A peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT


Peripheral IRQ Numbe								
•								
INTO	0							
Input Capture 1	1							
Input Capture 2	5							
Output Compare 1	2							
Output Compare 2	6							
Timer2	7							
Timer3	8							
SPI1	10							
SPI2	33							
UART1 Reception	11							
UART1 Transmission	12							
UART2 Reception	30							
UART2 Transmission	31							
ADC1	13							
ADC2	21							
ECAN1 Reception	34							
ECAN1 Transmission	70							
ECAN2 Reception	55							
ECAN2 Transmission	71							

The DMA controller features eight identical data transfer channels. Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data, either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- · Word or byte-sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- · Automatic or manual initiation of block transfers.
- Each channel can select from 20 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-Bit DMA Channel Control register (DMAxCON)
- A 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-Bit DMA RAM Primary Start Address Offset register (DMAxSTA)

- A 16-Bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-Bit DMA Peripheral Address register (DMAxPAD)
- A 10-Bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMOD	E<1:0>	—	—	MODE	=<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHEN: Channel Enable bit
	1 = Channel enabled
	0 = Channel disabled
bit 14	SIZE: Data Transfer Size bit
	1 = Byte
	0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
	1 = Read from DMA RAM address; write to peripheral address
	0 = Read from peripheral address; write to DMA RAM address
bit 12	HALF: Early Block Transfer Complete Interrupt Select bit
	1 = Initiate block transfer complete interrupt when half of the data has been moved
	0 = Initiate block transfer complete interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)
	0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE<1:0>: DMA Channel Operating Mode Select bits
	11 = Reserved
	10 = Peripheral Indirect Addressing mode
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode
bit 3-2	
	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
	 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer) 10 = Continuous, Ping-Pong modes enabled
	01 = One-Shot, Ping-Pong modes disabled
	00 = Continuous, Ping-Pong modes disabled

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5(2)	IRQSEL4 ⁽²⁾	IRQSEL3(2)	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST/	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown			

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		pit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk			nown				

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	_	—	—	CNT<	9:8> (2)
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> (2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
| bit 15 | | | | | | | bit 8 |

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	
bit 7 bit 0								

Legend:			C = Clearable bit							
R = Readable	e bit	W = Writable bit	U = Unimplemented bit	, read as '0'						
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15		Channel 7 Peripheral Write	e Collision Flag bit							
		collision detected ite collision detected								
bit 14		: Channel 6 Peripheral Write	e Collision Flag bit							
		1 = Write collision detected								
	0 = No wr	ite collision detected								
bit 13	PWCOL5	: Channel 5 Peripheral Write	e Collision Flag bit							
		collision detected								
bit 12		ite collision detected	- Collision Flag hit							
DIL 12		: Channel 4 Peripheral Write collision detected	e Collision Flag bit							
		ite collision detected								
bit 11	PWCOL3:	Channel 3 Peripheral Write	e Collision Flag bit							
		collision detected								
		ite collision detected								
bit 10		Channel 2 Peripheral Write	e Collision Flag bit							
		collision detected ite collision detected								
bit 9	PWCOL1:	: Channel 1 Peripheral Write	e Collision Flag bit							
	1 = Write	collision detected								
	0 = No wr	ite collision detected								
bit 8		Channel 0 Peripheral Write	e Collision Flag bit							
		collision detected ite collision detected								
bit 7		: Channel 7 DMA RAM Writ	e Collision Flag bit							
		collision detected								
	0 = No wr	ite collision detected								
bit 6		Channel 6 DMA RAM Write	e Collision Flag bit							
		collision detected ite collision detected								
bit 5		: Channel 5 DMA RAM Writ	e Collision Flag bit							
		collision detected								
		ite collision detected								
bit 4	XWCOL4	Channel 4 DMA RAM Write	e Collision Flag bit							
		collision detected								
	0 = NO Wr	ite collision detected								

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

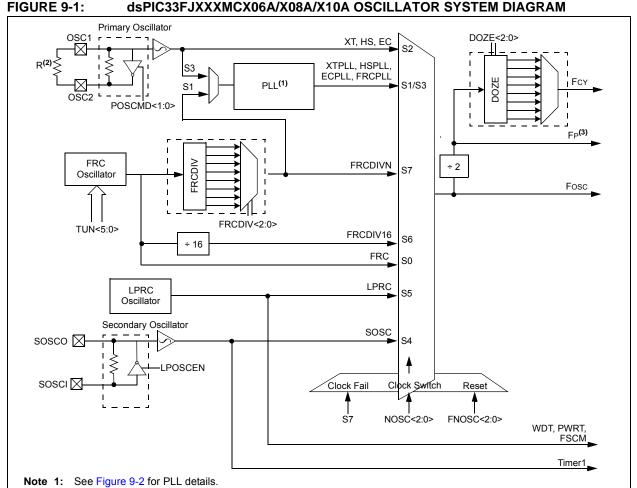
bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected
bit 2	 0 = No write collision detected XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
_	—	—	—		LSTCI	1<3:0>						
bit 15							bit 8					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7							bit 0					
Logondi												
Legend: R = Readable	a hit	W = Writable	hit		opted bit read							
-n = Value at		'1' = Bit is set		'0' = Bit is clea	nented bit, read	x = Bit is unkr						
	FUK	I – DILIS SEL			areu	X – DIL IS ULIKI	IOWII					
bit 15-12	Unimplemen	ted: Read as '	n'									
bit 11-8	-	: Last DMA Ch		nits								
		MA transfer has			et							
	1110-1000 =	Reserved										
		data transfer wa										
		data transfer wa data transfer wa										
		0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3										
		0010 = Last data transfer was by DMA Channel 2										
		0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0										
bit 7		PPST7: Channel 7 Ping-Pong Mode Status Flag bit										
	1 = DMA7STB register selected											
		A register selec										
bit 6	PPST6: Channel 6 Ping-Pong Mode Status Flag bit											
		B register select A register select										
bit 5	PPST5: Char	nnel 5 Ping-Por	ng Mode Statu	s Flag bit								
	1 = DMA5STB register selected											
		A register selec										
bit 4		nnel 4 Ping-Por	na Mode Statu									
	1 = DMA4STB register selected 0 = DMA4STA register selected											
			ted	IS Flag bit								
bit 3	0 = DMA4ST		cted cted	-								
bit 3	0 = DMA4ST PPST3: Char 1 = DMA3ST	A register selec	eted sted ng Mode Statu sted	-								
bit 3 bit 2	0 = DMA4ST, PPST3: Char 1 = DMA3ST 0 = DMA3ST,	A register selec nnel 3 Ping-Por B register selec A register selec	sted ted ng Mode Statu sted sted	s Flag bit								
	0 = DMA4ST PPST3: Char 1 = DMA3ST 0 = DMA3ST PPST2: Char 1 = DMA2ST	A register selec nnel 3 Ping-Por B register selec A register selec nnel 2 Ping-Por B register selec	sted ng Mode Statu sted sted ng Mode Statu sted	s Flag bit								
bit 2	0 = DMA4ST, PPST3: Char 1 = DMA3ST 0 = DMA3ST, PPST2: Char 1 = DMA2ST 0 = DMA2ST,	A register select nnel 3 Ping-Por B register select A register select nnel 2 Ping-Por B register select A register select	sted ng Mode Statu sted sted ng Mode Statu sted sted	s Flag bit s Flag bit								
	0 = DMA4ST PPST3: Char 1 = DMA3ST 0 = DMA3ST PPST2: Char 1 = DMA2ST 0 = DMA2ST PPST1: Char	A register select nnel 3 Ping-Por B register select A register select nnel 2 Ping-Por B register select A register select nnel 1 Ping-Por	eted ng Mode Statu eted ng Mode Statu eted eted eted ng Mode Statu	s Flag bit s Flag bit								
bit 2	0 = DMA4ST PPST3: Char 1 = DMA3ST 0 = DMA3ST PPST2: Char 1 = DMA2ST 0 = DMA2ST PPST1: Char 1 = DMA1ST	A register select nnel 3 Ping-Por B register select A register select nnel 2 Ping-Por B register select A register select	eted ted ng Mode Statu ted ng Mode Statu ted ted ng Mode Statu ted	s Flag bit s Flag bit								
bit 2	0 = DMA4ST, PPST3: Char 1 = DMA3ST 0 = DMA3ST, PPST2: Char 1 = DMA2ST 0 = DMA2ST, PPST1: Char 1 = DMA1ST 0 = DMA1ST,	A register select nnel 3 Ping-Por B register select A register select nnel 2 Ping-Por B register select A register select nnel 1 Ping-Por B register select	eted ted ng Mode Statu eted ng Mode Statu eted ted ng Mode Statu eted ng Mode Statu	s Flag bit s Flag bit s Flag bit								

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleare	ed	x = Bit is unknow	'n	


bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A oscillator system provides the following:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

- 2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 M Ω must be connected.
- 3: The term, FP refers to the clock source for all the peripherals, while FcY refers to the clock source for the CPU. Throughout this document FP and FcY are used interchangeably, except in the case of Doze mode. FP and FcY will be different when Doze mode is used in any ratio other than 1:1, which is the default.

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXMCX06A/X08A/X10A:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with Postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> bits (CLKDIV<10:8>).

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in Section 9.1.3 "PLL Configuration".

The FRC frequency depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 23.1 "Configuration Bits**" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), Fosc, is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJXXXMCX06A/X08A/X10A architecture.

Instruction execution speed or device operating frequency, FCY, is given by the following equation:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL feedback divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator output, 'FIN', the PLL output, 'FOSC', is given by the following equation:

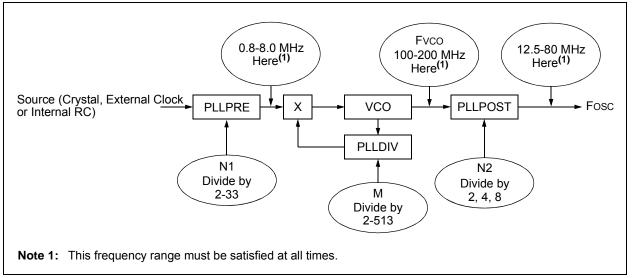
EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

EQUATION 9-3:

XT WITH PLL MODE

= 40 MIPS


EXAMPLE

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

For example, suppose a 10 MHz crystal is being used with "XT with PLL" as the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 * 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXMCX06A/X08A/X10A PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y		
_		COSC<2:0>				NOSC<2:0>(2)			
bit 15							bit		
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0		
CLKLOCK		LOCK	—	CF	_	LPOSCEN	OSWEN		
bit 7	·			·			bit		
Legend:		y = Value se	t from Configu	ration bits on F	POR				
R = Readabl	e bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	Unimplemen	ted: Read as	' 0'						
bit 14-12	COSC<2:0>:	Current Oscil	lator Selectior	h bits (read-only	y)				
		C oscillator (F			, ,				
	110 = Fast R	C oscillator (F	RC) with Divid						
		ower RC oscil dary oscillator							
		y oscillator (X		h Pl I					
	010 = Prima r	y oscillator (X	T, HS, EC)						
		•	,	de-by-N and P	LL (FRCDIVN +	PLL)			
bit 11		C oscillator (F	,						
bit 10-8	-	nted: Read as		+c(2)					
	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾ 111 = Fast RC oscillator (FRC) with Divide-by-N								
	111 = Fast RC oscillator (FRC) with Divide-by-16								
		ower RC oscil		-					
		dary oscillator							
		y oscillator (X y oscillator (X							
				de-by-N and P	LL (FRCDIVN +	PLL)			
	000 = Fast R	C oscillator (F	RC)						
bit 7		Clock Lock En							
					are locked. If (FCKSM0 = 0), t	hen clock an		
		figurations ma			tions may be m	odified			
bit 6		ited: Read as		nou, comgula		camea			
bit 5	-	ock Status bit							
				tart-up timer is	satisfied				
	0 = Indicates	s that PLL is o	ut of lock, star	t-up timer is in	progress or PL	L is disabled			
bit 4	Unimplemen	ted: Read as	'0'						
bit 3	CF: Clock Fa	il Detect bit (re	ead/clear by a	pplication)					
		as detected clo							
	0 = FSCM has	as not detecte	a clock failure						
	/rites to this regis				Section 7. "Osc	:illator " (DS701	86) in the		
	IsPIC33F/PIC24	•							
	irect clock switch his applies to cloo		• • •						
	nis applies to ciu								

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register is reset only on a Power-on Reset (POR).

mode as a transition clock source between the two PLL modes.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL modes are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>				
bit 15							bit 8			
	D A A A		DANO	DAMA	D /// 0	DAMA	D 444 0			
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	OST<1:0>				PLLPRE<4:0	>				
bit 7							bit 0			
Legend:		y = Value set	from Configu	ration bits on P	OR					
R = Readabl	e bit	W = Writable	•		nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown			
bit 15	ROI: Recove	r on Interrupt bi	t							
	1 = Interrupt	s will clear the [OZEN bit ar	nd the processo	r clock/periphe	ral clock ratio is	set to 1:1			
	0 = Interrupt	s have no effect	t on the DOZ	EN bit						
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits						
	000 = Fcy/1									
	001 = Fcy/2									
	010 = FCY/4	(default)								
	011 = FCY/8 (default) 100 = FCY/16									
		101 = Fcy/32								
	110 = FCY/64									
	111 = Fcy/12									
bit 11	DOZEN: DOZ	ZE Mode Enable	e bit ⁽¹⁾							
				between the peri	ipheral clocks	and the process	or clocks			
h:+ 10 0		or clock/periphe			_					
bit 10-8				or Postscaler bit	5					
	000 = FRC d 001 = FRC d	ivide by 1 (defa	uit)							
	010 = FRC d	•								
	011 = FRC d	•								
		100 = FRC divide by 16								
		101 = FRC divide by 32								
	110 = FRC d	•								
L:1 7 0	111 = FRC d	,					()			
bit 7-6			Jutput Divide	er Select bits (al	so denoted as	'NZ', PLL posts	caler)			
	00 = Output/2 01 = Output/4									
	10 = Reserve									
	11 = Output/8									
bit 5	-	ted: Read as ')'							
bit 4-0	-			ıt Divider bits (a	lso denoted as	'N1', PLL preso	caler)			
	00000 = Inp u	ut/2 (default)		, , , , , , , , , , , , , , , , , , ,		, ,	,			
	00001 = Inp	ut/3								
	•									
	•									
	•	1/00								
	11111 = Inpu	17/33								

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	_		_				PLLDIV<8>		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
			PLLDI	V<7:0>					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-9	Unimplemer	nted: Read as ')'						
bit 8-0	PLLDIV<8:0:	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)			
	00000000								
	00000001								
	00000010	= 4							
	•								
	•								
•									
	000110000	= 50 (default)							
	•								
	•								
	•								
	111111111	= 513							

Note 1: This register is reset only on a Power-on Reset (POR).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	_	—	_	—	—	—	—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				TUN<	<5:0> (1)						
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	•	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-6	-	ented: Read as '									
bit 5-0	TUN<5:0>:	>: FRC Oscillator Tuning bits ⁽¹⁾									
		Center frequency									
	011110 = 0	Center frequency	+ 11.25% (8.2	20 MHz)							
	•										
	•										
	•	•									
		000001 = Center frequency + 0.375% (7.40 MHz)									
000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency – 0.375% (7.345 MHz)											
	•										
	•										
	100001 = 0	Center frequency	– 11.625% (6	.52 MHz)							
		Center frequency		· ·····-,							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXMCX06A/X08A/X10A devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 23.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires the following basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009-2012} Microchip Technology Inc.

NOTES:

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXMCX06A/X08A/X10A devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXMCX06A/X08A/X10A devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXMCX06A/X08A/X10A devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has the following features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports and peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the following events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

10.2.2 IDLE MODE

Idle mode has the following features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of the following events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable registers (PMD) provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—
bit 15		•	L				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD ⁽¹⁾
bit 7							bit C
Legend:							
R = Readabl		W = Writable	bit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
L:4 / F		- Madula Diach	I- 1-14				
bit 15		5 Module Disat odule is disable					
		odule is enable					
bit 14		4 Module Disab					
	1 = Timer4 m	odule is disable	ed				
	0 = Timer4 m	odule is enable	d				
bit 13		3 Module Disab					
		odule is disable					
bit 10		odule is enable 2 Module Disat					
bit 12	-	odule is disable					
	-	odule is enable					
bit 11	T1MD: Timer	1 Module Disab	ole bit				
	1 = Timer1 m	odule is disable	ed				
	0 = Timer1 m	odule is enable	d				
bit 10		11 Module Disa	ble bit				
		dule is disabled dule is enabled					
bit 9		/M Module Disa	hle hit				
bit 5		dule is disabled					
		dule is enabled					
bit 8	Unimplemen	ted: Read as ')'				
bit 7	12C1MD: 12C	1 Module Disab	ole bit				
		lule is disabled					
		lule is enabled					
bit 6		2 Module Disa					
		nodule is disable nodule is enable					
bit 5		1 Module Disa					
	1 = UART1 m	nodule is disable	ed				
	0 = UART1 m	nodule is enable	ed				
bit 4	SPI2MD: SPI	2 Module Disat	ole bit				
		lule is disabled					
	$0 = SPI2 \mod 10^{\circ}$	dule is enabled					

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	SPI1MD: SPI1 Module Disable bit
	1 = SPI1 module is disabled
	0 = SPI1 module is enabled
bit 2	C2MD: ECAN2 Module Disable bit
	1 = ECAN2 module is disabled
	0 = ECAN2 module is enabled
bit 1	C1MD: ECAN1 Module Disable bit
	1 = ECAN1 module is disabled
	0 = ECAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit ⁽¹⁾
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER	<u>10-2: PMD2</u>	2: PERIPHER	AL MODULE	E DISABLE C	<u>ONTROL RE</u>	GISTER 2	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 15	IC8MD: Input	Capture 8 Moo	dule Disable bit	t			
		oture 8 module oture 8 module					
bit 14	IC7MD: Input	Capture 7 Mod	dule Disable bi	t			
		oture 7 module oture 7 module					
bit 13	IC6MD: Input	Capture 6 Mod	dule Disable bit	t			
		oture 6 module oture 6 module					
bit 12	IC5MD: Input	Capture 5 Mod	dule Disable bit	t			
		oture 5 module oture 5 module					
bit 11	IC4MD: Input	Capture 4 Mod	dule Disable bit	t			
		oture 4 module oture 4 module					
bit 10	IC3MD: Input	Capture 3 Mod	dule Disable bi	t			
		oture 3 module oture 3 module					
bit 9	IC2MD: Input	Capture 2 Mod	dule Disable bi	t			
		oture 2 module oture 2 module					
bit 8		Capture 1 Mod		t			
	1 = Input Cap	oture 1 module oture 1 module	is disabled				
bit 7		put Compare 8		le bit			
	1 = Output Co	ompare 8 modu ompare 8 modu	Ile is disabled				
bit 6	•	, put Compare 4		le bit			
	1 = Output Co	ompare 7 modu ompare 7 modu	ile is disabled				
bit 5		, put Compare 6		le bit			
	1 = Output Co	ompare 6 modu ompare 6 modu	ile is disabled				
bit 4		put Compare 5		le bit			
	1 = Output Co	ompare 5 modu ompare 5 modu	ile is disabled				

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled
	0 = Output Compare 1 module is enabled

REGISTEF		R/W-0					U-0
	R/W-0		R/W-0	U-0	U-0	U-0	0-0
T9MD	T8MD	T7MD	T6MD			—	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—		—		I2C2MD	AD2MD ⁽¹⁾
bit 7							bit
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	ented bit. rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 15	T9MD: Timer	9 Module Disal	ole bit				
	1 = Timer9 m	odule is disable	ed				
	0 = Timer9 m	odule is enable	ed				
bit 14	T8MD: Timer8	3 Module Disat	ole bit				
	1 = Timer8 m	odule is disable	ed				
	0 = Timer8 m	odule is enable	ed				
bit 13	T7MD: Timer7	7 Module Disal	ole bit				
		odule is disable					
	0 = Timer7 m	odule is enable	ed				
bit 12	T6MD: Timer6	6 Module Disat	ole bit				
		odule is disable					
	0 = Timer6 m	odule is enable	ed				
bit 11-2	Unimplement	ted: Read as '	0'				
bit 1	12C2MD: 12C2	2 Module Disat	ole bit				
		ule is disabled					
	0 = I2C2 mod						
bit 0	AD2MD: AD2	Module Disab	le bit ⁽¹⁾				
	1 = AD2 modu						
	0 = AD2 modu	ile is enabled					

Note 1: The PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins multiplexed with ANx will be in Digital mode.

NOTES:

11.0 I/O PORTS

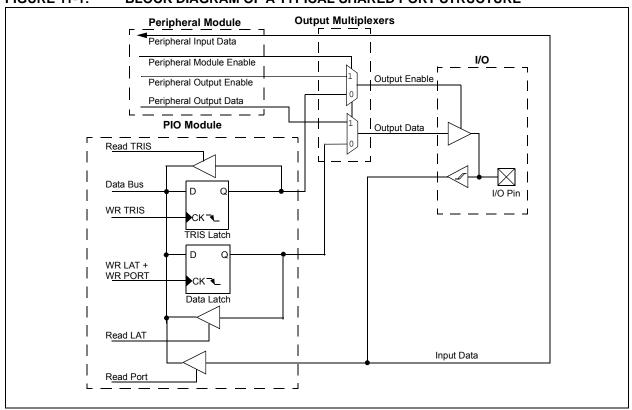
- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the

output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

© 2009-2012 Microchip Technology Inc.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "**Pin Diagrams**" section for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXMCX06A/X08A/X10A devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN Interrupt Enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the Weak Pull-up Enable bits (CNxPUE) for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	OxFF00, WO	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

11.6 I/O Helpful Tips

- 1. In some cases, certain pins as defined in TABLE 26-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and VSS. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 26.0 "Electrical Characteristics" for additional information.

11.7 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066

11.7.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

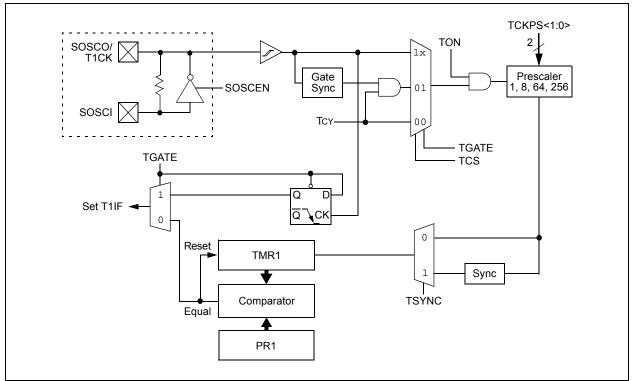
NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports the following features:

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation, do the following:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON		TSIDL			_	_	_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKP	S<1:0>		TSYNC	TCS			
bit 7							bit		
Legend:									
R = Readable	e hit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15	TON: Timer1	l On bit							
	1 = Starts 16								
	0 = Stops 16	-bit Timer1							
bit 14	Unimpleme	nted: Read as '	0'						
bit 13	TSIDL: Stop	in Idle Mode bi	t						
	1 = Discontinue module operation when device enters Idle mode								
	0 = Continue	e module operat	ion in Idle mo	ode					
bit 12-7	Unimplemented: Read as '0'								
bit 6	TGATE: Tim	er1 Gated Time	Accumulatio	n Enable bit					
	<u>When T1CS = 1:</u> This bit is ignored.								
	When T1CS	<u>= 0:</u> ne accumulation	anablad						
		ne accumulation							
bit 5-4				ale Select bits					
	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256								
	10 = 1:64								
	01 = 1:8								
	00 = 1:1								
bit 3	Unimplemented: Read as '0'								
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit								
	<u>When TCS =</u> 1 = Symphysical		ok input						
		nize external clo ynchronize exte		out					
	When TCS =	-							
	This bit is igr								
bit 1	TCS: Timer1	Clock Source S	Select bit						
	1 = External	clock from T1C	K pin (on the	rising edge)					
	0 = Internal o			-					

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers that can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support the following features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

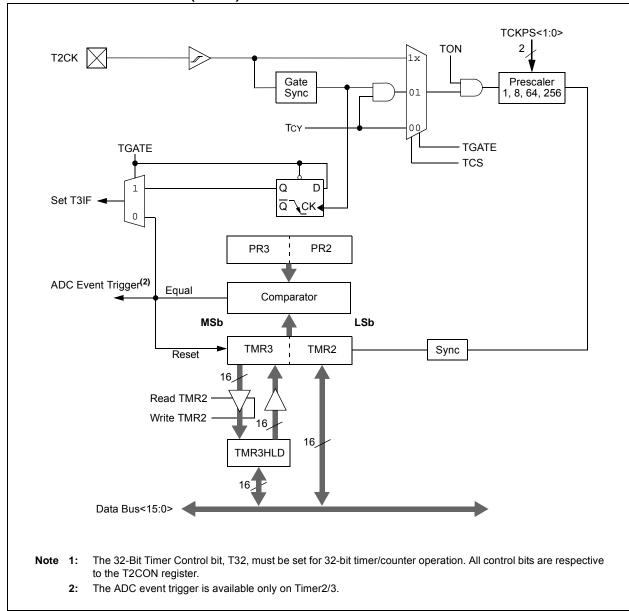
Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

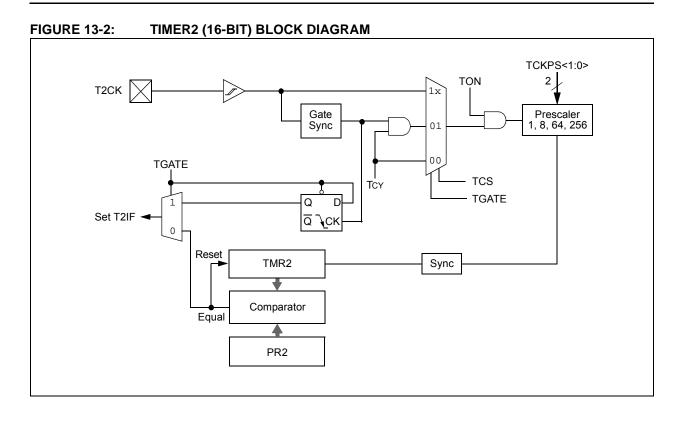
For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation, do the following:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.


The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contain the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contain the least significant word.


To configure any of the timers for individual 16-bit operation, do the following:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1, and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL		—	_	—	_			
bit 15		•					bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
_	TGATE	TCKP	S<1:0>	T32	_	TCS ⁽¹⁾	_			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkno	own			
bit 15	TON: Timerx When T32 = 2	L <u>:</u>								
	1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y									
	When T32 = $($									
	1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx									
bit 14	Unimplemented: Read as '0'									
bit 13	TSIDL: Stop in Idle Mode bit									
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 									
bit 12-7	Unimplemen	ted: Read as	ʻ0 '							
bit 6	TGATE: Time	erx Gated Time	e Accumulatior	n Enable bit						
	When TCS =									
	This bit is igno									
	When TCS = 0: 1 = Gated time accumulation enabled									
	0 = Gated time accumulation disabled									
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits						
	11 = 1:256									
	10 = 1:64									
	01 = 1:8 00 = 1:1									
bit 3	T32: 32-Bit Timer Mode Select bit									
Sit 0	1 = Timerx and Timery form a single 32-bit timer									
	0 = Timerx and Timery act as two 16-bit timers									
bit 2	Unimplemented: Read as '0'									
bit 1	TCS: Timerx Clock Source Select bit ⁽¹⁾									
	1 = External clock from TxCK pin (on the rising edge) 0 = Internal clock (Fcy)									
	Unimplemented: Read as '0'									

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾		TSIDL ⁽²⁾	_	_	_						
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
_	TGATE ⁽¹⁾	TCKPS	<1:0>(1)	—	—	TCS ^(1,3)	_				
bit 7							bit (
Logondi											
Legend: R = Readable	o hit	W = Writable I			nonted hit rea	vd oo '0'					
			JIL	U = Unimplen							
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	JWN				
bit 15	TON: Timery	On bit ⁽¹⁾									
	-		tarts 16-bit Timery								
	0 = Stops 16-	bit Timery									
bit 14	Unimplemen	ted: Read as 'd)'								
bit 13	TSIDL: Stop in Idle Mode bit ⁽²⁾										
	1 = Discontinue module operation when device enters Idle mode										
		module operati		ode							
bit 12-7	•	ted: Read as '0		(1)							
bit 6		ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾							
	<u>When TCS = 1:</u> This bit is ignored.										
	When TCS = 0 :										
	1 = Gated time accumulation enabled										
	 0 = Gated time accumulation disabled TCKPS<1:0>: Timer3 Input Clock Prescale Select bits⁽¹⁾ 										
bit 5-4											
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	01 - 1.0 00 = 1.1										
bit 3-2	Unimplemented: Read as '0'										
bit 1	TCS: Timery Clock Source Select bit ^(1,3)										
	-	clock from TyCk									
	0 = Internal clock (Fcy)										
bit 0	Unimplemented: Read as '0'										
Note 1: W	hen 32-hit opera	tion is enabled	(T2CON<25	= 1) these hits	have no effect	t on Timery operat	tion: all time				
	nctions are set th			±,, 11000 010							

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

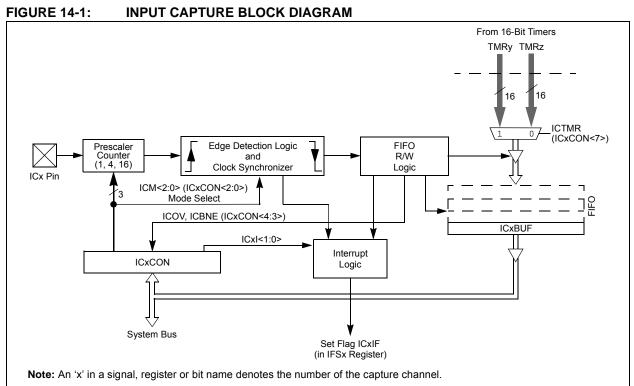
- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

NOTES:

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprereference hensive source To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXMCX06A/X08A/X10A devices support up to eight input capture channels.


The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling) of input at ICx pin
- 3. Prescaler Capture Event modes
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include the following:

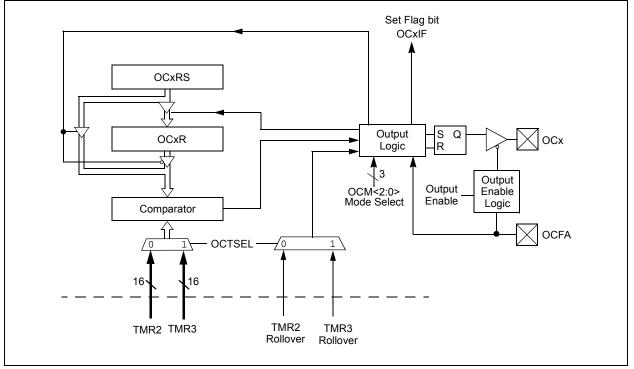
- · Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts
- Only IC1 and IC2 can trigger a DMA data Note: transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00).

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—	—	ICSIDL	—	_	—	_	—			
bit 15							bit			
	R/W-0	R/W-0			R/W-0	R/W-0	R/W-0			
R/W-0		-	R-0, HC	R-0, HC	R/W-U	-	R/W-U			
	ICI	<1:0>	ICOV	ICBNE		ICM<2:0>	L.14			
bit 7							bit			
Legend:				HC = H	Hardware Clea	rable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimplemer	nted: Read as	0'							
bit 13	ICSIDL: Inpu	it Capture Mod	ule Stop in Idle	e Control bit						
	1 = Input capture module will halt in CPU Idle mode									
		oture module w		operate in CPU	Idle mode					
bit 12-8	Unimplemented: Read as '0'									
bit 7	ICTMR: Input Capture Timer Select bits ⁽¹⁾									
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 									
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits									
	11 = Interrupt on every fourth capture event									
	10 = Interrupt on every third capture event									
	 01 = Interrupt on every second capture event 00 = Interrupt on every capture event 									
bit 4	=	Capture Overflo		hit (read-only)						
				Sit (redd only)						
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred 									
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only) 1 = Input capture buffer is not empty; at least one more capture value can be read									
	 0 = Input capture buffer is empty ICM<2:0>: Input Capture Mode Select bits 									
bit 2-0		• •								
	(ng edge detect				eep or Idle mode	9			
	•	ed (module disa	•			.,				
		re mode, every								
		re mode, every re mode, every		e						
		re mode, every re mode, every								
	001 = Captu	re mode, every	edge (rising a							
		:1:0> bits do no		upt generation	for this mode.)				
	000 = Input	capture module	turned off							

15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

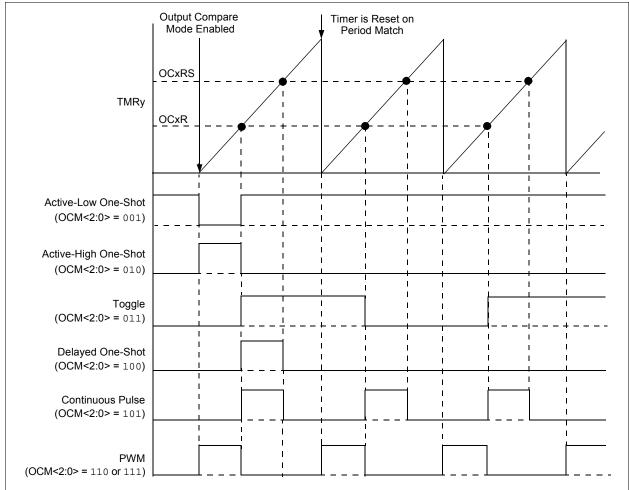
The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- · PWM mode with Fault Protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode bits (OCM<2:0>) in the Output Compare Control register (OCxCON<2:0>). Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare"
	(DS70209) in the "dsPIC33F/PIC24H
	Family Reference Manual" for OCxR and
	OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
000	Module Disabled	Controlled by GPIO register			
001	Active-Low One-Shot	0	OCx rising edge		
010	Active-High One-Shot	1	OCx falling edge		
011	Toggle	Current output is maintained	OCx rising and falling edge		
100	Delayed One-Shot	0	OCx falling edge		
101	Continuous Pulse	0	OCx falling edge		
110	PWM without Fault Protection	'0' if OCxR is zero,'1' if OCxR is non-zero	No interrupt		
111	PWM with Fault Protection	'0' if OCxR is zero,'1' if OCxR is non-zero	OCFA falling edge for OC1 to OC4		

FIGURE 15-2: OUTPUT COMPARE OPERATION

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled

011 = Compare event toggles OCx pin

000 = Output compare channel is disabled

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
_		OCSIDL	_		_	—			
bit 15							bit 8		
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0		
			OCFLT	OCTSEL		OCM<2:0>			
bit 7							bit 0		
Legend:		HC = Hardware	Clearable bit						
R = Readab	le bit	W = Writable bit		U = Unimple	mented bit, re	ad as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimplemented: Read as '0'								
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit								
	1 = Output Compare x halts in CPU Idle mode								
	0 = Output Compare x continues to operate in CPU Idle mode								
bit 12-5	•	nted: Read as '0'							
bit 4	OCFLT: PWM Fault Condition Status bit								
	1 = PWM Fault condition has occurred (cleared in hardware only)								
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)								
bit 3	OCTSEL: Output Compare Timer Select bit								
	1 = Timer3 i	s the clock source	for Compare x						
			· · ·						
bit 2-0		s the clock source Output Compare	•						

101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin

010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high

© 2009-2012 Microchip Technology Inc.

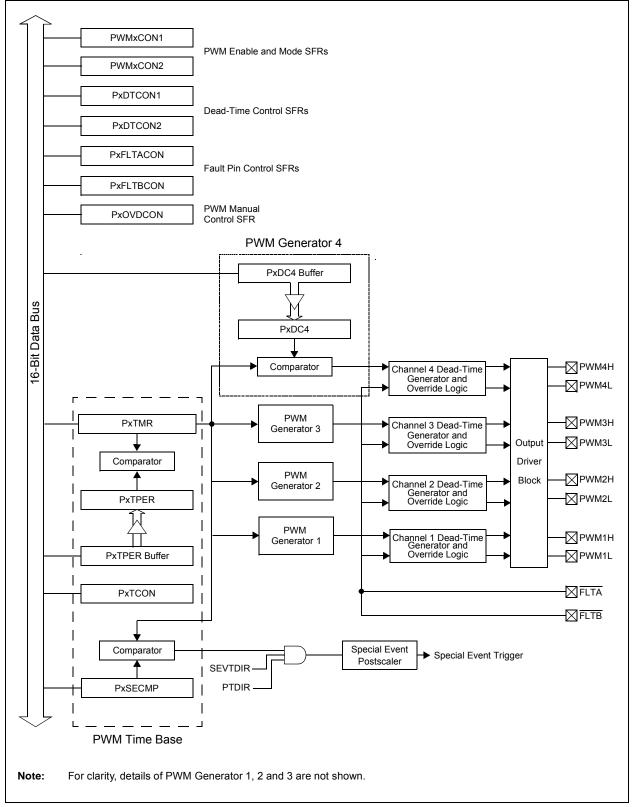
NOTES:

16.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)


The PWM module has the following features:

- Eight PWM I/O pins with four duty cycle generators
- · Up to 16-bit resolution
- 'On-the-fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
PTEN	—	PTSIDL	—	-	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	PTOPS<3:0> PTCKPS<1:0>							
bit 7							bit 0	
Legend:								
R = Readable		W = Writable b	bit	•	mented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	PTEN: PWM 1 = PWM time 0 = PWM time		er Enable bit					
bit 14	Unimplemen	ted: Read as 'o)'					
bit 13	PTSIDL: PWI	M Time Base St	op in Idle Mo	ode bit				
		e base halts in (e base runs in (
bit 12-8	Unimplemen	ted: Read as 'o)'					
bit 7-4	PTOPS<3:0>	: PWM Time Ba	ase Output P	ostscale Selec	t bits			
	1111 = 1:16	postscale						
	•							
	•							
	0001 = 1:2 pc 0000 = 1:1 pc							
bit 3-2		>: PWM Time I	Rase Innut Cl	lock Prescale !	Select hits			
	11 = PWM tin 10 = PWM tin 01 = PWM tin	ne base input c ne base input c ne base input c ne base input c	ock period is ock period is ock period is	5 64 Tcy (1:64 5 16 Tcy (1:16 5 4 Tcy (1:4 pre	prescale) prescale) escale)			
bit 1-0		-: PWM Time B	•	· ·				
	11 = PWM ti PWM u	ime base opera Ipdates	tes in a Cont	inuous Up/Dov	wn Count mode	with interrupts	for double	
	01 = PWM ti	me base opera me base opera me base opera	tes in a Singl	le Pulse mode				

REGISTER 16-1: PXTCON: PWMx TIME BASE CONTROL REGISTER

REGISTER 16-2: PxTMR: PWMx TIMER COUNT VALUE REGISTER

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTDIR				PTMR<14:8>	•				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTM	R<7:0>					
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15	PTDIR: PWM Time Base Count Direction Status bit (read-only)
	1 = PWM time base is counting down
	0 = PWM time base is counting up
bit 14-0	PTMR <14:0>: PWM Time Base Register Count Value bits

REGISTER 16-3: PxTPER: PWMx TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				PTPER<14:8	>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTPE	R<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1'		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-0 PTPER<14:0>: PWM Time Base Period Value bits

REGISTER 16-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SEVTDIR ⁽¹⁾			S	EVTCMP<14:8	>(2)				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			SEVTCM	/IP<7:0> (2)					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	SEVTDIR: S	Special Event Trig	gger Time Ba	se Direction bit	(1)				
	1 = A Specia	al Event Trigger v	will occur whe	en the PWM tim	ie base is cour	ting downward	S		
	•	al Event Trigger v			ie base is cour	iting upwards			
bit 14-0	SEVTCMP<	: 14:0>: Special E	vent Compa	re Value bits ⁽²⁾					

Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger.

2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—		PMOD4	PMOD3	PMOD2	PMOD1	
bit 15							bit	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
PEN4H ⁽¹⁾	PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	PEN4L ⁽¹⁾	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾	
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
					,			
-n = Value at I		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
-n = Value at I					ared	x = Bit is unkn	iown	
	POR				ared	x = Bit is unkn	iown	
bit 15-12	POR Unimplemen	'1' = Bit is set	0'		ared	x = Bit is unkn	nown	
bit 15-12	Unimplemen PMOD<4:1>: 1 = PWM I/O	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th	0' Mode bits le Independen	ʻ0' = Bit is cle t PWM Output	mode	x = Bit is unkn	iown	
-n = Value at F bit 15-12 bit 11-8	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th pin pair is in th	^{0'} Mode bits le Independen le Complemen	'0' = Bit is cle t PWM Output tary Output mo	mode	x = Bit is unkn	Iown	
bit 15-12	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th	^{0'} Mode bits le Independen le Complemen	'0' = Bit is cle t PWM Output tary Output mo	mode	x = Bit is unkn	iown	
bit 15-12 bit 11-8	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O PEN4H:PEN1 1 = PWMxH p	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th pin pair is in th IH: PWMxH I/C pin is enabled for	^{0'} Mode bits le Independen le Complemen D Enable bits ⁽¹ or PWM outpu	'0' = Bit is cle t PWM Output tary Output mo) it	mode ode	x = Bit is unkn	iown	
bit 15-12 bit 11-8	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O PEN4H:PEN1 1 = PWMxH p 0 = PWMxH p	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th pin pair is in th IH: PWMxH I/O pin is enabled fo pin is disabled;	0' Mode bits le Independen le Complemen D Enable bits ⁽¹ for PWM outpu I/O pin becom	'0' = Bit is cle t PWM Output tary Output mo t t nes general put	mode ode	x = Bit is unkn	iown	
bit 15-12 bit 11-8	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O PEN4H:PEN1 1 = PWMxH p 0 = PWMxH p	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th pin pair is in th IH: PWMxH I/C pin is enabled for	0' Mode bits le Independen le Complemen D Enable bits ⁽¹ for PWM outpu I/O pin becom	'0' = Bit is cle t PWM Output tary Output mo t t nes general put	mode ode	x = Bit is unkn	iown	
bit 15-12 bit 11-8 bit 7-4	Unimplemen PMOD<4:1>: 1 = PWM I/O 0 = PWM I/O PEN4H:PEN1 1 = PWMxH p 0 = PWMxH p PEN4L:PEN1 1 = PWMxL p	'1' = Bit is set ted: Read as ' PWM I/O Pair pin pair is in th pin pair is in th IH: PWMxH I/O pin is enabled fo pin is disabled;	0' Mode bits le Independen le Complemen D Enable bits ⁽¹⁾ or PWM outpu I/O pin becom Enable bits ⁽¹⁾ or PWM outpu	'0' = Bit is cle t PWM Output tary Output mo t ut nes general pur t	mode ode rpose I/O	x = Bit is unkn	iown	

REGISTER 16-5: PWMxCON1: PWMx CONTROL REGISTER 1

Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	—		SEVO	PS<3:0>		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	<u> </u>	—	_		IUE	OSYNC	UDIS	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15-12	•	nted: Read as '						
bit 11-8		0>: PWM Speci	al Event Trig	ger Output Post	scale Select b	its		
	1111 = 1:16	postscale						
	•							
	•	antanala						
	0001 = 1:2 p 0000 = 1:1 p							
bit 7-3	•	nted: Read as '	0'					
bit 2	-	ate Update Ena						
		to the active PE		are immediate				
	0 = Updates	to the active PD	C registers a	are synchronize	d to the PWM	time base		
bit 1	OSYNC: Ou	tput Override Sy	nchronizatio/	n bit				
		verrides via the					9	
1.1.0	-	overrides via the		gister occur on	next ICY boun	dary		
bit 0		Update Disable			ana diaabl'			
		from Duty Cycle from Duty Cycle						
	o opudico			Earlor regiotoro				

REGISTER 16-6: PWMxCON2: PWMx CONTROL REGISTER 2

REGISTER 16-7: PxDTCON1: PWMx DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTB	PS<1:0>			DTE	3<5:0>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DTA	PS<1:0>			DTA	<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown
bit 15-14	11 = Clock 10 = Clock 01 = Clock	Dead-Time Uperiod for Dead- period for Dead- period for Dead- period for Dead- period for Dead-	Time Unit B is Time Unit B is Time Unit B is	8 TCY 4 TCY 2 TCY			
bit 13-8	DTB<5:0>:	Unsigned 6-Bit [Dead-Time Va	llue for Dead-Ti	me Unit B bits		
bit 7-6 bit 5-0	11 = Clock 10 = Clock 01 = Clock 00 = Clock	>: Dead-Time U period for Dead- period for Dead- period for Dead- period for Dead- period for Dead- Unsigned 6-Bit [Time Unit A is Time Unit A is Time Unit A is Time Unit A is	8 TCY 6 4 TCY 6 2 TCY 8 TCY	me l Init A hits		
DIL 2-0	DTA<5:0>:	Unsigned 6-Bit L	Jeau-Time va	iue for Dead-II	me Unit A bits		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	_	—	—	—	—					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
DTS4A	DTS4I	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I					
bit 7							bit C					
Legend:												
R = Readab	le hit	W = Writable	hit	= Inimpler	mented bit, read	as '0'						
-n = Value a		'1' = Bit is set	UIL	'0' = Bit is cle		x = Bit is unkr	NOW/D					
					arcu							
bit 15-8	Unimplemer	nted: Read as 'o)'									
bit 7	-	d-Time Select for		nal Going Activ	/e bit							
		e provided from	•	Ū								
	0 = Dead tim	e provided from	Unit A									
bit 6		DTS4I: Dead-Time Select for PWM4 Signal Going Inactive bit										
		e provided from										
L:1 F) = Dead time provided from Unit A DTS3A: Dead-Time Select for PWM3 Signal Going Active bit										
bit 5		a-11me Select fo	•	nal Going Activ	/e bit							
		e provided from										
bit 4		I-Time Select fo		al Going Inacti	ve bit							
	1 = Dead tim	1 = Dead time provided from Unit B										
	0 = Dead tim	0 = Dead time provided from Unit A										
bit 3		DTS2A: Dead-Time Select for PWM2 Signal Going Active bit										
		 1 = Dead time provided from Unit B 0 = Dead time provided from Unit A 										
1.1.0		•										
bit 2		DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit										
		 Dead time provided from Unit B Dead time provided from Unit A 										
bit 1		d-Time Select for		nal Going Activ	/e bit							
		e provided from		Jen e e l'ignee								
		e provided from										
bit 0	DTS1I: Dead	I-Time Select fo	r PWM1 Sign	al Going Inacti	ve bit							
		e provided from										
	0 = Dead tim	e provided from	Unit A									

REGISTER 16-8: PxDTCON2: PWMx DEAD-TIME CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTAM	0-0	0-0	0-0	FAEN4	FAEN3	FAEN2	FAEN1
bit 7	—	_		FALIN4	FAENS	FALINZ	bit C
							DILC
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7 bit 6-4	0 = The Fault	t A input pin fur	ches all contro			ed in FLTACON	√<15:8>
bit 3	1 = PWM4H/ 0 = PWM4H/	t Input A Enabl PWM4L pin pai PWM4L pin pai	r is controlled r is not contro				
bit 2	1 = PWM3H/	t Input A Enabl PWM3L pin pai PWM3L pin pai	r is controlled				
bit 1	1 = PWM2H/	t Input A Enabl PWM2L pin pai PWM2L pin pai	r is controlled				
bit 0	1 = PWM1H/	t Input A Enabl PWM1L pin pai PWM1L pin pai	r is controlled				

REGISTER 16-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L				
bit 15							bit 8				
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLTBM	—	—	—	FBEN4 ⁽¹⁾	FBEN3 ⁽¹⁾	FBEN2 ⁽¹⁾	FBEN1 ⁽¹⁾				
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	hit		nented bit, read	l as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own				
					arcu		lowin				
bit 15-8	FBOVxH<4:1	>:FBOVxI <4:	1>: Fault Inpu	t B PWM Over	ride Value bits						
			•		ault input even	t					
					Fault input eve						
bit 7	FLTBM: Fault B Mode bit										
				Cycle-by-Cycle							
		• •		ol pins to the sta	ates programm	ed in FLTBCON	V<15:8>				
bit 6-4	•	ted: Read as '									
bit 3		t Input B Enabl		. –	_						
	1 = PWM4H/PWM4L pin pair is controlled by Fault Input B										
bit 2		 0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B FBEN3: Fault Input B Enable bit⁽¹⁾ 									
		1 = PWM3H/PWM3L pin pair is controlled by Fault Input B									
bit 1	0 = PWM3H/PWM3L pin pair is not controlled by Fault Input B FBEN2: Fault Input B Enable bit ⁽¹⁾										
	1 = PWM2H/PWM2L pin pair is controlled by Fault Input B										
				lled by Fault In	put B						
bit 0		t Input B Enabl									
				by Fault Input lled by Fault In							
	$\alpha = PWW11H/P$	21/1/1/11 nin noi	r in not contro								

REGISTER 16-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER

Note 1: Fault A pin has priority over Fault B pin, if enabled.

REGISTER 16-11: PXOVDCON: PWMx OVERRIDE CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
POVD4H	POVD4L	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L
bit 15		•				•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POUT4H	POUT4L	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L
bit 7		•		•		•	bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits

1 = Output on PWMx I/O pin is controlled by the PWM generator

0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit

bit 7-0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits

1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared

0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

REGISTER 16-12: PxDC1: PWMx DUTY CYCLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	1<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	1<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PDC1<15:0>:** PWM Duty Cycle #1 Value bits

REGISTER 16-13: PxDC2: PWMx DUTY CYCLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	2<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	2<7:0>			
bit 7							bit 0
Logondy							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 PDC2<15:0>: PWM Duty Cycle #2 Value bits

REGISTER 16-14: PxDC3: PWMx DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC3	3<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 PDC3<15:0>: PWM Duty Cycle #3 Value bits

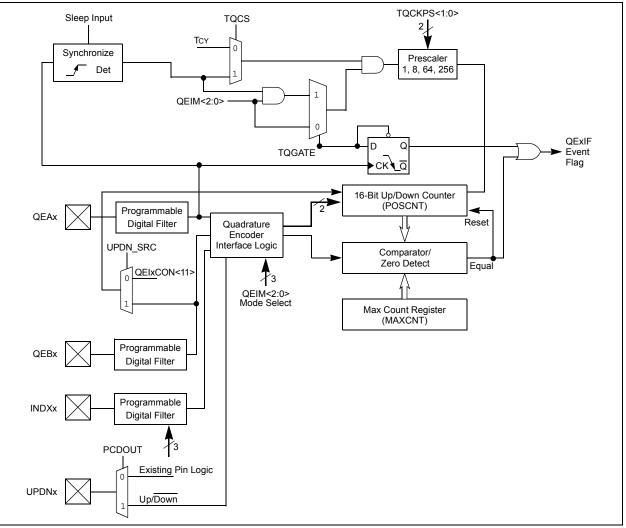
REGISTER 16-15: PxDC4: PWMx DUTY CYCLE REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	4<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PDC	4<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at P	OR	(1' = Bit is set (0' = Bit is cleared x = Bit is unknown				nown		

bit 15-0 PDC4<15:0>: PWM Duty Cycle #4 Value bits

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This section describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include the following:

- Three input channels for two phase signals and an index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-Bit Timer/Counter mode
- · Quadrature Encoder Interface interrupts

The QEI module's operating mode is determined by setting the appropriate bits, QEIM<2:0> (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR	_	QEISIDL	INDEX	UPDN		QEIM<2:0>	•
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	TQCK	PS<1:0>	POSRES	TQCS	UPDN_SRC ⁽¹
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is un	known
bit 15	1 = Position c 0 = No positio	ount Error Statu count error has on count error h g only applies	occurred nas occurred	2:0> = '110' oi	r'100')		
bit 14	-	ted: Read as '			,		
bit 13	QEISIDL: Sto	p in Idle Mode	bit				
		ue module ope module operat			dle mode		
bit 12	INDEX: Index	Pin State Stat	us bit (read-c	only)			
	1 = Index pin 0 = Index pin	-					
bit 11		on Counter Dir					
	0 = Position c	ounter directio ounter directio t when QEIM<	n is negative	(-)	when QEIM<2:	0> = 001.)	
bit 10-8		Quadrature En				,	
	110 = Quadra 101 = Quadra 100 = Quadra 011 = Unuser 010 = Unuser 001 = Starts	ature Encoder Iture Encoder Ir ature Encoder d (module disa d (module disa	Interface ena Iterface enabl Interface ena bled) bled)	bled (x4 mode ed (x2 mode) w bled (x2 mode) with Index Pul	se Reset of p nter Reset by	match (MAXCNT
bit 7	SWPAB: Pha	se A and Phas	e B Input Sw	ap Select bit			
		and Phase B ir and Phase B ir					
bit 6	PCDOUT: Po	sition Counter	Direction Sta	te Output Enal	ble bit		
					l logic controls s ormal I/O pin op		1)
bit 5	TQGATE: Tin	ner Gated Time	e Accumulatio	on Enable bit			
	•	ed time accum ed time accum		ed			

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER

Note 1: When configured for QEI mode, the control bit is a 'don't care'.

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 4-3	TQCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value (Prescaler utilized for 16-Bit Timer mode only.)
bit 2	POSRES: Position Counter Reset Enable bit 1 = Index pulse resets position counter 0 = Index pulse does not reset position counter (Bit only applies when QEIM<2:0> = 100 or 110.)
bit 1	TQCS: Timer Clock Source Select bit 1 = External clock from QEA pin (on the rising edge) 0 = Internal clock (Tcy)
bit 0	<pre>UPDN_SRC: Position Counter Direction Selection Control bit⁽¹⁾ 1 = QEB pin state defines position counter direction 0 = Control/status bit, UPDN (QEICON<11>), defines Position Counter (POSxCNT) direction</pre>

Note 1: When configured for QEI mode, the control bit is a 'don't care'.

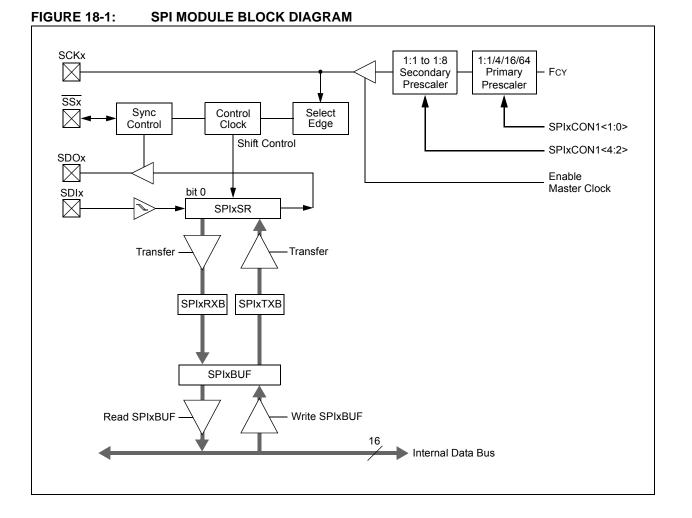
REGISTER 17-2: DFLTxCON: DIGITAL FILTER x CONTROL REGISTER

	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—	IMV<	2:0>	CEID
bit 15							bit 8
R/W-0		R/W-0		U-0	U-0	U-0	U-0
QEOUT		QECK<2:0>		—	—	—	—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, read	as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	nown
bit 15-11	Unimplemen	ted: Read as '0)'				
bit 10-9	IMV<1:0>: Inc	dex Match Valu	e bits				
					x and QEBx inp	ut pins during a	an index puls
		SxCNT register		et.			
		ture Count Mod					
	IMV1 = Requ	red state of Ph	ase B input s	signal for match	n on indev nulce		
	T = D = D	and state of Db					
	-		ase A input s		n on index pulse		
	In 2X Quadra	ture Count Mod	ase A input s <u>le:</u>	signal for match	n on index pulse		
	In 2X Quadra	ture Count Moc ts phase input :	ase A input s <u>le:</u> signal for ind	signal for match		_ = Phase B)	
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ	ture Count Moc ts phase input :	ase A input s l <u>e:</u> signal for ind selected Ph	signal for match	n on index pulse (0 = Phase A, 1	_ = Phase B)	
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count	ture Count Moc ts phase input s red state of the	ase A input s l <u>e:</u> signal for ind selected Ph Disable bit	signal for match lex state match nase input signa	n on index pulse (0 = Phase A, 1	_ = Phase B)	
bit 8	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts	ture Count Moc ts phase input s red state of the Error Interrupt I	ase A input s signal for ind selected Ph Disable bit rrors are disa	signal for match lex state match nase input signa abled	n on index pulse (0 = Phase A, 1	_ = Phase B)	
	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)	
bit 8 bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F	signal for match lex state match nase input signa abled abled	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)	
	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led	signal for match lex state match nase input signa abled abled Filter Output En	n on index pulse (0 = Phase A, 1 al for match on ir	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte	ture Count Mod ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>:	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Selec IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Seleci IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 110 = 1:128 c 101 = 1:64 cle 100 = 1:32 cle	ture Count Moc ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
	In 2X Quadra IMV1 = Seleci IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 c 101 = 1:128 c 101 = 1:32 ch 011 = 1:16 ch	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide clock divide ock divide ock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 101 = 1:128 ct 101 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide bock divide bock divide bock divide bock divide bock divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 101 = 1:128 ct 101 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto 001 = 1:2 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide cock divide ock divide cock divide ck divide ck divide ck divide	ase A input s signal for ind selected Pr Disable bit rrors are disa rrors are ena Pin Digital F led oled (normal	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	
bit 7	In 2X Quadra IMV1 = Select IMV0 = Requ CEID: Count 1 = Interrupts 0 = Interrupts QEOUT: QEA 1 = Digital filte 0 = Digital filte 0 = Digital filte QECK<2:0>: 111 = 1:256 ct 100 = 1:32 ct 011 = 1:16 ct 010 = 1:4 cto 001 = 1:2 cto 000 = 1:1 cto	ture Count Moo ts phase input s red state of the Error Interrupt I due to count e due to count e x/QEBx/INDXx er outputs enab er outputs disat QEAx/QEBx/IN clock divide cock divide ock divide cock divide ck divide ck divide ck divide	ase A input s signal for ind selected Ph Disable bit rrors are disa rrors are ena Pin Digital F led Ded (normal IDXx Digital	signal for match lex state match hase input signa abled Filter Output En pin operation)	n on index pulse (0 = Phase A, 1 al for match on ir able bit	_ = Phase B)	

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These


peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (Serial Data Input), SDOx (Serial Data Output), SCKx (Shift Clock Input or Output) and SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output, but in Slave mode, it is a clock input.

© 2009-2012 Microchip Technology Inc.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This insures		that	the	first	fr	ame
	transr	mission a	after	initializa	ation	is	not
	shifte	d or corru	pted.				

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.

Note:	Not all third-party devices support Frame
	mode timing. Refer to the SPI electrical
	characteristics for details.

- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.
- 5. To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources related to SPI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066

18.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

18.3 SPI Control Registers

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	—	SPISIDL	—		—		—
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
—	SPIROV	—	—	_	—	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx Enable bit
	1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	SPIROV: Receive Overflow Flag bit
	 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = Transmit not yet started; SPIxTXB is full
	0 = Transmit started; SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete; SPIxRXB is full 0 = Receive is not complete; SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15	l					1	bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽³⁾	СКР	MSTEN		SPRE<2:0>(2)	PPRE-	<1:0> (2)			
bit 7							bit			
Legend:										
R = Readable		W = Writable		-	nented bit, read					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
			o.1							
bit 15-13	-	nted: Read as '								
bit 12		able SCKx Pin	·	• •						
		SPI clock is disa SPI clock is ena								
bit 11	DISSDO: Disable SDOx Pin bit									
	1 = SDOx pin is not used by module; pin functions as I/O									
	0 = SDOx pin is controlled by the module									
bit 10	MODE16: Word/Byte Communication Select bit									
	1 = Communication is word-wide (16 bits)									
bit 9	 0 = Communication is byte-wide (8 bits) SMP: SPIx Data Input Sample Phase bit 									
DIL 9	Master mode		Die Phase bit							
	1 = Input dat	a sampled at e								
	-	a sampled at m	iddle of data o	output time						
	<u>Slave mode:</u> SMP must be cleared when SPIx is used in Slave mode.									
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾									
		•		on from active o	lock state to Id	le clock state (see bit 6)			
				on from Idle clo						
bit 7	SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾									
	$1 = \overline{SSx}$ pin used for Slave mode									
L:1 0	0 = SSx pin not used by module. Pin controlled by port function.									
bit 6		Polarity Select I		ve state is a low						
			•	e state is a high						
bit 5		ster Mode Enab		C						
	1 = Master m	ode								
		loue								

- 2: Do not set both the primary and secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both the primary and secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		_			_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	—	—		—		FRMDLY	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15		ned SPIx Supp					
bit 15	1 = Framed S	Plx support en	abled (SSx p	in used as fram	e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S	Plx support en Plx support dis	abled (SSx p sabled		e Sync pulse ir	nput/output)	
bit 15 bit 14	1 = Framed S 0 = Framed S SPIFSD: Frar	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Cor		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input	abled (SSx p sabled Direction Cor (slave)		e Sync pulse ir	nput/output)	
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse	abled (SSx p sabled Direction Coi (slave) tt (master)		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high		e Sync pulse ir	nput/output)	
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low		e Sync pulse ir	nput/output)	
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act	abled (SSx p sabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0'	ntrol bit	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy 0 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as ' me Sync Pulse nc pulse coinci	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first	trol bit bit bit clock	e Sync pulse ir	nput/output)	
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy 0 = Frame Sy	Plx support en Plx support dis ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as 'u me Sync Pulse nc pulse coinci nc pulse prece	abled (SSx p sabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first cdes first bit cl	trol bit bit bit clock		nput/output)	

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

19.0 INTER-INTEGRATED CIRCUIT (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²C™)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module, with its 16-bit interface, provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to two I^2 C interface modules, denoted as I2C1 and I2C2. Each I^2 C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supports both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; it detects bus collision and will arbitrate accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F/PIC24H Family Reference Manual*".

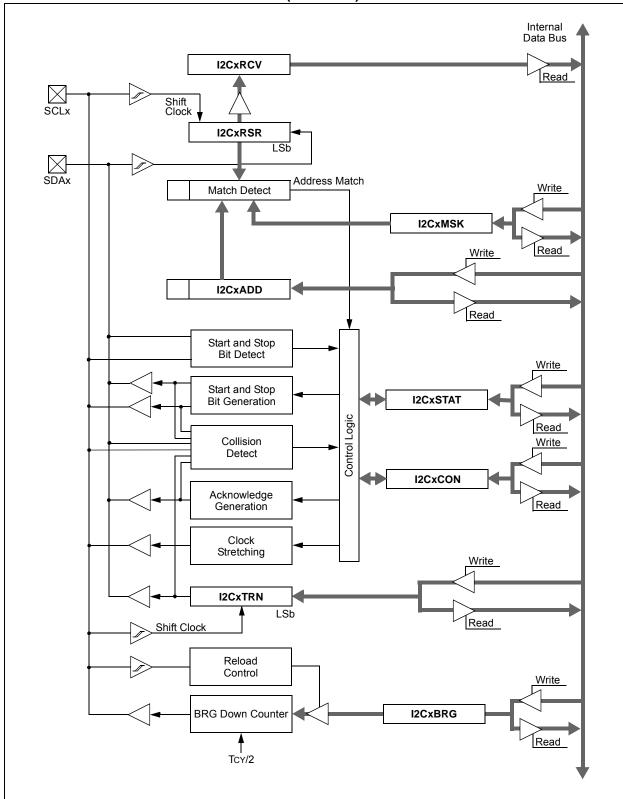


FIGURE 19-1: I^2C^{TM} BLOCK DIAGRAM (X = 1 OR 2)

19.2 ²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066

19.2.1 KEY RESOURCES

- Section 11. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.3 I²C Control Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated. REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15	-						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	OTTLEN	AGIND I	AUNEN	ROLIN		ROLIN	bit			
Legend:		U = Unimpler	mented bit, rea	d as '0'						
R = Readable	e bit	W = Writable	bit	HS = Hardwar	e Settable bit	HC = Hardwar	e Clearable bi			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	12CEN: 12Cx	(Enable bit								
DIL 15			le and configu	res the SDAX	and SCI v nine	as serial port pir	16			
					ed by port func		15			
bit 14	Unimpleme	nted: Read as	' 0 '							
bit 13	I2CSIDL: St	op in Idle Mode	e bit							
			eration when d		n Idle mode					
bit 12	 0 = Continue module operation in Idle mode SCLREL: SCLx Release Control bit (when operating as I²C slave) 									
	1 = Release SCLx clock									
	0 = Hold SCLx clock low (clock stretch)									
	If STREN = 1:									
	Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.									
			nission. Hardw	are clear at en	d of slave rece	ption.				
	If STREN =		v oply write '1'	to rologgo clo	k) Hardwara a	lear at beginnin	a of clavo			
	transmission				sk). Haluwale c	acar at beginnin	y of slave			
bit 11	IPMIEN: Inte	elligent Periphe	ral Manageme	nt Interface (IF	MI) Enable bit					
	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged									
	0 = IPMI mo	de disabled								
bit 10	A10M: 10-B	it Slave Addres	s bit							
		D is a 10-bit sla D is a 7-bit slav								
bit 9										
	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled									
		e control enabl								
bit 8		Bus Input Level								
		/O pin threshol SMBus input th	ds compliant w iresholds	ith SMBus spe	ecification					
bit 7	GCEN: Gen	eral Call Enabl	e bit (when ope	erating as I ² C s	slave)					
	1 = Enable receptio	-	a general call	address is rec	eived in the I20	CxRSR (module	is enabled for			
		l call address d	isabled							
bit 6	STREN: SC	Lx Clock Streto	h Enable bit (w	hen operating	as l ² C slave)					
		unction with th		. 0	,					
			eive clock strete eive clock stret							

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge
	0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit C
Legend:		U = Unimp	lemented bit,	read as '0'		C = Clearable bit	
R = Reada	ble bit	W = Writab	ole bit	HS = Hardwa	are Settable bit	HSC = Hardware Se	ettable/Clearable bit
-n = Value a	at POR	'1' = Bit is :	set	'0' = Bit is cl	eared	x = Bit is unknown	
bit 15	(when ope 1 = NACK 0 = ACK re	rating as I ² (received fro eceived from	m slave slave		naster transmit o ge.	operation)	
bit 14		ransmit Sta rating as I ² 0		licable to ma	ster transmit ope	eration)	
	0 = Master	r transmit is	not in progre			ar at end of slave A	cknowledge.
bit 13-11	Unimplem	ented: Rea	d as '0'				
bit 10	BCL: Mast	ter Bus Colli	sion Detect b	bit			
	0 = No coll	lision	been detect	-	naster operation		
bit 9	GCSTAT:	General Cal	Status bit				
	0 = Genera	al call addre	ss was recei ss was not re dress match	eceived	ll address. Hard	ware clear at Stop d	etection.
bit 8	ADD10: 10	D-Bit Addres	s Status bit				
	0 = 10-bit a		s not matched		0-bit address. H	ardware clear at Sto	p detection.
bit 7	IWCOL: W	/rite Collisio	n Detect bit				
	0 = No coll	lision		U		I ² C module is busy ared by software).	
bit 6			low Flag bit			- /	
			-			ng the previous byte	
	0 = No ove	erflow		· ·		ed by software).	
bit 5	0 = No ove Hardware	erflow set at attem	pt to transfer	· ·	I2CxRCV (cleare		
bit 5	0 = No ove Hardware = D_A: Data 1 = Indicat	erflow set at attem /Address bit es that the I	pt to transfer (when opera ast byte rece	I2CxRSR to ating as I ² C s ived was data	l2CxRCV (cleare lave)		

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete; I2CxRCV is full
	0 = Receive not complete; I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

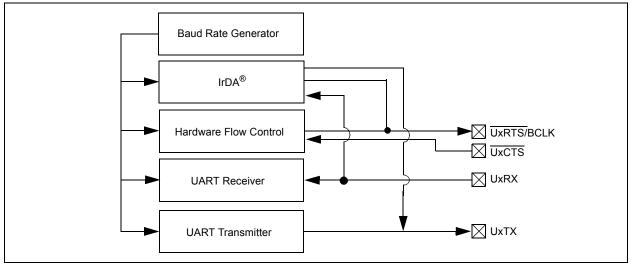
bit 9-0

AMSKx: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXMCX06A/X08A/X10A device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support
- A simplified block diagram of the UART is shown in Figure 20-1. The UART module consists of these key important hardware elements:
- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

20.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

20.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066

20.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

20.3 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>		
bit 15							bit 8		
	D 444 0		DM (0)	D 444 0	DAALO	D 444 0	D 444 0		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL		
bit 7							bit 0		
Legend:		HC = Hardwa	re Clearable I	oit					
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15	UARTEN: UA	ARTx Enable bi	t(1)						
	1 = UARTx is	s enabled; all L	ARTx pins ar	e controlled by	UARTx as defi	ned by UEN<1:	0>		
	0 = UARTx is minimal	s disabled; all l	JARTx pins a	re controlled by	y port latches; L	JARTx power c	onsumption is		
bit 14	-	ted: Read as '	0'						
bit 13	-	in Idle Mode bi							
	•	nue module ope		device enters lo	dle mode.				
		e module opera							
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾								
	1 = IrDA encoder and decoder enabled								
		oder and deco							
bit 11		le Selection for		bit					
		oin in Simplex n							
bit 10	Unimplemen	ted: Read as '	0'						
bit 9-8	UEN<1:0>: UARTx Enable bits								
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches								
	10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches								
					ed; UxCTS pin JxRTS/BCLK pii				
bit 7		e-up on Start bi			-		portiatorica		
		-		-		n the falling edu	ne: hit cleared		
	 UARTx will continue to sample the UxRX pin. Interrupt generated on the falling edge; bit cleared in hardware on the following rising edge. 								
	0 = No wake	-up enabled							
bit 6	LPBACK: UA	ARTx Loopback	Mode Select	bit					
		oopback mode. k mode is disal							
bit 5	•	o-Baud Enable							
	1 = Enable b	aud rate meas	urement on th		er – requires re	ception of a Syr	nc field (0x55)		
		ther data; clear			tion				
		e measuremen		•		mily Deferrer			
	ter to Section								
		17. "UART" abling the UAF			smit operation.	mily Relefence	<i>e Manual</i> " to		

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1		
UTXISEL1		UTXISEL0	0-0	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT		
bit 15	UTAIN	UTAISELU		UTABAK	UTAEN	UTABE	bit 8		
511 15							bit 0		
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0		
	URXISEL<1:0>		RIDLE	PERR	FERR	OERR	URXDA		
bit 7		ADDEN					bit 0		
Legend:		HC = Hardware Clearable bit C = Clearable bit							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set '0' = Bit is cleared		ared	red x = Bit is unknown				
bit 15,13	 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) 								
bit 14	UTXINV: Transmit Polarity Inversion bit $\frac{\text{If IREN = 0:}}{1 = \text{UxTX Idle state is '0'}}$ $0 = \text{UxTX Idle state is '1'}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA}^{\text{®}} \text{ encoded UxTX Idle state is '1'}}$ $0 = \text{IrDA encoded UxTX Idle state is '0'}$								
bit 12	Unimplemented: Read as '0'								
bit 11	UTXBRK: Transmit Break bit								
bit 10	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed UTXEN: Transmit Enable bit⁽¹⁾ 								
	 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and the buffer is reset. UxTX pin controlled by port. 								
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)								
	 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written 								
bit 8	TRMT: Transi	mit Shift Regist	er Empty bit ((read-only)					
	 1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 								
Note 1: Re	efer to Section	17. "UART"	(DS70188)	in the <i>"dsPIC</i> :	33F/PIC24H Fa	mily Reference	e <i>Manual"</i> for		

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits					
	 11 = Interrupt is set on the UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on the UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters 					
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)					
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled 					
bit 4	RIDLE: Receiver Idle bit (read-only)					
	1 = Receiver is Idle0 = Receiver is active					
bit 3	PERR: Parity Error Status bit (read-only)					
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected 					
bit 2	FERR: Framing Error Status bit (read-only)					
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected 					
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)					
	1 = Receive buffer has overflowed					
	$0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) will resetthe receiver buffer and the UxRSR to the empty state.$					
bit 0	URXDA: Receive Buffer Data Available bit (read-only)					
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty 					

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

21.0 ENHANCED CAN MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN™ technology) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJXXXMCX06A/X08A/X10A devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation

- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

• Extended Data Frame:

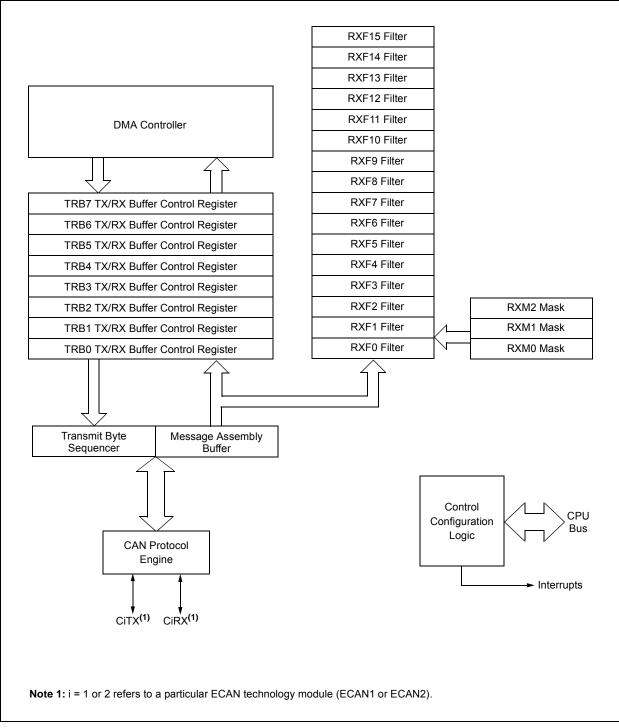
An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 21-1: ECAN™ TECHNOLOGY MODULE BLOCK DIAGRAM

21.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module cannot be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

21.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set, and the TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = 111. In this mode, the data which is in the message assembly buffer until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0
—	-	CSIDL	ABAT	_		REQOP<2:0>	
bit 15							bit
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
	OPMODE<2:0	>	_	CANCAP		_	WIN
bit 7							bit
Legend:		r = Reserved	bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is se		ʻ0' = Bit is cle	-	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as	'O'				
bit 13	-	p in Idle Mode I					
		•		levice enters Id	le mode		
		e module opera					
bit 12		t All Pending Tr					
		ll transmit buffe will clear this bi		nsmission smissions are a	aborted		
bit 11	Reserved:	Do no use					
bit 10-8	REQOP<2:0	>: Request Op	peration Mode	bits			
	111 = Set Li	sten All Messa	ges mode				
		rved – do not us					
		rved – do not us					
		onfiguration mo sten Only Mode					
		oopback mode	5				
		isable mode					
	000 = Set N	ormal Operatio	n mode				
bit 7-5		2:0>: Operation					
		le is in Listen A	II Messages n	node			
	110 = Rese 101 = Rese						
		le is in Configu	ration mode				
		le is in Listen C					
		le is in Loopba					
		le is in Disable le is in Normal		de			
bit 4		nted: Read as	-	ue			
bit 3	-			Capture Event	Enable bit		
bit 5		•		nessage receiv			
		CAN capture		licectage recent	•		
bit 2-1	Unimpleme	nted: Read as	'0'				
bit 0	WIN: SFR	Map Window Se	elect bit				
	1 = Use filte	r window					
	0 = Use buff						

REGISTER 21-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	— DNCNT<4:0>					
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as ')'				
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits			
	10010-1111	1 = Invalid sele	ection				
	10001 = Con	npare up to data	a byte 3, bit 6	with EID<17>			
	•						
	•						
	•						
		npare up to data not compare da		with EID<0>			

REGISTER	ZI-J. CIVLO			CODE REGIS			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—			FILHIT<4:()>	
bit 15							bit
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_				ICODE<6:0>	>		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as ')'				
bit 12-8	-	Filter Hit Num					
	10000-1111 01111 = Filte	1 = Reserved r 15					
	•						
	•						
	•						
	00001 = Filte 00000 = Filte						
bit 7	Unimplemen	ted: Read as ')'				
bit 6-0		Interrupt Flag					
	1000100 = F 1000011 = R		interrupt w interrupt				
		11111 = Rese B15 buffer Inte					
	•						
	0001000 = R 0000111 = T 0000110 = T 0000101 = T 0000100 = T 0000011 = T 0000010 = T 0000010 = T	B9 buffer intern B8 buffer intern RB7 buffer inter RB6 buffer inte RB5 buffer inte RB4 buffer inte RB3 buffer inte RB2 buffer inte RB1 buffer inte	rrupt rrupt rrupt rrupt rrupt rrupt rrupt rrupt				

REGISTER 21-3: CiVEC: ECAN™ INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		—	—	—		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		<u> </u>			FSA<4:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl€	eared	x = Bit is unkr	nown
bit 15-13 bit 12-5 bit 4-0	111 = Reserv 110 = 32 buf 101 = 24 buf 100 = 16 buf 011 = 12 buf 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAM ers in DMA RAM ers in DMA RAM ers in DMA RAM ers in DMA RAM hted: Read as 'n 'IFO Area Starts 31 buffer 30 buffer	M M M M 1 1 1 0	its			

REGISTER 21-4: CIFCTRL: ECAN[™] FIFO CONTROL REGISTER

REGISTER	21-5: CiFIFC): ECAN™ FIF	O STATU	IS REGISTER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBF	°<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				FNR	B<5:0>		
bit 7		•					bit (
Legend:							
R = Readab	le bit	W = Writable bi	t	U = Unimpler	nented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			iown
bit 13-8	<pre>FBP<3:0>: FI 011111 = RB 011110 = RB</pre>	30 buffer B1 buffer	Pointer bit	S			
bit 7-6	Unimplemen	ted: Read as '0'					
bit 5-0	FNRB<5:0>: 011111 = RB 011110 = RB • • • 000001 = TR 000000 = TR	B1 buffer	Buffer Po	inter bits			

DS70594D-page 224

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15	I						bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit
Legend:				C = Cle	earable bit		
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 15-14	Unimplomor	nted: Read as '	0'				
bit 13	-	mitter in Error		bit			
DIL 15		ter is in Bus Of		DI			
	0 = Transmitt	ter is not in Bus	off state				
bit 12		mitter in Error		ssive bit			
		ter is in Bus Pa ter is not in Bus		۵			
bit 11		iver in Error Sta		-			
		is in Bus Pass					
		is not in Bus P					
bit 10		nsmitter in Erro		ng bit			
		ter is in Error W ter is not in Erro		ate			
bit 9		ceiver in Error	-				
		is in Error War	-				
	0 = Receiver	is not in Error	Warning state	•			
bit 8		nsmitter or Reg		•	ı bit		
		ter or receiver i ter or receiver i		•			
bit 7		d Message Rec		•			
		request has oc		or lug bit			
	0 = Interrupt	request has no	t occurred				
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt F	lag bit			
		request has oc request has no					
bit 5				ources in CilN	TF<13:8> regist	or)	
bit 5		request has oc					
		request has no					
bit 4	Unimplemer	ted: Read as	0'				
bit 3	FIFOIF: FIFO	Almost Full In	terrupt Flag b	oit			
		request has oc					
	-	request has no					
bit 2		Buffer Overflo request has oc		ag bit			
		request has no					
bit 1	-	ffer Interrupt F					
	1 = Interrupt	request has oc	curred				
	-	request has no					
bit 0		ffer Interrupt Fla					
		request has oc request has no					
	0 – menupi	icquesi nas no					

© 2009-2012 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				_		<u> </u>	_
bit 15							bit
	DAAL O		11.0				
R/W-0	R/W-0 WAKIE	R/W-0 ERRIE	U-0	R/W-0 FIFOIE	R/W-0 RBOVIE	R/W-0 RBIE	R/W-0 TBIE
bit 7	WARLE		_		RBOVIE	RBIE	bit
Legend: R = Readab	le hit	W = Writable	bit	II – Unimpler	mented bit, read	l ac 'O'	
-n = Value a		'1' = Bit is set		0 – Onimpler 0' = Bit is cle		x = Bit is unkr	NOWD
				0 Dit io oid			
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	•	Message Inte		bit			
		request enable					
	0 = Interrupt	request not ena	abled				
bit 6		Wake-up Activi		nable bit			
		request enable					
	•	request not ena					
bit 5		Interrupt Enab					
		request enable request not ena					
bit 4	•	ited: Read as '					
	-			. 1. 14			
bit 3		Almost Full In Almost Full In					
		request not ena					
bit 2	•	Buffer Overflov		able bit			
		request enable					
	0 = Interrupt	request not ena	abled				
bit 1		ffer Interrupt Ei					
		request enable					
	•	request not ena					
bit 0		fer Interrupt Er					
		request enable request not ena					
	0 – menupti	request not ena	abieu				

REGISTER 21-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

REGISTER 21-8: CiEC: ECAN[™] TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	t	U = Unimplem	nented bit, re	ad as '0'	
-n = Value at P	= Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown	

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJV	V<1:0>			BRF	P<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un			nown
L							
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7-6	SJW<1:0>: S	Synchronization	Jump Width	bits			
	11 = Length i						
	10 = Length i						
	01 = Length i						
	00 = Length i						
bit 5-0		Baud Rate Pres					
		`q = 2 x 64 x 1/l	-CAN				
	•						
	•						
	•	·					
		iq = 2 x 3 x 1/F iq = 2 x 2 x 1/F					
		$Q = 2 \times 2 \times 1/F$ $Q = 2 \times 1 \times 1/F$					
	00 0000 - I						

REGISTER 21-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL	—	_			SEG2PH<2:0>	
bit 15		L	ł		l		bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2:0	>		PRSEG<2:0>	
bit 7							bit (
Legend:							
R = Readable	h:t		, bit		monted bit rea	ad aa '0'	
-n = Value at F		W = Writable		0 = Onimpler	mented bit, rea	x = Bit is unkn	0.110
	UR		:L		areu		IOWI
bit 15	Unimplemen	ted: Read as	' 0'				
bit 14	-		Line Filter for \	Nake-up bit			
		bus line filter		·			
	0 = CAN bus	line filter is no	t used for wak	e-up			
bit 13-11	Unimplemen	ted: Read as	ʻ0'				
bit 10-8	SEG2PH<2:0)>: Phase Bu	ffer Segment 2	bits			
	111 = Length						
	000 = Length						
bit 7		0	ent 2 Time Sel	ect bit			
	1 = Freely pro		oits or Informat	tion Processing	ı Time (IPT), v	/hichever is grea	ter
bit 6		le of the CAN				0	
	•		ee times at the	sample point			
	0 = Bus line is	s sampled one	ce at the samp	le point			
bit 5-3	SEG1PH<2:0)>: Phase But	ffer Segment 1	bits			
	111 = Length						
	000 = Length						
bit 2-0			n Time Segme	nt bits			
	111 = Length 000 = Length						
	ooo – Lengin	JI A I GI					

REGISTER 21-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15	·						bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7	·				· · · · · · · · · · · · · · · · · · ·		bit 0
Legend:							
D – Doodahla	hit	M = M/ritoblo	hit.		monted hit read	aa 'O'	

R = Readable bit	= Readable bit W = Writable bit		d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP	<3:0>			F2BI	D<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP	<3:0>			F0B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	hit	W = Writable	hit	U = Unimplem	ented hit rea	d as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
		2.1.0 000		0 2000 0000			
bit 15-12	F3BP<3:0>:	RX Buffer Writt	en when Filte	er 3 Hits bits			
		hits received in		-			
		hits received in	NRX Buffer 1	4			
	•						
	•						
	0001 = Filter	hits received ir	n RX Buffer 1				
	0000 = Filter	hits received in	n RX Buffer 0				
bit 11-8		RX Buffer Writt					
		hits received in hits received in		-			
	•		li o C Ballor I				
	•						
	•						
		hits received in hits received in					
bit 7-4		RX Buffer Writt					
		hits received in hits received in		-			
	•		THAT Durier 1	-			
	•						
	•						
		hits received in hits received in					
bit 3-0	F0BP<3:0>:	RX Buffer Writt	en when Filte	er 0 Hits bits			
		hits received in					
	1110 = Filter	hits received ir	n RX Buffer 1	4			
	•						
	•						
	0001 = Filter	hits received in					
		TIILS IECEIVEU II					

REGISTER 21-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BP	<3:0>			F6BF	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BP	<3:0>			F4BF	P<3:0>	
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemer	nted bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 15-12	1111 = Filter	RX Buffer Writt hits received in hits received in	n RX FIFO bu	uffer			
	•						
		hits received ir hits received ir					
bit 11-8	1111 = Filter	RX Buffer Writt hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
	•						
		hits received ir hits received ir					
bit 7-4	1111 = Filter	RX Buffer Writt hits received ir hits received ir	n RX FIFO bu	uffer			
	•						
		hits received ir					
bit 3-0	F4BP<3:0>: 1111 = Filter	RX Buffer Writt hits received in hits received in	en when Filte n RX FIFO bu	er 4 Hits bits uffer			
	•						
	• 0001 = Filter 0000 = Filter	hits received in					

REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11BP	?<3:0>			F10E	3P<3:0>	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	<3:0>			F8B	P<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
bit 15-12		: RX Buffer Wri hits received ir					
		hits received in		-			
	•						
	•						
	•						
		hits received in hits received in					
bit 11-8		: RX Buffer Wri					
		hits received ir hits received ir		-			
	•			+			
	•						
	•						
		hits received ir hits received ir					
bit 7-4	F9BP<3:0>:	RX Buffer Writt	en when Filte	er 9 Hits bits			
		hits received ir hits received ir					
	•		TTOX Dulici T	-			
	•						
	•						
		hits received ir hits received ir					
bit 3-0	F8BP<3:0>:	RX Buffer Writt	en when Filte	er 8 Hits bits			
	1111 = Filter	hits received in	n RX FIFO bu	Iffer			
	1110 = Filter	hits received in	n RX Buffer 1	4			
	•						
	•						
	•						
		hits received ir					

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F15BF	o<3:0>			F14E	3P<3:0>	
bit 15							bit 8
DAMO	DAMA	DAMA	DAALO		DAALO	DAMA	DAMA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7	F13BF	~3:0>			F12E	3P<3:0>	bit C
							DILU
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unki	nown
bit 15-12	1111 = Filter 1110 = Filter	: RX Buffer Wri hits received in hits received in	n RX FIFO bu	uffer			
	•						
	•						
		hits received in hits received in					
bit 11-8	1111 = Filter	: RX Buffer Wri hits received in hits received in	n RX FIFO bu	uffer			
	•						
	•						
		hits received in hits received in					
bit 7-4	1111 = Filter	: RX Buffer Wri hits received in hits received in	n RX FIFO bu	uffer			
	•						
	•						
		hits received in hits received in					
bit 3-0	F12BP<3:0>	: RX Buffer Wri	tten when Fil	ter 12 Hits bits			
		hits received in hits received in hits received in					
	•						
	•						
		hits received in hits received in					

REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ...,15)

						•	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID<	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>		_	EXIDE		EID<1	7:16>
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15-5	SID<10:0>: S	tandard Identif	ier bits				
				1' to match filte 0' to match filte			
bit 4	Unimplemen	ted: Read as '	כ'				
bit 3	EXIDE: Exte	nded Identifier	Enable bit				
	If MIDE = 1, t	hen:					
				dentifier addres			
			th standard id	dentifier addres	ses		
	<u>If MIDE = 0, t</u> Ignore EXIDE						
bit 2	Unimplemen	ted: Read as '	כ'				
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits				
				1' to match filte			
	0 = Message	address bit, El	Dx, must be '	0' to match filte	r		

REGISTER 21-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID)<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set				ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 =Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0)
F7MS	SK<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MSh	<<1:0>	
bit 15							k	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0)
	SK<1:0>	F2MSł	<<1:0>	F1MS	K<1:0>	FOMSH	-	
bit 7							k	bit 0
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-14		: Mask Source	e for Filter 7 bi	t				
		ed; do not use	riotoro contain	maak				
	•	ince Mask 2 reg ince Mask 1 reg	•					
		ince Mask 0 reg						
bit 13-12	•	·: Mask Source						
		ed; do not use						
		nce Mask 2 reg						
		ince Mask 1 reg ince Mask 0 reg						
bit 11-10	-	: Mask Source	-					
		ed; do not use						
		nce Mask 2 reg						
		ince Mask 1 reg						
bit 9-8	-	ince Mask 0 reg	-					
DIL 9-0		ed; do not use		L				
		ince Mask 2 reg	gisters contain	mask				
	•	ince Mask 1 reg	•					
	-	ince Mask 0 reg	-					
bit 7-6		 Mask Source do not use 	e for Filter 3 bi	t				
		ince Mask 2 reg	pisters contain	mask				
		ince Mask 1 reg						
	00 = Accepta	ince Mask 0 reg	gisters contain	mask				
bit 5-4		: Mask Source	e for Filter 2 bi	t				
		ed; do not use ince Mask 2 reg	nistore contain	mask				
		ince Mask 2 reg						
		nce Mask 0 reg						
bit 3-2	F1MSK<1:0>	: Mask Source	e for Filter 1 bi	t				
		ed; do not use						
		ince Mask 2 reg ince Mask 1 reg	-					
		ince Mask 0 reg						
bit 1-0	-	: Mask Source	-					
	11 = Reserve	ed; do not use	-					
	10 = Accepta	nce Mask 2 reg						
		ince Mask 1 reg						
	00 = Accepta	nce Mask 0 reg	gisters contain	mask				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F15M	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	
bit 15						•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0
F11M	SK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MSł	<<1:0>	
bit 7								bit C
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15-14	F15MSK<1:0)>: Mask Sourc	e for Filter 15	bit				
		ed; do not use						
		ince Mask 2 reg						
		ince Mask 1 reg ince Mask 0 reg						
bit 13-12	-	>: Mask Sourc						
511 10 12		ed; do not use		bit				
		ince Mask 2 reg	gisters contain	n mask				
	•	ince Mask 1 reg	•					
	-	ince Mask 0 reg						
bit 11-10		>: Mask Sourc	e for Filter 13	bit				
		ed; do not use	niatora contain	maak				
		ince Mask 2 reg ince Mask 1 reg						
		ince Mask 0 reg						
bit 9-8	-	>: Mask Sourc						
	11 = Reserve	ed; do not use						
		ince Mask 2 reg						
		ince Mask 1 reg						
h it 7 C		ince Mask 0 reg						
bit 7-6		Hask Sourced; do not use	e for Fliter 11	DIT				
		ince Mask 2 reg	nisters contain	mask				
		ince Mask 1 reg						
	00 = Accepta	ince Mask 0 reg	jisters contain	n mask				
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10	bit				
		ed; do not use						
		ince Mask 2 reg						
	•	ince Mask 1 reg ince Mask 0 reg	•					
bit 3-2		: Mask Source						
511 0 2		ed; do not use						
		ince Mask 2 reg	gisters contain	n mask				
	01 = Accepta	ince Mask 1 reg	gisters contain	n mask				
	-	ince Mask 0 reg						
bit 1-0		: Mask Source	for Filter 8 bit	İ				
		ed; do not use	1.1					
		ince Mask 2 reg						
		Ince Mask 1 reg						
		ince Mask 0 reg	JISICIS CUITAIL	masn				

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

REGISTER 21-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	<10:3>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID<2:0>		_	MIDE	_	EID<1	17:16>
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	SID<10:0>:	Standard Identifi	er bits				
		bit, SIDx, in filter x, is a don't care i	•	parison			
bit 4	Unimpleme	ented: Read as '0	,				
bit 3	MIDE: Iden	tifier Receive Mo	de bit				
	0 = Match e	only message type either standard or Filter SID) = (Mes	extended a	ddress messag	e if filters match	י. ו	(IDE bit in filter
bit 2	Unimpleme	ented: Read as '0	,				
bit 1-0	EID<17:16>	Extended Identi	ifier bits				
		bit, EIDx, in filter ox, is a don't care					

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

Legend:		C= Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXFUL15:RXFUL0: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 21-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16
bit 7							bit 0

Legend:		C= Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL31:RXFUL16:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 21-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0

Legend:		C= Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF15:RXOVF0: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 21-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
bit 15							bit 8

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
bit 7							bit 0

Legend:		C= Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RXOVF31:RXOVF16: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

R/W-0									
<1:0>									
bit									
R/W-0									
I<1:0>									
bit									
own									
Buffer TRBn is a receive buffer									
TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted									
0 = Message completed transmission successfully									
XLARBm: Message Lost Arbitration bit ⁽¹⁾									
TXERRm: Error Detected During Transmission bit ⁽¹⁾									
 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 									
TXREQm: Message Send Request bit Setting this bit to '1' requests sending a message. The bit will automatically clear when the message									

REGISTER 21-26: CiTRmnCON: ECAN[™] TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

Note: T	he buffers, SID, I	EID, DLC, Data	Field and R	eceive Status re	gisters, are lo	cated in DMA R	AM.
REGISTER	21-27: CiTRB	BnSID: ECAN	™ BUFFER	n STANDAR	D IDENTIFIE	ER (n = 0, 1,	, 31)
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_					SID<10:6>		
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		SID<	5:0>			SRR	IDE
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	o'				
bit 12-2	SID<10:0>: 3	Standard Identif	fier bits				
bit 1	SRR: Substit	ute Remote Re	quest bit				
	1 = Message 0 = Normal m	will request rer nessage	note transmi	ssion			

bit 0 **IDE:** Extended Identifier bit

1 = Message will transmit extended identifier

0 = Message will transmit standard identifier

'1' = Bit is set

REGISTER 21-28: CiTRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	_	—	_		EID<'	17:14>	
bit 15				·			bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<13:6>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bi	t	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

-n = Value at POR

x = Bit is unknown

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							

REGISTER 21-29: CiTRBnDLC: ECAN™ BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 21-30: CiTRBnDm: ECAN™ BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			TRBnD	m<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TRnDm<7:0>:** Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

REGISTER 21-31: CiTRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT<4:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	-	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJXXXMCX06A/X08A/X10A devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

22.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

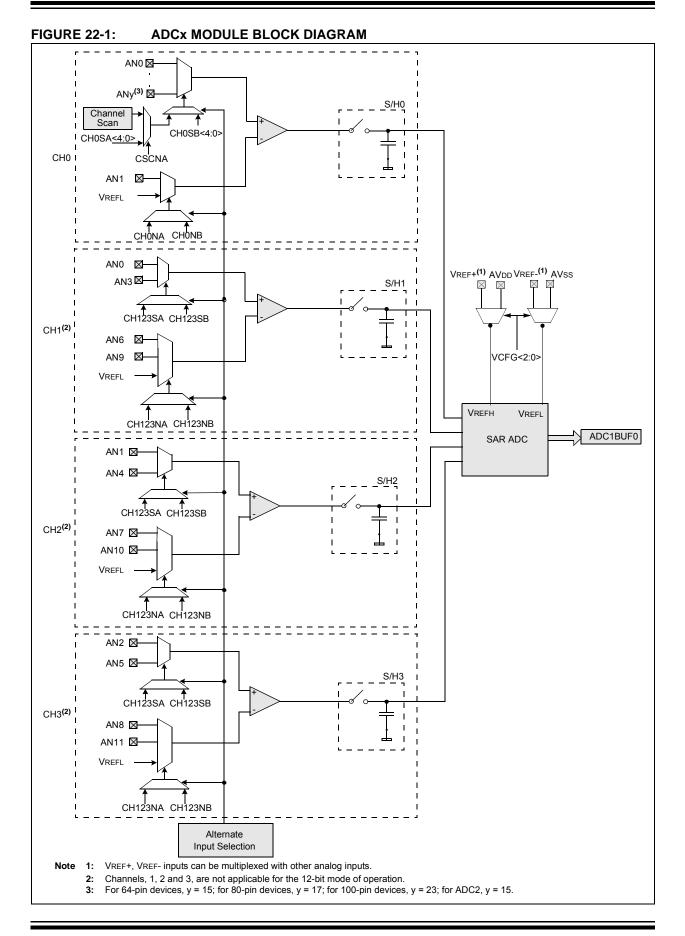
- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported.
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device.

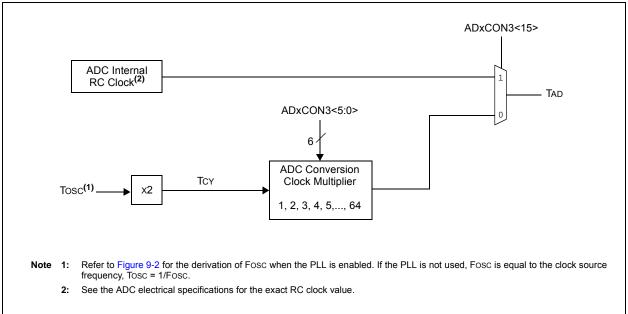
A block diagram of the ADC is shown in Figure 22-1.

22.2 ADC Initialization

The following configuration steps should be performed.


- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority

22.3 ADC and DMA


If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM Buffer Pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

22.4 ADC Helpful Tips

- 1. The SMPI<3:0> (AD1CON2<5:2>) control bits:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated if enabled.
 - b) When the CSCNA bit (AD1CON2<10>) is set to '1', determines when the ADC analog scan channel list defined in the AD1CSSL/ AD1CSSH registers starts over from the beginning.
 - c) On devices without a DMA peripheral, determines when ADC result buffer pointer to ADC1BUF0-ADC1BUFF, gets reset back to the beginning at ADC1BUF0.
- On devices without a DMA module, the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF regardless of which analog inputs are being used subject to the SMPI<3:0> bits (AD1CON2<5:2>) and the condition described in 1c above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- On devices with a DMA module, the ADC module has only 1 ADC result buffer, (i.e., ADC1BUF0), per ADC peripheral and the ADC conversion result must be read either by the CPU or DMA controller before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in manual sample mode, particularly where the users code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. On devices with two ADC modules, the ADCxPCFG registers for both ADC modules must be set to a logic '1' to configure a target I/O pin as a digital I/O pin. Failure to do so means that any alternate digital input function will always see only a logic '0' as the digital input buffer is held in Disable mode.

22.5 ADC Resources

Many useful resources related to ADC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en546066

22.5.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM	<1:0>				
bit 15							bit 8				
D 11/ A	54446	-				D 444 A					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC,HS	R/C-0, HC, HS				
	SSRC<2:0>		—	SIMSAM	ASAM	SAMP	DONE				
bit 7							bit C				
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit	C= Clea	rable bit				
R = Readable	bit	W = Writable b			mented bit, read						
-n = Value at l		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown				
bit 15	ADON: ADC	Operating Mode	e bit								
		dule is operating)								
	0 = ADC is o										
bit 14	-	ted: Read as '0									
bit 13	•	o in Idle Mode b									
			ration when dev on in Idle mode		mode						
bit 12		DMA Buffer Bui									
SIT 12			n the order of co	nversion. The	module will prov	vide an addres	s to the DMA				
			as the address		•						
			n Scatter/Gathe								
bit 11			ed on the index	of the analog	input and the s		Duffer				
bit 10	-	ted: Read as '0									
		it or 12-Bit Ope channel ADC o									
		channel ADC o									
bit 9-8		Data Output Fo									
	For 10-Bit Op	-									
			= sddd dddd		where s = .NO	ſ.d<9>)					
			d dddd dd00 ssss sssd do		ere a = NOT d	<9>)					
			0dd dddd dd			,					
	For 12-Bit Op	eration:									
	Ų	,	= sddd dddd		where s = .NO	ſ.d<11>)					
			d dddd dddd ssss sddd do		ere a = NOT d	<11>)					
			lddd dddd dd			(117)					
			Source Select bi								
bit 7-5		l countor onde	sampling and st	arts conversio	n (auto-convert)					
bit 7-5			 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 								
bit 7-5	110 = Reserv	ved	camping and of			/					
bit 7-5	110 = Reserv 101 = Reserv	ved ved			are ends same		conversion				
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWN	ved ved ner (Timer5 for A A interval ends s	ADC1, Timer3 fo sampling and sta	r ADC2) comp arts conversior	้า	ling and starts					
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWN 010 = GP tim	ved ved her (Timer5 for A A interval ends s her (Timer3 for A	ADC1, Timer3 fo sampling and sta ADC1, Timer5 fo	r ADC2) comp arts conversior r ADC2) comp	n bare ends samp	ling and starts					
bit 7-5	110 = Reserv 101 = Reserv 100 = GP tim 011 = MPWN 010 = GP tim 001 = Active	ved ved her (Timer5 for A A interval ends s her (Timer3 for A transition on IN	ADC1, Timer3 fo sampling and sta	r ADC2) comp arts conversior r ADC2) comp npling and star	n bare ends samp rts conversion	ling and starts					

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)

REGISTER 22-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	 When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'. 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)

	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>			_	CSCNA	CHPS	S<1:0>
bit 15							bit 8
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—		SMPI	<3:0>		BUFM	ALTS
bit 7							bit (
Legend:							
R = Readable	bit	W = Writab	le bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13		Convertor V	ltaga Dafaranaa (Configuration	bito		
DIL 15-15		VREF+	VREF-		DIIS		
				=			
		AVDD rnal VREF+	Avss Avss	-			
		AVDD	External VREF-	-			
		rnal VREF+	External VREF-				
		AVDD	Avss	-			
bit 12-11	Unimplemen	ted: Read as	s '0'	_			
bit 10	-		ctions for CH0+ du	ring Sample	A bit		
	1 = Scan inp	•		0 1			
	0 = Do not so	can inputs					
bit 9-8	CHPS-1.0-	Selects Cha	anala I Itilizad hita				
	When AD12E	3 = 1, CHPS	<1:0> is: U-0, Un	mplemented	l, Read as '0'.		
	When AD12E 1x = Convert	B = 1, CHPS ts CH0, CH1	<1:0> is: U-0, Un , CH2 and CH3	mplementec	l, Read as '0'.		
	When AD12E	B = 1, CHPS ts CH0, CH1 ts CH0 and (<1:0> is: U-0, Un , CH2 and CH3	mplementec	l, Read as '0'.		
	When AD12E 1x = Convert 01 = Convert 00 = Convert	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0	<1:0> is: U-0, Un , CH2 and CH3	-	l, Read as '0'.		
	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu	BUFM = 1) Iffer, user sho	ould access data		
bit 7	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer	BUFM = 1) Iffer, user sho	ould access data		
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplement	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling ted: Read as	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of buffer g first half of buffer s '0'	BUFM = 1) uffer, user sho , user should	ould access data access data in	the second ha	lf
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplement	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling ted: Read as Selects Incre	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM	BUFM = 1) uffer, user sho , user should	ould access data access data in	the second ha	lf
bit 7 bit 6 bit 5-2	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increment	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling ted: Read as Selects Incre er Interrupt b ments the D	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge	BUFM = 1) uffer, user sho , user should A Address Bi	ould access data access data in ts or Number of	the second ha	lf ersion
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling ted: Read as Selects Incre er Interrupt b ments the Di ersion operat	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion	BUFM = 1) iffer, user should , user should A Address Bi nerates inter	ould access data access data in ts or Number of rupt after comp	the second ha Sample/Conve letion of every	lf ersion 16th sample
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or ge	BUFM = 1) iffer, user should , user should A Address Bi nerates inter	ould access data access data in ts or Number of rupt after comp	the second ha Sample/Conve letion of every	lf ersion 16th sample
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling urrently filling ted: Read as Selects Incre er Interrupt b ments the Di ersion operat	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or ge	BUFM = 1) iffer, user should , user should A Address Bi nerates inter	ould access data access data in ts or Number of rupt after comp	the second ha Sample/Conve letion of every	lf ersion 16th sample
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status bi urrently filling urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI ersion operat	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or ge ion	BUFM = 1) uffer, user should a Address Binerates inter nerates inter	ould access data access data in ts or Number of rupt after comp rupt after comp	the second ha Sample/Conve letion of every letion of every	lf ersion 16th sample 15th sample
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa 0001 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status bi urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI ersion operat	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or ge	BUFM = 1) uffer, user should a Address Binerates inter nerates inter	ould access data access data in ts or Number of rupt after comp rupt after comp	the second ha Sample/Conve letion of every letion of every	lf ersion 16th sample 15th sample
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 0001 = Increa versio 0000 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status bi urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI persion operat	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or ge ion	BUFM = 1) Iffer, user should A Address Bi nerates inter nerates inter erates interru	ould access data access data in ts or Number of rupt after comp rupt after comp pt after complet	the second ha Sample/Conve letion of every letion of every	If ersion 16th sample 15th sample d sample/cor
bit 7 bit 6 bit 5-2	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa 0001 = Increa version 0000 = Increa	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status b urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI ersion operat ments the DM on operation ments the DM operation	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or gen MA address or gen	BUFM = 1) Iffer, user should A Address Bi nerates inter nerates inter erates interru	ould access data access data in ts or Number of rupt after comp rupt after comp pt after complet	the second ha Sample/Conve letion of every letion of every	lf ersion 16th sample 15th sample d sample/cor
bit 7 bit 6	When AD12E 1x = Convert 01 = Convert 00 = Convert BUFS: Buffer 1 = ADC is c 0 = ADC is c Unimplemen SMPI<3:0>: S Operations per 1111 = Increa convert 1110 = Increa 0001 = Increa 0000 = Increa SIDE Signer 0000 = Increa SIDE Signer SIDE SIDE SIDE SIDE SIDE SIDE SIDE SIDE	B = 1, CHPS ts CH0, CH1 ts CH0 and C ts CH0 Fill Status bi urrently filling ted: Read as Selects Incre er Interrupt b ments the DI ersion operat ments the DI ersion operat ments the DI persion operat ments the DM on operation ments the DM operation r Fill Mode S	<1:0> is: U-0, Uni , CH2 and CH3 CH1 it (only valid when g second half of bu g first half of buffer s '0' ment Rate for DM its MA address or ge ion MA address or gen MA address or gen	BUFM = 1) iffer, user should a Address Binerates internerates intern	ould access data access data in ts or Number of rupt after comp rupt after comp pt after complet upt after complet	the second ha Sample/Conve letion of every letion of every ion of every 2nd tion of every sa	If ersion 16th sample 15th sample d sample/conver

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED) (where x = 1 or 2)

- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample
 - 0 = Always uses channel input selects for Sample A

bit 7 Legend:	— — W-0 R/W-0	R/W-0 ADCS•	R/W-0 <7:0>(2)	SAMC<4:0> ⁽¹⁾ R/W-0) R/W-0	bit
R/W-0 R/ bit 7 Legend: R = Readable bit	N-0 R/W-0		_	R/W-0	R/W-0	bit
bit 7 Legend: R = Readable bit	W-0 R/W-0		_	R/W-0	R/W-0	
bit 7 Legend: R = Readable bit			_			R/W-0
Legend: R = Readable bit						
R = Readable bit						bit
R = Readable bit						
R = Readable bit -n = Value at POR						
-n = Value at POR	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
	: ADC Conversion Cloo	ck Source bit				
	DC internal RC clock					
	ock derived from syster					
	plemented: Read as '0					
	<4:0>: Auto-Sample Ti	ime bits ⁽¹⁾				
11111	L = 31 TAD					
•						
•	. = 1 TAD					
	= 0 TAD					
bit 7-0 ADCS	<7:0>: ADC Conversio	n Clock Sele	ct bits ⁽²⁾			
11111	111 = Reserved					
•						
•						
•						
	0000 = Reserved					
00111	1111 = TCY · (ADCS<7	:0> + 1) = 64	• TCY = TAD			
•						
•						
•						
	$010 = \text{Tcy} \cdot (\text{ADCS} < 7)$					
	0001 = Tcy · (ADCS<7 0000 = Tcy · (ADCS<7					

2: This bit is not used if ADxCON3<15> (ADRC) = 1.

REGISTER 22-3: ADxCON3: ADCx CONTROL REGISTER 3

REGISTER 22-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	— — — — DMABL<2:0				DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			pit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B			x = Bit is unkr	nown			

-n = Value at POR '1' = Bit is set '0' = Bit is c

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_			—		CH123	VB<1:0>	CH123SB		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	<u> </u>		_		CH123	NA<1:0>	CH123SA		
bit 7							bit C		
Legend:									
R = Readab		W = Writable I	oit	-	mented bit, rea				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	known		
bit 15-11	-	ted: Read as '							
bit 10-9		0>: Channel 1,	•			S			
		= 1, CHxNB i							
		ative input is A ative input is A							
	-	12, CH3 negativ	•	•	IN7, CH5 negat	ive input is Aiv	0		
bit 8		nannel 1, 2, 3 F			ple B bit				
		B = 1, CHxSB is							
		ive input is AN	· ·						
	0 = CH1 posit	ive input is AN	0; CH2 positiv	e input is AN1	; CH3 positive i	nput is AN2			
bit 7-3	•	ted: Read as '0							
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	Input Select for	or Sample A bit	S			
		B = 1, CHxNA i							
		ative input is A							
	-	ative input is A 12, CH3 negativ	•	•	N7; CH3 negat	ive input is AN	18		
bit 0		nannel 1, 2, 3 F			ole A bit				
		B = 1, CHxSA is	•						
		ive input is AN				nput is AN5			
		ive input is AN							

REGISTER 22-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CHONB	_	_		1000 0	CH0SB<4:0		1000 0		
bit 15							bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA	_	_	CH0SA<4:0>(1)						
bit 7							bit C		
Legend:									
R = Readabl	le bit	W = Writable I	bit	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 14-13 bit 12-8	CH0SB<4:0>	ted: Read as 'o : Channel 0 Po on as bit<4:0>.		elect for Sample	e B bits				
bit 7	1 = Channel	CHONA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF-							
bit 6-5		ted: Read as '							
bit 4-0	11111 = Cha 11110 = Cha • • • • • • • • • • • • • • • • • • •	: Channel 0 Po nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive	input is AN31 input is AN30 input is AN2 input is AN1	elect for Sample	e A bits ⁽¹⁾				

REGISTER 22-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

Note 1: ADC2 can only select AN0-AN15 as positive inputs.

REGISTER 22-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH ^(1,2)
--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
bit 15				•		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
bit 7	-		•	•		•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

- 1 = Select ANx for input scan
- 0 = Skip ANx for input scan
- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 22-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set			bit	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown				
Legend:								
bit 7							bit 0	
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DIL 15							DILO	
bit 15							bit 8	
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-0

CSS<15:0>: ADC Input Scan Selection bits

1 =Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on the device will convert VREF-.
 - **2:** CSSx = ANx, where x = 0 through 15.

REGISTER 22-9:	ADxPCFGH: ADCx PORT CONFIGURATION REGISTER HIGH ^(1,2,3,4)
----------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16
bit 7			•	•			bit 0
Logond							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

PCFG<31:16>: ADC Port Configuration Control bits

1 = Port pin in Digital mode; port read input enabled; ADC input multiplexer connected to AVss
 0 = Port pin in Analog mode; port read input disabled; ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on the device.
 - 2: ADC2 only supports analog inputs, AN0-AN15; therefore, no ADC2 port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.
 - **4:** The PCFGx bits have no effect if the ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode.

REGISTER 22-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3,4)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode; port read input enabled; ADC input multiplexer connected to AVss

0 = Port pin in Analog mode; port read input disabled; ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on the device.
 - **2:** On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3:** PCFGx = ANx, where x = 0 through 15.
 - 4: The PCFGx bits have no effect if the ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins multiplexed with ANx will be in Digital mode.

23.0 SPECIAL FEATURES

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section "CodeGuard™ Security" 23. (DS70199), Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJXXXMCX06A/X08A/X10A devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

23.1 Configuration Bits

dsPIC33FJXXXMCX06A/X08A/X10A devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25. "Device Configuration"** (DS70194) of the *"dsPIC33F/PIC24H Family Reference Manual"*, for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 23-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 23-2.

Note that address, 0xF80000, is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads and table writes.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	<1:0>	_	—	BSS<2:0>		BWRP	
0xF80002	FSS	RSS	<1:0>	_	—		SSS<2:0>		SWRP
0xF80004	FGS	_	—	_	_	—	GSS1	GSS0	GWRP
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	—	—	FNC	SC<2:0>	
0xF80008	FOSC	FCKS	M<1:0>	_	_	—	OSCIOFNC POSCMD<1:0		1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	PLLKEN ⁽³⁾	WDTPRE		WDTPOST<	<3:0>	
0xF8000C	FPOR	PWMPIN	HPOL	LPOL	_		FPW	/RT<2:0>	
0xF8000E	FICD	Rese	rved ⁽¹⁾	JTAGEN	—	—	_	ICS<	:1:0>
0xF80010	FUID0		User Unit ID Byte 0						
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3			L	Iser Unit ID	Byte 3			

TABLE 23-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, reads as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

- **2:** When read, this bit returns the current programmed value.
- **3:** This bit is unimplemented on dsPIC33FJ64MCX06A/X08A/X10A and dsPIC33FJ128MCX06A/X08A/X10A devices and reads as '0'.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	 Boot Segment Program Flash Code Protection Size bits x11 = No boot program Flash segment Boot space is 1K IW less VS: 110 = Standard security; boot program Flash segment starts at end of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at end of VS, ends at 0007FEh Boot space is 4K IW less VS: 101 = Standard security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at end of VS, ends at 001FFEh Boot space is 8K IW less VS: 100 = Standard security; boot program Flash segment starts at end of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at end of VS, ends at 003FFEh
RBS<1:0>	FBS	Immediate	Boot Segment RAM Code Protection bits 11 = No boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP	FSS	Immediate	Secure Segment Program Flash Write Protection bit 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 23-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Register	RTSP Effect	Description
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size bits
			(FOR 128K and 256K DEVICES)
			x11 = No secure program Flash segment
			<u>Secure space is 8K IW less BS:</u> 110 = Standard security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			010 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			Secure space is 16K IW less BS:
			101 = Standard security; secure program Flash segment starts at end of BS, ends at 0x007FFE
			001 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE
			Secure space is 32K IW less BS:
			100 = Standard security; secure program Flash segment starts at end of BS, ends at 0x00FFFE
			000 = High security; secure program Flash segment starts at end of BS, ends at 0x00FFFE
			(FOR 64K DEVICES)
			x11 = No Secure program Flash segment
			Secure space is 4K IW less BS: 110 = Standard security; secure program Flash segment starts at end of
			BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at end of BS, ends at 0x001FFE
			Secure space is 8K IW less BS: 101 = Standard security; secure program Flash segment starts at end of
			BS, ends at 0x003FFE
			001 = High security; secure program Flash segment starts at end of BS, ends at 0x003FFE
			Secure space is 16K IW less BS:
			100 = Standard security; secure program Flash segment starts at end of BS, ends at 007FFEh
			000 = High security; secure program Flash segment starts at end of BS, ends at 0x007FFE
RSS<1:0>	FSS	Immediate	Secure Segment RAM Code Protection bits 11 = No secure RAM defined
			10 = Secure RAM is 256 bytes less BS RAM
			01 = Secure RAM is 2048 bytes less BS RAM 00 = Secure RAM is 4096 bytes less BS RAM
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits 11 = User program memory is not code-protected
			 10 = Standard security; general program Flash segment starts at end of SS, ends at EOM
			0x = High security; general program Flash segment starts at end of SS, ends at EOM

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

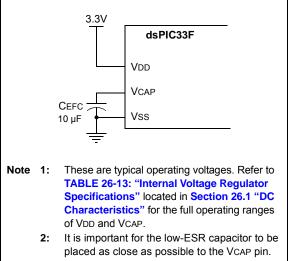
Bit Field	Register	RTSP Effect	Description
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-Speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register.)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	FWDT	Immediate	PLL Lock Enable bit 1 = Clock switch to PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDT- POST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	RTSP Effect	Description				
PWMPIN	FPOR	Immediate	 Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) 				
HPOL	FPOR	Immediate	Iotor Control PWM High Side Polarity bit = PWM module high side output pins have active-high output polarity = PWM module high side output pins have active-low output polarity				
LPOL	FPOR	Immediate	Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity				
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled				
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled				
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved				

TABLE 23-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

23.2 On-Chip Voltage Regulator


All of the dsPIC33FJXXXMCX06A/X08A/X10A devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXMCX06A/X08A/X10A family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-13 of Section 26.1 "DC Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when $VDD \ge VDDMIN$.

23.3 BOR: Brown-out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

23.4 Watchdog Timer (WDT)

For dsPIC33FJXXXMCX06A/X08A/X10A devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

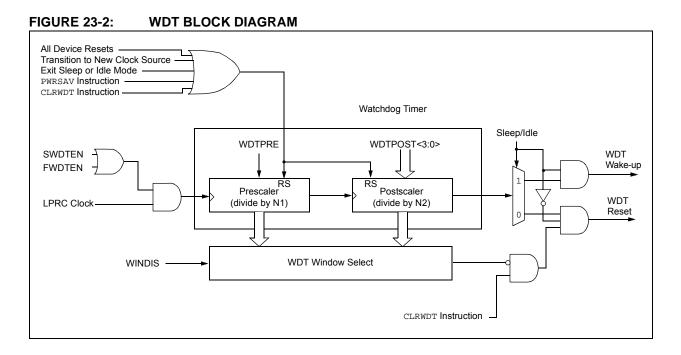
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The	CLRWDT	and	PWRSAV	instructions				
	clear the prescaler and postscaler counts								
	when executed.								

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

23.5 JTAG Interface

dsPIC33FJXXXMCX06A/X08A/X10A devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

23.6 Code Protection and CodeGuard[™] Security

The dsPIC33FJXXXMCX06A/X08A/X10A devices offer the advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property (IP) in collaborative system designs.

When coupled with software encryption libraries, CodeGuard[™] Security can be used to securely update Flash even when multiple IPs are resident on the single chip. The code protection features vary depending on the actual device implemented. The following sections provide an overview of these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) in the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

23.7 In-Circuit Serial Programming

dsPIC33FJXXXMCX06A/X08A/X10A family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed. Please refer to the "*dsPIC33F/PIC24H Flash Programming Specification*" (DS70152) document for details about ICSP.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- · PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 24-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions may use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and may include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are singleword instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers \in {W0W15}
Wns	One of 16 source working registers \in {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ {Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws]}
Wso	Source W register ∈ {Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb]}
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 24-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
	non	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by Iti5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
5	BCUK	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA		Branch if Carry	1	1 (2)	None
0	BRA	BRA	C,Expr	Branch if greater than or equal	1	1 (2)	None
			GE, Expr		1	. ,	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	
		BRA	GTU, Expr	Branch if unsigned greater than		1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT,Expr	Branch if less than	1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
	ļ	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws – 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do Code to PC + Expr, lit14 + 1 Times	2	2	None
		DO	Wn,Expr	Do Code to PC + Expr, (Wn) + 1 Times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG,f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	WREG	Wite out the way of th	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

Base Instr # Assembly Mnemonic				Description	# of Words	# of Cycles	Status Flags Affected
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

25.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

25.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

25.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

25.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Param	VDD Range	Temp Range	Max MIPS		
No.	(in Volts)	(in °C)	dsPIC33FJXXXMCX06A/X08A/X10		
	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	40		
_	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC33FJXXXMCX06A/X08A/X10A					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+155	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	-40 — +125 PINT + PI/O			W
$I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — ΤΑ)/θ.	IA	W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θJA	40		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θJA	40	-	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θJA	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θJA	40	_	°C/W	1
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)	θJA	28		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	racteristic Min Typ ⁽¹⁾ Max Units			Conditions			
Operating Voltage									
DC10	Supply V	oltage							
	Vdd	—	3.0		3.6	V	—		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V	—		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	Vss	V	_		
DC17	SVDD	V DD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0-3.0V in 0.1s		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	27	30	mA	-40°C				
DC20a	27	30	mA	+25°C	- 3.3V	10 MIPS		
DC20b	27	30	mA	+85°C	3.3V	10 101195		
DC20c	27	35	mA	+125°C				
DC21d	36	40	mA	-40°C				
DC21a	37	40	mA	+25°C	3.3V	16 MIPS		
DC21b	38	45	mA	+85°C	3.3V	TO WIPS		
DC21c	39	45	mA	+125°C				
DC22d	43	50	mA	-40°C				
DC22a	46	50	mA	+25°C	3.3V	20 MIPS		
DC22b	46	55	mA	+85°C	3.3V	20 101195		
DC22c	47	55	mA	+125°C				
DC23d	65	70	mA	-40°C				
DC23a	65	70	mA	+25°C	2 2)/	20 MIDS		
DC23b	65	70	mA	+85°C	- 3.3V	30 MIPS		
DC23c	65	70	mA	+125°C	7			
DC24d	84	90	mA	-40°C				
DC24a	84	90	mA	+25°C	2.21/			
DC24b	84	90	mA	+85°C	- 3.3V	40 MIPS		
DC24c	84	90	mA	+125°C	1			

TABLE 26-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- · JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- **3:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Conditions							
Idle Current (IIDLE): Core Off, Clock On Base Current ⁽¹⁾											
DC40d	3	25	mA	-40°C							
DC40a	3	25	mA	+25°C	1	10 MIPS					
DC40b	3	25	mA	+85°C	3.3V	10 1011195					
DC40c	3	25	mA	+125°C	1						
DC41d	4	25	mA	-40°C		16 MIPS					
DC41a	5	25	mA	+25°C	3.3V						
DC41b	6	25	mA	+85°C	3.3V	10 101195					
DC41c	6	25	mA	+125°C	7						
DC42d	8	25	mA	-40°C		20 MIPS					
DC42a	9	25	mA	+25°C	3.3V						
DC42b	10	25	mA	+85°C	3.3V	20 10117-5					
DC42c	10	25	mA	+125°C							
DC43a	15	25	mA	+25°C							
DC43d	15	25	mA	-40°C	3.3V	30 MIPS					
DC43b	15	25	mA	+85°C	3.3V	30 WIFS					
DC43c	15	25	mA	+125°C]						
DC44d	16	25	mA	-40°C							
DC44a	16	25	mA	+25°C	- 3.3V	40 MIPS					
DC44b	16	25	mA	+85°C	3.3V	40 101175					
DC44c	16	25	mA	+125°C]						

TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- · JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACT	ERISTICS		(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	Conditions							
Power-Down Current (IPD) ⁽¹⁾											
DC60d	50	200	μA	-40°C							
DC60a	50	200	μA	+25°C	3.3V	Base Power-Down Current ⁽³⁾					
DC60b	200	500	μA	+85°C	3.3V	base Fower-Down Currenter					
DC60c	600	1000	μA	+125°C							
DC61d	8	13	μΑ	-40°C							
DC61a	10	15	μA	+25°C	2 2)/	Watchdog Timer Current: ∆IwDT ⁽³⁾					
DC61b	12	20	μA	+85°C	3.3V	Watchdog Timer Current: AlwD107					
DC61c	13	25	μA	+125°C							

TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

· CLKO is configured as an I/O input pin in the Configuration word

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled (PMDx bits are all '1's). The following ADC settings are enabled for each ADC module (ADCx) prior to executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1 and ADxMD = 0.

• VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)

- RTCC is disabled.
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- 5: These parameters are characterized, but are not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Typical ⁽²⁾	Max	Doze Ratio	Units	Conditions			
Doze Current	: (IDOZE) ⁽¹⁾							
DC73a	11	35	1:2	mA				
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	11	30	1:128	mA				
DC70a	42	50	1:2	mA				
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS	
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA				
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	24	30	1:128	mA				
DC72a	42	50	1:2	mA				
DC72f	26	30	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	25	30	1:128	mA				

TABLE 26-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail with overshoot/undershoot < 250 mV
- CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- CPU executing while(1) statement
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins	Vss	—	0.2 VDD	V		
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V		
DI18		I/O Pins with I ² C™	Vss	_	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with I ² C	Vss	_	0.8 V	V	SMBus enabled	
	VIH	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V		
DI28		SDAx, SCLx	0.7 Vdd	_	5.5	V	SMBus disabled	
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled	
	ICNPU	CNx Pull-up Current						
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	—	—	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +85°C	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	Shared with external reference pins, -40°C \leq TA \leq +85°C	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance, -40°C \le TA \le +125°C	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±8	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	—	_	±2	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	_	—	±2	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$	

TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and RB11	
DI60b	ІІСН	Input High Injection Current	0	_	+5(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, RB11, and all 5V tolerant pins ⁽⁷⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

5: VIL source < (Vss - 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	IOL \leq 3 mA, VDD = 3.3V		
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	Iol \leq 6 mA, VDD = 3.3V		
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	IOL \leq 10 mA, VDD = 3.3V		
DO20	Voн	Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	$IOL \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	$IOL \ge -6$ mA, VDD = 3.3V		
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	v	IoL ≥ -10 mA, VDD = 3.3V		
DO20A		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	1.5	_	_	V	IOH ≥ -6 mA, VDD = 3.3V See Note 1		
			2.0	_	_		IOH ≥ -5 mA, VDD = 3.3V See Note 1		
			3.0	_	-		IOH ≥ -2 mA, VDD = 3.3V See Note 1		
		Output High Voltage 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	1.5	_	_	V	$\begin{array}{l} \text{IOH} \geq -12 \text{ mA, VDD} = 3.3 \text{V} \\ \text{See Note 1} \end{array}$		
			2.0	_	_		IOH ≥ -11 mA, VDD = 3.3V See Note 1		
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1		
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO, RC15	1.5	_	_	V	IOH ≥ -16 mA, VDD = 3.3V See Note 1		
			2.0	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1		
			3.0	_	_		$\begin{array}{l} \text{IOH} \geq \text{-4 mA, VDD} = 3.3\text{V} \\ \text{See Note 1} \end{array}$		

TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR

Param. Symbol Characteristic ⁽¹⁾ Min ⁽¹⁾ Typ Max ⁽¹⁾ Units Condition	ions
BO10 VBOR BOR Event on VDD Transition High-to-Low 2.40 — 2.55 V VDD	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	RACTER	ISTICS	(unless		ise state	,			
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	—	—	E/W	—		
D131	Vpr	VDD for Read	VMIN	_	3.6	V	Vмın = Minimum operating voltage		
D132b	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	Vмın = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	_	10	—	mA	—		
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, see Note 2		
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +150°C, see Note 2		
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, see Note 2		
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, Ta = +150°C, see Note 2		
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, see Note 2		
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, TA = +150°C, see Note 2		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

(unless	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param.	Symbol	Characteristics	Min	Тур	Max	Units	Comments			
	CEFC	External Filter Capacitor Value	4.7	10		μF	Capacitor must be low series resistance (< 5 ohms)			

26.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXMCX06A/X08A/X10A AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

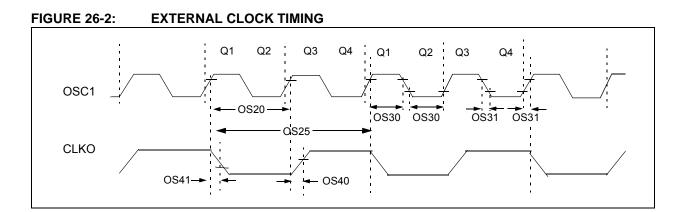

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Table 26-1.

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 Pin	_	—	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In l ² C™ mode

AC CHA	RACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	_			
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	_			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc		0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾		5.2	_	ns	_			
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2	—	ns	—			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C			

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is preliminary. This parameter is characterized, but not tested in manufacturing.

TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			(unless of	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteris	stic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8.0	MHz	ECPLL, HSPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	—			
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	ms	_			
OS53	DCLK	CLKO Stability (Jitter	-3.0	0.5	3.0	%	Measured over 100 ms period				

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

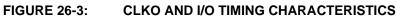
2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base or communication clocks used by peripherals use the formula:

Peripheral Clock Jitter = DCLK / $\sqrt{(Fosc/Peripheral bit rate clock)}$

Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz

SPI SCK Jitter = [DCLK / \sqrt{(80 MHz/5 MHz)]} = [3%/\sqrt{16}] = [3% / 4] = 0.75%

TABLE 26-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY


AC CHA	RACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Characteristic	Min	Тур	Max	Units	ions						
	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾											
F20a	FRC	-2	—	+2	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V					
F20b	FRC	-5	_	+5	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C \qquad VDD = 3.0-3.6V$						

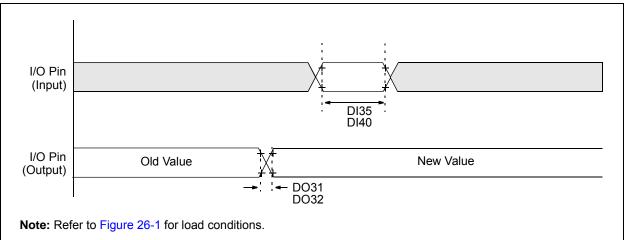
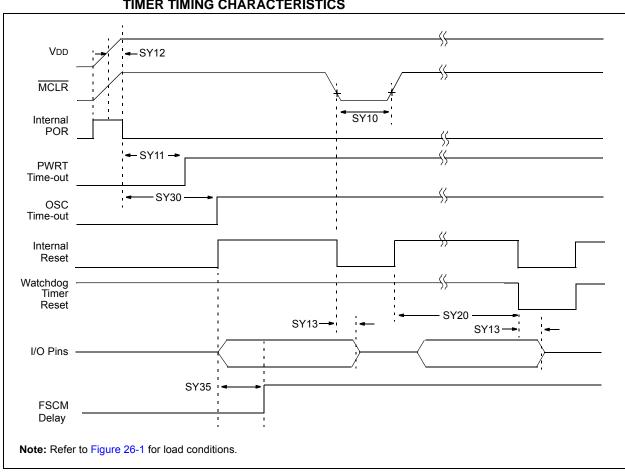

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 26-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Characteristic	Min	Тур	Max	Units	Co	onditions				
	LPRC @ 32.768 kHz ⁽¹)									
F21a	LPRC	-30	—	+30	%	$-40^\circ C \le T A \le +85^\circ C$	—				
F21b	LPRC	-35	_	+35	%	$-40^\circ C \le T A \le +125^\circ C$	_				

Note 1: Change of LPRC frequency as VDD changes.

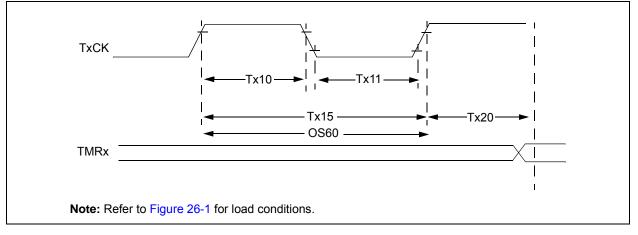


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions			
DO31	TioR	Port Output Rise Tim	e	—	10	25	ns	_		
DO32	TIOF	Port Output Fall Time	9	_	10	25	ns	_		
DI35	TINP	INTx Pin High or Low	20	—	—	ns	—			
DI40	Trbp	CNx High or Low Tim	2			TCY	—			

TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS


TABLE 26-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	in Typ ⁽²⁾ Max Uni		Units	Conditions			
SY10	ТмсL	MCLR Pulse Width (low)	2	_		μS	-40°C to +85°C			
SY11 SY12 SY13	Tpwrt Tpor Tioz	Power-up Timer Period Power-on Reset Delay I/O High-Impedance from MCLR Low or Watchdog Timer Reset		2 4 8 16 32 64 128 10 0.72		ms μs μs	-40°C to +85°C User programmable -40°C to +85°C —			
SY20	Twdt1	Watchdog Timer Time-out Period	_		_		See Section 23.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 26-19)			
SY30	Tost	Oscillator Start-up Timer Period	-	1024 Tosc		—	Tosc = OSC1 period			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

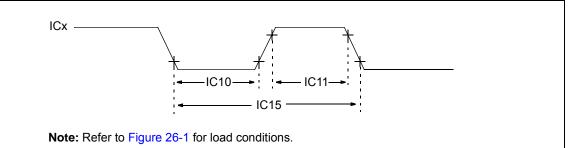
FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHA	RACTERIST	ICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions			
TA10	ТтхН	TxCK High Time	Synchron no presc		Тсү + 20		_	ns	Must also meet parameter TA15			
			Synchron with pres		(Tcy + 20)/N	—	—	ns	N = prescale value (1, 8, 64,			
			Asynchronous		20	—	<u> </u>		256)			
TA11	TTXL			nous, aler	(Tcy + 20)/N	—	—	ns	Must also meet parameter TA15			
			Synchronous, with prescaler		20	—	—	ns	N = prescale value (1, 8, 64,			
			Asynchronous		20	—	—	ns	256)			
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		2Tcy + 40	—	—	ns	_			
			Synchron with pres		Greater of: 40 ns or (2TcY + 40)/N	—	—	—	N = prescale value (1, 8, 64, 256)			
			Asynchro	onous	40	—		ns	—			
OS60	Ft1	SOSC1/T1CK Oscil Frequency Range (o by setting bit, TCS (oscillator e	enabled	DC	—	50	kHz	_			
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.75 Tcy + 40		1.75 Tcy + 40	ns	_			

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

TABLE 26-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS


АС СНА	RACTERIS	TICS		(unles	ard Operating s otherwise s ting temperatu	tated) re -40°	°C ≤ TA ≤	+85°C f	
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro mode	onous	Greater of 20 or (Tcy + 20)/N			ns ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchro mode	onous	Greater of 20 or (Tcy + 20)/N			ns ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchro mode	onous	Greater of 40 or (2Tcy + 40)/N	—	_	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from Externa Edge to Timer Incr		Clock	0.75 Tcy + 40	_	1.75 Tcy + 40	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-24:TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING
REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characte	eristic		Min	Тур	Мах	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	Tcy + 20	—	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	Tcy + 20	—	—	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchro with pres		2 Tcy + 40	-	_	ns	N = prescale value (1, 8, 64, 256)
TC20 TCKEXTMRL Delay from External TxCK Cloc Edge to Timer Increment				lock	0.75 Tcy + 40	—	1.75 Tcy + 40		—

FIGURE 26-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

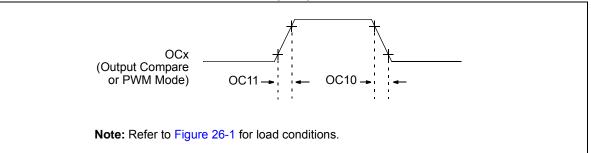


TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless otherwis	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characte	ristic ⁽¹⁾	tic ⁽¹⁾ Min Max Units Co							
IC10	TccL	ICx Input Low Time	No prescaler	0.5 Tcy + 20		ns	_				
			With prescaler	10	_	ns					
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20	—	ns	—				
			With prescaler	10	_	ns					
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)				

Note 1: These parameters are characterized but not tested in manufacturing.

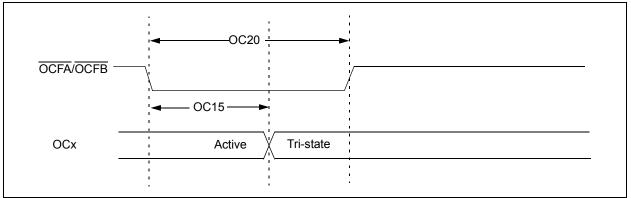
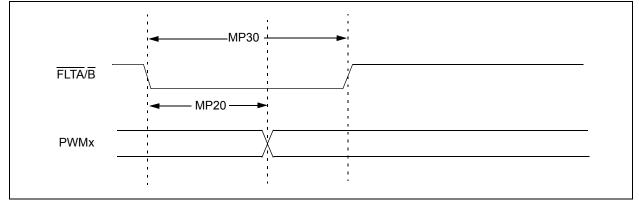
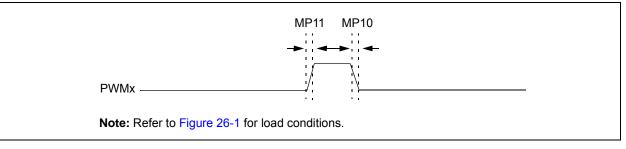

FIGURE 26-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
OC10	TccF	OCx Output Fall Time	— — — ns See parameter D032						
OC11	TccR	OCx Output Rise Time	— — ns See parameter D031						


FIGURE 26-8: OC/PWM MODULE TIMING CHARACTERISTICS


TABLE 26-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHAF	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions						
OC15	Tfd	Fault Input to PWM I/O Change	— — Tcy + 20 ns —						
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	—		

FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

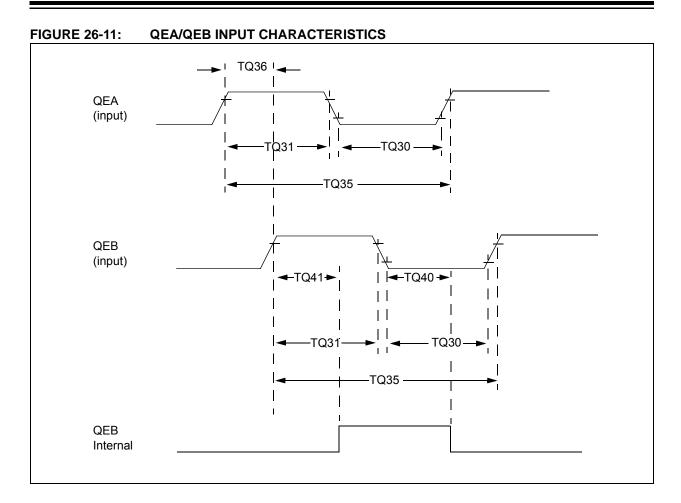
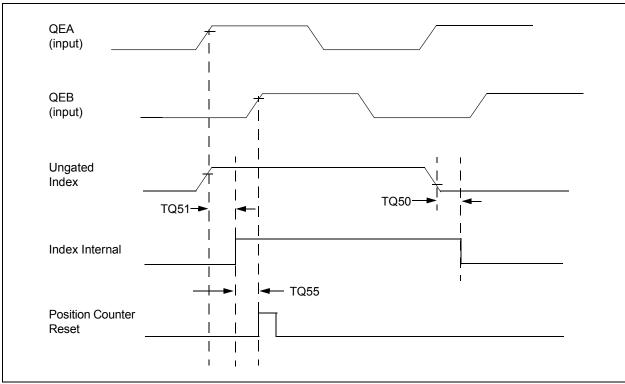


FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
MP10	TFPWM	PWM Output Fall Time	—	—	_	ns	See parameter D032	
MP11	TRPWM	PWM Output Rise Time	—	—	—	ns	See parameter D031	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	—	50	ns	_	
MP30	Tfh	Minimum Pulse Width	50	—		ns	—	


TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS

			(unle	dard Operating ss otherwise s ating temperatu	stated) ire -40°(C ≤ TA ≤ ·	to 3.6V +85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Characteristic ⁽¹⁾ Typ ⁽²⁾ Max U				
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns	—
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy		ns	—
TQ35	TQUIN	Quadrature Input Period		12 TCY	_	ns	—
TQ36	TQUP	Quadrature Phase Period		3 TCY	—	ns	—
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	/	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41 TQUFH Filter Time to Recognize High with Digital Filter				3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder Interface (QEI)"** (DS70208) in the "*dsPIC33F/PIC24H Family Reference Manual*".

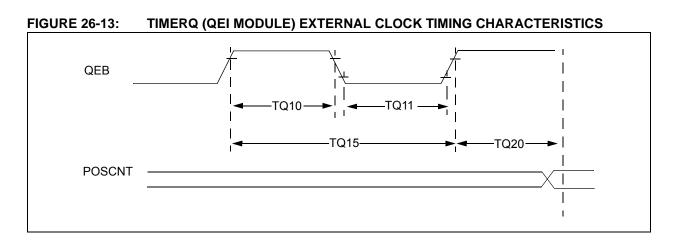

FIGURE 26-12: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 26-30: QEI INDEX PULSE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol Characteristic			Min	Max	Units	Conditions	
TQ50	TqiL	Filter Time to Recognize with Digital Filter	Low	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize with Digital Filter	High	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated i		3 TCY	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

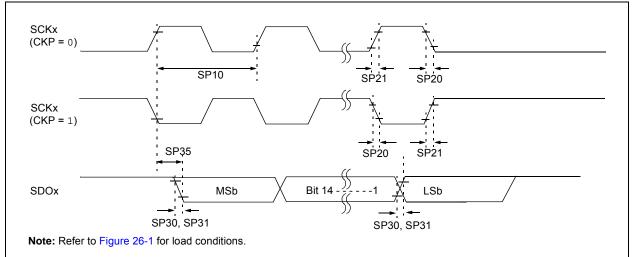
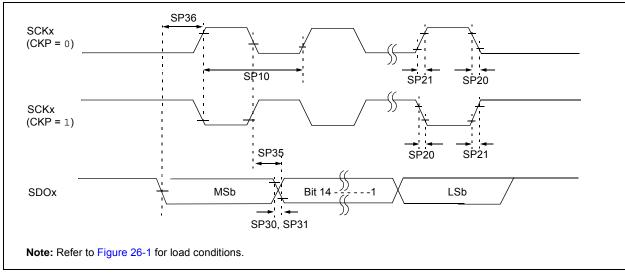

AC CHARACTERISTICS (unle				(unles	andard Operating Conditions: 3.0V to 3.6V hless otherwise stated) erating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Character	istic ⁽¹⁾		Min	Тур	Max	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchro with pre	,	Tcy + 20	—	_	ns	Must also meet parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchro with pre	,	Tcy + 20	—	—	ns	Must also meet parameter TQ15	
TQ15	TtQP	TQCP Input Synchronous Period with prescale			2 * Tcy + 40	_	—	ns	—	
TQ20	Q20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment		lock	0.5 Tcy		1.5 TCY	_	—		

 TABLE 26-31:
 QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

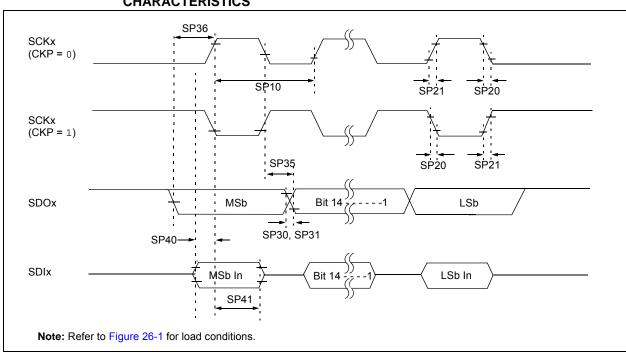

TABLE 26-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 26-33	—	_	0,1	0,1	0,1		
10 MHz	—	Table 26-34	—	1	0,1	1		
10 MHz	—	Table 26-35	—	0	0,1	1		
15 MHz	—	—	Table 26-36	1	0	0		
11 MHz	_	_	Table 26-37	1	1	0		
15 MHz	—	—	Table 26-38	0	1	0		
11 MHz	_		Table 26-39	0	0	0		

FIGURE 26-14: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 26-15: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

АС СНА	ARACTERIS	rics	(unless	otherwise	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions				
SP10	TscP	Maximum SCK Frequency	_		15	MHz	See Note 3				
SP20	TscF	SCKx Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4				
SP21	TscR	SCKx Output Rise Time	-	-		ns	See parameter DO31 and Note 4				
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4				
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See parameter DO31 and Note 4				
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	_				
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—				


TABLE 26-33: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

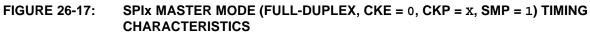
Note 1: These parameters are characterized, but are not tested in manufacturing.

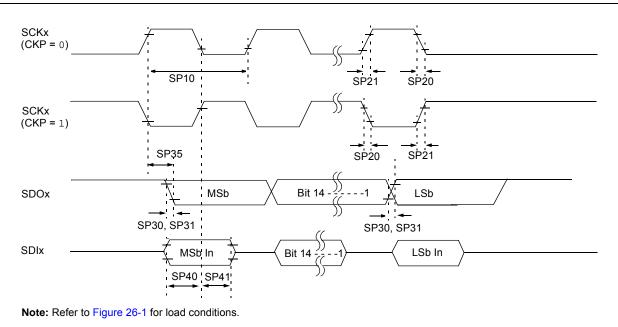
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-16: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 26-34:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

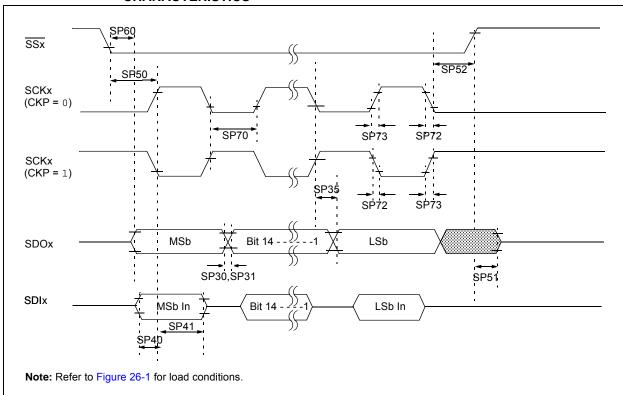

АС СНА	RACTERIST	īCS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 26-35:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS


АС СНА	RACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	_	-	10	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	—	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	-	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	-	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_

Note 1: These parameters are characterized, but are not tested in manufacturing.

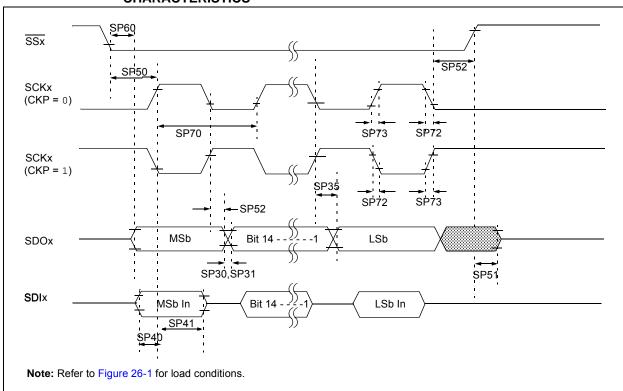
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency			15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—		_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_	-	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns	—	
SP51	TssH2doZ	SSx	10	_	50	ns	-	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

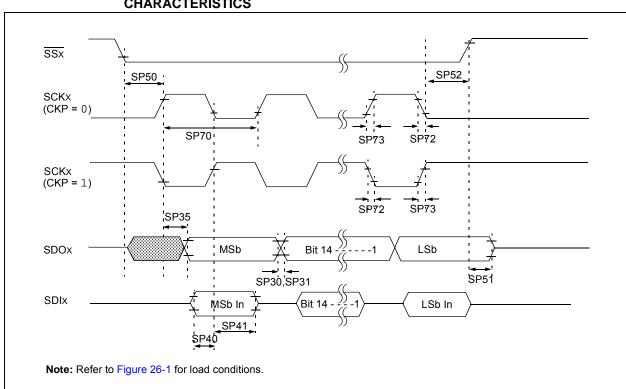
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-19: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


АС СНА	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_		_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	—	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge		—	50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

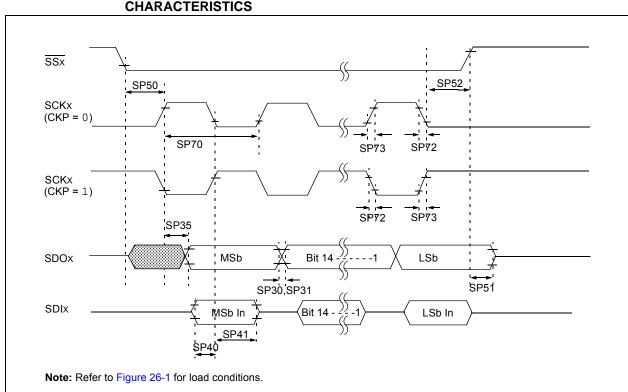
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-20: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-38:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


АС СНА				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	_	—		ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	—		
SP51	TssH2doZ	SSx	10	—	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

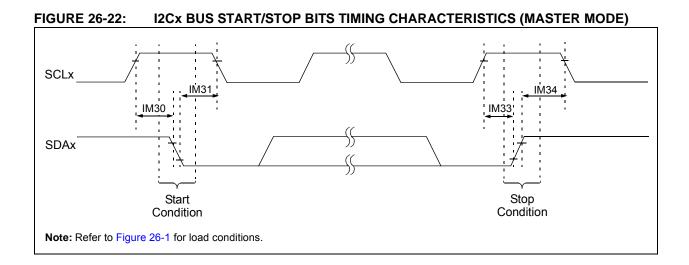
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

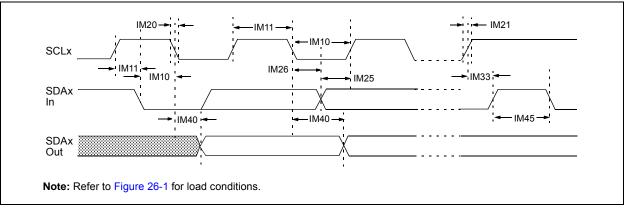
4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-21: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-39:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	-	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_			ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	-		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	—	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40			ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

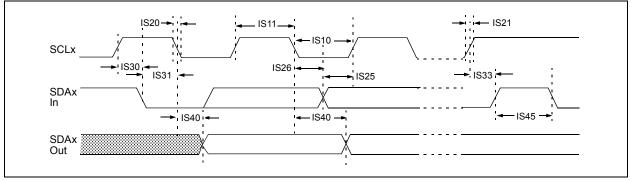

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specificiation.

4: Assumes 50 pF load on all SPIx pins.

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) iture -40)°C ≤ Ta ≤	W to 3.6V ≤ +85°C for Industrial ∺+125°C for Extended	
Param No.	Symbol	Charact	eristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)		μS	—	
			400 kHz mode	Tcy/2 (BRG + 1)		μS	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μS	—	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	_	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	_	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	μs	—	
		From Clock	400 kHz mode	—	1000	μS	—	
			1 MHz mode ⁽²⁾	_	400	μs	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5		μS	transmission can start	
IM50	Св	Bus Capacitive L	bading	—	400	pF	—	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

TABLE 26-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

FIGURE 26-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

АС СНА	RACTERIS	STICS		Standard Op (unless othe Operating ten	rwise st	ated) ∋ -40°	ns: 3.0V to 3.6V C \leq TA \leq +85°C for Industrial C \leq TA \leq +125°C for Extended	
Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μS	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μS	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
S25	TSU:DAT	Data Input	100 kHz mode	250		ns	_	
	Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽¹⁾	100	—	ns	-	
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	_	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μS	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μS		
S31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first	
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μS		
S33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS	_	
		Setup Time	400 kHz mode	0.6	—	μS		
			1 MHz mode ⁽¹⁾	0.6	—	μS		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	—	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode ⁽¹⁾	250		ns		
S40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3		μS	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μS	can start	
S50	Св	Bus Capacitive Lo	ading		400	pF	_	

TABLE 26-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 26-26: CAN MODULE I/O TIMING CHARACTERISTICS

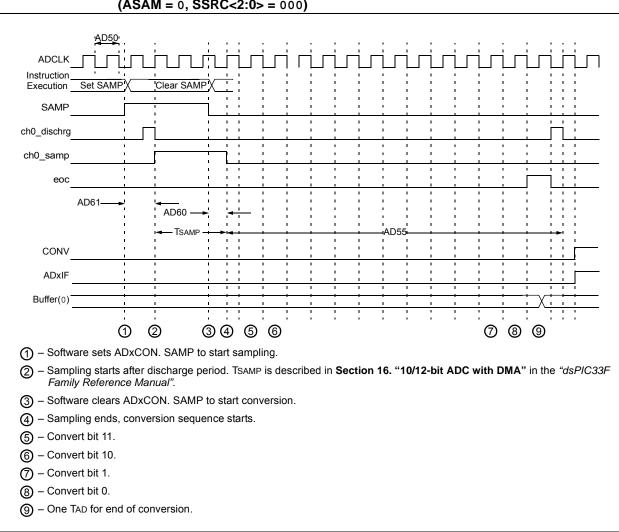
TABLE 26-42: ECAN™ TECHNOLOGY MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				$T_A \le +85^{\circ}C$ for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
CA10	TioF	Port Output Fall Time		—	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	—	—	_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120		_	ns	—

AC CH	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
	Device Supply											
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	—					
AD02	AVss	Module Vss Supply	Vss - 0.3	—	Vss + 0.3	V						
			Reference	ce Inpu	ts							
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVdd	V	_					
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0					
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	—					
AD06a			0	—	0	V	Vrefh = AVdd Vrefl = AVss = 0					
AD07	Vref	Absolute Reference Voltage	2.5	_	3.6	V	Vref = Vrefh - Vrefl					
AD08	IREF	Current Drain	—	_	10	μA	ADC off					
AD08a	IAD	Operating Current		7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, see Note 1 12-bit ADC mode, see Note 1					
			Analog	g Input								
AD12	VINH	Input Voltage Range VINH	VINL	_	VREFH	\vee	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input					
AD13	VINL	Input Voltage Range Vın∟	Vrefl	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input					
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC					

TABLE 26-43: ADC MODULE SPECIFICATIONS

АС СНА	RACTERIS	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		ADC Accuracy (12-Bit Mo	de) – Mea	asureme	nts with	Externa	al Vref+/Vref-		
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	—		
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	-	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	Q	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	_	Monotonicity	_	_	—	_	Guaranteed		
		ADC Accuracy (12-Bit Mo	de) – Mea	asureme	ents with	Interna	I VREF+/VREF-		
AD20b	Nr	Resolution	1:	2 data bi [.]	ts	bits	—		
AD21b	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23b	Gerr	Gain Error	—	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error		3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25b	—	Monotonicity					Guaranteed		
		Dynamie	c Perforn	nance (1	2-Bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	—	—	-75	dB	—		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	_		
AD32a	SFDR	Spurious Free Dynamic Range	80	—		dB	_		
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	—		
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits	_		


TABLE 26-44: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

AC CHA	RACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		ADC Accuracy (10-Bit Mode	e) – Meas	urement	ts with E	xternal	VREF+/VREF-
AD20c	Nr	Resolution	1() data bi	ts	bits	—
AD21c	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22c	DNL	Differential Nonlinearity	>-1	—	<1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD23c	Gerr	Gain Error	—	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD24c	EOFF	Offset Error	—	2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
AD25c	—	Monotonicity	_	_		_	Guaranteed
		ADC Accuracy (10-Bit Mode	e) – Meas	uremen	ts with l	nternal	VREF+/VREF-
AD20d	Nr	Resolution	1(0 data bi	ts	bits	_
AD21d	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22d	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23d	Gerr	Gain Error	—	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24d	EOFF	Offset Error	—	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25d	—	Monotonicity	—		_	_	Guaranteed
		Dynamic	Performa	nce (10-	Bit Mod	e)	
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	72			dB	_
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits	—

TABLE 26-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽¹⁾

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

FIGURE 26-27: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

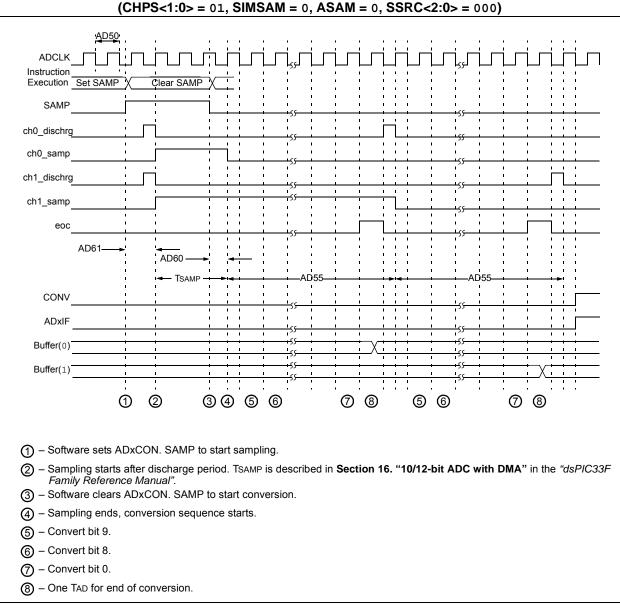
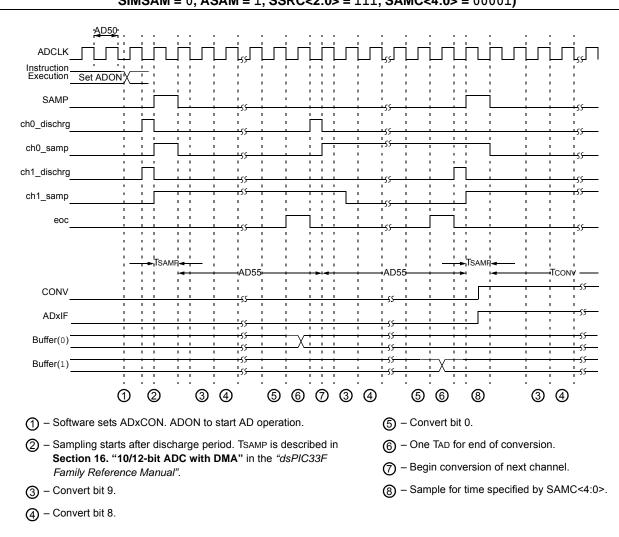

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
		Cloc	k Paramet	ers				
AD50a	Tad	ADC Clock Period	117.6			ns	_	
AD51a	trc	ADC Internal RC Oscillator Period	—	250	_	ns	_	
		Con	version R	ate				
AD55a	tCONV	Conversion Time	—	14 Tad		_	—	
AD56a	FCNV	Throughput Rate	—		500	ksps	_	
AD57a	TSAMP	Sample Time	3.0 Tad			_	_	
		Timir	g Parame	ters				
AD60a	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 Tad	—	3.0 Tad	_	_	
AD61a	tpss	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 TAD	—	3.0 Tad	—	_	
AD62a	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)	—	0.5 TAD	—	—	_	
AD63a	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,2,3)	—	—	20	μS	_	

TABLE 26-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS


Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

FIGURE 26-28: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01 SIMSAM = 0 ASAM = 0 SSRC<2:0> = 000)

FIGURE 26-29: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Characteristic	Min.	Тур ⁽¹⁾	Max.	Units	Conditions
		Cloc	k Parame	ters			
AD50b	TAD	ADC Clock Period	76			ns	—
AD51b	tRC	ADC Internal RC Oscillator Period	_	250	_	ns	—
		Con	version F	late			
AD55b	tCONV	Conversion Time	_	12 Tad	_		—
AD56b	FCNV	Throughput Rate	—	—	1.1	Msps	—
AD57b	TSAMP	Sample Time	2 Tad	—	—	_	—
		Timin	g Param	eters			
AD60b	tPCS	Conversion Start from Sample Trigger ^(1,2)	2.0 TAD	_	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61b	tpss	Sample Start from Setting Sample (SAMP) bit ^(1,2)	2.0 Tad	—	3.0 Tad		_
AD62b	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(1,2)	_	0.5 Tad	_		—
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(1,3)	—	_	20	μS	—

TABLE 26-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

TABLE 26-48: DMA READ/WRITE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min. Typ Max. Units Conditions							
DM1a	DMA Read/Write Cycle Time	—	_	2 TCY	TCY ns This characteristic applies to dsPIC33FJ256MCX06A/X08A devices only.				
DM1b	DMA Read/Write Cycle Time	—	—	1 Tcy	ns	This characteristic applies to all devices with the exception of the dsPIC33FJ256MCX06A/X08A/X10A.			

27.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06A/X08A/X10A electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 26.0** "Electrical Characteristics" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in **Section 26.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJXXXMCX06A/X08A/X10A high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽⁴⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁵⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0 V^{(5)}$	-0.3V to 5.6V
Voltage on VCAP with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽²⁾	60 mA
Maximum junction temperature	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	2 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	4 mA
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports combined	10 mA
Maximum current sourced by all ports combined ⁽²⁾	10 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
 - **3:** Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+, VREF-, SCLx, SDAx, PGECx, and PGEDx pins.
 - 4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 5: Refer to the "Pin Diagrams" section for 5V tolerant pins.

27.1 High Temperature DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS			
Characteristic (in Volts)		(in °C)	dsPIC33FJXXXMCX06A/X08A/X10A			
HDC5	VBOR to 3.6V ⁽¹⁾	-40°C to +150°C	20			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 26-11 for the minimum and maximum BOR values.

TABLE 27-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	Po	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W

TABLE 27-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Parameter No. Symbol Characteristic			Min	Тур	Max	Units	Conditions	
Operating V	Voltage							
HDC10	Supply Vo	Supply Voltage						
	Vdd	/DD — 3.0 3.3 3.6 V -40°C to +150°C						

TABLE 27-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARAC	TERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature			
Parameter No.	Typical	Мах	Units Conditions				
Power-Down	Current (IPD)						
HDC60e	250	2000	μA +150°C 3.3V Base Power-Down Current ^(1,3)				
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and							

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

DC CHARACT	ERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature			
Parameter No.	Typical	Max	Units	nits Conditions			
Power-Down (Current (IPD)						
HDC61c	3	5	μA	μA +150°C 3.3V Watchdog Timer Current: ΔΙWDT ^(2,4)			

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

- 2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 3: These currents are measured on the device containing the most memory in this family.
- 4: These parameters are characterized, but are not tested in manufacturing.

TABLE 27-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

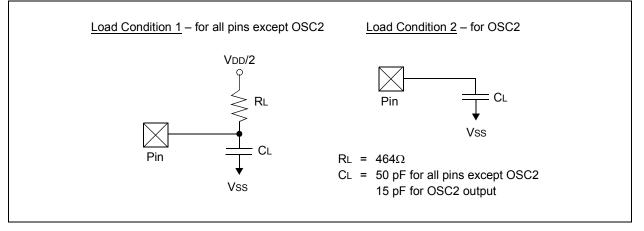
DC CHARACTERISTICS (ui				erwise s	,		∨ C for High Temperature
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

DC CHAF	RACTERI	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for High Temperature				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - All pins not defined by 4x or 8x driver pins	_	_	0.4	V	Io∟ ≤ 1.8 mA, VDD = 3.3V See Note 1
HDO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	_	_	0.4	V	IoL ≤ 3.6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - OSC2, CLKO, RC15	_	_	0.4	V	Io∟ ≤ 6 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.4	_	_	V	Io∟ ≥ -1.8 mA, Voo = 3.3V See Note 1
HDO20 Voh	Output High Voltage I/O Pins: 4x Source Driver Pins - RA2, RA3, RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.4	_	_	V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - OSC2, CLKO, RC15	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - All pins not defined by 4x or 8x driver pins	2.0	_	_	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -1.4 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA2, RA3,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1
HDO20A	Voh1	RA9, RA10, RA14, RA15, RB0, RB1, RB11, RF4, RF5, RG2, RG3	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0				IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage 8x Source Driver Pins - OSC2, CLKO,	1.5				IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
		RC15	2.0 –			V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
Note 1:		ters are characterized, but not tested.	3.0	-	—		IOH ≥ -3 mA, VDD = 3.3V See Note 1

TABLE 27-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

27.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33FJXXXMCX06A/X08A/X10A AC characteristics and timing parameters for high temperature devices. However, all AC timing specifications in this section are the same as those in Section 26.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, parameter OS53 in Section 26.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 27-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$

FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-8: PLL CLOCK TIMING SPECIFICATIONS

$\begin{tabular}{ c c c c c } AC & Standard Operating Conditions: 3.0V to 3.6V (unless Operating temperature $-40^\circ C \le TA \le +150^\circ C$ for High $$Tabular temperature $$-40^\circ C \le TA \le +150^\circ C$ for High $$Tabular temperature $$Tabular temperature $$$Tabular temperature $$$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $							
Param No.	Symbol	Characteristic	tic Min Typ Max Units Conditions				
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 27-9: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Characteristic Min Typ Max Units Conditions						
	LPRC @ 32.768 kHz ⁽¹⁾						
HF21	LPRC	-70 ⁽²⁾	_	+70 ⁽²⁾	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C \qquad$	

Note 1: Change of LPRC frequency as VDD changes.

2: Characterized but not tested.

TABLE 27-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_		ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	—	—	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns	_		
HSP41		Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	—		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		

TABLE 27-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 27-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25			ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2		
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_		55	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 27-14: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le T_A \le +150^{\circ}C$ for High Temperature							-	
Param No.	Symbol	Characteristic Min Typ Max Units Conditions						
			Referenc	e Input	s			
HAD08	IREF	Current Drain		250 —	600 50	μ Α μ Α	ADC operating, See Note 1 ADC off, See Note 1	

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 27-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)⁽³⁾

-	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF- ⁽¹⁾									
AD23a	Gerr	Gain Error	_	5	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24a	EOFF	Offset Error	_	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
	AD	C Accuracy (12-bit Mode	e) – Meas	uremen	ts with in	ternal V	/REF+/VREF- ⁽¹⁾		
AD23a	Gerr	Gain Error	2	10	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	5	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
	•	Dynamic	Performa	nce (12	-bit Mode	e) ⁽²⁾	•		
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	_		

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 27-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)⁽³⁾

Characteristic ccuracy (12-bit Mode) in Error	Min – Measu	Typ rements	Max s with ext	Units ternal V	Conditions
	– Measu	rements	s with ext	ternal V	
in Error					KEFT/VKEF"`'
	_	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
set Error		2	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
ccuracy (12-bit Mode)	– Measu	irement	s with int	ernal V	REF+/VREF- ⁽¹⁾
in Error	_	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
set Error	_	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
Dynamic Pe	erforman	nce (10-b	oit Mode)	(2)	
ut Signal Bandwidth	_		400	kHz	
i	ccuracy (12-bit Mode) n Error set Error Dynamic Pe ut Signal Bandwidth	n Error – set Error – Dynamic Performar ut Signal Bandwidth –	ccuracy (12-bit Mode) – Measurements n Error — 7 set Error — 3 Dynamic Performance (10-but) ut Signal Bandwidth — —	ccuracy (12-bit Mode) – Measurements with internet n Error — 7 15 set Error — 3 7 Dynamic Performance (10-bit Mode) ut Signal Bandwidth — 400	ccuracy (12-bit Mode) – Measurements with internal Vinnerror n Error 7 set Error 3 Dynamic Performance (10-bit Mode) ⁽²⁾

e 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

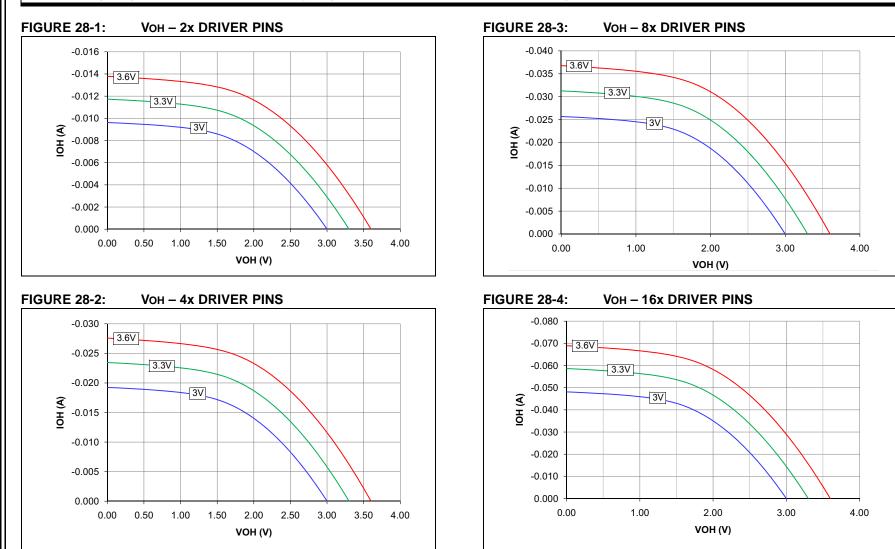
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

CHARAG	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	teristic Min Typ Max Units				Conditions	
	Clock Parameters							
HAD50	TAD	ADC Clock Period ⁽¹⁾	147		_	ns		
TIAD 50	IAD		177			113		
TIAD 30	IAD		version R	ate		113		

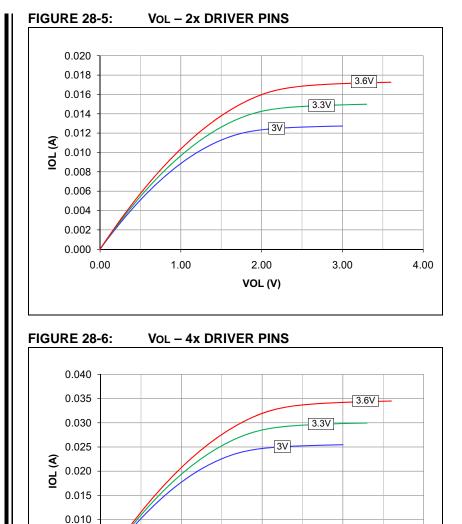
TABLE 27-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 27-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

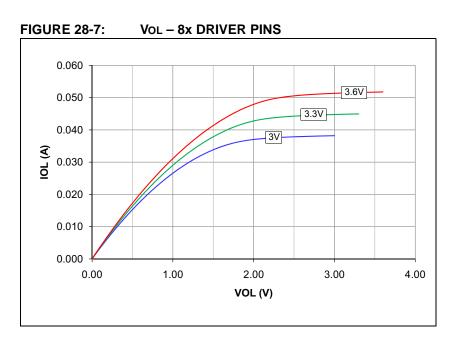

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
		Cloc	k Parame	ters				
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_		ns	_	
Conversion Rate								
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	800	Ksps		
N	These permeters are characterized but not tested in permittent wing							

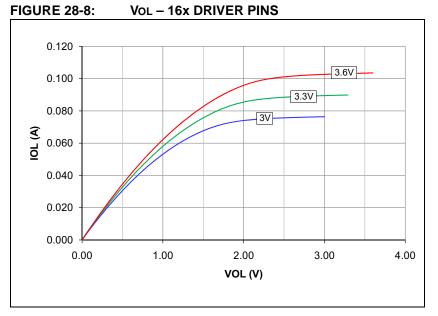
Note 1: These parameters are characterized but not tested in manufacturing.


NOTES:

28.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

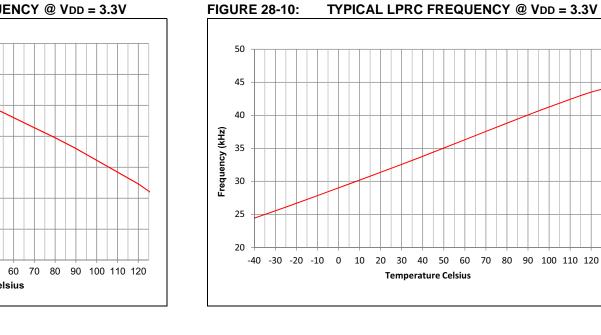


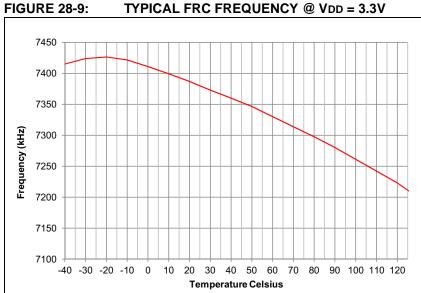

2.00

VOL (V)

3.00

4.00



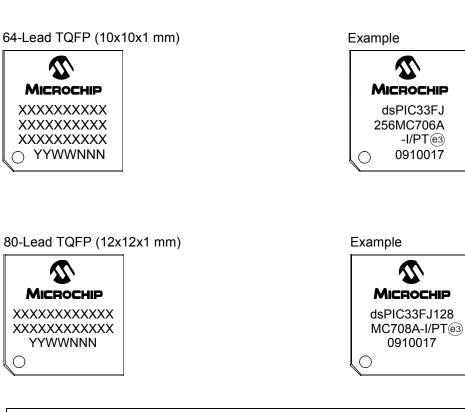

© 2009-2012 Microchip Technology Inc.

0.005

0.00

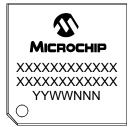
1.00

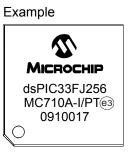
NOTES:


29.0 **PACKAGING INFORMATION**

29.1 **Package Marking Information**

64-Lead QFN (9x9x0.9mm)



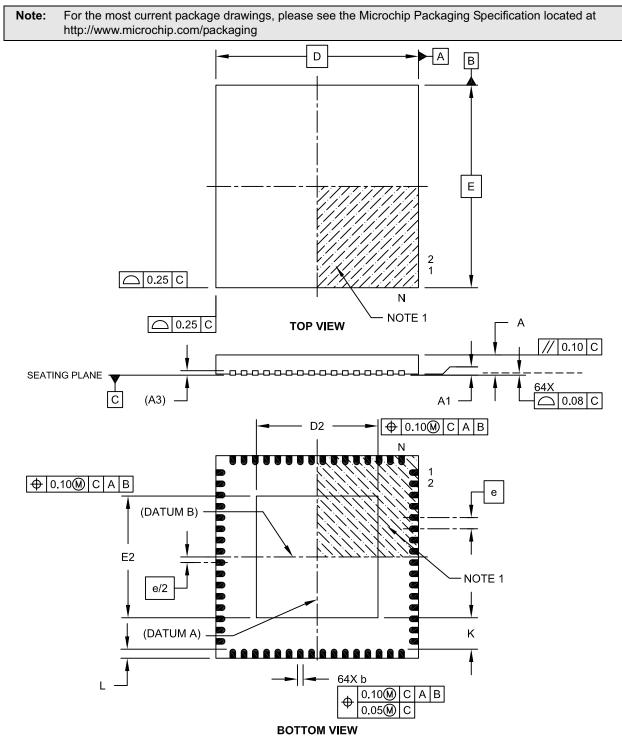

Leç	gend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
No	b	e carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

(

29.1 Package Marking Information (Continued)

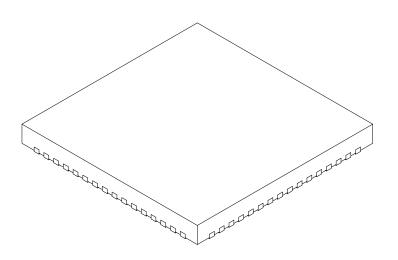
100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)



Legend	XXX Y YY WW NNN (©3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

29.2 Package Details


64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

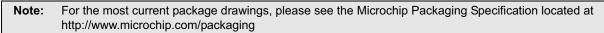
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

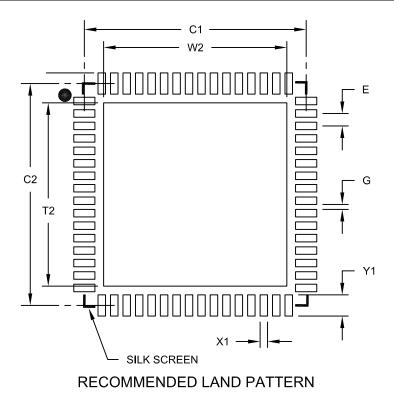
Units		N		S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

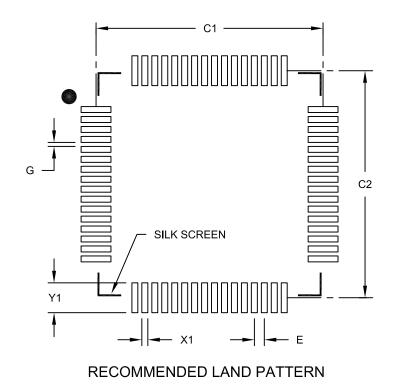
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		64	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	—	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	Overall Width E 12.00 BSC			
Overall Length	D 12.00 BSC			
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

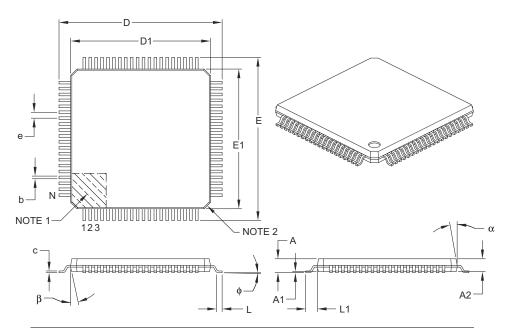
Microchip Technology Drawing C04-085B

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	-
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

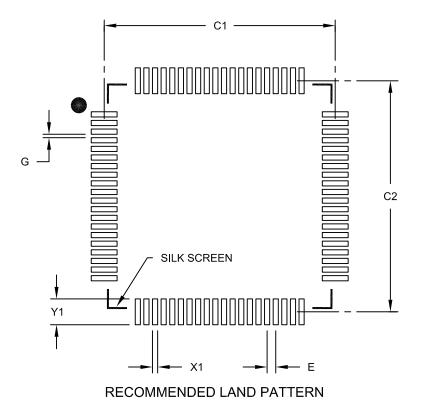
Units			MILLIMETERS	;
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	e		0.50 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	E 14.00 BSC		
Overall Length	D	14.00 BSC		
Molded Package Width	E1	12.00 BSC		
Molded Package Length	D1	12.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

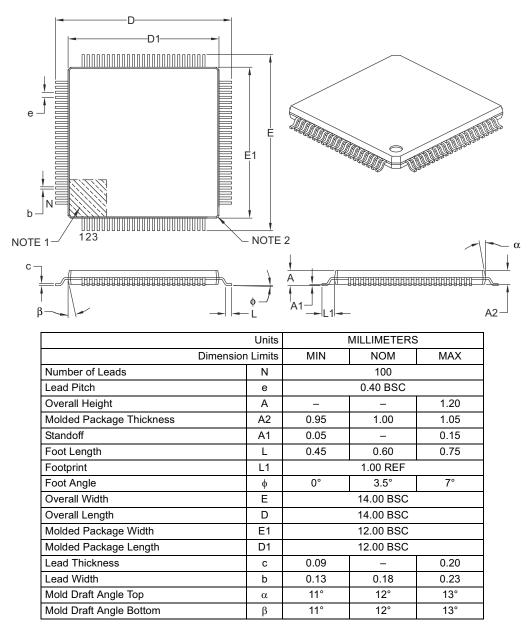
Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

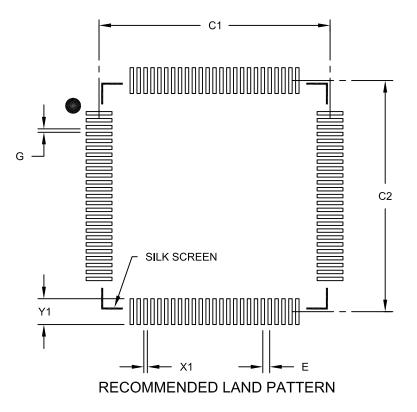
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

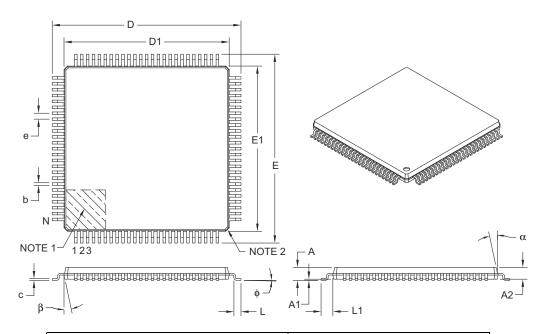
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		N	ILLIMETER	S
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dir	mension Limits	MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	е		0.50 BSC	
Overall Height	А	_	—	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		16.00 BSC	
Overall Length	D		16.00 BSC	
Molded Package Width	E1		14.00 BSC	
Molded Package Length	D1		14.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

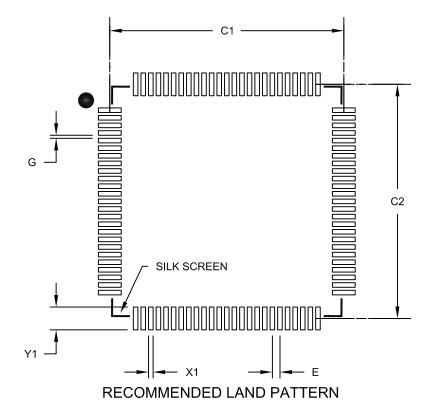
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		1	MILLIMETER	S
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

NOTES:

APPENDIX A: MIGRATING FROM dsPIC33FJXXXMCX06/ X08/X10 DEVICES TO dsPIC33FJXXXMCX06A/ X08A/X10A DEVICES

The dsPIC33FJXXXMCX06A/X08A/X10A devices were designed to enhance the dsPIC33FJXXXMCX06/ X08/X10 families of devices.

In general, the dsPIC33FJXXXMCX06A/X08A/X10A devices are backward-compatible with dsPIC33FJXXXMCX06/X08/X10 devices; however, manufacturing differences may cause dsPIC33FJXXXMCX06A/X08A/X10A devices to behave differently from dsPIC33FJXXXMCX06/X08/X10 devices. Therefore, complete system test and characterization is recommended if dsPIC33FJXXXMCX06A/X08A/X10A devices are used to replace dsPIC33FJXXXMCX06/X08/X10 devices.

The following enhancements were introduced:

- Extended temperature support of up to +125°C
- Enhanced Flash module with higher endurance and retention
- New PLL Lock Enable Configuration bit
- Added Timer5 trigger for ADC1 and Timer3 trigger for ADC2

APPENDIX B: REVISION HISTORY

Revision A (May 2009)

This is the initial released version of the document.

Revision B (October 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits.

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-1: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Motor Control and Advanced Analog"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADCx block diagram (see Figure 22-1).
Section 23.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 23.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 23-1).
Section 26.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Updated Power-Down Current parameters DC60d, DC60a, DC60b, and DC60d (see Table 26-7).
	Added I2Cx Bus Data Timing Requirements (Master Mode) parameter IM51 (see Table 26-40).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 26-17).
	Updated the Internal LPRC Accuracy parameters (see Table 26-19).
	Updated the ADC Module Specifications (12-bit Mode) parameters AD23a, AD24a, AD23b, and AD24b (see Table 26-46).
	Updated the ADC Module Specifications (10-bit Mode) parameters AD23c, AD24c, AD23d, and AD24d (see Table 26-46).
Section 27.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.

Revision C (March 2011)

This revision includes typographical and formatting changes throughout the data sheet text. In addition, all instances of VDDCORE have been removed.

All other major changes are referenced by their respective section in the following table.

TABLE B-2:	MAJOR SECTION UPDATES
	MARCON DECISION OF DATED

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the title of Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)".
	The frequency limitation for device PLL start-up conditions was updated in Section 2.7 "Oscillator Value Conditions on Device Start-up".
	The second paragraph in Section 2.9 "Unused I/Os" was updated.
Section 4.0 "Memory Organization"	 The All Resets values for the following SFRs in the Timer Register Map were changed (see Table 4-6): TMR1 TMR2
	• TMR2
	• TMR4
	• TMR5
	• TMR6
	• TMR7
	• TMR8
	• TMR9
Section 9.0 "Oscillator Configuration"	Added Note 3 to the OSCCON: Oscillator Control Register (see Register 9-1).
	Added Note 2 to the CLKDIV: Clock Divisor Register (see Register 9-2).
	Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see Register 9-3).
	Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see Register 9-4).
Section 22.0 "10-bit/12-bit Analog-to-Digital	Updated the VREFL references in the ADC1 module block diagram
Converter (ADC)"	(see Figure 22-1).
Section 23.0 "Special Features"	Added a new paragraph and removed the third paragraph in Section 23.1 "Configuration Bits ".
	Added the column "RTSP Effects" to the Configuration Bits Descriptions (see Table 23-2).

TABLE B-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Electrical Characteristics"	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 26-4).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 26-9).
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 26-18).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 26-20).
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 26-43).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 26-44).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 26-45).
	Added DMA Read/Write Timing Requirements (see Table 26-48).
Section 27.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 27-2).
	Updated the ADC Module Specifications (12-bit Mode), removing all parameters with the exception of HAD33a (see Table 27-14).
	Updated the ADC Module Specifications (10-bit Mode), removing all parameters with the exception of HAD33b (see Table 27-16).

Revision D (June 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE B-3: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Updated the Recommended Minimum Connection (see Figure 2-1).
Section 9.0 "Oscillator Configuration"	Updated the COSC<2:0> and NOSC<2:0> bit value definitions for '001' (see Register 9-1).
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the Analog-to-Digital Conversion Clock Period Block Diagram (see Figure 22-2).
Section 23.0 "Special Features"	Added Note 3 to the On-chip Voltage Regulator Connections (see Figure 23-1).
Section 26.0 "Electrical Characteristics"	Updated "Absolute Maximum Ratings".
	Updated Operating MIPS vs. Voltage (see Table 26-1).
	Removed parameter DC18 from the DC Temperature and Voltage Specifications (see Table 26-4).
	Updated the notes in the following tables:
	• Table 26-5
	• Table 26-6
	• Table 26-7
	Table 26-8
	Updated the I/O Pin Output Specifications (see Table 26-10).
	Updated the Conditions for parameter BO10 (see Table 26-11).
	Updated the Conditions for parameters D136b, D137b and D138b (TA = 150°C) (see Table 26-12).
Section 27.0 "High Temperature Electrical	Updated "Absolute Maximum Ratings ⁽¹⁾ ".
Characteristics"	Updated the I/O Pin Output Specifications (see Table 27-6).
	Removed Table 26-7: DC Characteristics: Program Memory.

NOTES:

INDEX

1	۱.
r	٦.

A/D Converter	
DMA	
Initialization	
Key Features	
AC Characteristics	290, 333
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	
ADC2 Register Map	
Alternate Vector Interrupt Table (AIVT)	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter	33
Bit-Reversed Addressing	66
Example	
Implementation	66
Sequence Table (16-Entry)	67
Block Diagrams	
16-Bit Timer1 Module	165
A/D Module	246
Connections for On-Chip Voltage Regulator	264
Device Clock (Oscillator)	
Device Clock (PLL)	
DSP Engine	
dsPIC33F	
dsPIC33F CPU Core	
ECAN Technology	
I ² C Module	
Input Capture	
Output Compare	175
Programmer's Model	25
PWM Module	180
Quadrature Encoder Interface	193
Reset System	
Shared Port Structure	
SPI Module	
Timer2 (16-Bit)	169
Timer2/3 (32-Bit)	168
Top Level System Architecture Using Dedicated	
Transaction Bus	134
UART Module	211
Watchdog Timer (WDT)	265
Brown-out Reset (BOR)	264
C	
•	
C Compilers	076
MPLAB C18	
Clock Switching	
Enabling	
Sequence	151
Code Examples	

Sequence	
ode Examples	
Erasing a Program Memory Page	76
Initiating a Programming Sequence	77
Loading Write Buffers	77
Port Write/Read	
PWRSAV Instruction Syntax	153

Code Protection	259, 266
CodeGuard Security	259, 266
Configuration Bits	259
Configuration Register Map	259
Configuring Analog Port Pins	162
CPU	
Control Register	
CPU Clocking System	144
PLL	144
Selection	144
Sources	144
Customer Change Notification Service	369
Customer Notification Service	369
Customer Support	369

D

Data Accumulators and Adder/Subtracter	31
Data Space Write Saturation	33
Overflow and Saturation	31
Round Logic	32
Write Back	32
Data Address Space	37
Alignment	37
Memory Map for dsPIC33FJXXXMCX06A/X08	3A/X10A
Devices with 16-Kbyte RAM	
Memory Map for dsPIC33FJXXXMCX06A/X08	3A/X10A
Devices with 30-Kbyte RAM	40
Memory Map for dsPIC33FJXXXMCX06A/X08	3A/X10A
Devices with 8-Kbyte RAM	38
Near Data Space	37
Software Stack	63
Width	37
DC and AC Characteristics	
Graphs and Tables	339
DC Characteristics	
Doze Current (IDOZE)	. 285, 331
High Temperature	330
I/O Pin Input Specifications	286
I/O Pin Output Specifications	
Idle Current (IIDLE)	283
Operating Current (IDD)	282
Operating MIPS vs. Voltage	330
Power-Down Current (IPD)	284
Power-down Current (IPD)	330
Program Memory	289
Temperature and Voltage	
Temperature and Voltage Specifications	281
Thermal Operating Conditions	330
Development Support	275
DMA Module	
DMA Register Map	
DMAC Registers	
DMAxCNT	135
DMAxCON	
DMAxPAD	135
DMAxREQ	135
DMAxSTA	
DMAxSTB	
DSP Engine	
Multiplier	31

Е

ECAN Module
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)55
ECAN1 Register Map (C1CTRL1.WIN = 0)
ECAN1 Register Map (C1CTRL1.WIN = 1)56
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)58
ECAN2 Register Map (C2CTRL1.WIN = 0)
ECAN Technology
Frame Types217
Modes of Operation219
Overview
Electrical Characteristics
AC
Enhanced CAN Module217
Equations
Device Operating Frequency144
Fosc Calculation144
Programming Time74
XT with PLL Mode145
Errata11

F

Flash Program Memory	73
Control Registers	
Operations	
Programming Algorithm	76
RTSP Operation	74
Table Instructions	
Flexible Configuration	
FSCM	
Delay for Crystal and PLL Clock Sources	
Device Resets	
^	

G

Getting Started with 16-Bit DSCs	19

н

High Temperature Electrical Characteristics	
I	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	
I ² C	
Operating Modes	
I ² C Module	
I2C1 Register Map	
I2C2 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	259, 266
Input Capture	
Registers	174
Input Change Notification Module	
Instruction Addressing Modes	63
File Register Instructions	63
Fundamental Modes Supported	64
MAC Instructions	64
MCU Instructions	63
Move and Accumulator Instructions	64
Other Instructions	64
Instruction Set	
Overview	270
Summary	

Instruction-Based Power-Saving Modes	
Idle	
Sleep	153
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON2	
INTTREG	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine (ISR)	
Trap Service Routine	
Interrupt Vector Table (IVT)	. 85
Interrupts Coincident with Power Save Instructions	154
J	
JTAG Boundary Scan Interface	259
M	
Memory Organization	. 35
Microchip Internet Web Site	369
Migration	357
Modes of Operation	
Disable	219
Initialization	219
Listen All Messages	219
Listen Only	219
Loopback Mode	219
Normal Operation	219
Modulo Addressing	. 64
Applicability	
Operation Example	. 65
Start and End Address	
W Address Register Selection	
Motor Control PWM	179
Motor Control PWM Module	
8-Output Register Map	. 49
MPLAB ASM30 Assembler, Linker, Librarian	276
MPLAB Integrated Development	
Environment Software	275
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	276
Ν	

NVM Module	
Register Map	
0	
Open-Drain Configuration	
Output Compare	
Modes	

Ρ

-	
Packaging	3
Details	5
Marking	
Peripheral Module Disable (PMD)	

Pinout I/O Descriptions (table)	15
Register Map	62
POR and Long Oscillator Start-up Times	84
PORTA	
Register Map	60
PORTB	
Register Map	60
PORTC	
Register Map	61
PORTD	
Register Map	61
PORTE	
Register Map	61
PORTF	
Register Map	61
PORTG	
Register Map	62
Power-Saving Features1	
Clock Frequency and Switching1	53
Program Address Space	
Construction	68
Data Access from Program Memory Using	
Program Space Visibility	71
Data Access from Program Memory Using	
Table Instructions	
Data Access from, Address Generation	
Memory Map	35
Table Read High Instructions	
TBLRDH	70
Table Read Low Instructions	
TBLRDL	
Visibility Operation	71
Program Memory	~~
Interrupt Vector	
Organization	
Reset Vector	30

Q

Quadrature Encoder Interface (QEI)	
Quadrature Encoder Interface (QEI) M	odule
Register Map	

R

Reader Response	370
Registers	
ADxCHS0 (ADCx Input Channel 0 Select)	256
ADxCHS123 (ADCx Input	
Channel 1, 2, 3 Select)	255
ADxCON1 (ADCx Control 1)	249
ADxCON2 (ADCx Control 2)	251
ADxCON3 (ADCx Control 3)	253
ADxCON4 (ADCx Control 4)	
ADxCSSH (ADCx Input Scan Select High)	257
ADxCSSL (ADCx Input Scan Select Low)	257
ADxPCFGH (ADCx Port Configuration High)	258
ADxPCFGL (ADCx Port Configuration Low)	258
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	231
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	232
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	233
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	234
CiCFG1 (ECAN Baud Rate Configuration 1)	228
CiCFG2 (ECAN Baud Rate Configuration 2)	229
CiCTRL1 (ECAN Control 1)	220
CiCTRL2 (ECAN Control 2)	221
CiEC (ECAN Transmit/Receive Error Count)	227

CIFCTRL (ECAN FIFO Control)	. 223
CiFEN1 (ECAN Acceptance Filter Enable)	
	200
CiFIFO (ECAN FIFO Status)	
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)	236
CiFMSKSEL2 (ECAN Filter 15-8 Mask	
Selection)	. 237
CiINTE (ECAN Interrupt Enable)	
CiINTF (ECAN Interrupt Flag)	. 225
CiRXFnEID (ECAN Acceptance Filter n	
	005
Extended Identifier)	. 235
CiRXFnSID (ECAN Acceptance Filter n	
Standard Identifier)	235
CiRXFUL1 (ECAN Receive Buffer Full 1)	
CiRXFUL2 (ECAN Receive Buffer Full 2)	. 239
CiRXMnEID (ECAN Acceptance Filter	
Mask n Extended Identifier)	238
CiRXMnSID (ECAN Acceptance Filter Mask n	
Standard Identifier)	220
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	. 240
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	240
	10
CiTRBnDLC (ECAN Buffer n Data	
Length Control)	. 243
CiTRBnDm (ECAN Buffer n Data Field Byte m)	243
CiTRBnEID (ECAN Buffer n Extended Identifier)	
CiTRBnSID (ECAN Buffer n Standard Identifier)	. 242
CiTRBnSTAT (ECAN Receive Buffer n Status)	
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code)	222
CLKDIV (Clock Divisor)	
CORCON (Core Control)	8, 90
DFLTxCON (Digital Filter x Control)	196
DMACS0 (DMA Controller Status 0)	120
DMACS1 (DMA Controller Status 1)	. 141
DMAxCNT (DMA Channel x Transfer Count)	138
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x	. 135
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address)	. 135 . 138
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select)	. 135 . 138
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select)	. 135 . 138
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start	. 135 . 138 . 136
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A)	. 135 . 138 . 136
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start	. 135 . 138 . 136 . 137
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start	. 135 . 138 . 136 . 137
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B)	. 135 . 138 . 136 . 137 . 137
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 137 . 142
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON (Input Capture x Control)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON (Input Capture x Control) IECO (Interrupt Enable Control 0)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxCON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1)	. 135 . 138 . 136 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107
DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxSTAT (I2Cx Status) ICxCON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) 	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) 	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 142 . 206 . 210 . 208 . 142 . 206 . 210 . 208 . 142 . 206 . 210 . 208 . 137 . 142 . 206 . 210 . 2100 . 210 . 210 . 2100 . 2100.
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) 	. 135 . 138 . 136 . 137 . 142 . 206 . 210 . 208 . 174 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) 	. 135 . 138 . 136 . 137 . 142 . 206 . 210 . 208 . 174 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IFS0 (Interrupt Flag Status 0) 	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 96
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 2) IEC3 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) 	. 135 . 138 . 136 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address) I2CxCON (I2Cx Control) I2CxMSK (I2Cx Slave Mode Address Mask) I2CxON (Input Capture x Control) IEC0 (Interrupt Enable Control 0) IEC1 (Interrupt Enable Control 1) IEC2 (Interrupt Enable Control 3) IEC4 (Interrupt Enable Control 4) IFS0 (Interrupt Flag Status 0) IFS1 (Interrupt Flag Status 1) IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3) 	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 98 . 100
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 101 94 . 100 . 102
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 101 98 . 100 . 102 91 93
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 101 98 . 100 . 102 91 93
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 136 . 137 . 137 . 142 . 206 . 208 . 208 . 174 . 103 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B). DMAxSTB (DMA Channel x RAM Start Address Offset B). DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 98 . 100 91 93 . 130
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 98 . 100 91 93 . 130
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 98 . 100 91 93 . 130
 DMAxCON (DMA Channel x Control) DMAxPAD (DMA Channel x Peripheral Address) DMAxREQ (DMA Channel x IRQ Select) DMAxSTA (DMA Channel x RAM Start Address Offset A) DMAxSTB (DMA Channel x RAM Start Address Offset B) DMAxSTB (DMA Channel x RAM Start Address Offset B) DSADR (Most Recent DMA RAM Address)	. 135 . 138 . 137 . 137 . 137 . 142 . 206 . 210 . 208 . 174 . 103 . 105 . 107 . 109 . 111 94 93 . 130

IPC13 (Interrupt Priority Control 13)	125
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCOM (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	
PMD3 (Peripheral Module Disable Control 2)	
PWMxCON1 (PWMx Control 1)	
PWMxCON2 (PWMx Control 2)	
PxDC1 (PWMx Duty Cycle 1)	
PxDC2 (PWMx Duty Cycle 1)	
PxDC3 (PWMx Duty Cycle 3)	
PxDC4 (PWMx Duty Cycle 4)	
PxDTCON1 (PWMx Dead-Time Control 1)	
PxDTCON2 (PWMx Dead-Time Control 2)	
PxFLTACON (PWMx Fault A Control)	
PxFLTBCON (PWMx Fault B Control)	
PxOVDCON (PWMx Override Control) PxSECMP (PWMx Special Event Compare)	
PxTCON (PWMx Time Base Control)	
PxTMR (PWMx Timer Count Value) PxTPER (PWMx Time Base Period)	
QEIxCON (QEIx Control)	
RCON (Reset Control)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2) SPIxSTAT (SPIx Status and Control)	
SR (CPU STATUS)	
SR (CPU Status)	
T1CON (Timer1 Control)	166
TxCON (T2CON, T4CON, T6CON or T8CON Control)	170
TyCON (T3CON, T5CON, T7CON or	170
	474
T9CON Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
Reset	
Clock Source Selection	
Special Function Register States	
Times	
Reset Sequence	
Resets	
Revision History	358

S

Serial Peripheral Interface (SPI)	197
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	63
Special Features of the CPU	259
SPI Module	
SPI1 Register Map	51
SPI2 Register Map	51
Symbols Used in Opcode Descriptions	
System Control	
Register Map	62

Т

•			
Temperature and Voltage Specifications			
AC	333		
Timer1	165		
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	167		
Timing Characteristics			
CLKO and I/O	293		
Timing Diagrams			
10-Bit A/D Conversion (CHPS<1:0> = 01,			
SIMSAM = 0, ASAM = 0,			
SSRC<2:0> = 000)	326		
10-Bit A/D Conversion (CHPS<1:0> = 01,			
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,			
SAMC<4:0> = 00001)			
12-Bit A/D Conversion (ASAM = 0, SSRC = 000)			
CAN I/O	320		
External Clock	291		
I2Cx Bus Data (Master Mode)	316		
I2Cx Bus Data (Slave Mode)	318		
I2Cx Bus Start/Stop Bits (Master Mode)			
I2Cx Bus Start/Stop Bits (Slave Mode)	318		
Input Capture (CAPx)	298		
Motor Control PWM			
Motor Control PWM Fault	300		
OC/PWM	299		
Output Compare (OCx)	298		
QEA/QEB Input	301		
QEI Module Index Pulse	302		
Reset, Watchdog Timer, Oscillator Start-up Timer			
and Power-up Timer	294		
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock			
TimerQ (QEI Module) External Clock	303		
Timing Requirements			
ADC Conversion (10-bit mode)			
ADC Conversion (12-bit Mode)	337		
CLKO and I/O	293		
External Clock	291		
Input Capture	298		
SPIx Master Mode (CKE = 0)	334		
SPIx Module Master Mode (CKE = 1)	334		
SPIx Module Slave Mode (CKE = 0)	335		
SPIx Module Slave Mode (CKE = 1)	335		

Timing Specifications	
10-Bit A/D Conversion Requirements	328
12-Bit A/D Conversion Requirements	325
CAN I/O Requirements	320
I2Cx Bus Data Requirements (Master Mode)	317
I2Cx Bus Data Requirements (Slave Mode)	319
Motor Control PWM Requirements	300
Output Compare Requirements 2	298
PLL Clock	333
QEI External Clock Requirements	303
QEI Index Pulse Requirements	302
Quadrature Decoder Requirements	301
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out	
Reset Requirements2	295
Simple OC/PWM Mode Requirements 2	299
Timer1 External Clock Requirements2	296
Timer2, Timer4, Timer6 and Timer8 External	
Clock Requirements2	297
Timer3, Timer5, Timer7 and Timer9	
External Clock Requirements2	297

U

UART Module UART1 Register Map51 UART2 Register Map51
V
Voltage Regulator (On-Chip) 264
W
Watchdog Timer (WDT) 259, 265
Programming Considerations
WWW Address
WWW, On-Line Support 11

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
FIU	n: Name			
	Company Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Арр	lication (optional):	·/		
	ld you like a reply? Y N			
	ce: dsPIC33FJXXXMCX06A/X08A/X10A	Literature Number: DS70594D		
Que	stions:			
1.	What are the best features of this document?			
2.	2. How does this document meet your hardware and software development needs?			
3.	B. Do you find the organization of this document easy to follow? If not, why?			
4.	. What additions to the document do you think would enhance the structure and subject?			
5.	. What deletions from the document could be made without affecting the overall usefulness?			
6.	Is there any incorrect or misleading information (what and where)?			
7.	How would you improve this document?			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	ds	PIC 33 FJ 256 MC7 10 A T I / PT - XXX	Examples:	
Tape and Reel Flag Temperature Rang Package	hily Size (KB) g (if applic e		 a) dsPIC33FJ256MC710ATI/PT: Motor Control dsPIC33, 64-Kbyte program memory, 64-pin, Industrial temperature, TQFP package. 	
Architecture:	33 =	16-bit Digital Signal Controller		
Flash Memory Family:	FJ =	Flash program memory, 3.3V		
Product Group:	MC5 = MC7 =	Motor Control family Motor Control family		
Pin Count:	06 = 08 = 10 =	64-pin 80-pin 100-pin		
Temperature Range:	I = E = H =	-40°C to +85°C (Industrial) -40°C to +125°C (Extended) -40°C to +150°C (High)		
Package:	PT = PF = MR =	14x14 mm TQFP (Thin Quad Flatpack)		
Pattern	Three-dig (blank oth	it QTP, SQTP, Code or Special Requirements erwise)		

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

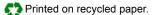
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62076-343-8

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А