TK3906LLD03

WBFBP-03D Plastic-Encapsulate Transistors

TRANSISTOR

DESCRIPTION

PNP Epitaxial Silicon Transistor

FEATURES

Epitaxial Planar Die Construction Complementary NPN Type Available (TK3904LLD03) Ultra-Small Surface Mount Package Also Available in Lead Free Version

APPLICATION

General Purpose Amplifier, switching For portable equipment: (i.e. Mobile phone, MP3, MD, CD-ROM, DVD-ROM, Note book PC, etc.)

Pb-Free package is available

RoHS product for packing code suffix "G" Halogen free product for packing code suffix "H"

MAXIMUM RATINGS(Ta=25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	-40	V
V _{CEO}	Collector-Emitter Voltage	-40	V
V _{EBO}	Emitter-Base Voltage	-5	V
Ic	Collector Current -Continuous	-200	mA
P _D	Power Dissipation	100	mW
Reja	Thermal Resistance, Junction to Ambient	1250	°C/W
TJ	Operating Temperature	150	${\mathbb C}$
T _{stg}	Storage and Temperature	-55~150	Ç
			_

WBFBP-03D (1.0x1.0x0.5) unit: mm TOP B E 1. BASE 2. EMITTER 3. COLLECTOR BACK E B

MARKING:3N

C 3N • B E

ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Mlin	Тур	Max	Unit
Collector-base breakdown voltage	V _{(BR)CBO}	I _C =-10μΑ,I _E =0	-40			V
Collector-emitter breakdown voltage	$V_{(BR)CEO}$	I _C =-1mA,I _B =0	-40			V
Emitter-base breakdown voltage	$V_{(BR)EBO}$	I _E =-10μΑ,I _C =0	-5			V
Collector cut-off current	I _{CEX}	V _{CE} =-30V,V _{EB(off)} =-3V			-0.05	μΑ
Emitter cut-off current	I _{EBO}	V_{EB} =-5 V , I_{C} =0			-0.1	μA
	h _{FE(1)}	V_{CE} =-1 V , I_{C} =-0.1 m A	60			
	h _{FE(2)}	V _{CE} =-1V,I _C =-1mA	80			
DC current gain	h _{FE(3)}	V _{CE} =-1V,I _C =-10mA	100		300	
	h _{FE(4)}	V _{CE} =-1V,I _C =-50mA	60			
	h _{FE(5)}	V _{CE} =-1V,I _C =-100mA	30			
Collector emitter estruction voltage	V _{CE(sat)1}	I _C =-10mA,I _B =-1mA			-0.25	V
Collector-emitter saturation voltage	V _{CE(sat)2}	I _C =-50mA,I _B =-5mA			-0.4	V
Page emitter acturation voltage	V _{BE(sat)1}	I _C =-10mA,I _B =-1mA	-0.65		-0.85	V
Base-emitter saturation voltage	V _{BE(sat)2}	I _C =-50mA,I _B =-5mA			-0.95	V
Transition frequency	f _T	V _{CE} =-20V,I _C =-10mA,f=100MHz	250			MHz

ELECTRICAL CHARACTERISTICS (Ta=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Collector output capacitance	Cob	V _{CB} =-5V,I _E =0,f=1MHz			4.5	pF
Input capacitance	C _{ib}	V _{EB} =-0.5V,I _C =0,f=1MHz			10	pF
Noise figure	NF	V_{CE} =-5 V , I_c =0.1 m A, f =1 K H z , R_S =1 K Ω			4	dB
Delay time	t _d	V_{CC} =-3V, $V_{BE(OFF)}$ =0.5V, I_{C} =-10mA ,			35	ns
Rise time	t _r	I _{B1} =-1mA			35	ns
Storage time	ts	V _{CC} =-3V, I _C =-10mA,I _{B1} = I _{B2} =- 1mA			225	ns
Fall time	t _f				75	ns

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А