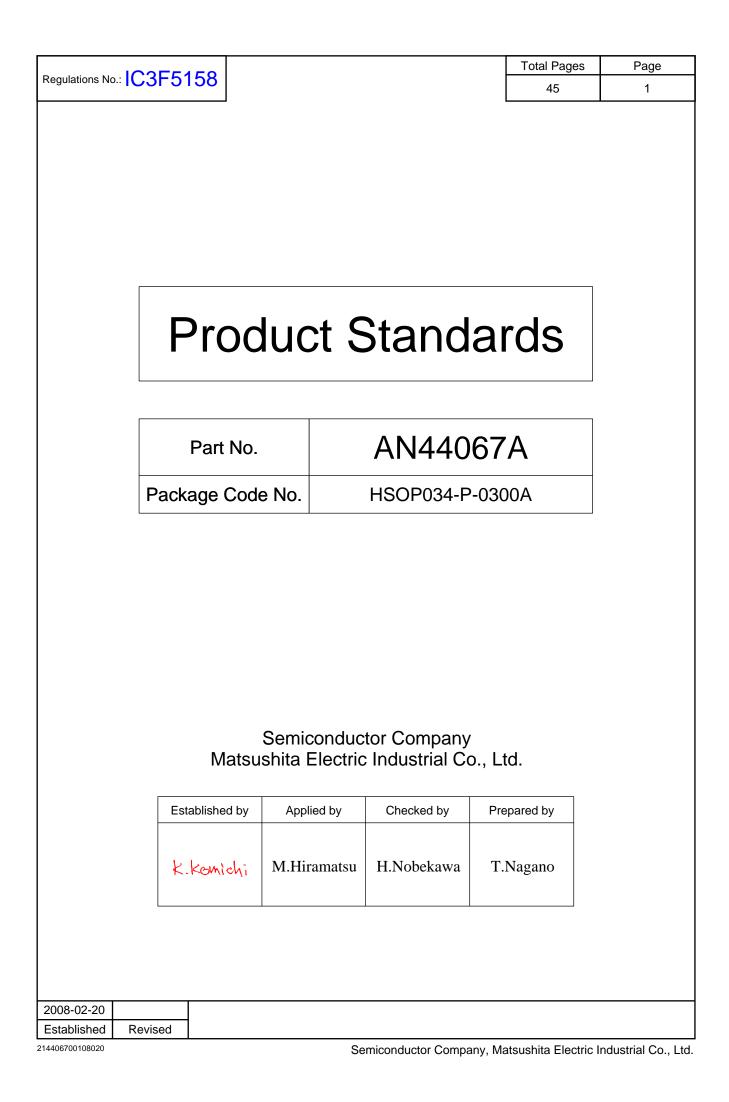

TO PIDSA HQ

	DELIVERY	<u>SPECIFICATIONS</u>
(Orderer (Customer) Part Number Panasonic Global Part Number	AN44067A-VF
	Vendor Issue Number	1203030
ORDERER (CUSTOMER)	Confirmation of Security Control We confirm and certify that the products of these specific below). "Military Purpose" in this statement means the de without limitation nuclear weapons, biological weapons, o	rations shall not be supplied so as to be used for Military Purpose (defined herein esign, development, manufacture, storage or use of any weapons, including chemical weapons and missiles.
	Receipt Date: / /	
VENDOR	according to advance consultation.	and "changes that affect performance, quality or environment" are implemented パナソニック株式会社 2012. 3.12 デバイス社 半導体寧鏁グループ 汎用LSI BU SMART Puniness distraction S423140-10#01


Panasonic

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
(3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
(4) When designing your equipment. comply with the range of absolute maximum rating and the guaranteed operating conditions (such as result), other-wise, we will not be liable for any defect which may arise later in your equipment.
(5) Comply with the products may contert excerding power of and mode-switching. Other-wise, we will not be liable for any defect which may arise later in your equipment.
(4) When designing your equipment.
(5) Comply with the range of absolute maximum ratin

Reprint from WARNING LABEL STANDARDS SC3-11-00007

This delivery specifications may include old company names such as "Matsushita Electronics Corporation" or "Semiconductor Company, Matsushita Electric Industrial Co., Ltd.""Semiconductor Company, Panasonic Corporation " Please interpret these old company names as Industrial Devices Company, Panasonic Corporation" as of January 1, 2012.

Product Standards

AN44067A

Page 2

Contents

Overview	3
■ Features	3
Applications	3
Package	3
■ Туре	3
Application Circuit Example	4
Block Diagram	5
Pin Descriptions	6
Absolute Maximum Ratings	7
Operating Supply Voltage Range	7
■ Allowable Current and Voltage Range	8
Electrical Characteristics	9
Electrical Characteristics (Reference values for design)	11
■ Test Circuit Diagram	12
Electrical Characteristics Test Procedures	14
Technical Data	22
1. I/O block circuit diagrams and pin function descriptions	22
2. Control Mode	28
3. Each Phase Current Value	29
4. Each Phase Current (Timing Chart)	31
5. Timing Chart at Change of DIR	35
6. Home Position Function	36
Usage Notes	38
1. Special attention and precaution in using	38
2. Notes of Power LSI	39
3. Notes	40

21///06700208020		Comison ductor Component Matsuchite Electric Inductrial Co.	امد ا
Established	Revised		
2008-02-20			

AN44067A

Driver IC for Stepping Motor

Overview

AN44067A is s two channel H-bridge driver IC. Bipolar stepping motor can be controlled by a single driver IC. 2 phase excitation, half- step, 1-2 phase excitation, W1-2 phase excitation and 2W1-2 phase excitation can be selected.

Features

- Built-in decoder for micro steps
 - (2 phase excitation, half-step, 1-2 phase excitation, W1-2 phase excitation and 2W1-2 phase excitation) Stepping motor can be driven by only external clock signal.
- PMW can be driven by built-in CR (3-value can be selected during PWM OFF period.) Selection during PWM OFF period enables the best PWM drive.
- Mix Decay compatible (4-value for Fast Decay ratio can be selected.) Mix Decay control can improve accuracy of motor current wave form.
- Built -in low voltage detection

If supply voltage lowers less than the range of operating supply voltage, low voltage detection operates and all phases of motor drive output are turned OFF.

• Built-in thermal protection

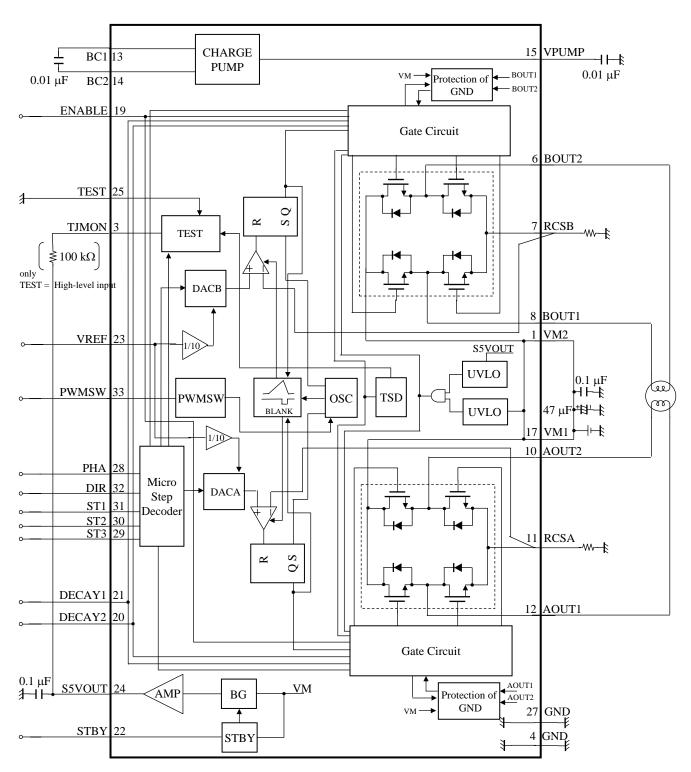
If chip junction temperature rises and reaches setup temperature, all phases of motor drive output are turned OFF.

- 1 power supply with built-in 5 V power supply (accuracy ±5%)
- Motor can be driven by only 1 power supply because of built-in 5 V power supply.
- Built-in standby function
 - Operation of standby function can lower current consumption of IC.
- Built-in Home Position function

Home Position function can detect the position of a motor.

Applications

• IC for stepping motor drives

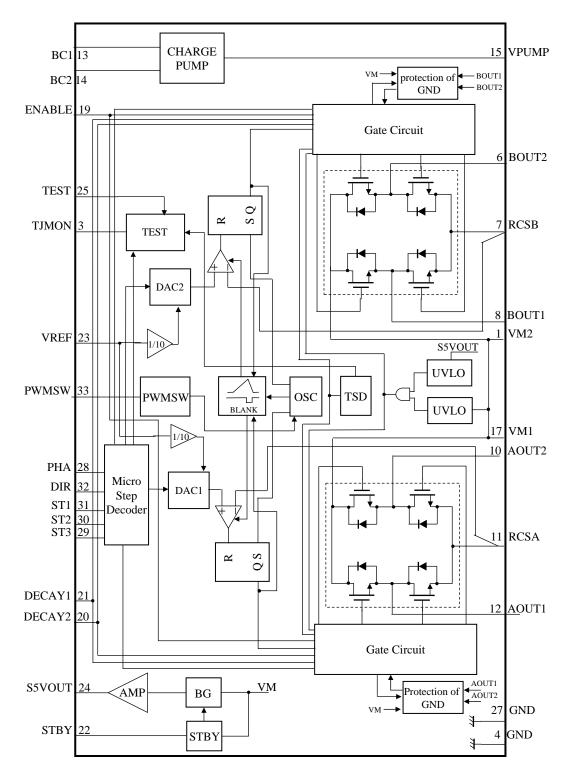

Package

- 34 pin Plastic Small Outline Package With Heat Sink (SOP Type)
- Туре
- Bi-CDMOS IC

244406700200020																		~						~														~			
Established	Revised																																								
2008-02-20																																									

	AN44	067A
Product Standards	Total Pages	Page
	45	4

Application Circuit Example



Notes) • This application circuit is shown as an example but does not guarantee the design for mass production set.

2008-02-20		
Established	Revised	
214406700408020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	067A
Product Standards	Total Pages	Page
	45	5

Block Diagram

Note) This block diagram is for explaining functions. The part of the block diagram may be omitted, or it may be simplified.

2008-02-20		
Established	Revised	
214406700508020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	067A
Product Standards	Total Pages	Page
	45	6

Pin Descriptions

Pin No.	Pin name	Туре	Description
1	VM2	Power supply	Motor power supply 2
2	N.C.	_	
3	TJMON	Output	VBE monitor / Test output / Home Position output
4	GND	Ground	ground
5	N.C.	_	_
6	BOUT2	Output	Phase B motor drive output 2
7	RCSB	Input / Output	Phase B current detection
8	BOUT1	Output	Phase B motor drive output 1
9	GND	Ground	Die pad ground
10	AOUT2	Output	Phase A motor drive output 2
11	RCSA	Input / Output	Phase A current detection
12	AOUT1	Output	Phase A motor drive output 1
13	BC1	Output	Charge pump capacitor connection 1
14	BC2	Output	Charge pump capacitor connection 2
15	VPUMP	Output	Charge pump circuit output
16	N.C.	—	_
17	VM1	Power supply	Motor power supply 1
18	N.C.	—	_
19	ENABLE	Input	Enable / disable CTL
20	DECAY2	Input	Mix Decay setup 2
21	DECAY1	Input	Mix Decay setup 1
22	STBY	Input	Standby
23	VREF	Input	Torque reference voltage input
24	S5VOUT	Output	Internal reference voltage (output 5 V)
25	TEST	Input	Test mode
26	GND	Ground	Die pad ground
27	GND	Ground	Signal ground
28	РНА	Input	Clock input
29	ST3	Input	Step select 3
30	ST2	Input	Step select 2
31	ST1	Input	Step select 1
32	DIR	Input	Rotation direction
33	PWMSW	Input	PWM OFF period selection input
34	N.C.		_

2008-02-20		
Established	Revised	
214406700608020		Semiconductor Company, Matsushita Electric Industrial Co., I

	AN44	.067A
Product Standards	Total Pages	Page
	45	7

Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which are not destructed, and are not the values to which operation is guaranteed.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage (Pin 1, 17)	V _M	37	V	*1
2	Power dissipation	P _D	0.466	W	*2
3	Operating ambient temperature	T _{opr}	-20 to +70	°C	*3
4	Storage temperature	T _{stg}	-55 to +150	°C	*3
5	Output pin voltage (Pin 6, 8, 10, 12)	V _{OUT}	37	V	*4
6	Motor drive current (Pin 6, 8, 10, 12)	I _{OUT}	±2.5	А	*5, *6
7	Flywheel diode current (Pin 6, 8, 10, 12)	$I_{\rm f}$	2.5	А	*5, *6

Notes)*1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : The power dissipation shown is the value at $T_a = 70^{\circ}$ C for the independent (unmounted) IC package without a heat sink. When using this IC, refer to the P_D - T_a diagram of the package standard and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*4 : This is output voltage rating and do not apply input voltage from outside to these pins. Set not to exceed allowable range at any time.

- *5 : Do not apply external currents to any pin specially mentioned. For circuit currents, (+) denotes current flowing into the IC and (-) denotes current flowing out of the IC.
- *6 : Rating when cooling fin on the back side of the IC is connected to the GND pattern of the glass epoxy 4-layer board. (GND area : 2nd-layer or 3rd-layer : more than 1 500 mm²)

In case of no cooling fin on the back side of the IC, rating current is 1.5 A on the glass epoxy 2-layer board.

Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _M	10.0 to 34.0	V	*

Notes)*: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

2008-02-20							
Established	Revised						
044400300300000		•		~	 1.14	 	 1.4.1

		1067A	
Product Standards	Total Pages	Page	
	45	8	

Allowable Current and Voltage Range

Notes) • Voltage values, unless otherwise specified, are with respect to GND.

• Do not apply external currents or voltages to any pin not specifically mentioned.

• For the circuit currents, "+" denotes current flowing into the IC, and "-" denotes current flowing out of the IC.

• Voltages and currents below show the limit value of nondestructive range which must not be exceeded in a moment.

Pin No.	Pin name	Rating	Unit	Notes
7	RCSB	2.5	V	
11	RCSA	2.5	v	_
14	BC2	$(V_{\rm M} - 1)$ to 43	v	*1
15	VPUMP	$(V_{\rm M} - 2)$ to 43	v	*1
19	ENABLE	-0.3 to 6	v	_
20	DECAY2	-0.3 to 6	v	_
21	DECAY1	-0.3 to 6	v	_
22	STBY	-0.3 to 6	v	_
23	VREF	-0.3 to 6	V	_
25	TEST	-0.3 to 6	v	_
28	PHA	-0.3 to 6	V	_
29	ST3	-0.3 to 6	v	_
30	ST2	-0.3 to 6	v	_
31	ST1	-0.3 to 6	v	_
32	DIR	-0.3 to 6	v	_
33	PWMSW	-0.3 to 6	v	

Pin No.	Pin name	Rating	Unit	Notes
3	TJMON	1	mA	*2
24	S5VOUT	-7 to 0	mA	_

注) *1 : These are pins not applied voltage from outside. Set so that the rating must not be exceeded transiently.

*2 : In case of TEST = High-level input, TJMON voltage is only Low-level. (Detail : refer to Electrical Characteristics No.52 described in Page 10).

2008-02-20							
Established	Revised						
				-	 	 	

	Draduat Standarda	AN44067A		
Product Standard	S	Total Pages	Page	
		45	9	

Electrical Characteristics at $V_M = 24.0 V$ Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

	Devenueter	Currente e l	Test	Conditions		Limits		1.1	Natas
B No.	Parameter	Symbol	circuits	Conditions	Min	Тур	Max	Unit	Notes
Outpu	ut Drivers								
1	High-level output saturation voltage	V _{OH}	2	I = -1.2 A	V _M - 0.75	V _M - 0.42		V	
2	Low-level output saturation voltage	V _{OL}	2	I = 1.2 A	—	0.54	0.825	V	_
3	Flywheel diode forward voltage	V _{DI}	2	I = 1.2 A	0.5	1.0	1.5	V	
4	Output leakage current	I _{LEAK}	2	$V_{\rm M} = 37 V, V_{\rm RCS} = 0 V$	_	10	20	μΑ	
5	Supply current (Active)	I _M	1	ENABLE = High, STBY = High	_	5.5	10	mA	—
6	Supply current (STBY)	I _{MSTBY}	1	STBY = Low	—	25	50	μΑ	—
I/O B	lock								
7	High-level STBY input voltage	V _{STBYH}	1		2.1	_	5.5	V	
8	Low-level STBY input voltage	V _{STBYL}	1		0	_	0.6	V	_
9	High-level STBY input current	I _{STBYH}	1	STBY = 5 V	25	50	100	μΑ	
10	Low-level STBY input current	I _{STBYL}	1	STBY = 0 V	-2	_	2	μΑ	
11	High-level PHA input voltage	V _{PHAH}	1	_	2.1		5.5	V	
12	Low-level PHA input voltage	V _{PHAL}	1	_	0		0.6	v	
13	High-level PHA input current	I _{PHAH}	1	PHA = 5 V	25	50	100	μA	
14	Low-level PHA input current	I _{PHAL}	1	PHA = 0 V	-2	_	2	μΑ	_
15	Highest-level PHA input frequency	f _{PHA}	1	_			100	kHz	
16	High-level ENABLE input voltage	V _{ENABLEH}	1	_	2.1		5.5	v	
17	Low-level ENABLE input voltage	V _{ENABLEL}	1	_	0		0.6	V	
18	High-level ENABLE input current	I _{ENABLEH}	1	ENABLE = 5 V	25	50	100	μΑ	_
19	Low-level ENABLE input current	I _{enablel}	1	ENABLE = 0 V	-2	_	2	μΑ	_
20	High-level PWMSW input voltage	V _{PWMSWH}	1	_	2.3	_	5.5	V	_
21	Middle-level PWMSW input voltage	V _{PWMSWM}	1	_	1.3	_	1.7	V	
22	Low-level PWMSW input voltage	V _{PWMSWL}	1	_	0		0.6	v	
23	High-level PWMSW input current	I _{PWMSWH}	1	PWMSW = 5 V	40	83	150	μΑ	_
24	Low-level PWMSW input current	I _{PWMSWL}	1	PWMSW = 0 V	-70	-36	-18	μΑ	_
25	PWMSW voltage at open	V _{PWMSWO}	1	_	1.3	1.5	1.7	V	_

214406700008020		Comission durates Company, Mateurshite Electric Industrial Co	امد ا
Established	Revised		
2008-02-20			

	Product Standards	AN44067A		
		Total Pages	Page	
		45	10	

Electrical Characteristics (continued) at $V_M = 24.0 \text{ V}$ Note) $T_a = 25^{\circ}\text{C}\pm2^{\circ}\text{C}$ unless otherwise specified.

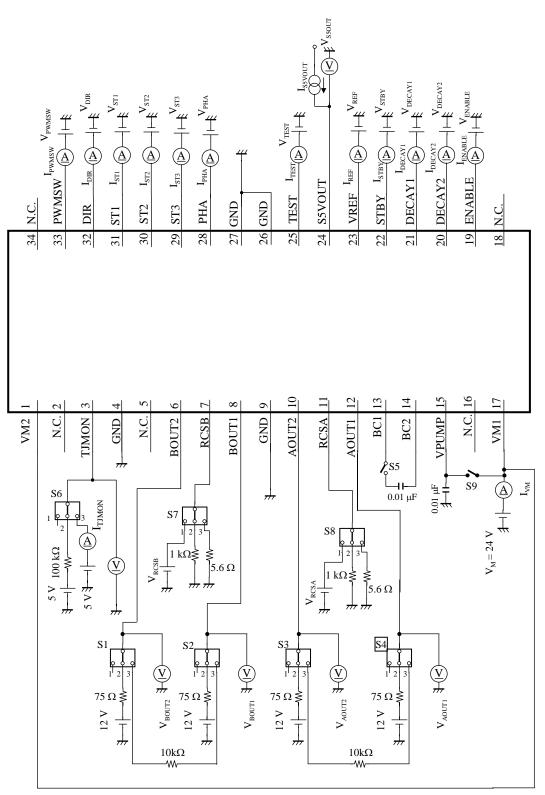
	Deremeter	Currents ed	Test	Conditions		Limits		ا ا م ا	Nata
B No.	Parameter	Symbol	circuits	Conditions	Min	Тур	Max	Unit	Notes
26	High-level DECAY input voltage	V _{DECAYH}	1		2.1	_	5.5	V	_
27	Low-level DECAY input voltage	V _{DECAYL}	1	—	0	—	0.6	V	_
28	High-level DECAY input current	I _{DECAYH}	1	DECAY1 = DECAY2 = 5 V	25	50	100	μΑ	_
29	Low-level DECAY input current	I _{DECAYL}	1	DECAY1 = DECAY2 = 0 V	-2		2	μΑ	
30	High-level DIR input voltage	V _{DIRH}	1	—	2.1	—	5.5	V	_
31	Low-level DIR input voltage	V _{DIRL}	1		0	—	0.6	V	_
32	High-level DIR input current	I _{DIRH}	1	DIR = 5 V	25	50	100	μΑ	_
33	Low-level DIR input current	I _{DIRL}	1	DIR = 0 V	-2	_	2	μΑ	
34	High-level ST input voltage	V _{STH}	1		2.1	_	5.5	V	
35	Low-level ST input voltage	V _{STL}	1		0	_	0.6	V	
36	High-level ST input current	I _{STH}	1	ST1 = ST2 = ST3 = 5 V	25	50	100	μΑ	
37	Low-level ST input current	I _{STL}	1	ST1 = ST2 = ST3 = 0 V	-2	_	2	μΑ	
38	High-level TEST input voltage	V _{TESTH}	1		4.0	_	5.5	V	
39	Middle-level TEST input voltage	V _{TESTM}	1		2.3	_	2.7	V	_
40	Low-level Test input voltage	V _{TESTL}	1		0	_	0.6	V	_
41	High-level TEST input current	I _{TESTH}	1	TEST = 5 V	25	50	100	μΑ	_
42	Low-level TEST input current	I _{TESTL}	1	TEST = 0 V	-2	_	2	μΑ	
Torqu	e Control Block			•					
43	Input bias current 1	I _{REFH}	1	$V_{REF} = 5 V$	-15	_	5	μΑ	
44	Input bias current 2	I _{REFL}	1	$V_{REF} = 0 V$	-2	_	2	μΑ	
45	PWM OFF time 1	T _{OFF1}	1	PWMSW = Low	16.8	28	39.2	μs	
46	PWM OFF time 2	T _{OFF2}	1	PWMSW = Middle	9.1	15.2	21.3	μs	
47	PWM OFF time 3	T _{OFF3}	1	PWMSW = High	4.9	8.1	11.3	μs	
48	Pulse blanking time	T _B	1	$V_{REF} = 0 V$	0.4	0.7	1.0	μs	
49	Comp threshold	VT _{CMP}	1	$V_{REF} = 5 V$	475	500	525	mV	
Refer	ence Voltage Block			•					
50	Reference voltage	V _{S5VOUT}	1	$I_{S5VOUT} = 0 \text{ mA}$	4.75	5.0	5.25	V	
51	Output impedance	Z _{S5VOUT}	1	$I_{S5VOUT} = -7 \text{ mA}$		_	10	Ω	
Home	Position Block								•
52	At TEST High-level input TJMON output Low-level voltage	V _{TJL}	1	Pull up TJMON pin to 5 V with 100 k Ω .		0.1	0.3	V	
53	At TEST High-level input TJMON output leakage current	I _{TJ(leak)}	1	V _{TJMON} = 5 V		_	5	μΑ	

2008-02-20		
Established	Revised	
011100701000000		

	AN44	067A
Product Standards	Total Pages	Page
	45	11

Electrical Characteristics (Reference values for design) at V_M = 24 V

Notes) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified. The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

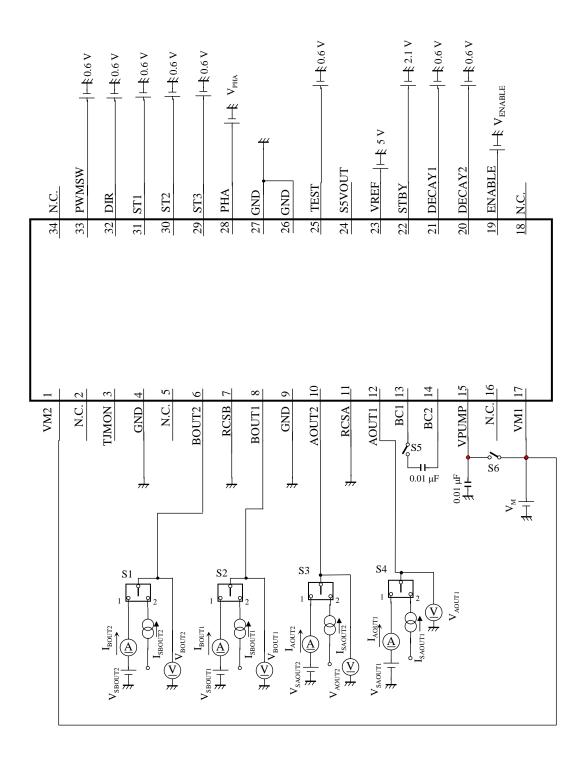

В	Parameter	Symbol	Test	Conditions	Refe	rence va	Unit	Notes	
No.	Parameter	Symbol	circuits	Conditions	Min	Тур Ма		Unit	Notes
Outp	ut Drivers								
54	Output slew rate 1	VTr		Output voltage rise	_	220		V/µs	
55	Output slew rate 2	VT _f	_	Output voltage fall	_	200	_	V/µs	
56	56 Dead time		_	_		0.8	—	μs	
Therr	mal Protection								
57	Thermal protection operating temperature	TSD _{on}		_	—	150	_	°C	
58	Thermal protection hysteresis width	ΔTSD		_	_	40	_	°C	
Low voltage Protection									
59	Protection operating voltage	V _{UVLO1}	_			7.9	_	V	
60	Protection releasing voltage	V _{UVLO2}			_	8.7		V	_

2008-02-20		
Established	Revised	
214406701108020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	067A
Product Standards	Total Pages	Page
	45	12

Test Circuit Diagram

1. Test Circuit 1



2008-02-20		
Established	Revised	
214406701208020		Semiconductor Company, Matsushita Electric Industrial Co.,

	Due du et Otere de rele	AN44	067A
Prod	uct Standards	Total Pages	Page
		45	13

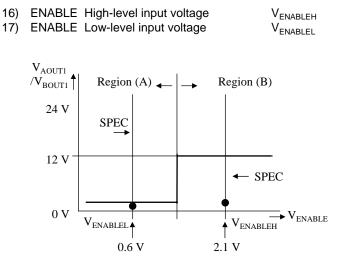
Test Circuit Diagram

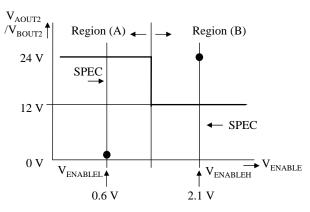
2. Test Circuit 2

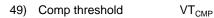
2008-02-20		
Established	Revised	
214406701308020		Semiconductor Company, Matsushita Electric Industrial Co.,

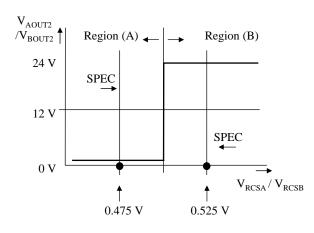
Broduct Standardo	AN44067A		
Product Standards	Total Pages	Page	
	45	14	

Electrical Characteristics Test Procedures

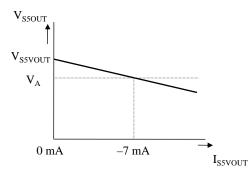

1. Test Circuit 1


C No.	Measuring pin	S1 to S4	S5	S6	S7, S8	S9	V _{PHA}	V _{DECAY1} V _{DECAY2}	V _{STBY}	V _{ENABLE}	V _{PWMSW}	V _{RCSA} V _{RCSB}	V_{DIR}	V_{ST1} V_{ST2} V_{ST3}	V _{TEST}	V _{REF}	I _{S5VOUT}
5, 7	1, 17, 22	1	ON	1	1	OFF	0 V	5.5 V	2.1 V	2.1 V	5.5 V	0 V	5.5 V	5.5 V	0.6 V	5 V	Hi-Z
6, 8	1, 17, 22	1	ON	1	1	OFF	0.6 V	0.6 V	0.6 V	2.1 V	0.6 V	0 V	0.6 V	0.6 V	0.6 V	5 V	Hi-Z
50	24	1	ON	1	1	OFF	0 V	5.5 V	2.1 V	0.6 V	5.5 V	0 V	5.5 V	5.5 V	0.6 V	5 V	Hi-Z
51	24	1	ON	1	1	OFF	0 V	5.5 V	2.1 V	0.6 V	5.5 V	0 V	5.5 V	5.5 V	0.6 V	5 V	-7 mA
9, 13, 18, 23, 28, 32, 36, 41	19 to 22, 25, 28 to 33	3	ON	1	1	OFF	5 V	5 V	5 V	5 V	5 V	0 V	5 V	5 V	5 V	5 V	Hi-Z
14, 19, 24, 29, 33, 37, 42	19 to 21, 25, 28 to 33	3	ON	1	1	OFF	0 V	0 V	5 V	0 V	0 V	0 V	0 V	0 V	0 V	5 V	Hi-Z
10	22	3	ON	1	1	OFF	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	5 V	Hi-Z
43	23	1	ON	1	1	OFF	0 V	0 V	2.1 V	0 V	0 V	0 V	0 V	0 V	0 V	5 V	Hi-Z
44	23	1	ON	1	1	OFF	0 V	0 V	2.1 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	Hi-Z
16	6, 8, 10, 12, 19	2	ON	1	1	OFF	0 V	0 V	2.1 V	2.1 V	0 V	0 V	0.6 V	0.6 V	0 V	5 V	Hi-Z
17	6, 8, 10, 12, 19	2	ON	1	1	OFF	0 V	0 V	2.1 V	0.6 V	0 V	0 V	0.6 V	0.6 V	0 V	5 V	Hi-Z
49	6, 7, 8, 10, 11, 12	3	OFF	1	2	ON	5 V	0 V	2.1 V	0.6 V	0 V	0.475 V, 0.525 V	0.6 V	0.6 V	0 V	5 V	Hi-Z
11, 12,15	6, 8, 10, 12, 28	2	ON	1	1	OFF	0.6 V το 2.1 V 200 kHz pulse	0.6 V	2.1 V	0.6 V	5 V	0 V	0.6 V	0.6 V	0.6 V	5 V	Hi-Z
25	33	1	ON	1	1	OFF	0 V	0 V	2.1 V	0 V	Hi-Z	0 V	0 V	0 V	0 V	0 V	Hi-Z
38, 39, 40	3, 6, 8, 10, 12, 25	2	ON	1 or 2	1	OFF	2.1 V	$V_{\text{DECAY1}} = 0.6 \text{ V}$ $V_{\text{DECAY2}} = 2.1 \text{ V}$	5 V	0.6 V	0.6 V	0 V	0.6 V	0.6 V	0.6 V, 2.3 V, 2.7 V, 4.0 V	5 V	Hi-Z


	Product Standards	AN44067A		
		Total Pages	Page	
		45	15	


Electrical Characteristics Test Procedures (continued)

1. Test Circuit 1 (continued)



Check the conditions by measuring $~V_{\rm AOUT2}$ and $V_{\rm BOUT2}$ voltage with the input voltage set to 0.475 V and 0.525 V respectively.

Region (A) : Always output Low-level Region (B) : Output Low-level with minimum duty

51) Output impedance Z_{S5VOUT}

$$Z_{S5VOUT} = \frac{V_{S5VOUT} - V_A}{7 \text{ mA}}$$

2008-02-20 Established Revised

			AN44	4067A
	Product Stan	dards	Total Pages	Page
			45	16
High-level voltage = 2.1 V t	ge V_{PHAH} ge V_{PHAL} hcy f_{PHA} Highest input voltage in case of V_{PHA} (Low-level voltage = 0.6 V, o PHA and V_{PHA} o PHA and V_{PHA} = 50 kHz	$\begin{array}{c} 0 \ V \\ 24 \ V \\ 2 \\ 12 \ V \\ 0 \ V \\ 24 \ V \\ 1 \\ 12 \ V \\ 0 \ V \\ 24 \ V \\ 24 \ V \\ 24 \ V \\ 24 \ V \\ \end{array}$	200 kHz f_{AOUT1} f_{AOUT2} f_{BOUT1}	

38)	TEST	High-level input voltage	V _{TESTH}
39)	TEST	Middle-level input voltage	V _{TESTM}
40)	TEST	Low-level voltage	V _{TESTL}

Check that output status follows as the below chart when Low-level (0.6 V), Middle-level (2.3 V, 2.7 V) and High-level (4.0 V) are applied to TEST pin.

Chart	Output status a	at input voltage o	of Low, Middle,	High-level
•	• • • • • • • • • • • • • • •			

Parameter	TEST pin voltage conditions	S6	Status
TEST Low-level input voltage	0.6 V	1	TJMON pin = VBE monitor
TEST Middle-level input voltage	el 2.3 V / 2.7 V 1		Output transistor : all OFF V_{AOUT1} , V_{AOUT2} , V_{BOUT1} , $V_{BOUT2} = 12$ V
TEST High-level input voltage	4.0 V	2	TJMON pin = Home Position output (For detail, refer to Page 36, 37)

2008-02-20		
Established	Revised	
214406701608020		Semiconductor Company, Matsushita Electric Industrial Co.,

	Product Standards	AN44067A		
		Total Pages	Page	
		45	17	

Electrical Characteristics Test Procedures (continued)

1. Test Circuit 1 (continued)

C No.	Measuring pin	S1 to S4	S5	S6	S7, S8	S9	V _{PHA}	V _{DECAY1} V _{DECAY2}	V _{STB}	V _{ENABLE}	V _{PWMSW}	V _{RCSA} V _{RCSB}	V _{DIR}	V _{ST1} V _{ST2} V _{ST3}	V _{test}	V _{re} F	I _{S5VOUT}
30, 31, 34, 35	6, 8, 10, 12, 28 to 32	2	ON	1	1	OFF	Pulse input	$V_{\text{DECAY1}} = 2.1 \text{ V}$ $V_{\text{DECAY2}} = 2.1 \text{ V}$	2.1 V	0.6 V	0.6 V	0 V	Refer to below chart	Refer to below chart	0.6 V	5 V	Hi-Z
20, 21, 22, 26, 27, 45, 46, 47, 48	6, 8, 10, 12, 20, 21, 28, 33	2	ON	1	3	OFF	Pulse input	Refer to the next page	2.1 V	0.6 V	Refer to the next page		0.6 V	0.6 V	0.6 V	0 V	Hi-Z
52, 53	3	1	ON	2 or 3	1	OFF	Pulse input	$V_{DECAY1} = 2.1 V$ $V_{DECAY2} = 2.1 V$	2.1 V	0.6 V	0.6 V	0 V	0.6 V	V_{ST1} $=V_{ST2}$ $= 0.6 V$ V_{ST3} $= 2.1 V$	4 V	5 V	Hi-Z

30) DIR High -level input voltage

31) DIR Low-level input voltage

34) ST High-level input voltage

35) ST Low-level input voltage

DIR	ST1	ST2	ST3	Exciting mode
0.6 V	0.6 V	0.6 V	0.6 V	2 phase excitation drive (4-step sequence) / Forward
0.6 V	0.6 V	2.1 V	0.6 V	Half-step drive (8-step sequence) / Forward
0.6 V	2.1 V	0.6 V	0.6 V	1-2 phase excitation drive (8-step sequence) / Forward
0.6 V	2.1 V	2.1 V	0.6 V	W1-2-phase drive (16-stepsequence) / Forward
0.6 V	0.6 V	2.1 V	2.1 V	2W1-2-phase drive (32-step sequence) / Forward
2.1 V	0.6 V	0.6 V	0.6 V	2 phase excitation drive (4-step sequence) / Reverse
2.1 V	0.6 V	2.1 V	0.6 V	Half-step drive (8-step sequence) / Reverse
2.1 V	2.1 V	0.6 V	0.6 V	1-2-phase excitation (8-step sequence) / Reverse
2.1 V	2.1 V	2.1 V	0.6 V	W1-2 phase drive (16-step sequence) / Reverse
2.1 V	0.6 V	2.1 V	2.1 V	2W1-2-phase driver (32-step sequence) / Reverse

 V_{DIRH}

V_{DIRL}

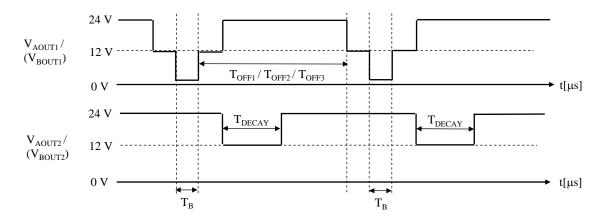
 V_{STH}

 V_{STL}

Check the DIR Low/High input voltage and ST Low/High input voltage by setting the voltages of DIR, ST1, ST2, ST3 to voltages following to the above chart and checking the operation of each excitation mode (Page 31 to 34).

214406701708020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.
Established	Revised	
2008-02-20		

	AN44	067A
Product Standards	Total Pages	Page
	45	18


Electrical Characteristics Test Procedures (continued)

1. Test Circuit 1 (continued)

20)	PWMSW High-level input voltage	V _{PWMSWH}
21)	PWMSW Middle-level input voltage	V _{PWMSWM}
22)	PWMSW Low-level input voltage	V _{PWMSWL}
26)	DECAY High-level input voltage	V _{DECAYH}
27)	DECAY Low-level input voltage	V _{DECAYL}
45)	PWM OFF time 1	T _{OFF1}
46)	PWM OFF time 2	T _{OFF2}
47)	PWM OFF time 3	T _{OFF3}
48)	Pulse blanking time	Т _в

Each value is obtained by the timing chart of $V_{AOUT1}(V_{BOUT1})$ and $V_{AOUT2}(V_{BOUT2})$ at VREF = 0 VThe timing chart of $V_{AOUT1}(V_{BOUT1})/V_{AOUT2}(V_{BOUT2})$ is shown as below.

- For 20) to 22), 45) to 47), check $T_{OFF1}/T_{OFF2}/T_{OFF3}$ on the input conditions of PWMSW pin in the below chart.
- For 26), 27), check T_{DECAY} / T_{OFF} on the conditions of DECAY1/DECAY2 in the below chart in case of PWMSW High, Middle, Low-level input voltage.
- + For 48), check Low-level interval of $V_{AOUT1}(V_{BOUT1})$: T_B in the below chart.

Chart T_{OFF} to PWMSW input voltage

Input pin	Voltage conditions	Status	
	V _{PWMSWH} / V _{PWMSWM} / V _{PWMSWL}		
	0.6 V	$T_{OFF1} = 28 \ \mu s$	
PWMSW	1.3 V	$T_{OFF2} = 15.2 \ \mu s$	
1 W WIS W	1.7 V	$T_{OFF2} = 15.2 \ \mu s$	
	2.3 V	$T_{OFF3} = 8.1 \ \mu s$	

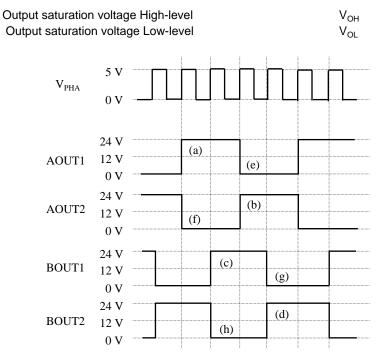
Chart Decay control to DECAY1/2 input voltage

DECAY1	DECAY2	Decay control (T _{DECAY} / T _{OFF})
0.6 V	0.6 V	0% mode (Slow Decay)
0.6 V	2.1 V	25% mode
2.1 V	0.6 V	50% mode
2.1 V	2.1 V	100% mode

2008-02-20 Established Revised

		AN44	067A					
	Product Standards	Total Pages	Page					
		45	19					
Electrical Characteristics Test Procedures (continued) Test Circuit 1 (continued) 								
	evel voltage at TEST pin High-level input ge current at TEST pin High-level input	V _{TJL} I _{TJ(leak)}						
Check when TJMON pin in	Home Position output timing chart is Low and High-level.							
→ Check TJMON pin vo • TJMON pin output leakage	 TJMON pin output Low-level voltage at TEST pin High-level input V_{TJL} → Check TJMON pin voltage by connection pull-up resister 100 kΩ (to 5 V) to TJMON pin. TJMON pin output leakage current at TEST High-level input ITJ(leak) → Check the leakage current after applying 5 V to TJMON pin. 							
			0,31,32,1					
2W1-2 phase excitation			0%					
TJMON								

Home Position output timing chart (DIR = Low-level)


2008-02-20		
Established	Revised	
214406701908020		Semiconductor Company, Matsushita Electric Industrial Co., Lto

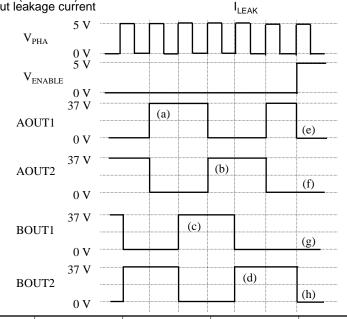
	AN44067A	
Product Standards	Total Pages	Page
	45	20

Electrical Characteristics Test Procedures (continued)

2. Test Circuit 2

1) 2)

Check output saturation voltage High and Low-level on the below conditions


	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Applying pin/ measuring voltage	AOUT1/ V _{AOUT1}	AOUT2/ V _{AOUT2}	BOUT1/ V _{BOUT1}	BOUT2/ V _{BOUT2}	AOUT1/ V _{AOUT1}	AOUT2/ V _{AOUT2}	BOUT1/ V _{BOUT1}	BOUT2/ V _{BOUT2}
Applying conditions	$I_{SAOUT1} = -1.2 A$	I_{SAOUT2} = -1.2 A	$I_{\text{SBOUT1}} = -1.2 \text{ A}$	$I_{\text{SBOUT2}} = -1.2 \text{ A}$	$I_{SAOUT1} = +1.2 \text{ A}$	$I_{SAOUT2} = +1.2 \text{ A}$	$I_{SBOUT1} = +1.2 \text{ A}$	$I_{SBOUT2} = +1.2 \text{ A}$
S1 to S4	2	2	2	2	2	2	2	2
S5	ON	ON	ON	ON	ON	ON	ON	ON
S6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
V _M	24 V	24 V	24 V	24 V	24 V	24 V	24 V	24 V
V _{ENABLE}	0.6 V	0.6 V	0.6 V	0.6 V	0.6 V	0.6 V	0.6 V	0.6 V

2008-02-20		
Established	Revised	
214406702008020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	Product Standards	AN44067A		
		Total Pages	Page	
		45	21	

Electrical Characteristics Test Procedures (continued)

2. Test Circuit 2 (continued)
4) Output leakage current

	(a)	(b)	(c)	(d)	(e), (f), (g), (h)
Applying pin/ measuring current	AOUT1 / I _{AOUT1}	AOUT2 / I _{AOUT2}	BOUT1 / I _{BOUT1}	BOUT2 / I _{BOUT2}	AOUT1, AOUT2, BOUT1, BOUT2 / I _{AOUT1} , I _{AOUT2} , I _{BOUT1} , I _{BOUT2}
Applying conditions	$V_{SAOUT1} = 37 V$	$V_{SAOUT2} = 37 V$	$V_{SBOUT1} = 37 V$	$V_{SBOUT2} = 37 V$	$\begin{split} V_{SAOUT1} &= V_{SAOUT2} = V_{SBOUT1} \\ &= V_{SBOUT2} = 0 \ V \end{split}$
S1 to S4	1	1	1	1	1
S5	OFF	OFF	OFF	OFF	ON
S6	ON	ON	ON	ON	OFF
V _M	37 V				
V _{ENABLE}	0 V	0 V	0 V	0 V	5 V

Check output leakage current I $_{LEAK}$ *1 of each output pin on the above conditions Note) *1 I $_{LEAK}$: Electrical characteristics No.4 shows absolute values.

Flywheel diode forward voltage 3)

Flywheel diod	le forward voltage	V _{DI}		
Applying pin/ Measuring voltage	AOUT1 / V _{AOUT1}	AOUT2 / V _{AOUT2}	BOUT1 / V _{BOUT1}	BOUT2 / V _{BOUT2}
Applying conditions	$I_{SAOUT1} = 1.2 \text{ A}$	$I_{SAOUT2} = 1.2 \text{ A}$	$I_{SBOUT1} = 1.2 \text{ A}$	$I_{SBOUT2} = 1.2 A$
S1 to S4	2	2	2	2
S5	ON	ON	ON	ON
S6	ON	ON	ON	ON
V _M	0 V	0 V	0 V	0 V
V _{ENABLE}	2.1 V	2.1 V	2.1 V	2.1 V

Check Flywheel diode forward voltage $V_{\rm DI}$ on the above conditions

2008-02-20	
Established	Revised

	AN44067A	
Product Standards	Total Pages	Page
	45	22

Technical Data

I/O block circuit diagrams and pin function descriptions
 Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
3		Pin3 TJMON		Pin 3 : VBE monitor /TEST output /Home Position output
6 7 8 10 11 12		15 3k 4k 100k Pin 6 BOUT2 8 BOUT1 10 AOUT2 12 AOUT1 500 167 100k Pin 7 RCSB 11 RCSA		Pin 6 : Phase B motor drive output 2 7 : Phase B current detection 8 : Phase B motor drive output 1 10 : Phase A motor drive output 2 11 : Phase A current detection 12 : Phase A motor drive output 1

2008-02-20		
Established	Revised	
214406702208020		Semiconductor Company, Matsushita Electric Industrial Co., Lt

	AN44067A		067A
Product Standar	andards Tota	al Pages	Page
		45	23

Technical Data (continued)
 I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Insted below are reference values derived from the design of	Impedance	Description
13		150 150 150 13 125 7 7 7 7 7 7 7 7 7 7 7 7 7		Pin 13 : Charge pump capacitor connection 1
14 15		itation in the second s		Pin 14 : Charge pump capacitor connection 2 15 : Charge pump circuit output

2008-02-20		
Established	Revised	
214406702308020		Semiconductor Company, Matsushita Electric Industrial Co., Lt

		AN44067A		067A
	Product Standards	Total Pages	Page	
		45	24	

1. I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
19 20 21 28 29 30 31 32		Pin19 ENABLE 20 DECAY2 21 DECAY1 28 PHA 29 ST3 30 ST2 31 ST1 32 DIR 4k 4k 4k 100k	100 kΩ	Pin 19 : Enable/disable CTL 20 : Mix Decay setup 2 21 : Mix Decay setup 1 28 : Clock input 29 : Step select 3 30 : Step select 2 31 : Step select 1 32 : Rotation direction
22		Pin22 STBY	100 kΩ	Pin 22 : Standby

2008-02-20		
Established	Revised	
214406702408020		Semiconductor Company, Matsushita Electric Industrial Co.,

		AN44067		067A
	Product Standards	Total Pages	Page	
		45	25	

Technical Data (continued)
 I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
23		Pin23 VREF (2) $(4k)$ $(4k$		Pin 23 : Torque reference voltage input
24		100 Pin24 S5VOUT 24 1k 48k m m		Pin 24 : Internal reference voltage (Output 5 V)

2008-02-20		
Established	Revised	
214406702508020		Semiconductor Company, Matsushita Electric Industrial Co.

		AN44067A		
	Product Standards	Total Pages	Page	
		45	26	

1. I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
25		Pin25 TEST 4k 25 100k 100k	100 kΩ	Pin 25 : TEST mode
33		Pin33 PWMSW 4k 33 + 60k 60k		Pin 33 : PWM OFF period selection input

2008-02-20		
Established	Revised	
214406702608020		Semiconductor Company, Matsushita Electric Industrial Co., I

	Product Standards	AN44067A		
		Total Pages	Page	
		45	27	

1. I/O block circuit diagrams and pin function descriptions (continued)

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
		 ✓ S5VOUT (Pin 24) ✓ VM(Pin 1, Pin 17) ✓ Diode ✓ Zener diode ✓ Ground 		

2008-02-20										
Established	Revised									
011100700700000			<u> </u>		~		 			

Total Pages

45

Technical Data (continued)

2. Control mode

1) Truth table (Step select)

ENABLE	DIR	ST1	ST2	ST3	Output excitation mode (Phase B 90° delay : to Phase A)
High	—	_		_	Output OFF
Low	Low	Low	Low	Low	2 phase excitation drive (4-step sequence)
Low	Low	Low	High	Low	Half-step drive (8-step sequence)
Low	Low	High	Low	Low	1-2 phase excitation drive (8-step sequence)
Low	Low	High	High	Low	W1-2 phase excitation drive (16-step sequence)
Low	Low			High	2W1-2 phase excitation drive (32-step sequence)
ENABLE	DIR	ST1	ST2	ST3	Output excitation mode (Phase B 90° advance:to Phase A)
ENABLE High	DIR —	ST1	ST2	ST3	
	DIR — High	ST1 — Low	ST2 — Low	ST3 — Low	advance:to Phase A)
High				_	advance : to Phase A) Output OFF
High Low	— High	Low	Low	Low	advance : to Phase A) Output OFF 2 phase excitation drive (4-step sequence)
High Low Low	— High High	Low Low	 Low High	Low Low	advance : to Phase A) Output OFF 2 phase excitation drive (4-step sequence) Half-step drive (8-step sequence)

2) Truth table (Control/Charge pump circuit)

STBY	ENABLE	Control /Charge pump circuit	Output transistor
Low	—	OFF	OFF
High	High	ON	OFF
High	Low	ON	ON

3) Truth table (PWM OFF period selection)

PWMSW	PWM OFF period
Low	28.0 μs
Middle	15.2 μs
High	8.1 µs

4) Truth table (Decay selection)

DECAY1	DECAY2	Decay control					
Low	Low	Slow Decay					
Low	High	25%					
High	Low	50%					
High	High	100%					

5) Truth table (Test mode)

Č.,							
	TEST	TJMON					
	Low	VBE monitor					
	Middle	Test output (Output transistor : OFF)					
	High	Home Position output					

Note) For each PWM OFF period, Fast Decay is applied according to the above table.

2008-02-20	
Established	Revised

	AN44	067A
Product Standards	Total Pages	Page
	45	29

3. Each phase current value

1) 1-2 phase, W1-2 phase, 2W1-2 phase DIR = Low

Note) The definition of Phase A and B current $\lceil 100\% \rfloor$: (VREF × 0.1) / Current detection resistance

1-2 phase (8 Step)	W1-2 phase (16 Step)	2W1-2 phase (32 Step)	Phase A current (%)	Phase B current (%)
		1	19.5	-98.1
	1	2	38.3	-92.4
		3	55.6	-83.2
1	2	4	70.7	-70.7
		5	83.2	-55.6
	3	6	92.4	-38.3
		7	98.1	-19.5
2	4	8	100	0
		9	98.1	19.5
	5	10	92.4	38.3
		11	83.2	55.6
3	6	12	70.7	70.7
		13	55.6	83.2
	7	14	38.3	92.4
		15	19.5	98.1
4	8	16	0	100
		17	-19.5	98.1
	9	18	-38.3	92.4
		19	-55.6	83.2
5	10	20	-70.7	70.7
		21	-83.2	55.6
	11	22	-92.4	38.3
		23	-98.1	19.5
6	12	24	-100	0
		25	-98.1	-19.5
	13	26	-92.4	-38.3
		27	-83.2	-55.6
7	14	28	-70.7	-70.7
		29	-55.6	-83.2
	15	30	-38.3	-92.4
		31	-19.5	-98.1
8	16	32	0	-100

2008-02-20 Established Revised

214406702908020

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	067A
Product Standards	Total Pages	Page
	45	30

3. Each phase current value (continued)
1) 1-2 phase, W1-2 phase, 2W1-2 phase DIR = High

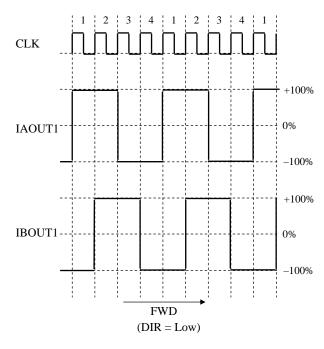
Note) The definition of Phase A and B current $~\lceil$ 100% $\rfloor~$: (VREF \times 0.1) / Current detection resistance

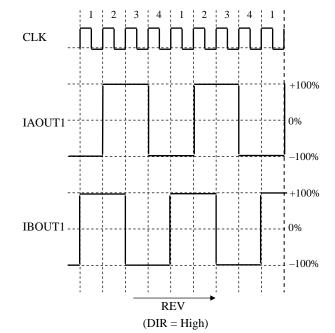
1-2 phase (8 Step)	W1-2 phase (16 Step)	2W1-2 phase (32 Step)	Phase A current (%)	Phase B current (%)
		1	-19.5	-98.1
	1	2	-38.3	-92.4
		3	-55.6	-83.2
1	2	4	-70.7	-70.7
		5	-83.2	-55.6
	3	6	-92.4	-38.3
		7	-98.1	-19.5
2	4	8	-100	0
		9	-98.1	19.5
	5	10	-92.4	38.3
		11	-83.2	55.6
3	6	12	-70.7	70.7
		13	-55.6	83.2
	7	14	-38.3	92.4
		15	-19.5	98.1
4	8	16	0	100
		17	19.5	98.1
	9	18	38.3	92.4
		19	55.6	83.2
5	10	20	70.7	70.7
		21	83.2	55.6
	11	22	92.4	38.3
		23	98.1	19.5
6	12	24	100	0
		25	98.1	-19.5
	13	26	92.4	-38.3
		27	83.2	-55.6
7	14	28	70.7	-70.7
		29	55.6	-83.2
	15	30	38.3	-92.4
		31	19.5	-98.1
8	16	32	0	-100

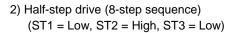
2008-02-20 Established Revised

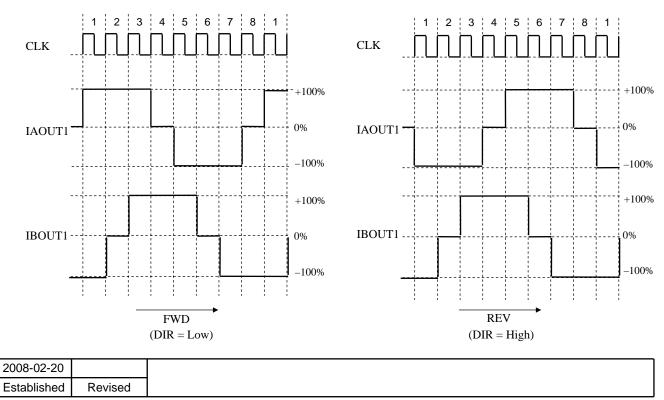
214406703008020

Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

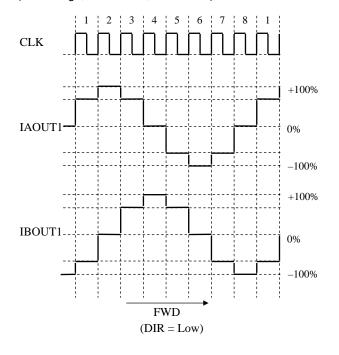

	AN44
Product Standards	Total Pages
	45

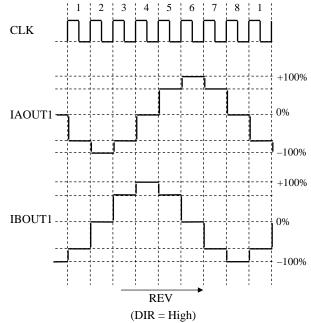

4067A


31


Technical Data (continued)

- 4. Each phase current (Timing chart)
- 1) 2 phase excitation drive (4-step sequence) (ST1 = Low, ST2 = Low, ST3 = Low)

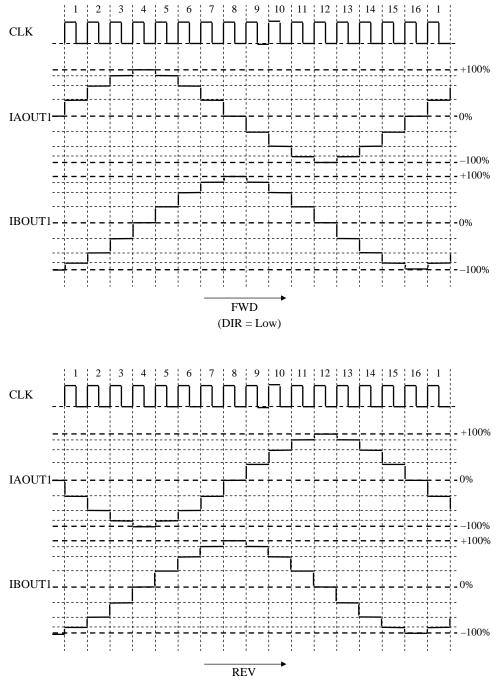




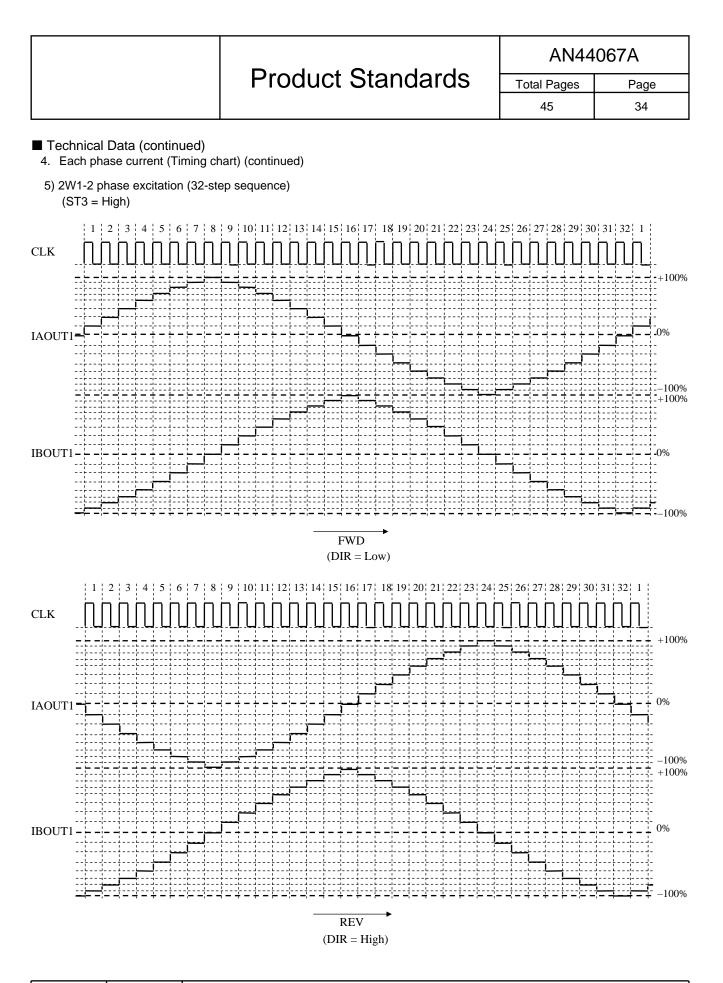
Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	067A
Product Standards	Total Pages	Page
	45	32

- 4. Each phase current (Timing chart) (continued)
- 3) 1-2 phase excitation (8-step sequence) (ST1 = High, ST2 = Low, ST3 = Low)

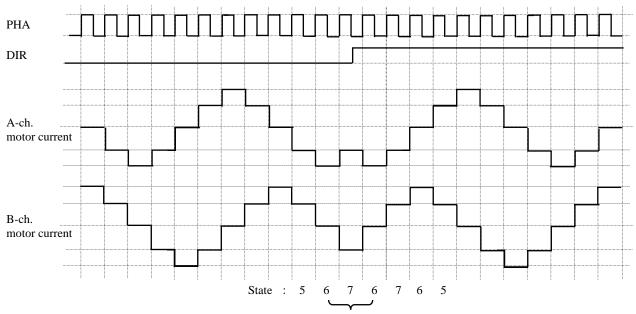


2008-02-20							_																							
Established	Revised		1																											
															~				~					_						Ĵ

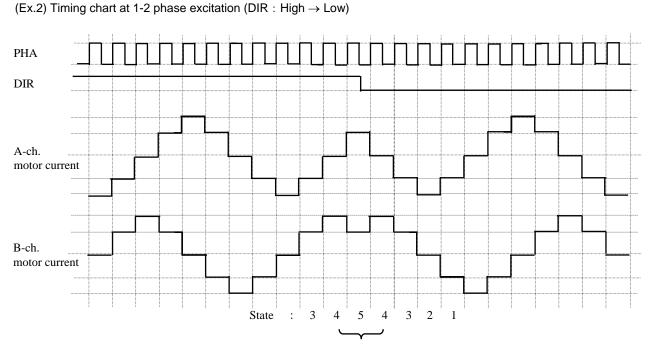

	AN44	067A
Product Standards	Total Pages	Page
	45	33

- 4. Each phase current (Timing chart) (continued)
- 4) W1-2 phase excitation (16-step sequence)
 - (ST1 = High, ST2 = High, ST3 = Low)

2008-02-20		
Established	Revised	
214406703308020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.


2008-02-20		
Established	Revised	
214406703408020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

	AN44	1067A
Product Standards	Total Pages	Page
	45	35


Technical Data (continued)

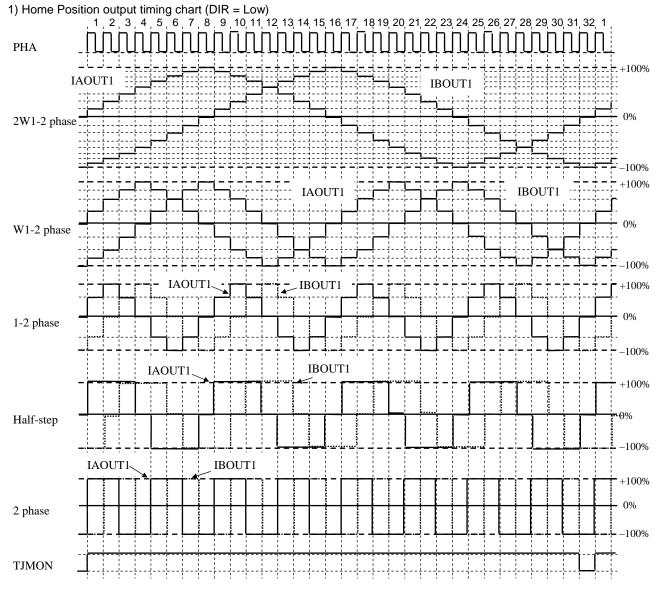
5. Timing chart at change of DIR

(Ex.1) Timing chart at 1-2 phase excitation (DIR : Low \rightarrow High)

At change of DIR, the state before the change is held and the operation is continued.

At change of DIR, the state before the change is held and the operation is continued.

2008-02-20		
Established	Revised	
214406703508020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd


	Product Standards	AN44	067A
		Total Pages	Page
		45	36

Technical Data (continued)

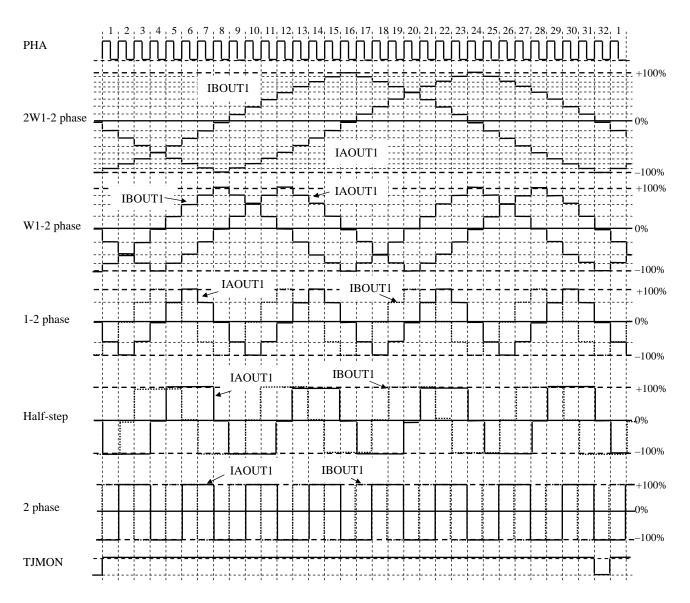
6. Home Position function

This LSI has built-in Home Position function to reduce the displacement of motor current state at change of excitation mode while a motor is driving.

Home Position function, following as the below chart, outputs Low-level voltage to TJMON pin at the timing when the displacement of motor current state is minimum at change of excitation mode in case of TEST = High-level input. At other timing, Home Position function outputs High-level voltage (in case the pull-up resister (recommendation : $100 \text{ k}\Omega$ to 5 V) is connected because TJMON pin is made with open drain) at TJMON pin.

Table	Output current of each excitation mode at Home Position = Low ((DIR = Low)	

	2 phase excitation	Half-step	1-2 phase excitation	W1-2 phase excitation	2W1-2 phase excitation
Phase A current	-100%	0%	0%	0%	0%
Phase B current	-100%	-100%	-100%	-100%	-100%


2008-02-20		
Established	Revised	
214406703608020		Semiconductor Company, Matsushita Electric Industrial Co., Ltd.

		1067A
Product Standards	Total Pages	Page
	45	37

Technical Data (continued)

6. Home Position function (continued)

2) Home Position output timing chart (DIR = High)

Table	Output current of each excitation mode at Home Position = Low (DIR = High)
Table	Duput current of cach excitation mode at nome r ostion - Low (Birt - righ)

	2 phase excitation	Half-step	1-2 phase excitation	W1-2 phase excitation	2W1-2 phase excitation
Phase A current	-100%	0%	0%	0%	0%
Phase B current	-100%	-100%	-100%	-100%	-100%

2008-02-20		
Established	Revised	
214406703708020		Semiconductor Company, Matsushita Electric Industrial Co., Ltc

	AN44	067A
Product Standards	Total Pages	Page
	45	38

Usage Notes

1. Special attention and precaution in using

1. This IC is intended to be used for general electronic equipment [stepping motor].

- Consult our sales staff in advance for information on the following applications:
- Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device

(7) Weapon

- (8) Others : Applications of which reliability equivalent to (1) to (7) is required
- 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
- 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solderbridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
- 5. Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin-V_{CC} short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). Especially, for the pins below, take notice Power supply fault, Ground fault, load short and short between the pin below and current detection pin.

(1) AOUT1(Pin 12), AOUT2(Pin 10), BOUT1(Pin 8), BOUT2(Pin 6)

(2) BC1(Pin 13), BC2(Pin 14), VPUMP(Pin 15)

(3) VM1(Pin 17), VM2(Pin 1), S5VOUT(Pin 24)

(4) RCSA(Pin 11), RCSB(Pin 7)

And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.

- 6. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- 7. When the application system is designed by using this LSI, be sure to confirm notes in this book.
- Be sure to read the notes to descriptions and the usage notes in the book.
- 8. Connect the metallic plate (fin) on the back side of the IC with the GND potential. The thermal resistance and the electrical characteristics are guaranteed only when the metallic plate (fin) is connected with the GND potential.

 Confirm characteristics fully when using the LSI. Secure adequate margin after considering variation of external part and this IC including not only static characteristics but transient characteristics. Especially, Pay attention that abnormal current or voltage must not be applied to external parts because the pins (Pin 6, 8, 10, 12, 13, 14, 15) output high current or voltage.

214406703909020		Comission ductor Company, Mateuchita Electric Inductrial Co. 14	_
Established	Revised		
2008-02-20			

	AN44	067A
Product Standards	Total Pages	Page
	45	39

2. Notes of Power LSI.

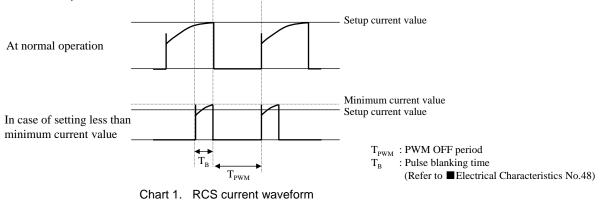
- 1. Design the heat radiation with sufficient margin so that Power dissipation must not be exceeded base on the conditions of power supply voltage, load and ambient temperature.
 - (It is recommended to design to set connective parts to 70% to 80% of maximum rating)
- 2. The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation.

Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded due to output pin to VM short (Power supply fault), or output pin to GND short (Ground fault), the LSI might be damaged before the thermal protection circuit could operate.

- 3. Unless specified in the product specifications, make sure that negative voltage or excessive voltage are not applied to the pins because the device might be damaged, which could happen due to negative voltage or excessive voltage generated during the ON and OFF timing when the inductive load of a motor coil or actuator coils of optical pick-up is being driven.
- 4. The product which has specified ASO (Area of Safe Operation) should be operated in ASO.
- 5. Verify the risks which might be caused by malfunctions of external parts.
- 6. Set capacitance value between VPUMP and GND so that VPUMP (Pin 15) must not exceed 43 V transiently at the time of motor standby to motor start.
- 7. This IC employs a PWM drive method that switches the high-current output of the output transistor. Therefore, the IC is apt to generate noise that may cause the IC to malfunction or have fatal damage. To prevent these problems, the power supply must be stable enough. Therefore, the capacitance between the S5VOUT and GND pins must be a minimum of 0.1 μ F and the one between the VM and GND pins must be a minimum of 47 μ F and as close as possible to the IC so that PWM noise will not cause the IC to malfunction or have fatal damage.

2008-02-20							
Established	Revised						
				-	 	 	

	AN44	067A
Product Standards	Total Pages	Page
	45	40


3. Notes

1) Pulse blanking time

This IC has pulse blanking time ($0.7 \mu s/Typ.value$)to prevent erroroneous current detection caused by noise. Therefore, the motor current value will not be less than current determined by pulse blanking time. Pay attention at the time of minimum current control.

The relation between pulse blanking time and minimum current value is shown as Chart 1.

In addition, increase-decrease of motor current value is determined by L value, wire wound resistance, induced voltage and PWM on Duty inside a motor.

2) VREF voltage

When VREF voltage is set to Low-level, erroroneous detection of current might be caused by noise because threshold of motor current detection comparator becomes low (= $VREF/10 \times motor$ current ratio [%] (Refer to Page 29, 30). Use this IC after confirming no misdetection with setup REF voltage.

3) Notes on interface

Absolute maximum of Pin 19 to Pin 23 and Pin 28 to Pin 33 is -0.3 V to 6 V. When the setup current for a motor is large and lead line of GND is long, GND pin potential might rise. Take notice that interface pin potential is negative to difference in potential between GND pin reference and interface pin in spite of inputting 0 V to the interface pin. At that time, pay attention allowable voltage range must not be exceeded.

4) Notes on test mode

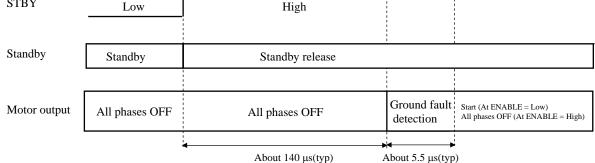
When inputting voltage of above 0.6 V and below 4.0 V to TEST (Pin 25), this LSI might become test mode. When disturbance noise etc. makes this LSI test mode, motor output pin might be Hi-Z. Therefore, use this LSI on condition that TEST pin is shorted to GND or S5VOUT at normal motor operation.

2008-02-20		
Established	Revised	
244406704000000		

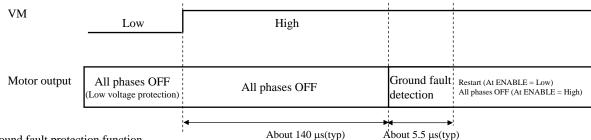
	AN44	067A
Product Standards	Total Pages	Page
	45	41

3. Notes (continued)

5) Notes on Standby mode release / Low voltage protection release


This LSI has all phases OFF period of about 140 µs (typ) owing to release of Standby and Low voltage protection (Refer to the below figure).

This is why restart from Standby and Low voltage protection is performed after booster voltage rises sufficiently because booster operation stops at Standby and Low voltage protection.


When the booster voltage does not rise sufficiently during all phases OFF period due to that capacitance voltage between VPUMP and GND becomes large etc., the IC might overheat. In this case, release Standby and Low voltage protection at ENABLE = High-level, and restart at ENABLE = Low-level after the booster voltage rises sufficiently.

Moreover, take notice that state of motor current becomes default position at Standby and Low voltage protection operation following as **3**. Notes No.8.

[At Standby release] STBY Low

[At Low voltage protection release]

6) Ground fault protection function

This IC has built-in ground fault protection function to detect ground fault of motor output pin at board mounting. As the above figure, ground fault detection function will operate after release of Low voltage protection and Standby, and check ground fault of motor output pins.

If ground fault is detected, this function makes motor output all phases OFF and motor operation stop. If ground fault is not detected, this function makes motor start. However, take notice that IC might be destroyed before ground fault protection function operates in case that ASO (Area of Safe Operation) of device or maximum rating are exceeded in a moment. In addition, this function might not detect ground fault when starting VM at STBY = High-level. It is recommended that VM is

In addition, this function might not detect ground fault when starting VM at STBY = High-level. It is recommended that VM is started at STBY = Low-level.

In case of release of ground fault detection, restart IC after inputting low voltage to STBY pin or making VM voltage OFF.

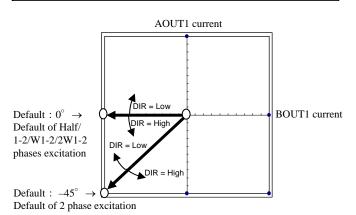
7) Notes on release of thermal protection

The release of thermal protection operation will restart after all phases OFF of about 140 μ s and ground fault detection operation as **3**. Notes No.5, 6.

Moreover, take notice that the state of motor current will become default position after release of thermal protection operation as **3**. Notes No.8

2008-02-20	
Established	Revised

	Product Standards	AN44	067A
		Total Pages	Page
		45	42


3. Notes (continued)

8) Default of motor current state

Default of motor current follows as the below figure after release of Low voltage protection, Standby and thermal protection on each excitation mode.

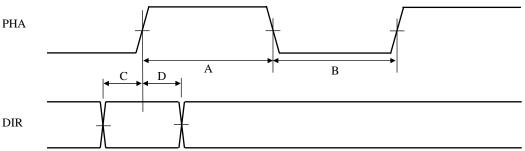
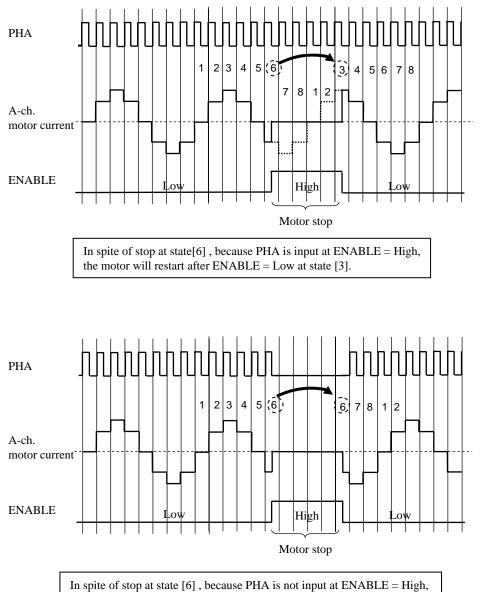

Excitation mode	Default electrical angle
2 phase excitation (4 step)	-45°
Half-step (8 step)	0°
1-2 phase excitation (8 step)	0°
W1-2 phase excitation (16 step)	0°
2W1-2 phase excitation (32 step)	0°

Table default position of each excitation mode

9) PHA input signal and DIR input signal

The set/hold time of PHA and DIR input signals, PHA input minimum pulse width (High/Low) are shown as the below figure. Input signals after securing set/hold time.

Period	Contents	Time
А	PHA input minimum pulse width (High)	5 µs or more
В	PHA input minimum pulse width (Low)	5 µs or more
С	DIR set time	2 µs or more
D	DIR hold time	2 µs or more


2008-02-20		
Established	Revised	
214406704208020		Semiconductor Company, Matsushita Electric Industrial Co., Lto

	Product Standards	AN44067A		
		Total Pages	Page	
		45	43	

- 3. Notes (continued)
- 10) PHA input at ENABLE = High

As the below figure (Ex. 1-2 phase excitation), when inputting PHA at the time of motor stop and ENABLE = High (All phases are OFF \rightarrow Motor current = 0 A), the setup value of motor current will proceed at PHA input. Therefore, in case of restart at ENABLE = Low, take notice that the position of restart is where the current state just before motor stop gains PHA input.

the motor will restart after ENABLE = Low at state [6] just before stop.

2008-02-20		
Established	Revised	
214406704308020		Semiconductor Company Matsushita Electric Industrial Co.

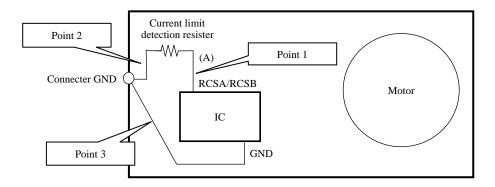
	Product Standards	AN44067A	
		Total Pages	Page
		45	44

3. Notes (continued)

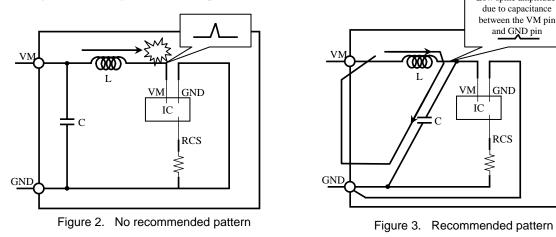
11) Notes on RCS line

Take consideration in the below figure and the points and design PCB pattern.

(1) Point 1


Design so that the wiring to the current detection pin (RCSA/RCSB pin) of this IC is thick and short to lower impedance. This is why current can not be detected correctly owing to wiring impedance and current might not be supplied to a motor sufficiently.

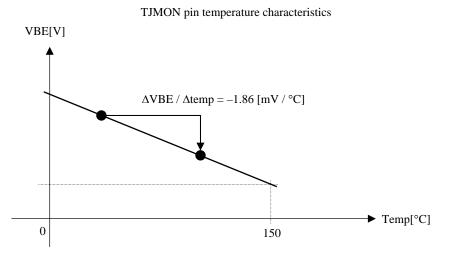
(2) Point 2


Design so that the wiring between current detection resister and connecter GND (the below figure Point 2) is thick and short to lower impedance. As the same as Point 1, sufficient current might not be supplied due to wiring impedance. In addition, if there is a common impedance on the side of GND of RASA and RCSB, peak detection might be erroroneous detection. Therefore, install the wiring on the side of GND of RCSA and RCSB independently.

(3) Point 3

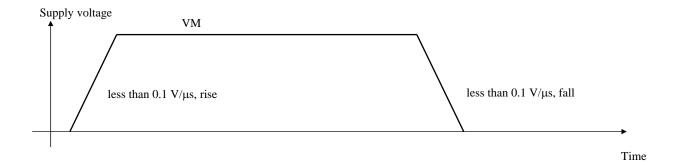
Connect GND pin of this IC to the connecter on PCB independently. Separate the wiring removed current detection resister of large current line (Point 2) from GND wiring and make these wirings one-point shorted at the connecter as the below figure. That can make fluctuation of GND minimum.

12) A high current flows into the IC. Therefore, the common impedance of PCB can not be ignored. Take the following points into consideration and design the PCB pattern for a motor. Because the wiring connecting to VM1 (Pin 17) and VM2 (Pin 18)of this IC is high-current, it is easy to generate noise at time of switching by wiring L. That might cause malfunction and destruction (Figure 2). As Figure 3, the escape way of the noise is secured by connecting a capacitor to the connector close to the VM pin of the IC. This makes it possible to suppress the fluctuation of direct VM pin voltage of the IC. Make the setting as shown in Figure 3 as much as possible.


2008-02-20	
Established	Revised

	AN44067A	
Product Standards	Total Pages	Page
	45	45

3. Notes (continued)

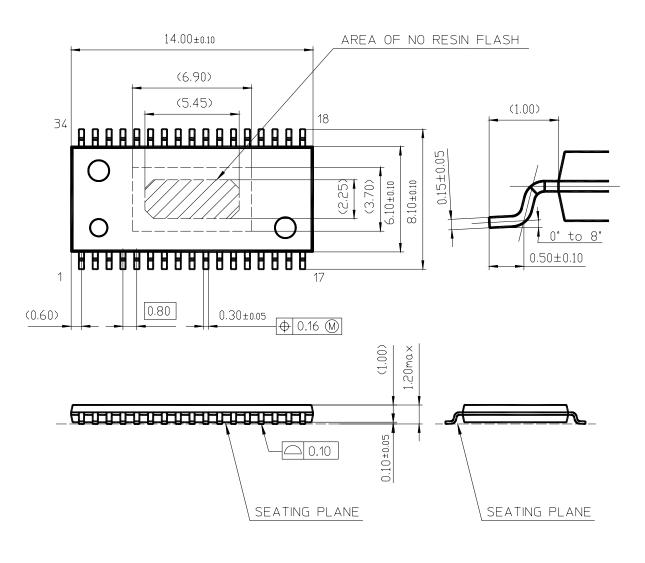

13) IC junction temperature

In case of measuring chip temperature of this IC, measure the voltage of TJMON pin (Pin 3) and estimate the chip temperature from the data below. However, because this data is technical reference data, conduct a sufficient reliability test of the IC and evaluate the product with the IC incorporated.

14) Speed of supply and cut of power

When supplying to VM pin (Pin 1, 17), set the rise speed of VM voltage to less than 0.1 V/ μ s and fall speed to less than 0.1 V/ μ s. If the speed of rise and fall of power supply is too rapid, that might cause malfunction and destruction of the IC. In this case, conduct a sufficient reliability test and also check a sufficient evaluation for a product.

214406704508020		Consistenductor Company, Mateurshita Electric Inductrial Co	امد ا
Established	Revised		
2008-02-20			


Regulations	50250920			Total pages	Page
No.	SC3S0829			6	1
					7
	Pack	kage	Stand	dards	
		0			
	Package C	ode		02004	
			HSOP034-P	-0300A	
	S	Semiconduc	tor Compan	١V	
			Corporation	-	
	Established by	Applied by	Checked by	Prepared by	
	H.Shidooka	H.Yoshida	M.Okajima	M.Itoh	
-	-				
Established Re	evised				

	Package Standards		
		Total pages	Page
		6	2

1. Outline Drawing

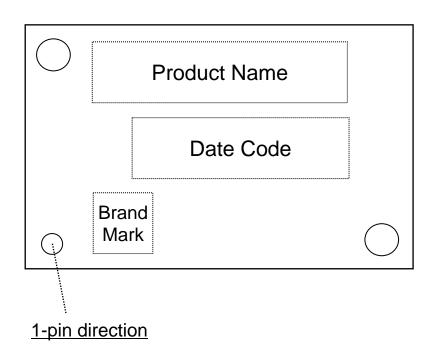
Unit:mm

Package Code : HSOP034-P-0300A

		Body Material : Epoxy Resin
		Lead Material : Cu Alloy
		Lead Finish Method : Pd Plating
-	-	
Established	Revised	
		Semiconductor Company, Panasonic Corporation

2. Package Structure (Technical Report : Reference Value) Package Code : HSOP034-P-0300A

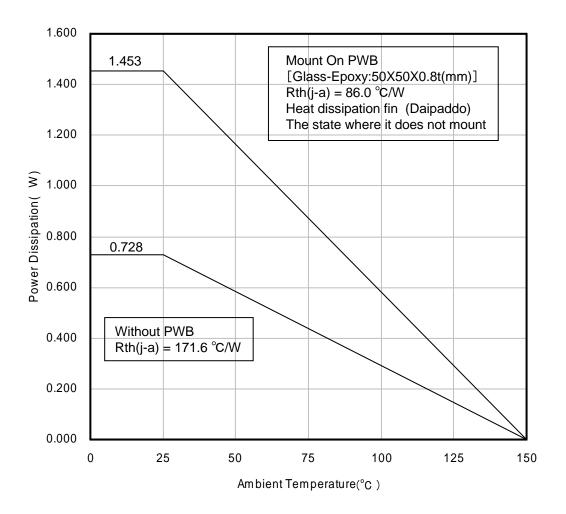
Chip Material		Si	1	
Leadframe material		Cu alloy	2	
Inner lead surface		Pd plating	3	
Outer lead surface	Outer lead surface		4	
Chin mount	Method	Resin adhesive method	5	
Chip mount	Material	Adhesive material		
Wirebond	Method	Thermo-compression bonding	6	
Wilebolid	Material	Au		
Molding	Method	Transfer molding		
wording	Material	Epoxy resin		
Mass		250 mg		



Semiconductor Company, Panasonic Corporation

	Package Standards		
		Total pages	Page
		6	4

3. Mark Layout


Package Code : HSOP034-P-0300A

	Package Standards		
		Total pages	Page
		6	5

4. Power Dissipation (Technical Report)

Package Code : HSOP034-P-0300A

5. Power Dissipation (Supplementary Explanation)

[Experiment environment]

Power Dissipation (Technical Report) is a result in the experiment environment of SEMI standard (Ambient air temperature (Ta) is 25 degrees C)

[Supplementary information of PWB to be used for measurement]

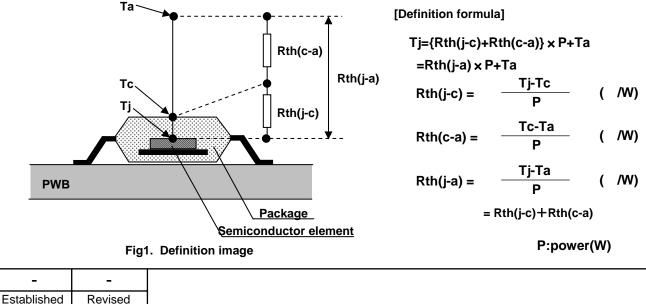
The supplement of PWB information for Power Dissipation data (Technical Report) are shown below.

Indication	Total Layer	Resin Material	
Glass-Epoxy	1-layer	FR-4	
4-layer	4-layer	FR-4	

[Notes about Power Dissipation (Thermal Resistance)]

Power Dissipation values (Thermal Resistance) depend on the conditions of the surroundings, such as specification of PWB and a mounting condition, and a ambient temperature. (Power Dissipation (Thermal Resistance) is not a fixed value.)

The Power Dissipation value (Technical Report) is the experiment result in specific conditions (evaluation environment of SEMI standard conformity), and keep in mind that Power Dissipation values (Thermal resistance) depend on circumference conditions and also change.


[Definition of each temperature and thermal resistance]

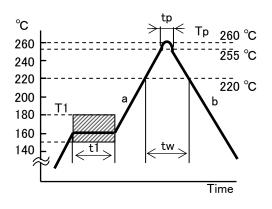
Ta : Ambient air temperature

The temperature of the air is defined at the position where the convection, radiation, etc. don't affect the temperature value, and it's separated from the heating elements.

- Tc : It's the temperature near the center of a package surface. The package surface is defined at the opposite side if the PWB.
- Tj : Semiconductor element surface temperature (Junction temperature.)
- Rth(j-c) : The thermal resistance (difference of temperature of per 1 Watts) between a semiconductor element junction part and the package surface
- Rth(c-a) : The thermal resistance (difference of temperature of per 1 Watts) between the package surface and the ambient air

Rth(j-a) : The thermal resistance (difference of temperature of per 1 Watts) between a semiconductor element junction part and the ambient air

Recommended		
Coldoring Conditions	Total pages	page
Soldering Conditions	2	1


Product name : AN44067A-VF Package : HSOP034-P-0300A

1. Recommended Soldering Conditions

In case that the semiconductor packages are mounted on the PCB, the soldering should be performed under the following conditions.

1 Reflow soldering

Reflow peak temp. : max. 260 °C

No.	mark	contents	value
1	T1	Pre-heating temp.	150 °C∼180 °C
2	t1	Pre-heating temp. hold time	60 s∼120 s
3	а	Rising rate	2 °C/s~5 °C/s
4	Тр	Peak temp.	255 °C+5 °C、-0 °C
5	tp	Peak temp. hold time	10 s±3 s
6	tw	High temp. region hold time	within 60 s $~(\geqq220~^\circ\!C)$
7	b	Down rate	2 °C/s~5 °C/s
8	-	Number of reflow	within 2 times

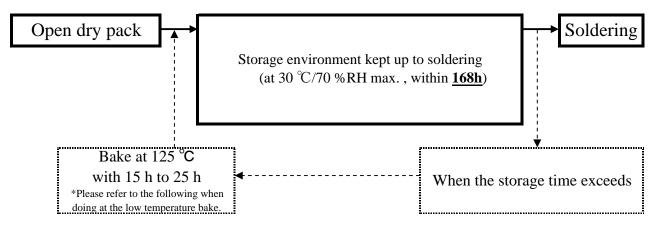
* Peak temperature : less than 260 $^\circ\!\mathrm{C}$

* Temperature is measured at package surface point

② Wave soldering (Flow soldering)

*Temp. of solder : 260 °C or less

- *Soak time : within 5 s
- *Number of flow : only 1 time


③ Manual soldering

- * Iron Temperature : 350 °C or less (Device lead temperature : 270 °C, 10 s max.)
- * Soldering time : within 3 s
- *Number of manual soldering : only 1 time

No. 11-184

Recommended			
		Total pages	page
	Soldering Conditions	2	2

2. Storage environment after dry pack opening

***** Because the taping and the magazine materials are not the heat-resistant materials, the bake at 125°C cannot be done. Therefore, please solder everything or control everything in the rule time. Please keep them in an equal environment with the moisture-proof packaging or dry box.

(Temperature: room temperature, relative humidity: 30% or less.)

To control storage time, when bake in the taping and the magazine is necessary, it is necessary for each type to set a bake condition. Please inquire of our company.

☆ AN44067A-VF limitation, low temperature bake condition : 40 °C / 25 %RH or less / 192 h

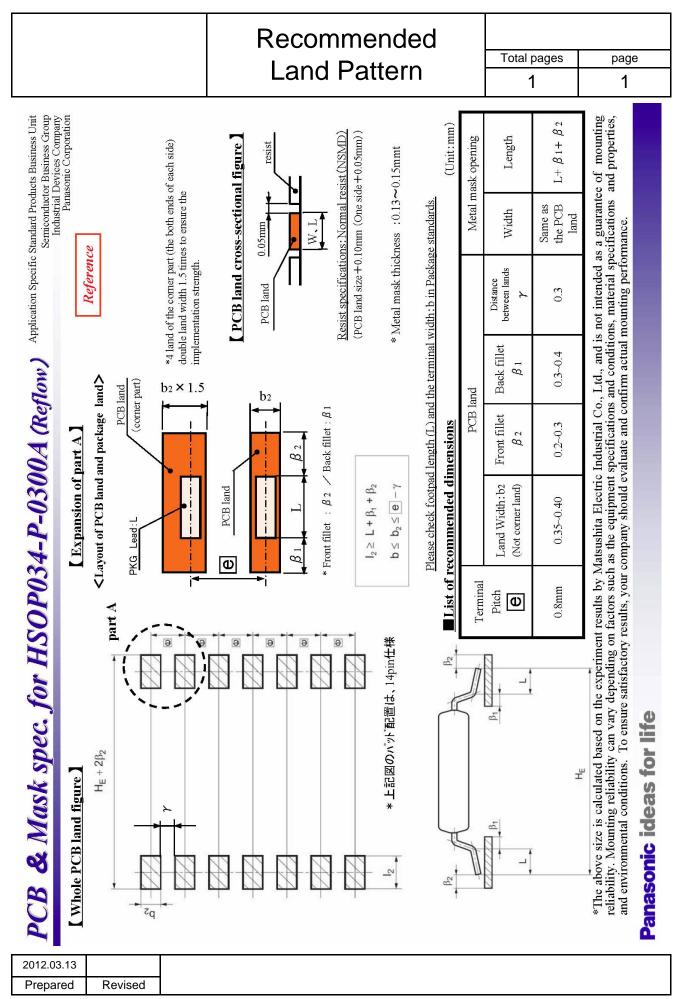
3. Note

- (1) Storage environment conditions: keep the following conditions Ta=5 $^{\circ}C \sim 30 ^{\circ}C$, RH=30 % $\sim 70 ^{\circ}N$.
- 2 Storage period before opening dry pack shall be 1 year from a shipping day under Ta=5 $^{\circ}C \sim 30 ^{\circ}C_{3}$ RH=30 % \sim 70 %. When the storage exceeds, Bake at 125 °C with 15 h to 25 h.
- 3 Baking cycle should be only one time.

Please be cautious of solderability at baking.

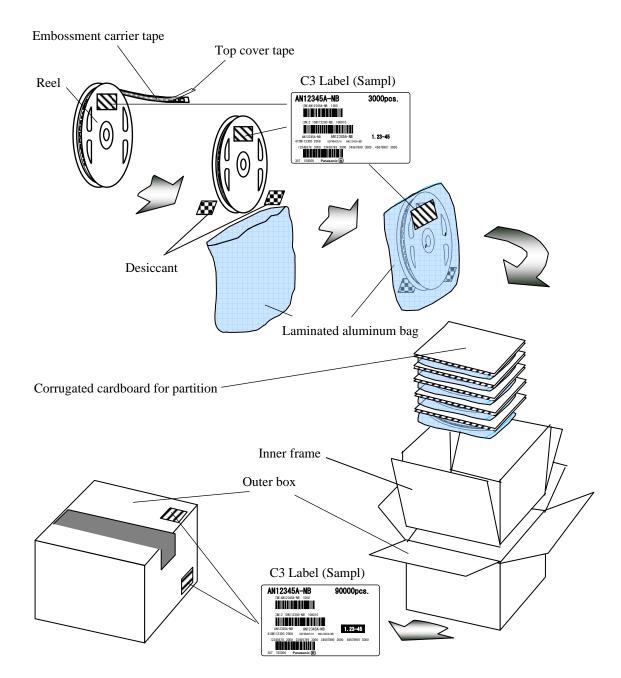
- (4) In case that use reflow two times, 2nd reflow must be finished within 168 hours.
- (5) Remove flux sufficiently from product in the washing process.

(Flux : Chlorineless rosin flux is recommended.)

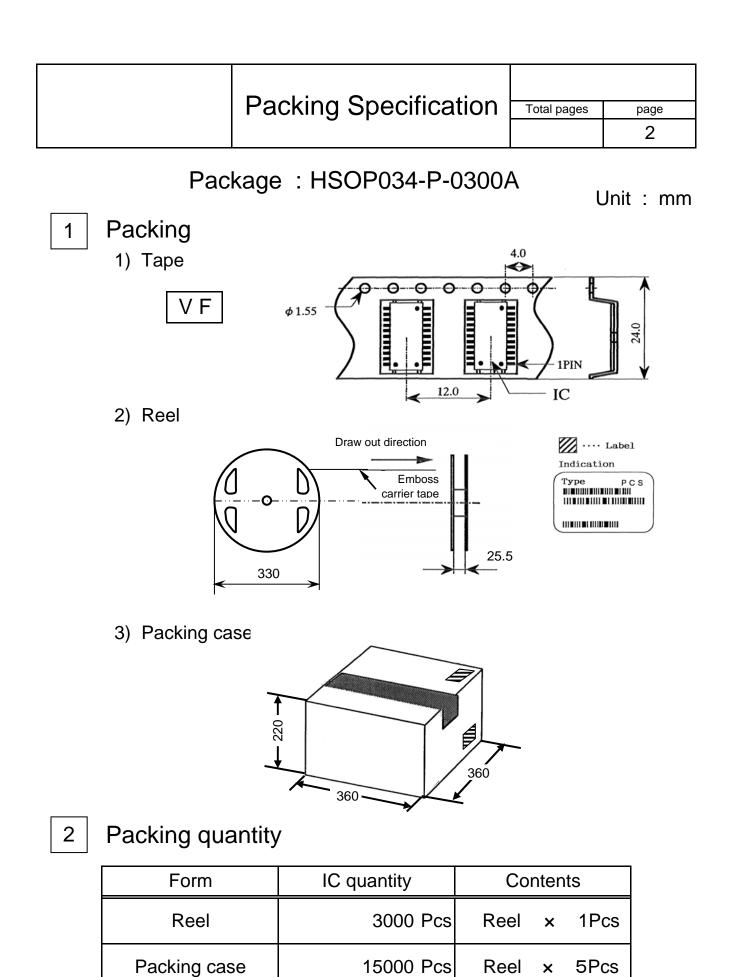

6 In case that use ultrasonic for product washing,

There is the possibility that the resonance may occur due to the frequency and shape of PCB.

It may be affected to the strength of lead. Please be cautious of this matter.


No. 11-184

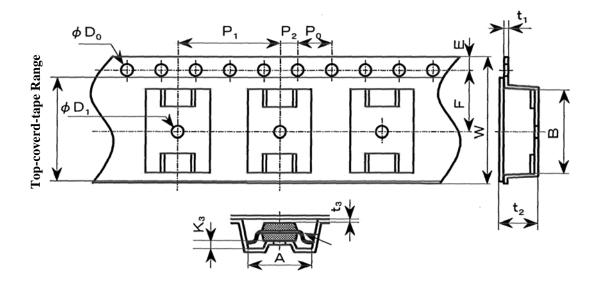
2012/3/7	
Prepared	Revised



Packing Specification	Total pages	page
5	3	1

Specifications of packing by the embossment tape (Specifications for dampproof packing of the reel without the inner carton)

2009.03.09
Prepared Revi


Revised		

Prepared

Total pages	page
	3

Unit : mm

Dimensions & Tolerance					
w	А	в	E	F	Pı
24.0 ± 0.3	8.7±0.1	14.5 ± 0.1	1.75 ± 0.1	11.5 ± 0.1	12.0±0.1
P2	Po	φD1	φ Do	t1	t2
2.0 ± 0.1	4.0±0.1	2.05 ± 0.05	1.55 ± 0.05	0.3±0.05	1.9max
tз	Кз				
(0.1)	(0.3)				

Panasonic

Industrial Devices Company, Panasonic Corporation

1 Kotari-yakemachi, Nagaokakyo City, Kyoto 617-8520, Japan Tel:075-951-8151

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А