

DESCRIPTION

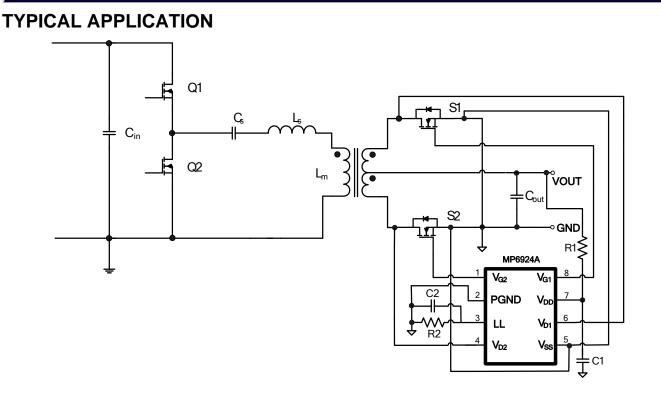
The MP6924A is a dual, fast turn-off, intelligent rectifier for synchronous rectification in LLC resonant converters.

The IC drives two N-channel MOSFETs, regulates their forward voltage drop to V_{fwd} (about 29mV), and turns the MOSFETs off before the switching current goes negative.

The MP6924A has a light-load function to latch off the gate driver under light-load conditions, limiting the current to 175μ A.

The MP6924A's fast turn-off enables both continuous conduction mode (CCM) and discontinuous conduction mode (DCM).

The MP6924A requires a minimal number of readily available, standard, external components and is available in a SOIC-8 package.


FEATURES

- Works with Standard and Logic Level MOSFETs
- Compatible with Energy Star
- Fast Turn-Off Total Delay of 35ns
- Wide 4.2V ~ 35V V_{DD} Operating Range
- 175µA Low Quiescent Current in Light-Load Mode
- Supports CCM, CrCM, and DCM Operation
- Supports High-Side and Low-Side Rectification
- Available in a SOIC-8 Package

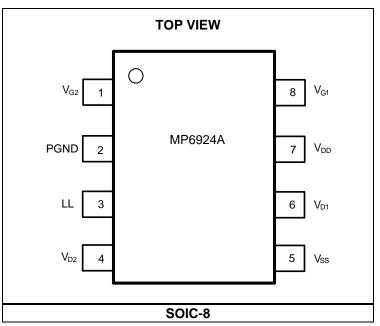
APPLICATIONS

- AC/DC Adapters
- PC Power Supplies
- LCD and LED TVs
- Isolated DC/DC Power Converters

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

ORDERING INFORMATION

Part Number*	Package	Top Marketing
MP6924AGS	SOIC-8	See Below


* For Tape & Reel, add suffix -Z (e.g. MP6924AGS-Z)

TOP MARKING

MP6924A LLLLLLLL MPSYWW

MP6924A: Part number LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

V_{DD} to V_{SS}	0.3V to +38V
PGND to V _{SS}	0.3V to +0.3V
V_G to V_{SS}	0.3V to +20V
V_D to V_{SS}	1V to +180V
LL to V _{SS}	0.3V to +6.5V
Continuous power dissipation (T	_A = +25°C) ⁽²⁾
SOIC-8	1.4W
Junction temperature	150°C
Lead temperature (solder)	260°C
Storage temperature	55°C to +150°C

Recommended Operation Conditions ⁽³⁾

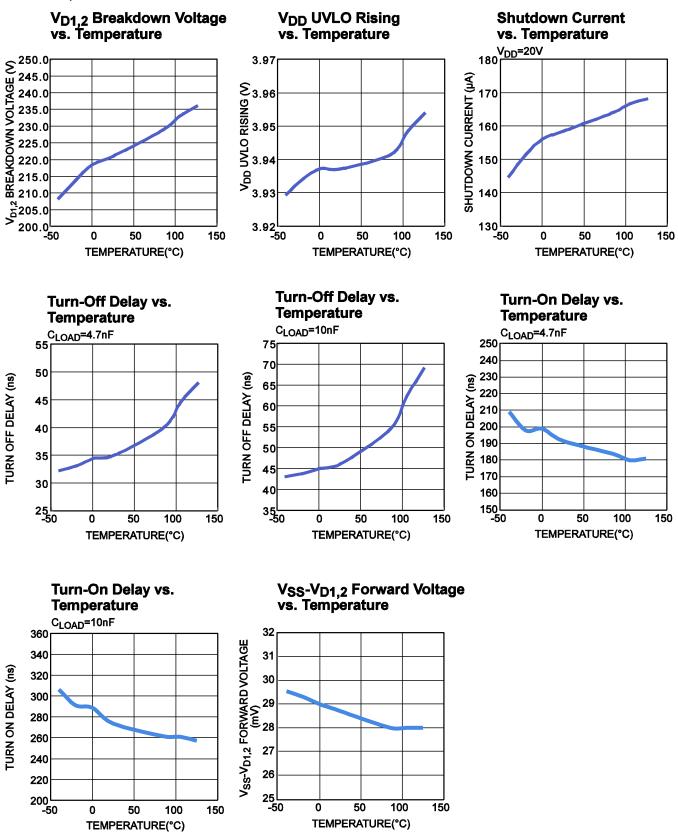
V _{DD} to V _{SS}	4.2V to 35V
Operating junction temp. (T _J)	-40°C to +125°C

NOTES:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{DD} = 12V, -40°C \leq T_J \leq +125°C, unless otherwise noted.

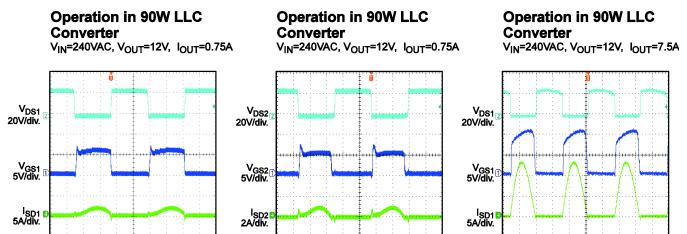

Parameter	Symbol	Conditions	Min	Тур	Max	Units
V _{DD} voltage range			4.2		35	V
V _{DD} UVLO rising			3.7	3.95	4.2	V
V _{DD} UVLO hysteresis			0.13	0.185	0.24	V
Operating current	Icc	$C_{LOAD} = 4.7 nF$, $F_{SW} = 100 kHz$		16	20	mA
Quiescent current	lq	$V_{SS} - V_D = 0.5V$		4.6	6	mA
		$V_{DD} = 4V, LL = 0V$		135	190	μA
Shutdown current		$V_{DD} = 20V, LL = 0V$		155	210	
Light-load mode current				175	225	μA
Thermal shutdown ⁽⁵⁾				175		°C
Thermal shutdown				10		°C
hysteresis ⁽⁵⁾				10		-C
Control Circuitry Section						
V _{SS} - V _D forward voltage	V _{fwd}		17	29	41	mV
Turn-off threshold (Vss - VD)				0		mV
	t Don	$C_{LOAD} = 4.7 nF$, $V_{GS} = 2V$		190	300	ns
Turn-on delay	t Don	$C_{LOAD} = 10$ nF, $V_{GS} = 2V$		270	410	ns
Input bias current on V _D		V _D = 180V			1	μA
Turn-on blanking time	tb_on	$C_{LOAD} = 4.7 nF$	0.75	1.1	1.65	μs
Turn-off blanking time (5)	tb_off	$C_{LOAD} = 4.7 nF$		1750		ns
Light-load enter pulse width	TLL	R _{LL} = 100kΩ	1.7	2.3	3	μs
Light-load turn-on pulse width hysteresis	T _{LL-H}	R _{LL} = 100kΩ		0.45		μs
Light-load enter delay	T _{LL-D}		45	78	121	μs
Gate disable threshold on LL	VLL_DIS		0.1	0.2	0.3	V
Turn-on threshold (V _{DS})	VLL_DS	V _{DD} = 12V	-330	-230	-130	mV
Gate Driver Section	_					
V _G (low)	V_{G_L}	ILOAD = 1mA			0.1	V
	V _{G_H}	V _{DD} > 10V		11.5	13	V
V _G (high)		V _{DD} ≤ 10V		Vdd		
Turn-off propagation delay		$V_D = V_{SS}$		15		ns
	t _{Doff}	$V_D = V_{SS}, C_{LOAD} = 4.7 nF,$ $R_{GATE} = 0\Omega, V_{GS} = 2V$		35	80	ns
Turn-off total delay	t _{Doff}	$V_{D} = V_{SS}, C_{LOAD} = 10nF,$ $R_{GATE} = 0\Omega, V_{GS} = 2V$		45	100	ns
Pull-down impedance				0.6	1.5	Ω

NOTE:

5) Guaranteed by characterization.

TYPICAL PERFORMANCE CHARACTERISTICS

V_{DD} = 12V, unless otherwise noted.

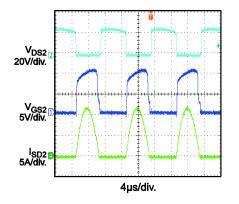


www.MonolithicPower.com

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2017 MPS. All Rights Reserved.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

V_{DD} = 12V, unless otherwise noted.



2µs/div.

2µs/div.

Operation in 90W LLC Converter

 V_{IN} =240VAC, V_{OUT} =12V, I_{OUT} =7.5A

4µs/div.

TTPS MP

Pin # (SOIC-8)	Name	Description
1	V_{G2}	MOSFET 2 gate driver output.
2	PGND	Power ground. PGND is the power switch return.
3	LL	Light-load timing setting. Connect a resistor to LL to set the light-load timing. Leave LL open to prevent the IC from entering light-load mode. Pull LL low to disable the gate driver.
4	V _{D2}	MOSFET 2 drain voltage sense.
5	Vss	Source pin used as reference for V _{D1} and V _{D2} .
6	V_{D1}	MOSFET 1 drain voltage sense.
7	V_{DD}	Supply voltage.
8	V _{G1}	MOSFET 1 gate driver output.

PIN FUNCTIONS

BLOCK DIAGRAM

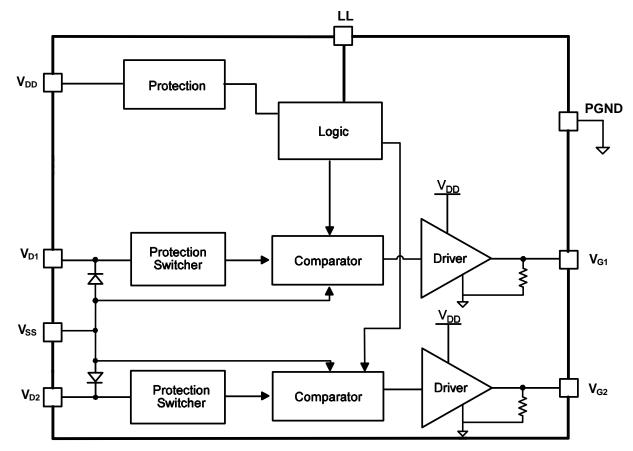


Figure 1: Functional Block Diagram

OPERATION

MP6924A operates in The discontinuous mode (DCM), continuous conduction conduction mode (CCM), and critical conduction mode (CrCM). When the MP6924A operates in either DCM or CrCM, the control circuitry controls the gate in forward mode. The gate turns off when the MOSFET current is low. In CCM, the control circuitry turns off the gate during very fast transients.

VD Clamp

Because $V_{D1,2}$ can rise as high as 180V, a highvoltage JFET is used at the input. To prevent excessive currents when $V_{DS1,2}$ drops below -0.7V, a 1k Ω resistor is recommended between $V_{D1,2}$ and the drain of the external MOSFET.

Under-Voltage Lockout (UVLO)

When V_{DD} is below the V_{DD} UVLO threshold, the MP6924A falls into sleep mode, and $V_{\text{G1,2}}$ remains at a low level.

Enable

If LL is pulled low, the MP6924A is in shutdown mode, which consumes 175μ A of shutdown current. If LL is pulled high during the rectification cycle, the gate driver does not appear until the next rectification cycle begins (see Figure 2).

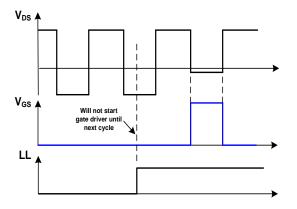


Figure 2: LL Control Scheme

Thermal Shutdown

If the junction temperature of the chip exceeds the thermal shutdown threshold, $V_{G1,2}$ is pulled low, and the MP6924A stops switching. The IC resumes normal function after the junction temperature drops 10°C.

Turn-On Phase

When the switch current flows through the body diode of the MOSFET, there is a negative voltage drop ($V_D - V_{SS}$) across the body diode. V_{DS} is much lower than the turn-on threshold of the control circuitry (V_{LL-DS}), which triggers a charge current to turn on the MOSFET (see Figure 3).

Turn-On Blanking

The control circuitry contains a blanking function that ensures that when the MOSFET turns on or off, it remains in that state for t_{B_ON} (~1.1µs), which determines the minimum on time. During the turn-on blanking period, the turn-off threshold is not blanked completely, but changes to about +100mV (instead of 0mV). This ensures that the part can always turn off, even during the turn-on blanking period, although it does so slower. Avoid setting the synchronous period below t_{B_ON} in CCM in the LLC converter to eliminate shoot-through.

Conduction Phase

When V_{DS} rises above the forward voltage drop (- V_{fwd}) according to the decrease of the switching current, the MP6924A pulls down the gate voltage level to make the on resistance of the synchronous MOSFET larger to ease the rise of V_{DS} .

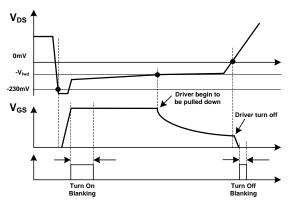
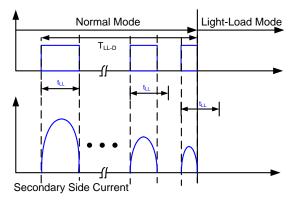


Figure 3: Turn-On/-Off Timing Diagram

The control scheme in Figure 3 shows V_{DS} adjusted to be around $-V_{fwd}$, even when the current through the MOSFET is fairly low. This function puts the driver voltage at a very low level when the synchronous MOSFET is turning off, which boosts the turn-off speed.

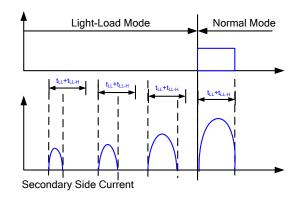
Turn-Off Phase

When V_{DS} rises to trigger the turn-off threshold, the gate voltage is pulled to zero after a very short turn-off delay (see Figure 3).


Turn-Off Blanking

After the gate driver is pulled to zero by V_{DS} reaching the turn-off threshold, turn-off blanking is triggered to ensure that the gate driver is off for at least tB ON to prevent an erroneous trigger on VDS.

Light-Load Latch-Off Function


The gate driver of the MP6924A is latched off to save driver loss in light-load condition and improve efficiency.

When the MOSFET's switching cvcle conducting period falls below T_{LL}, the MP6924A enters light-load mode and latches off the MOSFET after a light-load enter delay (T_{LL-D}) (see Figure 4).

Figure 4: MP6924A Entering Light-Load Mode

During light-load mode, the MP6924A monitors the body diode conduction time. If this time exceeds $T_{II} + T_{II-H}$, the IC exits light-load mode and initiates the gate driver in the next new switching cycle (see Figure 5 and Figure 6).

Figure 5: MP6924A Exiting Light-Load Mode

Light-load enter timing (T_{LL}) is programmable by connecting a resistor (R_{LL}) to LL. By monitoring the LL current (the LL voltage is kept at ~2V internally), T_{LL} can be calculated with Equation (1):

$$T_{LL} = R_{LL}(k\Omega) \cdot \frac{2.3us}{100k\Omega}$$
(1)

If the light-load mode of the MP6924A ends during the rectification cycle, the gate driver signal does not appear until the next rectification cycle begins (see Figure 6).

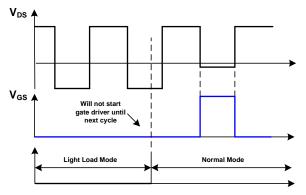


Figure 6: Gate Driver Starting after Exiting Light-Load Mode

APPLICATION INFORMATION

Layout Considerations

Listed below are the main recommendations that should be taken into consideration when designing the PCB.

Sensing for V_D/V_S

- 1. Keep the sensing connections $(V_{D1}/V_{SS}, V_{D2}/V_{SS})$ as close to each of the MOSFETs (drain/source) as possible.
- 2. Keep the two channels' sensing loops separated from each other.
- 3. Make the sensing loop as small as possible (see Figure 7).

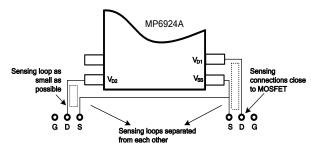


Figure 7: Sensing for V_D/V_S

Figure 8 shows a layout example of the MP6924A driving PowerPAK SO8 package MOSFETs with two, separate, small sensing loops.

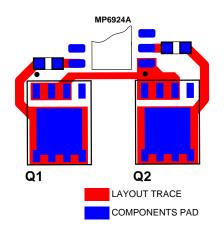


Figure 8: Layout Example for Sensing Loop and V_{DD} Decoupling

V_{DD} Decoupling Capacitor

 Place a decoupling capacitor no smaller than 1µF from V_{DD} to PGND close to the IC for adequate filtering (see Figure 9).

System Power Loop

- Keep the two channels' power loops separated from each other (see Figure 9).
 This minimizes the interaction between the two channels' power loops, which may affect the voltage sensing of the IC.
- 2. Make the power loop as small as possible to reduce parasitic inductance.

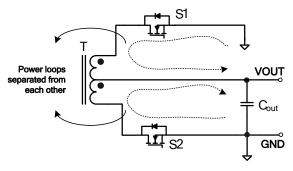
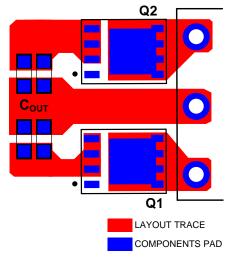




Figure 9: System Power Loop

Figure 10 shows a layout example of the power loop trace, which has a minimized loop length. The two channel power traces do not cross each other.

It is highly recommended to place the driver's sensing loop trace away from the power loop trace (see Figure 10). The sensing loop trace and power loop trace can be placed on different layers to keep them separate from each other.

Do not place the driver IC inside the power loop. This may affect MOSFET voltage sensing.

SR MOSFET Selection and Driver Ability

Power MOSFET selection is a trade-off between the R_{DS(ON)} and Q_g. To achieve high efficiency, a MOSFET with a smaller R_{DS(ON)} is recommended. A larger Q_q with a smaller R_{DS(ON)} makes the turn-on/-off speed lower and the power loss larger. For the MP6924A, V_{DS} is adjusted at V_{fwd} during the driving period. A MOSFET with a small R_{DS(ON)} is not recommended because the gate driver may be kept at a fairly low level with a small R_{DS(ON)}, even when the system load is high, which makes the advantage of the low R_{DS(ON)} inconspicuous.

Figure 11 shows the typical waveform of the LLC on the secondary side. To achieve a fairly high usage of the MOSFET's $R_{DS(ON)}$, it is expected that the MOSFET driver voltage is kept at the maximum level until the last 25% of the SR conduction period. Calculate V_{DS} with Equation (2):

$$V_{\text{DS}} = -R_{\text{ds(ON)}} \cdot \frac{\sqrt{2}}{2} \cdot I_{\text{peak}} = -R_{\text{ds(ON)}} \cdot I_{\text{OUT}} = -V_{\text{fwd}} \quad (2)$$

Where V_{DS} is drain-source voltage of the MOSFET.

The MOSFET's $R_{DS(ON)}$ is recommended to be no lower than $\sim V_{fwd}/I_{OUT}$ (m Ω). For example, in a 10A application with V_{fwd} at 29mV, the $R_{DS(ON)}$ of the MOSFET is recommended to be no lower than 2.9m Ω .

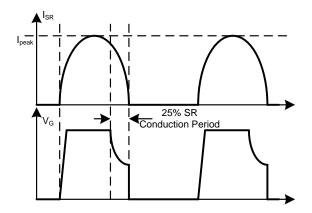


Figure 11: Synchronous Rectification Typical Waveform in LLC

 Q_g of the MOSFET affects the turn-on and turnoff delay. Figure 12 shows the turn-on delay (t_{Don}) and the turn-off delay (t_{Doff}). t_{Don} indicates how long the body diode conducts before the MOSFET turns on, while t_{Doff} indicates how long the driver takes to turn off the MOSFET. With a higher turn-on delay, the body diode conduction duration of the MOSFET is longer, which brings down the total efficiency. However, with a higher turn-off delay, the shoot-through risk is higher in CCM operation.

Figure 12 and Figure 13 show the t_{Don} and t_{Doff} of the MP6924A according to different C_{load} values.

Turn-On Delay vs. CLOAD

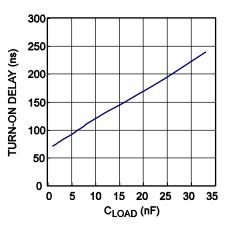


Figure 12: Turn-On Delay vs. Cload

Turn-Off Delay vs. CLOAD

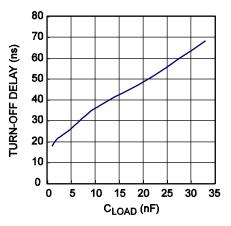


Figure 13: Turn-Off Delay vs. Cload

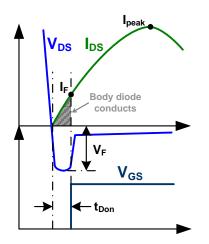


Figure 14: Turn-On Delay Effect on Efficiency

Figure 14 shows how t_{Don} affects system efficiency. During t_{Don}, the body diode of the SR MOSFET conducts, which leads to a power loss that can be calculated with Equation (3):

$$P_{on} \approx \frac{V_{F} \cdot I_{F}}{2} \cdot 2f_{s} \cdot t_{Don} = V_{F} \cdot I_{F} \cdot f_{s} \cdot t_{Don} \quad (3)$$

Where V_F is the body diode forward voltage drop, I_F is the switching current when the turnon delay (t_{Don}) has ended, and f_s is the switching frequency.

When considering the switching current as a complete sine wave, I_F can be estimated with Equation (4) and Equation (5):

$$\mathbf{I}_{\mathsf{F}} = \mathbf{I}_{\mathsf{peak}} \cdot \sin(2 \cdot \mathbf{f}_{\mathsf{s}} \cdot \mathbf{t}_{\mathsf{Don}} \cdot \pi) \tag{4}$$

$$I_{\text{peak}} \approx \frac{\pi}{2} \cdot I_{\text{out}}$$
 (5)

Where I_{peak} is the peak switching current through the MOSFET, and I_{out} is the system output current.

When plugging the values from Equation (4) and Equation (5) into Equation (3), the turn-on delay power loss through the SR MOSFET's body diode can be derived with Equation (6):

$$\mathsf{P}_{\mathsf{on}} = \frac{\pi}{2} \cdot \mathsf{I}_{\mathsf{out}} \cdot \mathsf{V}_{\mathsf{F}} \cdot \mathsf{f}_{\mathsf{s}} \cdot \mathsf{t}_{\mathsf{Don}} \cdot \mathsf{sin}(2 \cdot \mathsf{f}_{\mathsf{s}} \cdot \mathsf{t}_{\mathsf{Don}} \cdot \pi)$$
(6)

Figure 15 shows how different turn-on delay values affect efficiency according to different output voltages. To keep the body diode conduction loss at a fairly low level (below 0.5% of the output power), the turn-on delay is recommended to be less than 5% of the switching cycle. For example, in a $f_{sw} = 200$ kHz LLC system, the switching cycle is ~5µs. It is recommended to select a MOSFET that makes $t_{Don} < 250$ ns.

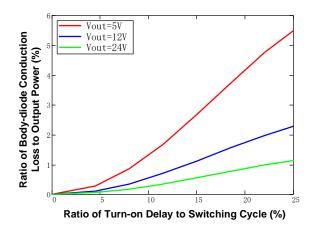
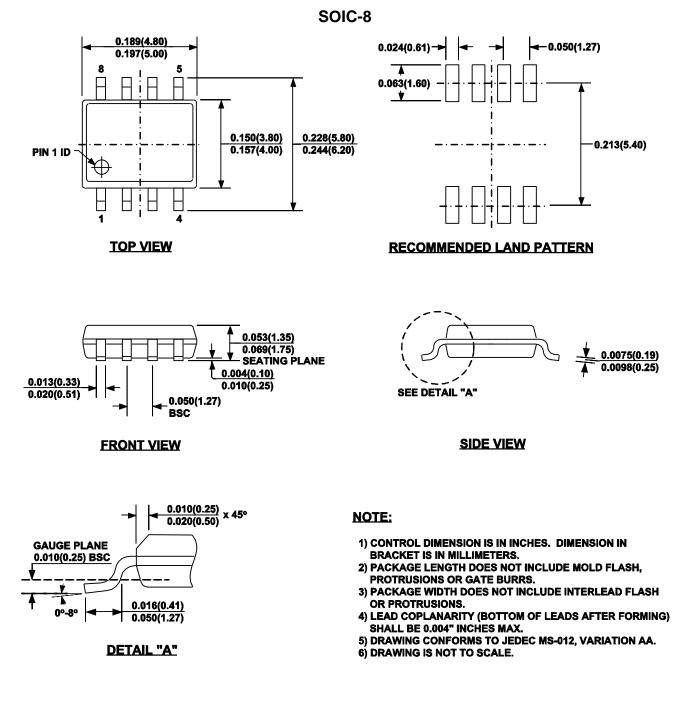



Figure 15: Turn-On Delay vs. Power Loss

The turn-off delay (t_{Doff}) is critical in some fast transient CCM applications. Choose the MOSFET to make t_{Doff} below the CCM current transient duration. Otherwise, the MOSFET may need to be selected with a lower Q_a, or an external totem pole driver circuit may be added to prevent shoot-through.

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А