Okami OKR-T/3 Series # Adjustable Output 3-Amp SIP-mount DC/DC Converters ## **FEATURES** - 600 KHz operation - 4.5-14 Vdc input voltage range - Programmable output voltage from 0.591-6.0 VDC - Drives up to 200 µF ceramic capacitive loads - High power conversion efficiency at 93% - Outstanding thermal derating performance - Over temperature and over current protection - On/Off control - SIP, 0.41 x 0.65 x 0.4 inches (10.4 x 16.5 x 10.2 mm). - Certified to UL/EN/IEC 60950-1 safety standards, 2nd edition - RoHS-6 hazardous substance compliance ## **PRODUCT OVERVIEW** The OKR-T/3 series are miniature SIP non-isolated Point-of-Load (PoL) DC/DC power converters measuring only 0.41 x 0.65 x 0.22 inches ($10.4 \times 16.5 \times 5.6 \text{ mm}$). The wide input range is 4.5 to 14 Volts DC. Based on 600 KHz synchronous buck topology, the high power conversion efficient Point of Load (PoL) module features programmable output voltage and On/Off control, under voltage lock out (UVLO), overcurrent and over temperature protections. These units are certified to UL/EN/ IEC 60950-1 safety standards (2nd edition) and RoHS-6 hazardous substance compliance. ## **Performance Specifications Summary and Ordering Guide** | ORDERING GUIDE | | | | | | | | | | | | | | | |----------------|-----------------|---------------|------------------|-------------|--------------------------|-------|---------------------|------------------|-----------------|---------------------|------------|------|------|--------| | | Output | | | | Input | | | | | Package | | | | | | | | Іоит | | R/N (mVp-p) | nVp-p) Regulation (Max.) | | | | lın, | lın, | Efficiency | | | | | Root Model | Vout
(Volts) | (Amps
max) | Power
(Watts) | Max. | Line | Load | VIN Nom.
(Volts) | Range
(Volts) | no load
(mA) | full load
(Amps) | Min. | Тур. | Case | Pinout | | OKR-T/3-W12-C | 0.591-6 | 3 | 15 | 25 | ±0.3% | ±1.4% | 12 | 4.5-14 | 80 | 1.34 | 90.75% | 93% | C72 | P73 | - ① Dimensions are in inches (mm). - ② Ripple and Noise is shown at Vout=1V. See specs for details. - ③ All specifications are at nominal line voltage, Vout= 5V and full load, +25 deg.C. unless otherwise noted. Output capacitors are 1 μ F ceramic and 22 μ F electrolytic in parallel. Input cap is 22 μ F. See detailed specifications. I/O caps are necessary for our test equipment and may not be needed for your application. ④ Vin must be 2V or higher than Vout for 3.3 to 5V outputs. ## **Product Label** Because of the small size of these products, the product label contains a character-reduced code to indicate the model number and manufacturing date code. Not all items on the label are always used. Please note that the label differs from the product photograph on page 1. Here is the layout of the label: Figure 2. Label Artwork Layout The label contains three rows of information: First row — Murata Power Solutions logo Second row — Model number product code (see table) Third row — Manufacturing date code and revision level | Model Number | Product Code | | | |----------------|--------------|--|--| | OKR-T/3-W12-C | R01103 | | | | 0KR-T/3-W12E-C | R01103E | | | The manufacturing date code is four characters: Fourth character - Manufacturing information First character – Last digit of manufacturing year, example $200\underline{9}$ Second character – Month code (1 through 9 = Jan-Sep; 0, N, D = Oct, Nov, Dec) Third character – Day code (1 through 9 = 1 to 9, 10 = 0 and 11 through 31 = A through Z) # **Okami OKR-T/3 Series** # Adjustable Output 3-Amp SIP-mount DC/DC Converters ## **Performance/Functional Specifications** All specifications are typical unless noted See Note 1. | In | put | |--|--| | Input Voltage Range | See Ordering Guide. See note 16. | | Recommended External Fuse | 6 Amps | | Reverse Polarity Protection (Note 9) | None. Use an external fuse. | | Isolation | Not isolated. The input and output commons are internally connected. | | Start-Up Voltage | 4.2 Volts | | Undervoltage Shutdown | 3.4 Volts | | Reflected (Back) Ripple Current (Note 2) | 20 mA pk-pk | | Internal Input Filter Type | Capacitive | | Input Current: | | | Full Load Conditions | See Ordering Guide | | Inrush Transient | 0.4 A ² Sec. | | Shutdown Mode (Off, UV, OT) | 5 mA | | Output Short Circuit | 60 mA | | No Load, 5V out | 80 mA | | Low Line (Vin=Vmin, 5Vout) | 2.26 Amps | | Remote On/Off Control (Note 5) Positive Logic Current | [Standard version] ON = +2 V. to +Vin max. or open pin OFF = -0.3 to +0.4 V. max. or ground pin 1 mA | | Remote On/Off Control Positive Logic Current | ["E" version] ON = +2 V. to +Vin max., 100KΩ pulldown to ground OFF = open pin or -0.3 to +0.4 V. max. 1 mA max. | | Turn-on Time:
Vin on to Vout regulated
Remote On to Vout regulated | 6 mSec
6 mSec | | Output | |---| | No minimum load | | 0 to 3 Amps | | ±2 % of Vnom | | ±0.02% per °C. of Vout range | | See Ordering Guide and note 14 | | See Ordering Guide and note 10 | | See Ordering Guide and performance graphs | | | | 200 μF
1000 μF | | 8 Amps | | | | 0.6 Amp | | Hiccup autorecovery upon overload | | Continuous, no damage | | None | | | | Dynamic Characteristics | | | | | | |----------------------------------------------------------------|-------------------------------------------------|--|--|--|--| | Dynamic Load Response (50 to 100% load step, no external caps) | | | | | | | di/dt = 1 A/μSec | $20 \mu\text{Sec}$ to within ±2% of final value | | | | | | Switching Frequency | 600 KHz | | | | | | Environmental | | | | | |-------------------------------------------------------|-------------------------------------------------------------|--|--|--| | Calculated MTBF (Note 4) | | | | | | OKR-T/3-W12-C | 12,230,400 hours (4a) | | | | | OKR-T/3-W12-C | 5,273,231 hours (4b) | | | | | Operating Temperature Range | | | | | | (Ambient temp., Vout=5 V., vertical mount) | | | | | | Full power, see derating curves | -40 to +85 °C. | | | | | Operating PC Board Range, no derating -40 to +100 °C. | | | | | | Storage Temperature Range | -55 to +125 °C. | | | | | Thermal Protection/Shutdown | +130 °C. | | | | | Relative Humidity | to 85%/+85 °C. | | | | | Restriction of Hazardous Substances | RoHS-6 (does not claim EU RoHS exemption 7b-lead in solder) | | | | | Physical | | | | | |---------------------------|-------------------------------|--|--|--| | Outline Dimensions | See Mechanical Specifications | | | | | Weight | 0.07 ounces (2 grams) | | | | | Safety | Certified to UL/cUL 60950-1 | | | | | | CSA-C22.2 No. 60950-1 | | | | | | IEC/EN 60950-1, 2nd edtion | | | | | Absolute Maximum Ratings | | | | | |-----------------------------------|-----------------------------------------|--|--|--| | Input Voltage | | | | | | Continuous or transient | 15 Volts max. | | | | | Output Power | 15 Watts max. | | | | | On/Off Control | 0 Volts. min. to +Vin. max. | | | | | Input Reverse Polarity Protection | See Fuse section | | | | | Output Current | Current-limited. Devices can withstand | | | | | | sustained short circuit without damage. | | | | | Storage Temperature | -40 to +125 deg. C. | | | | Absolute maximums are stress ratings. Exposure of devices to greater than any of these conditions may adversely affect long-term reliability. Proper operation under conditions other than those listed in the Performance/Functional Specifications Table is not implied or recommended. CAUTION: This product is not internally fused. To comply with safety agency certifications and to avoid injury to personnel or equipment, the user <u>must</u> supply an external fast-blow fuse to the input terminals. #### **Notes** - (1) All specifications are typical unless noted. General conditions for Specifications are +25 deg.C, Vin=nominal, Vout=nominal (no trim installed), full rated load. Adequate airflow must be supplied for extended testing under power. - All models are tested and specified with external $1\mu F$ and $22~\mu F$ paralleled output capacitors and a $22~\mu F$ external input capacitor. All capacitors are low ESR types. Caps are layout dependent These capacitors are necessary to accommodate our test equipment and may not be required in your applications. All models are stable and regulate within spec under no-load conditions. - (2) Input Back Ripple Current is tested and specified over a 5 Hz to 20 MHz bandwidth. Input filtering is Cin=2 x 100 μ F, 100V tantalum, Cbus=1000 μ F, 100V electrolytic, Lbus=1 μ H. All caps are low ESR types. - (3) Note that Maximum Power Derating curves indicate an average current at nominal input voltage. At higher temperatures and/or lower airflow, the DC/DC converter will tolerate brief full current outputs if the total RMS current over time does not exceed the Derating curve. All Derating curves are presented at sea level altitude. Be aware of reduced power dissipation with increasing altitude. - (4a) Mean Time Before Failure is calculated using the Telcordia (Belcore) SR-332 Method 1, Case 3, ground fixed conditions, Tpcboard=+25 °C, full output load, natural air convection - (4b) Mean Time Before Failure is calculated using the MIL-HDBK-217N2 method, ground benign, +25°C., full output load, natural convection. - (5) The On/Off Control is normally controlled by a switch or open collector or open drain transistor. But it may also be driven with external logic or by applying appropriate external voltages which are referenced to Input Common. - (6) Short circuit shutdown begins when the output voltage degrades approximately 2% from the selected setting. - (7) The outputs are not intended to sink appreciable reverse current. - (8) "Hiccup" overcurrent operation repeatedly attempts to restart the converter with a brief, full-current output. If the overcurrent condition still exists, the restart current will be removed and then tried again. This short current pulse prevents overheating and damaging the converter. Once the fault is removed, the converter immediately recovers normal operation. - (9) Input Fusing: If reverse polarity is accidentally applied to the input, to ensure reverse input protection with full output load, always connect an external input fast-blow fuse in series with the +Vin input. Use approximately twice the full input current rating with nominal input voltage. - (10) Regulation specifications describe the deviation as the line input voltage or output load current is varied from a nominal midpoint value to either extreme. - (11) CAUTION: Since the converter is mounted on the end by its pins, do not subject it to high vibration, shock or acceleration. - (12) Output current limit and short circuit protection is non-latching. When the overcurrent fault is removed, the converter will immediately recover. - (13) Do not exceed maximum power specifications when adjusting the output trim. All published specifications are listed at rated nominal output current using published Derating curves. The maximum power specifications indicate brief operation before overcurrent shutdown occurs. Note particularly that current must be limited at higher output voltage in order to comply with maximum power requirements. - (14) At zero output current, the output may contain low frequency components which exceed the ripple specification. The output may be operated indefinitely with no load. - (15) The input and output are not isolated. They share a single COMMON power and signal return. - (16) Vin must be 2V or higher than Vout for 3.3 to 6V outputs: Vin >= (2V + Vout) #### **Trim Connections** #### **Output Voltage Adustment** The output voltage may be adjusted over a limited range by connecting an external trim resistor (Rtrim) between the Trim pin and Ground. The Rtrim resistor must be a 1/10 Watt precision metal film type, $\pm 0.5\%$ accuracy or better with low temperature coefficient, ± 100 ppm/oC. or better. Mount the resistor close to the converter with very short leads or use a surface mount trim resistor. In the tables below, the calculated resistance is given. Do not exceed the specified limits of the output voltage or the converter's maximum power rating when applying these resistors. Also, avoid high noise at the Trim input. However, to prevent instability, you should never connect any capacitors to Trim. ## **OKR-T/3-W12** | Output Voltage | Calculated Rtrim (Ω) | |----------------|----------------------| | 6 V. | 218.5 | | 5 V. | 268 | | 3.3 V. | 436 | | 2.5 V. | 619 | | 1.8 V. | 978 | | 1.5 V. | 1300 | | 1.2 V. | 1940 | | 1.0 V. | 2890 | | 0.591 V. | ∞ (open) | ## Resistor Trim Equation, OKR-T/3-W12 models: $$\mathsf{RTRIM}\;(\mathsf{k}\Omega) = \frac{1.182}{(\mathsf{Vout} - 0.591)}$$ There is no derating for Vout = 0.591V. to 5.5V. at full load. ## OKR-T/3-W12-C OSCILLOGRAMS - Vout = 2.5V On/Off Enable Startup (Vin=13.8V, Vout=2.5V, lout=3A, Cload=0) Trace 4=Enable, Trace2=Vout Output Ripple and Noise (Vin=12V, Vout=2.5V, lout=3A, Cload=0, ScopeBW=100MHz) Step Load Transient Response (Vin=12V, Vout=2.5V, Cload=0, lout=1.5A to 3A) Trace 2=Vout, 100 mV/div. Trace 4=lout, 1A/div. Step Load Transient Response (Vin=12V, Vout=2.5V, Cload=0, lout=3A to 1.5A) Trace 2=Vout, 100 mV/div. Trace 4=lout, 1A/div. ## **Soldering Guidelines** Murata Power Solutions recommends the specifications below when installing these converters. These specifications vary depending on the solder type. Exceeding these specifications may cause damage to the product. Your production environment may differ; therefore please thoroughly review these guidelines with your process engineers. | Wave Solder Operations for through-hole mounted products (THMT) | | | | | | | |-----------------------------------------------------------------|-----------|-----------------------------|-----------|--|--|--| | For Sn/Ag/Cu based solders: For Sn/Pb based solders: | | | | | | | | Maximum Preheat Temperature | 115° C. | Maximum Preheat Temperature | 105° C. | | | | | Maximum Pot Temperature | 270° C. | Maximum Pot Temperature | 250° C. | | | | | Maximum Solder Dwell Time | 7 seconds | Maximum Solder Dwell Time | 6 seconds | | | | ## **MECHANICAL SPECIFICATIONS** Pin #1 Pin diameter: 0.032 (0.81) Tolerance: $\pm 0.002 (\pm 0.05)$ Pin material: Copper alloy Pin finish: Pure matte tin 100-300 µin. over 75-100 µin. nickel Figure 3. OKR Series Component locations are typical. Dimensions are in inches (mm shown for ref. only). Tolerances (unless otherwise specified): .XX ± 0.02 (0.5) .XXX ± 0.010 (0.25) Components are shown for reference only. ## **INPUT/OUTPUT CONNECTIONS** OKR-T-W12 **Function P73** Remote On/Off Control Pin 2 $+V_{\text{IN}}$ Ground 3 **+V**0UT 4 Output Trim 5 $10.00 \pm .25$ (254.0) # STANDARD PACKAGING Each static dissipative polyethylene foam tray accommodates 120 converters 2.5±.25 (63.5) Closed height Carton accommodates four (3) trays of 120 yielding 360 converters per carton. 10.00±.25 (254.0) ## Notes: - 1. Material: Dow 220 antistat ethafoam (Density: 34-35 kg/m3) - 2. Dimensions: 252 x 252 x 16 mm 8 x 15 array (120 per tray) Dimensions are in inches (mm shown for ref. only). Tolerances (unless otherwise specified): $.XX \pm 0.02$ (0.5) $.XXX \pm 0.010 (0.25)$ Angles ± 2° Components are shown for reference only. # Pkami OKR-T/3 Series ## Adjustable Output 3-Amp SIP-mount DC/DC Converters #### **TECHNICAL NOTES** #### **Input Fusing** Certain applications and/or safety agencies may require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal which is not current-limited. For greatest safely, we recommend a fast blow fuse installed in the ungrounded input supply line. The installer must observe all relevant safety standards and regulations. For safety agency approvals, install the converter in compliance with the end-user safety standard, i.e. IEC/EN/UL 60950-1. #### Input Under-Voltage Shutdown and Start-Up Threshold Under normal start-up conditions, converters will not begin to regulate properly until the ramping-up input voltage exceeds and remains at the Start-Up Threshold Voltage (see Specifications). Once operating, converters will not turn off until the input voltage drops below the Under-Voltage Shutdown Limit. Subsequent restart will not occur until the input voltage rises again above the Start-Up Threshold. This built-in hysteresis prevents any unstable on/off operation at a single input voltage. Users should be aware however of input sources near the Under-Voltage Shutdown whose voltage decays as input current is consumed (such as capacitor inputs), the converter shuts off and then restarts as the external capacitor recharges. Such situations could oscillate. To prevent this, make sure the operating input voltage is well above the UV Shutdown voltage AT ALL TIMES. ## **Start-Up Time** Assuming that the output current is set at the rated maximum, the Vin to Vout Start-Up Time (see Specifications) is the time interval between the point when the ramping input voltage crosses the Start-Up Threshold and the fully loaded regulated output voltage enters and remains within its specified accuracy band. Actual measured times will vary with input source impedance, external input capacitance, input voltage slew rate and final value of the input voltage as it appears at the converter. These converters include a soft start circuit to moderate the duty cycle of its PWM controller at power up, thereby limiting the input inrush current. The On/Off Remote Control interval from On command to Vout regulated assumes that the converter already has its input voltage stabilized above the Start-Up Threshold before the On command. The interval is measured from the On command until the output enters and remains within its specified accuracy band. The specification assumes that the output is fully loaded at maximum rated current. Similar conditions apply to the On to Vout regulated specification such as external load capacitance and soft start circuitry. ## **Recommended Input Filtering** The user must assure that the input source has low AC impedance to provide dynamic stability and that the input supply has little or no inductive content, including long distributed wiring to a remote power supply. The converter will operate with no additional external capacitance if these conditions are met. For best performance, we recommend installing a low-ESR capacitor immediately adjacent to the converter's input terminals. The capacitor should be a ceramic type such as the Murata GRM32 series or a polymer type. Initial suggested capacitor values are 10 to 22 μF , rated at twice the expected maximum input voltage. Make sure that the input terminals do not go below the undervoltage shutdown voltage at all times. More input bulk capacitance may be added in parallel (either electrolytic or tantalum) if needed. #### **Recommended Output Filtering** The converter will achieve its rated output ripple and noise with no additional external capacitor. However, the user may install more external output capacitance to reduce the ripple even further or for improved dynamic response. Again, use low-ESR ceramic (Murata GRM32 series) or polymer capacitors. Initial values of 10 to 47 μF may be tried, either single or multiple capacitors in parallel. Mount these close to the converter. Measure the output ripple under your load conditions. Use only as much capacitance as required to achieve your ripple and noise objectives. Excessive capacitance can make step load recovery sluggish or possibly introduce instability. Do not exceed the maximum rated output capacitance listed in the specifications. ## **Input Ripple Current and Output Noise** All models in this converter series are tested and specified for input reflected ripple current and output noise using designated external input/output components, circuits and layout as shown in the figures below. In the figure below, the Cbus and Lbus components simulate a typical DC voltage bus. Please note that the values of Cin, Lbus and Cbus will vary according to the specific converter model. Figure 4. Measuring Input Ripple Current # Pkami OKR-T/3 Series ## Adjustable Output 3-Amp SIP-mount DC/DC Converters Murata Power Solutions makes Characterization measurements in a closed cycle wind tunnel with calibrated airflow. We use both thermocouples and an infrared camera system to observe thermal performance. **CAUTION:** If you routinely or accidentally exceed these Derating guidelines, the converter may have an unplanned Over Temperature shut down. Also, these graphs are all collected at slightly above Sea Level altitude. Be sure to reduce the derating for higher density altitude. #### **Output Current Limiting** Current limiting inception is defined as the point at which full power falls below the rated tolerance. See the Performance/Functional Specifications. Note particularly that the output current may briefly rise above its rated value in normal operation as long as the average output power is not exceeded. This enhances reliability and continued operation of your application. If the output current is too high, the converter will enter the short circuit condition. #### **Output Short Circuit Condition** When a converter is in current-limit mode, the output voltage will drop as the output current demand increases. If the output voltage drops too low (approximately 98% of nominal output voltage for most models), the magnetically coupled voltage used to develop primary side voltages will also drop, thereby shutting down the PWM controller. Following a time-out period, the PWM will restart, causing the output voltage to begin ramping up to its appropriate value. If the short-circuit condition persists, another shutdown cycle will initiate. This rapid on/off cycling is called "hiccup mode". The hiccup cycling reduces the average output current, thereby preventing excessive internal temperatures and/or component damage. A short circuit can be tolerated indefinitely. The "hiccup" system differs from older latching short circuit systems because you do not have to power down the converter to make it restart. The system will automatically restore operation as soon as the short circuit condition is removed. #### Remote On/Off Control (for models without the "E" option) Please refer to the Connection Diagram on page 1 for On/Off connections. <u>Positive</u> logic models are enabled when the On/Off pin is left open or is pulled high to +Vin with respect to -Vin. Positive-logic devices are disabled when the On/Off is grounded or brought to within a low voltage (see Specifications) with respect to -Vin. Dynamic control of the On/Off function should be able to sink appropriate signal current when brought low and withstand appropriate voltage when brought high. Be aware too that there is a finite time in milliseconds (see Specifications) between the time of On/Off Control activation and stable, regulated output. This time will vary slightly with output load type and current and input conditions. Figure 5. Measuring Output Ripple and Noise (PARD) #### **Minimum Output Loading Requirements** All models regulate within specification and are stable under no load to full load conditions. Operation under no load might however slightly increase output ripple and noise. #### **Thermal Shutdown** To prevent many over temperature problems and damage, these converters include thermal shutdown circuitry. If environmental conditions cause the temperature of the DC/DC's to rise above the Operating Temperature Range up to the shutdown temperature, an on-board electronic temperature sensor will power down the unit. When the temperature decreases below the turn-on threshold, the converter will automatically restart. There is a small amount of hysteresis to prevent rapid on/off cycling. The temperature sensor is typically located adjacent to the switching controller, approximately in the center of the unit. See the Performance and Functional Specifications. CAUTION: If you operate too close to the thermal limits, the converter may shut down suddenly without warning. Be sure to thoroughly test your application to avoid unplanned thermal shutdown. ## **Temperature Derating Curves** The graphs in this data sheet illustrate typical operation under a variety of conditions. The Derating curves show the maximum continuous ambient air temperature and decreasing maximum output current which is acceptable under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in current or reduced airflow as long as the average is not exceeded. Note that the temperatures are of the ambient airflow, not the converter itself which is obviously running at higher temperature than the outside air. Also note that very low flow rates (below about 25 LFM) are similar to "natural convection", that is, not using fan-forced airflow. ## "E" Model External Enable On/Off Control (see fig. 6) The forced On/Off enable option for "E" models uses positive logic for the external control. The converter may be powered ON by applying a positive voltage (logic HI) between the On/Off pin and the negative power input (-Vin). This positive voltage is referred to —Vin and must be in the range of at least +2.0V and not to exceed the power supply input voltage (+Vin). The current drain is 1 mA max, when turned on. If the On/Off pin is left open, an internal 100 Kilohm pulldown resistor will turn the converter OFF. The OFF condition may also be commanded by grounding the pin or from an external logic LO voltage not to exceed ± 0.4 Volts. All voltages are referred to the ± 0.4 Volts. All voltages are referred to the ± 0.4 Volts. If you wish to control the On/Off circuit by external logic rather than a switch, carefully compare your logic threshold voltages with that of the On/Off input. The circuit below indicates the equivalent input. Please avoid false signals from ground bounce errors on the On/Off control. Also note that the external control signal is wired directly into the Q3 BSS138W gate which can be damaged by electrostatic transient voltages. Do not exceed the specifications. ## **Output Capacitive Load** These converters do not require external capacitance added to achieve rated specifications. Users should only consider adding capacitance to reduce switching noise and/or to handle spike current load steps. Install only enough capacitance to achieve noise objectives. Excess external capacitance may cause regulation problems, degraded transient response and possible oscillation or instability. Figure 6. On/Off Control Circuit for "E" Models This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: http://www.murata-ps.com/requirements/ Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А