Is Now Part of # ON Semiconductor® # To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer March 2008 # FSUSB22 — Low-Power, 2-Port, High-Speed USB 2.0 (480Mbps) Switch #### **Features** - -40dB Off Isolation at 250MHz - -40dB Non-adjacent Channel Crosstalk at 250MHz - On Resistance: 4.5Ω Typical (Ron) - -3dB Bandwidth: 750MHz - Low-Power Consumption: 1µA Maximum - Control Input: TTL Compatible - Bi-directional Operation - USB High-Speed and Full-Speed Signaling Capability # **Applications** Cell Phones, PDAs, Digital Cameras, Notebook Computers ## Description FSUSB22 is a low-power, high-bandwidth switch specially designed for applications switching high-speed USB 2.0 signals in handset and consumer applications; such as cell phone, digital camera, and notebook with hubs or controllers of limited USB I/O. The wide bandwidth (750MHz) allows signals to pass with minimum edge and phase distortion. Superior channel-to-channel crosstalk results in minimal interference. It is compatible with the USB2.0 Hi-Speed standard. # **Ordering Information** | Part Number | Operating
Temperature
Range | Package | Packing
Method | |-------------|-----------------------------------|---|-------------------| | FSUSB22BQX | -40 to +85°C | 16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.5mm | Tape and
Reel | | FSUSB22QSC | -40 to +85°C | 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide | Tube | | FSUSB22QSCX | -40 to +85°C | 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide | Tape and
Reel | | FSUSB22MTC | -40 to +85°C | 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | Tube | | FSUSB22MTCX | -40 to +85°C | 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | Tape and
Reel | All packages are lead free per JEDEC: J-STD-020B standard. # **Logic Diagram** Figure 1. Logic Diagram Figure 3. QSOP and TSSOP Pin Configuration # **Analog Symbol** Figure 2. Analog Symbol Figure 4. Pad Assignment for DQFN # **Pin Descriptions** | Pin # | Pin Names | Description | |---------------------|---|-------------------| | 1 | S | Select Input | | 2,3,5,6,10,11,13,14 | 1B ₁ ,1B ₂ , 2B ₁ ,2B ₂ ,3B ₂ ,3B ₁ ,4B ₂ ,4B ₁ | Bus B | | 8 | GND | Ground | | 4,7,9,12 | 1A,2A,3A,4A | Bus A | | 15 | /OE | Bus Switch Enable | | 16 | Vcc | Supply Voltage | #### **Truth Table** | s | OE | Function | |------------|------|------------------| | Don't Care | HIGH | Disconnect | | LOW | LOW | A=B ₁ | | HIGH | LOW | A=B ₂ | # **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Min. | Max. | Unit | |------------------------------------|---|------|------------------------|------| | V _{CC} | Supply Voltage | -0.5 | 4.6 | V | | Vs | DC Switch Voltage | -0.5 | V _{CC} + 0.05 | V | | V _{IN} | DC Input Voltage ⁽¹⁾ | -0.5 | 4.6 | V | | I _{IK} | DC Input Diode Current, V _{IN} <0V | | -50 | mA | | l _{out} | DC Output Sink Current | | 128 | mA | | I _{CC} / I _{GND} | DC V _{CC} / GND Current | | ±100 | mA | | T _{STG} | Storage Temperature Range | -65 | +150 | °C | | ESD | Human Body Model, JESD22-A114 | | 4 | kV | #### Note The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. # **Recommended Operating Conditions** The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings. | Symbol | Parai | Min. | Max. | Unit | | |---------------------------------|-------------------------------------|-------------------------------------|------|-----------------|--------| | V _{CC} | Power Supply Operating | | 3.0 | 3.6 | V | | V _{IN} | Input Voltage | | 0 | V _{CC} | V | | Vout | Output Voltage | | 0 | V _{CC} | V | | t _r , t _f | Input Disc and Fall Time | Switch Control Input ⁽²⁾ | 0 | 5 | ns/V | | Lr, Lf | Input Rise and Fall Time Switch I/O | | 0 | DC | 115/ V | | T _A | Operating Temperature, Fi | -40 | +85 | °C | | #### Note: 2. Unused control inputs must be held HIGH or LOW. They may not float. ## **DC Electrical Characteristics** Typical values are at $V_{CC} = 3.0 \text{V}$ and $T_A = 25 ^{\circ}\text{C}$. | Symbol | Parameter | Conditions | V 00 | T _A = | Units | | | |-----------------------|--|--|---------------------|------------------|-------|------|-------| | Symbol | of Parameter Conditions V _{CC} (V | | V _{cc} (V) | Min. | Тур. | Max. | Units | | V _{IK} | Clamp Diode Voltage | I _{IN} = -18mA | 3.0 | | | -1.2 | V | | V_{IH} | High-Level Input Voltage | | 3.0 to 3.6 | 2.0 | | | V | | V_{IL} | Low-Level Input Voltage | | 3.0 to 3.6 | | | 0.8 | V | | I _{IN} | Input Leakage Current | $0 \leq V_{IN} \leq 3.6V$ | 3.6 | | | ±1.0 | μΑ | | I _{OFF} | Off-state Leakage
Current | $0 \le A, B \le V_{CC}$ | 3.6 | | | ±1.0 | μA | | В | Switch On Resistance ⁽³⁾ | $V_{IN} = 0.8V, I_{ON} = 8mA$ | 3.0 | | 5 | 7 | | | R _{ON} | Switch On Resistance | $V_{IN} = 3.0V, I_{ON} = 8mA$ | 3.0 | | 4.5 | 6.5 | Ω | | ΔR _{ON} | Delta R _{ON} | $V_{IN} = 0.8V$, $V_{IN} = 0V - 1.5$, $I_{ON} = 8mA$ | 3.0 | | 0.3 | | Ω | | R _{FLAT(ON)} | On Resistance Flatness ⁽⁴⁾ | I _{OUT} = 8mA | 3.0 | | 1 | | Ω | | Icc | Quiescent Supply Current | $V_{IN} = V_{CC}$ or GND,
$I_{OUT} = 0$ | 3.6 | | | 1 | μΑ | #### Notes: - 3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins. - 4. Flatness is defines as the difference between the maximum and the minimum value on resistance over the specified range of conditions. ## **AC Electrical Characteristics** Typical values are at V_{CC} = 3.0V and T_A = 25°C. | Symbol | Parameter | Conditions | V _{cc} (V) | Min. | Тур. | Max. | Units | Figure | |-------------------|-----------------------------------|---------------------------------|---------------------|------|------|------|-------|-----------------------| | t _{ON} | Turn-on Time
S-to-Bus B | | 3.0 to 3.6 | | 4.5 | 6.0 | ns | Figure 9
Figure 10 | | toff | Turn-off Time
S-to-Bus B | | 3.0 to 3.6 | | 2.5 | 4.0 | ns | Figure 9
Figure 10 | | t _{PD} | Propagation Delay | C _L = 10pF | 3.0 to 3.6 | | 0.25 | | ns | Figure 14 | | O _{IRR} | Non-Adjacent Off Isolation | $f = 250MHz$, $R_L = 50\Omega$ | 3.0 to 3.6 | | -30 | | dB | Figure 11 | | X _{TALK} | Non-Adjacent
Channel Crosstalk | $f = 250MHz$, $R_L = 50\Omega$ | 3.0 to 3.6 | | -38 | | dB | Figure 12 | | BW | -3dB Bandwidth | $R_L = 50\Omega$ | 3.0 to 3.6 | | 750 | | MHz | Figure 13 | # **USB Related AC Electrical Characteristics** Typical values are at $V_{CC} = 3.0V$ and $T_A = 25$ °C. | Symbol | Parameter | Conditions | V _{cc} (V) | Min. | Тур. | Max. | Units | Figure | |--------------------|--|--|---------------------|------|-------|------|-------|------------------------| | t _{SK(O)} | Channel-to Channels
Skew | C _L = 10pF | 3.0 to 3.6 | | 0.051 | | pF | Figure 14
Figure 16 | | t _{SK(P)} | Skew of Opposite
Transition of the
Same Output | C _L = 10pF | 3.0 to 3.6 | | 0.020 | | pF | Figure 14
Figure 16 | | Тл | Total Jitter | $R_L = 50\Omega,$ $C_L = 10pF$ $t_R = t_F = 750ps$ at 480MPs | 3.0 to 3.6 | | 0.210 | | | | # **Capacitance** Typical values are at V_{CC} = 3.0V and T_A = 25°C. | Symbol | Parameter | Conditions | Тур. | Unists | |------------------|-------------------------------|----------------------------------|------|--------| | C _{IN} | Control Pin Input Capacitance | $V_{CC} = 0V$ | 2.5 | pF | | Con | A/B On Capacitance | V _{CC} = 3.3V, /OE = 0V | 12 | pF | | C _{OFF} | Port B Off Capacitance | V _{CC} and /OE = 3.3V | 4.5 | pF | ## **Performance Characteristics** Figure 5. Gain vs. Frequency Figure 6. Off Isolation Figure 7. Crosstalk Figure 8. RoN # **AC Loadings and Waveforms** Notes: Input driven by 50Ω source terminated in 50Ω . CL includes load and stray capacitance. Input PRR-1.0MHz, $t_W = 500$ ns. Figure 9. AC Test Circuit Figure 10. AC Waveforms Figure 11. Off Isolation Test Figure 12. Crosstalk Test # AC Loadings and Waveforms B Control S Control /OE Figure 13. Bandwidth Test Input 400mV $t_{SK(O)} = |t_{PLH1} - t_{PLH2}| \text{ or } |t_{PHL1} - t_{PHL2}|$ Figure 16. Output Skew $t_{SK(O)}$ # **Physical Dimensions** #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AB - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 MLP16ErevA Figure 17. 16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241,2.5 x 3.5mm Note: click here for tape and reel specifications, available at: http://www.fairchildsemi.com/products/analog/pdf/MLP16 25x35 TNR.pdf Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ Figure 18. 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ #### MTC16rev4 Figure 19. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks ACEx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL TM Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ FlashWriter®* FPS™ F-PFS™ FRFET® Global Power Resources Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax ™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET** SYSTEM ® GENERAL The Power Franchise® p wer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ uSerDes™ UHC' Ultra FRFET™ UniFET™ VCXTM VisualMax™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|-----------------------|--| | Advance Information | Formative / In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev 134 ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: **ON Semiconductor:** FSUSB22MTCX FSUSB22BQX FSUSB22QSCX Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А