Iil,CI USB pevice™

Universal Serial Bus Device Stack

User’s Manual
vV4.00

Micripm

For the Way Engineers Work

Micripm

1290 Weston Road, Suite 306
Weston, FL 33326

USA

Www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where Micripm Press is aware of a trademark claim, the product name appears in
initial capital letters, in all capital letters, or in accordance with the vendor’s capitalization
preference. Readers should contact the appropriate companies for more complete information
on trademarks and trademark registrations. All trademarks and registered trademarks in this
book are the property of their respective holders.

Copyright © 2012 by Micripm except where noted otherwise. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher; with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

The programs and code examples in this book are presented for instructional value. The
programs and examples have been carefully tested, but are not guaranteed to any particular
purpose. The publisher does not offer any warranties and does not guarantee the accuracy,
adequacy, or completeness of any information herein and is not responsible for any errors or
omissions. The publisher assumes no liability for damages resulting from the use of the
information in this book or for any infringement of the intellectual property rights of third parties
that would result from the use of this information.

Micripm

100-uC-USB-Device-001 For the Way Engineers Work

Chapter 1
1-1
1-1-1
1-1-2
1-1-3
1-2
1-2-1
1-2-2
1-2-3
1-3
1-3-1
1-3-2
1-4
1-4-1
1-4-2
1-4-3

Chapter 2
2-1

2-2

2-3

2-4

2-4-1
2-4-2
2-4-3
2-4-4

2-5

Table of Contents

Y o Yo LUy 1] = 15
[191 'e o [To31 o o T 15
= U = I o] o o [0 15
LT = 0 o T 16
USB DEVICE ..ceeeiiiiiiiiiicccccsmmcrenrsnr s ss s ss s sssms e e s e s ee s ss s s smmmnn e s s e s e eessnsnnn 16
(D71 = W o (o1 TV 1V, Lo o =Y O 17
=T | oo o) A SOt 17
o 7= 18
Transfer TYPEeS ... 18
Physical Interface and Power Managementccccccvveeeeeececennnnnnnnnnns 21
1S 01T T o PP 21
Power Distribution ... 22
Device Structure and Enumerationcccceeeeecmmencsseenesssseee e 22
USB Device Structure ... s e ee s 22
Device States ... s s 24
ENUMEration ... 25
Getting Started ... 27
Prerequisites ... e 28
Downloading the Source Code Filescceiiriiieeicccccciceerree e, 28
Installing the FileS ... 30
Building the Sample Application ... 31
Understanding Micrium Examplescccoiimiimimesssssecececssnnsssssnnnns 31
Copying and Modifying Template Filescccccoiiiiiicnniniciccnnniicceee, 33
Including USB Device Stack Source Codeceeeeecvvimmmmrrneernnensnnnnns 37
Modifying Application Configuration Filecccccceeeieiccccicceeenienneene. 38
Running the Sample Applicationccccccmmriiiiiisccccssseeee e 40

Table of Contents

Chapter 3
3-1

3-1-1
3-1-2

Chapter 4
4-1
4-1-1
4-1-2
4-1-3
4-1-4
4-1-5
4-1-6
4-1-7
4-1-8
4-2
4-2-1
4-2-2
4-2-3

Chapter 5
5-1
5-1-1
5-1-2
5-1-3
5-1-4
5-1-5
5-1-6
5-1-7
5-1-8
5-1-9
5-1-10
5-1-11
5-2
5-2-1
5-2-2
5-3
5-4

4

Host Operating Systems ... 45
Microsoft WINAOWS ... e 46
ADOUL INF FileS ... e 46
USING GUIDScoiiiiiiiicecccccemeccrrr e r s ss s sssmssss e e s ee s s mmnmmn e e e e e e e ee s s 51
ArChiteClure ... ———— 53
Modules Relationship ... e 55
/Y o o] [T 1 {To o 55
I o] = 7= 55
USB Class LaYErccicccccccrcemmerriiiieis s ssssssssssmseesssss s sssss s ssmsssssssssssssssnas 56
USB COre Layerccccciemiinisemsminssssinsssss s s sssssssss s s sssssssees 56
Endpoint Management Layerccccccceeerrrrrnrnrmmmseseesssssssesesssmssssssssssnes 56
Real-Time Operating System (RTOS) Abstraction Layer 57
Hardware Abstraction Layerccccocvvmmniniimnnnsssesss e 57
L0 U X T O RR 58
Task Model ... e s 58
Sending and Receiving Dataccccvemmiiniieenie s 59
Processing USB Requests and Bus Eventsccoccccevvcmeeernnennnnnnn. 61
Processing Debug EVENtscccccciiiiiiiii s e 63
(07001 1o 18] =11 o) ISR 65
Static Stack Configurationccccccceimiiiii e ——— 65
Generic Configuration ... 66
USB Device Configurationcccccccccvssmmmemmrenmnnnssssscssssssseessessesssssssssns 66
Interface Configurationccccceriiiiccccccsscecrr e 66
String Configuration ... —————— 67
Debug Configurationccccccceeieiiiicccccssssmeerrre s sss s sssssssees e e e e e eessnnsns 68
Communication Device Class (CDC) Configurationcccccccereeeennnn. 68
CDC Abstract Control Model (ACM) Serial Class Configuration 68
Human Interface Device (HID) Class Configurationcccccccevvieinnees 68
Mass Storage Class (MSC) Configurationcccccceevimmrrrnennneninnnes 69
Personal Healthcare Device Class (PHDC) Configuration 69
Vendor Class Configurationcccceevveemermrrinninssssscssscsssesessessssssssnnns 69
Application Specific Configurationcceeeeeiciiiiicer e 69
L= 51 G 2 (] 1 1= 69
Task StaCk SiZES ...cccccverirreirrirrrcerr e 70
Device and Device Controller Driver Configurationcccccceeernnn...e. 71
Configuration EXamplesccccocircnniiimnnsn s 71

5-4-1
5-4-2
5-4-3

Chapter 6
6-1
6-2
6-3
6-4
6-4-1
6-4-2
6-4-3
6-4-4
6-4-5
6-5
6-5-1
6-6
6-7
6-8
6-8-1
6-8-2
6-8-3
6-8-4
6-8-5

Chapter 7
7-1
7-2
7-3

Chapter 8
8-1

8-2

8-3

8-3-1

8-4

8-4-1

Simple Full-Speed USB deViCeccccciiiiiiiiccccccienecerrreene s sccemsneeens 72

Composite High-Speed USB devicecccccoommririiiiiiiicccceeeeeeeeeee 73
Complex Composite High-Speed USB deviceccceeevmmmeeerrneennnnns 74
Device Driver GUIAEcuceeeccccirririss e e s s e s ee e s s e s s 77
Device Driver ArchiteCtureccooviiiiiiieemninn s 77
Device Driver MOdel ... e s s e e s s s e e e s s 78
Device DrvVer APl ... s s s s s s s s e e e e s e s e e s e s e s s nnas 78
[[9Y =Y (] o) i F=T g o | 113V TR 81
Single USB ISR Vector with ISR Handler Argumentcccccceiinneee 81
Single USB ISR VECTOrceiiiiiieiiriinissrs s 82
Multiple USB ISR Vectors with ISR Handler Arguments 82
Multiple USB ISR VeCtors ... rcccsssesene e e e e 83
USBD_DrvISR_HandIer()ccccerrreesmerrrrsssmrerrssssmeesssssssssessssssssesssssssnnens 83
Device Configurationcccccceieiiiicccccsssceerrre s ssssssee e e e e e ssssnnsns 85
Endpoint Information Table ... 86
Memory AllOCAtioNccovicieirriinnierr - 88
CPU and Board SUPPOITccceeerrrrrrrrrrrrrrrrrrrresseereeessmsmssssssssssssssssssseses 88
USB Device Driver Functional Modelccouiiiiiiiiicccccceceeeeneneeeeeeee 89
Device Synchronous ReCEIVEcoo i 89
Device Asynchronous ReCEIVEcccccvirrrrrrrrrimrmrrsssesssenecee e sssnssssssnns 91
Device Synchronous TranSmitccccecccemmrimmiinnincccsssssseeeeeesseeesssseens 93
Device Asynchronous Transmitcccccereminemmner s 95
Device Set AAAreSScciiccccirrrrresereresssmre e re s e e e s ssne e e s sms e ee s smeees 97
USB ClaSSES ..ciiiiiiiiieeiicicemeersssssssssss s s s s s s s s s s e s es s es s s s e s mans s sssasssssssnnsnses 99
Class Instance CONGCEPLcccceevrrrrrrrririirrrrreeeeeee e e rsrsreneeeerees 99
Class Instance StruCtures ... scccccccseccrrrr e 108
Class and Core Layers Interaction through Callbacksccecuu.. 111
Communications Device Classcccccvviiicccrssmmeerirnerinsssscsssssssesseseneens 115
L@ Y=Y V= 116
ArchiteClure ... 119
Configuration ... e s 120
General Configuration ... 120
031V IR0 o o7 F= L= 121
OVEIVIEW ..iiiiceeecirt i i r s se s ss s sssme e e e e e e s ss s s smmmn s e e e e e e ee s sa s smmnnnnnnnees 121

Table of Contents

8-4-2
8-4-3
8-4-4
8-4-5
8-4-6

Chapter 9
9-1
9-1-1
9-2
9-3
9-3-1
9-3-2
9-3-3
9-3-4
9-3-5
9-4
9-4-1
9-4-2
9-5
9-6

Chapter 10
10-1
10-1-1
10-1-2
10-1-3
10-1-4
10-2
10-2-1
10-2-2
10-2-3
10-3
10-3-1
10-4
10-4-1
10-4-2
10-5

6

General Configuration ..o 123
Subclass Instance Configurationccccccevimimnnnie . 123
Subclass Notification and Managementccccocccmmmrereeennnecscccsnnnes 127
Subclass Instance CommuNIiCationccccecceerrreescrerrescseeereeeseeeeens 128
Using the Demo Application ... 129
Human Interface Device Classcccceeeecerrrrcsserrssscscer s seee e s s seeens 135
L@ YT 1= 136
2 1=Y oo o APt 136
ArchiteClure ... 142
Configurationcccceiccieeriiiir e ——— 143
General Configurationccccceemriimriisiss s e 143
Class Instance Configurationccoovicccciiireeinn e 144
Class Instance CommuNiCationooccccceiiermminer e 150
Synchronous CommMUNICAtioNccccccevieriiriiisscsccssssnemer e ennas 150
Asynchronous Communicationccccccceerriiniccccccsssseeeereee e sessseens 152
Using the Demo Application ... 154
Configuring PC and Device Applicationsccccccevveieeccccssmmeceeenenennn 154
Running the Demo Applicationcccccciiimimiereeesece e 156
Porting the HID Class to a RTOScccccoiiiiinsnnese e 160
Periodic Input Reports Taskccccceiiiimicmciiiirrececcc s s e e 161
Mass Storage Classcccoecmiiniiinnninniir e s e 165
L@ =Y TS 166
Mass Storage Class Protocolccccccinmmmmmiiniiinscccccccssseeeeeeeeeee 166
= T [0 T 1 | £ 167
Mass Storage Class ReqUESEScovvvccccccimmemmrieerre e eee e 167
Small Computer System Interface (SCSI)ccccocerrmrerrriiincccccccinenene 168
ArchiteClure ... 169
MSC ArchiteCtureccoiiieeeieercceee e e 169
SCSI COMMEANGS ...eererirremrrerrresmrrrrrssssnrrrrsssssrresessssnseessssssssessessssseesenns 170
Storage Layer and Storage Mediumccccciiiicimniinncsennnsnsneeennes 171
RTOS LAYEX ..eeeeeiiieiiiiiiiiscccssssnmnenessnes s sssssssssssnssssssssssees sassssssnnsmsnnssnnnees 171
Mass Storage Task Handleroooviicciciciieceriniiie s smnceeeeeeeee 171
Configurationcccecicccenr i 173
General Configurationcccccceemriimris s 173
Class Instance Configurationccceeicccciecrecrnnn e 174
Using the Demo Application ... 176

10-5-1
10-5-2
10-6
10-7

Chapter 11
11-1
11-1-1
11-1-2
11-2
11-2-1
11-2-2
11-3
11-3-1
11-3-2
11-4
11-5
11-5-1
11-5-2
11-6

Chapter 12
12-1
12-2
12-2-1
12-2-2
12-2-3
12-2-4
12-2-5
12-3
12-3-1
12-3-2
12-4
12-4-1
12-4-2
12-4-3
12-4-4

USB Device Applicationcccccceiiiiiicccccccsseccreerrrr e sssceeeeeenees 177

EST 38 o ToX=3 Y o o] [Te= 14 To] o 179
Porting MSC to a Storage Layerccccecvemmrrmrrinnisssssccsssssseeeeeseneens 180
Porting MSC t0 @ RTOS ... smmnnn e e e 181
Personal Healthcare Device Classcccccvveeeeceerinscnmersescseeeee e 183
OVEIVIEW ..iiiiceeeccerirr e ie s se s ssme e e e e e s s s s smmme e e s e e e e e e s a s mmnnnnnnnees 184
Data characteristiCsccccoriormmii e 184
Operational model ... s 185
Configuration ... e e e 187
General configurationccccceiiiiiir i ——— 187
Class instance configurationcccccccevvccccccsecmrrer e 189
Class Instance Communicationcccceccceirmmemririnnne s e eeeee 192
Communication with metadata preambileooooeiiiiiiiiininnnnenn. 192
Communication without metadata preambleccovreemeinnnnne. 196
RTOS QoS-based schedulerooccccciirimmrmriinniee e 196
Using the Demo Application ... 200
Setup the ApPlicationccooieeiiiiiiieeee e e e e e e e e e 200
Running the Demo Applicationcccccciiimimiereeesece e 202
Porting PHDC t0 @ RTOSccoiiiicieericcceeessscemee s ssmee s s smne e e s 203
VeNdor Class ...iciiiiiiiccccissceceriir e ss s ssssmssee s e s s s essssss s ssssssssssenssesssnnsen 205
L@ Y=Y V= 206
(07070 Te 18] =11 {0 o 1P 207
General Configurationccccciiiiiin s 207
Class Instance Configurationcccciciiciniiniissner s 208
Class Instance CommuNICationcccovceeceerrrccssree e 210
Synchronous Communicationcccccccreieiieccccccssssseeeerer e 211
Asynchronous CommuNiCationcccccrrinriemmnnnnener e 212
USBDEV_API ... e e e e s e e s e a e e e e e 214
Device and Pipe Managementccccceviiiiiimimmresessseseeseeecsmsnssssssnsnes 215
Device COMMUNICALIONccocmimmiiiiiiiicsscceecer e e 218
Using the Demo Applicationccccceriiiiirmmierrenssseseececessss s 220
Configuring PC and Device Applicationsccccccccveevecccccismmecenennnnnnn, 220
Editing an INF Fileccoiiiiciie e rccccere e s 222
Running the Demo Applicationcccccmimmmmmrmeeeecececssssss e 224
€10] | SR 228

Table of Contents

Chapter 13
13-1

13-1-1
13-1-2
13-1-3
13-2
13-2-1
13-2-2
13-2-3

Chapter 14
14-1

14-2

14-3
14-3-1
14-3-2
14-3-3
14-4

Appendix A
A-1
A-1-1
A-1-2
A-1-3
A-1-4
A-1-5
A-2
A-2-1
A-3
A-3-1
A-3-2
A-3-3
A-4
A-4-1
A-4-2
A-4-3
A-4-4

Debug and TracCeecccrrrrr e s 231
Using Debug TraCesccccveriiiiimmnninsissns s s ssnnes 232
Debug Configurationcccccccemmeimmiiiiscscscsssscerere e s eees 232
Debug Trace OUtPULccccccmriiiriirr e 232
Debug FOormatccoccmiiiiiirsmes s 233
Handling Debug Events ... v r e ree e s 234
[DT=Y 010 T [3V7=T o1l o o 234
Debug Task ...ccccceriiiiirrire s 234
[T=Y o 10 T 1Y F= T ¢ o T 234
Porting uC/USB-Device to your RTOScccccmiiiiimmnninniennnnnenen 237
L@ =Y TSN 238
Porting Modules t0 a RTOS ... smmneeeee e 239
Core Layer RTOS Modelccceiiiiimmimiiniennsissss s ssssss s ssanes 240
Synchronous Transfer Completion Signalscccccceeriiiiiiccccccssnceens 240
Core Events Managementccccooveiiiiccccccsemmccnnrne e ssseeeeeeenees 241
Debug Events Managementccccoiiimmiininnen e 241
Porting The Core Layer to a RTOScccoovcemmmmrriinnnssscccssssneeeeeseeeeens 242
Core API Reference ... e 245
Device FUNCLIONSooiiiiciiemiirr s s 246
USBD_INI() weeveeeecrerresesereessssmeesssssmneesssssmmeesssssmsessssssmme e s ssssmmnessssssmnes 246
USBD_DeVvStart()ccecceerrecrsrerrssssmersissssessssssssmesssssssmeessssssnsesssssssneens 247
LIS =7 2 D 7511233 Lo o | R 248
USBD_DevGetState()cccerrmmrmrmrmmiiiiisiccssssseeeeresrseesssssssssssssssssssneees 249
USBD_DeVAdA() -ieeveececeerrieinmeerisssmeeesssssnseessssssmsesssssssmeessssssnnenssssssnnens 251
Configuration FUNCLIONScccciiiiiriiiiisscccemeccrre e ssssnene e 253
ST =] 07 e ¥ [) 253
Interface fuNClioNS ... 255
ST =] T | Ve [) 255
ST =] T N1 72V [) 257
USBD_IF_GIP() .eceeeerersmerrresssnserssssssmeessssssnessssssssmsessssssnssssssssnsenssssssnnens 259
Endpoints FUNCLIONScocomeeie st 261
USBD_CRATX() -eeeeerrreamerrrrssammeressssmeessssssmmeesssssmeessssssmnessssssnneessssssmnees 261
USBD_CHRX() ceeeerrrermeerissssneeesisssmeesssssmesssssssnmesssssssmeessssssnsesssssssnnnns 263
USBD_BUIKAAA() +eeieeeceerereeemrereseemmeesesssme e e s s smme e s s smme e s s s e e e e s s smmnees 265
USBD_BUIKRX() .eeeerieeearerrrsssmerrssssmnessssssmmeesssssmeessssssmnessssssnnesssssssnnees 267

A-4-5
A-4-6
A-4-7
A-4-8
A-4-9
A-4-10
A-4-11
A-4-12
A-4-13
A-4-14
A-4-15
A-4-16
A-4-17
A-4-18
A-4-19
A-4-20
A-5
A-5-1
A-5-2
A-5-3
A-5-4
A-5-5
A-5-6
A-5-7
A-5-8
A-5-9
A-5-10
A-5-11
A-5-12
A-6
A-6-1
A-6-2
A-6-3
A-6-4
A-6-5
A-6-6
A-6-7

USBD_BUIKRXASYNC() ..ccceremmmrrmrerrreisssssssssnmnnneessessssssssssssssnsssnssssssessnas 269

USBD_BUIKTX() .eeeeerreesamerrsssssssersssssasessssssnesssssssnsessssssmessssssansessssssnnens 271
USBD_BUIKTXASYNC() -eeeereeaamrererrssmeeressesmmeesssssmeessssssmmessssssmmeessssssmnees 273
USBD_INtrAAA() -eeeeeeeeceererscsmeeresssmmee s s ssmeessssssmme e s sssssmne s sssssmneessssssmnees 276
USBD_INtrRX() .eeeeeeereesseerssssssserssssssmessssssnesssssssnsessssssnmesssssssnsessssssnnens 278
USBD_INtrRXASYNC() weeieeeeesrnnmeerreerrsrsssssssssssssmssnssssrsesssssssssssssmssnsssnnnes 280
USBD_INTITX() coeoeeerrrseameerrsssssmerrssssamnessssssmsessssssmmessssssmsessssssmnessssssnnees 282
USBD_INtITXASYNC() uueeeeiiirnmrrninsimmnssisssssssssssssss s ssssssss s ssssmss s s ssssnnees 284
USBD_EP_RXZLP() ...ueieiieceeeeeececmee e e emee e s s esmme e e e smm e s 287
USBD_EP_TXZLP() .coeeerreemmreresssmeersssssmseessssssmmessssssnmeessssssmsessssssnnnees 289
ST =] T = =Y o Yo o | SRR 291
USBD_EP_Stall(}) -eeeveeeeeeeeeeeeee e ereece e e smee e s s e e sme e e 292
USBD_EP_ISStalled() ..cceeveeeererrrssmmerrressmeerssssmmessssssmmeessssssmsesssssssmnees 294
USBD_EP_GetMaxPKtSIiZe() -.....coeccerrrerrsmmrrrrsssmersssssmnessssssnnensssssneens 295
USBD_EP_GetMaxPhyNDI()cccocemiirceemrrrecme e 296
USBD_EP_GetMaxNbrOpen() «....cuueieeccccesssmmmemeeeseseesssssssssssssnssesssseneees 297
Core OS FUNCLIONS ...coooiiiciimir s 298
USBD_OS_INIt() -ereerrreeaerrrrresmeerrrssmeessesesmmeeessssmsessssssmme s ssssssmeessssssmmens 298
USBD_CoreTaskHandler()ccccceeeriiiiicccccimeccrcere s cccsmsceneesenees 300
USBD_DbgTaskHandler()ccucooerrrmrinieninsmsssessssms s sssneens 301
USBD_OS_EP_SignalCreate()cccvvvrievcessmmmemererrreesssssssssssmssseessssneens 302
USBD_OS_EP_SignalDel() ..cceeeeeeearerrrrrsmrrrsrssamersssssmeessssssmsesssssssnnees 304
USBD_OS_EP_SignalPend()cccesrrerrmerrsssssmerssssssensssssssesssssssneens 305
USBD_OS_EP_SignalAbort()cccoceerrreeerererseseeeesessmee e e s ssmee e e s 307
USBD_OS_EP_SignalPost() «.ccccerririiiiccciirnmmeemrreneere s sssssccssssssscesesseneens 308
USBD_OS_CoreEVentPUL()ccceveriiiiiiiicccmecmerne e ee s msceene e 309
USBD_OS_CoOreEVentGet()cccceerrrrrrrrrrrrrmrrrrmereeeememsmnnnsssssssssssssseees 310
USBD_OS_DbgEVENtRAY() .eceeererrrrriiiiiiisinmmnnmrrenereesessssssssssnnsesssseeeens 311
USBD_OS_DbgEventWait () -......ccoccerrrecrmmmrissssmersssssnseessssssssesssssssseens 312
Device Drivers Callbacks Functionsccccccceecmiiiceecennncccsceeeeseceen 313
USBD_EP_RXCMPI() .eueeeerreemmerrinssmmersssssmseesssssmnessssssmmeesssssmsessssssnneees 313
USBD_EP_TXCMPI() ceerrriermeeririssmmrersessnseessssssmmessssssssesssssssnsesssssssnnees 314
USBD_EVENtCoNN() cueveeeeeieeeccrrrrrrrressese s e s eeseeseeesse s s msnsns s snsnsssnsnenns 315
USBD_EventDiSCONN()ccccccceremmiiimiiiiccccsssssnceeeee s re s ss s ssmnneesesseeees 316
USBD_EventReset()cccceevemmrrrirne e srrnececen e 317
USBD_EVENtHS() ..ooociieecee e 318
USBD_EventSuspend()ccccccerrrrriisicscssssmnnceeeeessssssssssssssssnssssssssneees 319

Table of Contents

A-6-8
A-7
A-7-1

Appendix B
B-1
B-1-1
B-1-2
B-1-3
B-1-4
B-1-5
B-1-6
B-1-7
B-1-8
B-1-9
B-1-10
B-1-11
B-1-12
B-1-13
B-1-14
B-1-15
B-1-16
B-1-17
B-1-18
B-1-19
B-2
B-2-1
B-2-2
B-2-3

Appendix C
C-1

C-1-1
C-1-2
C-1-3
C-1-4
C-1-5
C-1-6

10

USBD_EventResume()cccccccermrrimmiiiiscccccssncceeeeese s sessss s ssmssssssseneees 320
Trace FUNCLIONS ...ccoiiiiicicecceeececeee s s s s s e s e s s e e s s e e e e e e e 321
USBD_TracCe() -eeeeeeeerrrrrssssssssssnsemeeemsersssssssssssssmssssssssssssssssssssnnnnssssssnssss 321
Device Controller Driver APl Referencecccoveviiieeeeceeccccccccecennn, 323
Device Driver FUNCLIONSeeccciciiiinsrie e eesrese s sessess e s e 324
USBD_DrvINit() ceeeeeeerreiieccccsismcmemerirrsisssssssesssssssessssssesssssssssssssssssssennees 324
USBD_DrvStart() ..ccceeeeecccciesimmcererreieissssssscssssssssesessssesssnssssssssssssssssnnees 326
LIS =7 2 D V5] o] o) I 328
USBD_DrvAddrSet()ccceesmmemmrrmmmriiisiissssssnmseneeeneseessssssssssssssssssssssnsees 329
USBD_DrvAddrEN()cceeveeecmmmriiiiiieisccccccmsscessen s ee s ss s s smsssssssssesees 330
USBD_DrvCfgSet()ccceeerssrmmmmrrrrrrrriissssssssssnssmesssssesssssssssssssnnssssssssseees 331
USBD_DrvCfgCIr() .eeeeeeeeecrrmmmmmreereriesssscssssssmsnmeseseseesssssssssssssnssesssseneees 332
USBD_DrvGetFrameNDI()cccooeiiiiiiiiiiicime e 333
IS 270 2 0 oV =1 =0 o 1= o |) 1 334
USBD_DrVEP_CIOSE() .cecesmmmeereererreissssssssssnnnnneseseseessssssssssssnnssssssssseees 336
USBD_DrvEP_RXStart()cccccccrermmmrriiiisissssmmeeereenseessssssssssssssssssssseseenes 337
USBD_DrVEP_RX() «eeeeeeeeeesssmsmmerererrsissssssssssssnsmssssesesssssssssssssnnsnssssssnsees 339
USBD_DrvEP_RXZLP() ...ueeereirieieicsccsccssmnnceeee e s se s ss s s smmnsesesseneees 341
USBD_DIrVEP_TX() «eeeeeeeeeerssmmmmremmmmeeisssssssssssnsnmsseseseesessssssssssnnnsssssssssees 342
USBD_DrvEP_TXSTart()cccccceererrrrsisssssssssssmermeermesssssssssssssnssssssssssees 344
USBD_DrvEP_TXZLP() ..ccoerrmemrririiiriisicsccsssnscereeesse s ses s smmsssssssseses 346
UEST =102 DT oV = S 2Y o Yo o { | RSP 347
USBD_DrvEP_Stall()cccceevmmemrerrrrresisssssssssssssmesssesessssssssssssssssssssssssenes 348
USBD_DrvISR_HaNndIer()cccccemrrrrriiiiiiccrsmmecereeeree s ssssssesssssscesssssseens 349
Device Driver BSP FUNCLIONScccciiiiiiiiiiiiiirirrrrrree e 350
USBD_BSP_INit() weeeerreiiicicssssnnmeerrrerrsrssssssssssssssseessssssesssssssssssssssssssnnees 350
USBD_BSP_CONN() .iieiiiciinmmemrrrrrerrsssssssssssssssessesessesssssssssssssnssssssssseees 351
ST =102 =157 S D TT=To o) o] o) I 352
CDC APl REfErENCE ..cceveieeicccnneeeeriei e ee s ssmms s e e s e s e snsmnnne e s 353
(@35 T O3 =TT T {0 o 1= 354
USBD_CDC_INIt() weeerrersrrssesssasnmmerreermsersssssssssssssmsessssssesssssssssssssnsssssssnses 354
USBD_CDC_Add() .eeeeeecercnmmmmmmreerrrersssssssssssssssessesessessssssssssssnnssssssssneees 355
USBD_CDC_CfAdA() -eeerrrerrneeerrrsrnererssssmseessssssseessssssnsessssssnnsessssssnnes 358
EST 27 207 B T [T o) o o | S 360
USBD_CDC_DatalF_Add() .eeeeerrrrrriiiicscsssnmmneeeeereeesssssssssssssssssessseseenes 361
USBD_CDC_DataRX()ccceseeererrrrrrrrsrssssssssnmmeeeeeeeesssssssssssmsnnsseseeessss 363

c-1-7
c-1-8
c-2
C-2-1
c-2-2
c-2-3
C-2-4
c-2-5
C-2-6
C-2-7
c-2-8
C-2-9
C-2-10
c-2-11
c-2-12
c-2-13

Appendix D
D-1
D-1-1
D-1-2
D-1-3
D-1-4
D-1-5
D-1-6
D-1-7
D-1-8
D-2
D-2-1
D-2-2
D-2-3
D-2-4
D-2-5
D-2-6
D-2-7
D-2-8
D-2-9
D-2-10

USBD_CDC_DataTX() --ceeeeeeearerrrrssammrrsssssmerssssssmmessssssmesssssssneessssssnnees 365
USBD_CDC_NOHfY() sooceerrerramrerrssssmerrissssmnersssssmesssssssmsesssssssmesssssssnnes 367
CDC ACM Subclass FUNCLIONScccceviieeeerrircceee e e 369
USBD_ACM_SeriallNit()ccooceerrreeamerrrrssmeersssssmersssssnmnessssssmsesssssssneees 369
USBD_ACM_SerialAdd() ...ccccerrerrsmemrissssrerssssssmeessssssnsesssssssmsessssssnnenes 370
USBD_ACM_SerialCfgAdd()ccoecerrrrreamrrrrresmeerrssssmmeesssssmee e e s ssmeees 371
USBD_ACM_SeriallSCoNnN() w.ccceerereeiiiicsccssmmneeeeeeeseessssssssssssssssessssseeens 373
USBD_ACM_SErialRX() «.eeeeeeameersssssmerrsesssmensssssssmeessssssnnesssssssesssssssnnens 374
USBD_ACM_SEerialTX() «eeeeeeecmerrereeammerrrrssmerrsssssmmersssssmmeessssssmsessssssnneees 376
USBD_ACM_SerialLineCtriGet()ceeeveervrmmmmrrrrrrrirssssccsssmsceeeesenees 378
USBD_ACM_SerialLineCtrIReg()cocsrreerrrssmrrissemmssmsrsssssssssnsssssseenns 379
USBD_ACM_SerialLineCodingGet()coorererrrerrrrrrsssssssssssnnmerseeeeeens 381
USBD_ACM_SerialLineCodingSet()ccccccerrmrmrmniiicicccssssmnneeeneeeneens 382
USBD_ACM_SerialLineCodingReg() -.....ceerremmrrrimmmirssmnrsssnnsssmsssssnnnnns 383
USBD_ACM_SerialLineStateSet()cccccvrrrrrrrrrrrirmeeeeeceeeereeeeereeeas 385
USBD_ACM_SerialLineStateCIr()cccerrrmmmmrrmmrrrnnincscccssssmneeeeeseeeens 386
HID API ReferencCecccccciviemmmmniniiiisssmssne s s 387
HID Class FUNCLIONSccciiicecieriiccmeersscsemee e smne s s e e 388
USBD_HID_INIt() -eeevreeeaeerrsssscersssssmnessssssmseesssssmeessssssmnessssssnnesssssssnnens 388
USBD_HID_Add() «eeieceereeeemreresesmmeesssssmeesssssmme e s ssssmme e s s s e e e s ssssmnens 389
USBD_HID_CfgAAA() eeeeeereremrerrrrssmmeerssssmmeeessssmmeessssssmmessssssmmsessssssmnes 391
USBD_HID_ISCONN() ..eueirriecrmrersrsssnmeerssssmensssessnmeesssssmnessssssnnessssssnnens 393
USBD_HID_RA() --eeeeeeemmeerrrssmreressesmeesesssmeessssssmmeesssssmnessssssmmesssssssmnees 394
USBD_HID_RAASYNC() -eeeieeemrerrrsssmmerrrsssmeersssssmmeesssssmnessssssmnessssssnnees 396
USBD_HID_WH() weeeiiiicciericcimeeessccsmmeessssssmenesssssmme e s s s ssmne s sssssmsenssssssmnnes 398
USBD_HID_WFASYNC() --eerieaemmererrssmeereesesmmeeessssmeessssssmmesessssmmnessssssmnens 400
HID OS FUNGLIONS ..ooceeeieccee e rs s cemee e s s seme e e s s e s s e e 402
USBD_HID_OS_INit() .eeeeerreernmrerriissmersisssmeessssssnmessssssmeessssssnsesssssssnnens 402
USBD_HID_OS_INPULOCK() --eerieeemmerrrersmeeresssmmeeresssmee e e smme e e 403
USBD_HID_OS_InputUnIOCK() eeeeereeiriiiiccciimnmmeeerenereessssssssssnssssesesees 404
USBD_HID_OS_InputDataPend()cccoorammmmmmmrmminisisssssmmneeeeeeseees 405
USBD_HID_OS_InputDataPendAboOrt()ccccccerrrrrriiiccccsssmmmeereeeeenns 407
USBD_HID_OS_InputDataPost()ccccerrrmmmmmrrmmrrmniiissscccssmmnceeeeeeeees 408
USBD_HID_OS_OUtpUtLOCK() «eeieereeerrrecrnmeersssssnmensssssnmeessssssmsesssssssneens 409
USBD_HID_OS_OutputUnIOCK() ...ceeeeeeeamerrrrsesmerrressmeeressemeeeessssmeeens 410
USBD_HID_OS_OutputDataPend()cccoerrmmrmmrrmmriiniicccsssnnceeeeeennnn 411
USBD_HID_OS_OutputDataPendAbort()ccccccceeeiiiiiicccssmmmcernenneenns 413

Table of Contents

D-2-11
D-2-12
D-2-13
D-2-14

Appendix E
E-1
E-1-1
E-1-2
E-1-3
E-1-4
E-1-5
E-1-6
E-2
E-2-1
E-2-2
E-2-3
E-2-4
E-2-5
E-2-6
E-3
E-3-1
E-3-2
E-3-3
E-3-4
E-3-5

Appendix F
F-1
F-1-1
F-1-2
F-1-3
F-1-4
F-1-5
F-1-6
F-1-7
F-1-8
F-1-9

12

USBD_HID_OS_OutputDataPost()ccccerrmmmmrmmrrmmrriniccccssnnceneeeennens 414
USBD_HID_OS_TXLOCK() ..cooceerrrrrmmerrrsssnmenrsssssmensssssnmesssssssnsensssssnnnens 415
USBD_HID_OS_TXUNIOCK() --eeerieeemeerrrrcsmeeresssmmeesssssmmee s s s smmee e s ssmees 416
USBD_HID_OS_TMITaSK() ..eeeerrrrrrrriiiiisiisssnnnmeeeeerersssssssssssssnssessssensens 417
MSC API REfEIrENCE ...eoeiiiceeeecceee e e 419
Mass Storage Class FUNCLIONSccoccccccciimeecrrire s 420
USBD_MSC_INit() weveeeeeerrrecssmrersssssmeessssssmsessssssmesssssssmsessssssnnesssssssnnens 420
USBD_MSC_Ad() «eeemeerrreemmrerersemmersesssmeessssssmme e s ssssmmeessssssmeessssssmnees 421
USBD_MSC_CfAdA() -eeeeeeemmrerrrssmmerrrsssmeersssssmmersssssmnessssssmnesssssssnnens 422
USBD_MSC_LUNAA() +evveeemerrriesmmenrsssssmrenssssssmeessssssnsesssssssmsenssssssneens 424
USBD_MSC _ISCONN() +eeeeememnmnnenererrrrrreesrerereerrrereesesssmsmsmssnsssssssssssssseees 426
USBD_MSC_TaskHandler()ccccceeeiiiiccccinimmecereeer e s s s sssssneeeeseeeeeas 427
MSC OS FUNCLIONS ... e 428
USBD_MSC_OS_INit() -eeriereeerrrrresmeerresemmeeresssmee s essssmme s smee e s 428
USBD_MSC_0S_CommSignalPost()cccccerrrrrmrrrisiscscsssnmmneeeeereeeens 429
USBD_MSC_OS_CommSignalPend()cccccoerrrsmrmirsmmssssnssssssesssssnsnnns 430
USBD_MSC_0S_CommSignalDel()cccoermrrrrrerrrrerssssssssssmnmeersseseeens 431
USBD_MSC_0OS_EnumsSignalPost()cccccccmrrmmrrriiiicicccssnmnneeeeseeeens 432
USBD_MSC_OS_EnumsSignalPend()ccccoveeeeeerrrsssmensssssssersssessneens 433
MSC Storage Layer FUNCLIONScocvccccccceeeeceriee e ssccsssmnceene e nees 434
USBD_Storagelnit()ccccceevrmmmrrmmiiiniissccccscsssceesee s se s se s sss s ssmscesssseneees 434
USBD_StorageCapacityGet()cocceerrirvimmmminnismeniinsss e 435
ST =1 D JS] (o) = Te 11 = Vo [| PSR 436
USBD_StorageWr() «..ccccecceemmmmreererersssssssssssnssssseesessesssssssssssssnsmssssseneees 437
USBD_StorageStatusGet()ccvvmrriinrimmmiinnimes e 439
PHDC API REfEreNCEecoicceeerircccceeerescceee s s ssmme e e s s smee s s s smne e e s es 441
PHDC FUNCHIONS ..cceiiicicccecceire e s smme e e e s mmmn e 442
USBD_PHDC_INit() .ooeooeerieeemmereeresmeeseessmeesessssme e s s smee s s e smme e e s s smmnees 442
USBD_PHDC_Add() -.eeeeerreemmrerisssmrersssssmseessssssmmessssssnsesssssssmsessssssnneees 443
USBD_PHDC_CfgAdd() ...ccoeeerrrrrnmeerrsecsmrenssssssmsessssssssesssssssnsesssssssnnens 445
USBD_PHDC _ISCONN() ...uuuunmmemrrererreessssssssssssnmssssesssssssssssssssssmssssssnnees 447
USBD_PHDC_RACTG() -eeerrraemrerrrrssmrerrssssmrersssssseesssssansessssssmsesssssannes 448
USBD_PHDC_WICTQ() -eeeeeeersrerrressmmersssssnnsessssssmsessssssnmesssssssnsessssssnnees 450
USBD_PHDC_11073_EXtCTG() ..eceeceererrrammrrrrrrsmrersssssmmeeeesssmeeeess s 452
USBD_PHDC_RdPreamble()cccevviiicccccirmmeemrrenreee s sss s ssssceeeeeenees 454
USBD_PHDC_Rd() ..cceoeeerricimmeerisismeeesssssnsesssssssmssessssssmeessssssnsssssssssmnens 456

F-1-10
F-1-11
F-1-12
F-2
F-2-1
F-2-2
F-2-3
F-2-4
F-2-5
F-2-6
F-2-7

Appendix G
G-1
G-1-1
G-1-2
G-1-3
G-1-4
G-1-5
G-1-6
G-1-7
G-1-8
G-1-9
G-1-10
G-1-11
G-1-12
G-2
G-2-1
G-2-2
G-2-3
G-2-4
G-2-5
G-2-6
G-2-7
G-2-8
G-2-9
G-2-10
G-2-11

USBD_PHDC_Wrpreamble() ...cccccccerieiicccccismnmmreeernesessssscssssssssssseseseees 458

USBD_PHDC_WI() ceecceeeeeieesmrersssssmmeesssssmeesssssssmesssssssmsessssssnnenssssssnnens 460
USBD_PHDC_RESEt() --eeerieremrerrrremmerrressmee e e s smme e s ssssmee s s s s e e e 462
PHDC OS Layer FUNCHIONSccciviiiiiicicccccceeececer e e mssenee e 463
USBD_PHDC_OS_INit() .eeveceeeerrrscsmrrrissssmeessssssmensssssmeessssssnsesssssssnnens 463
USBD_PHDC_OS_RALOCK() --eereeeammerrrrsrmrerrssssmmeerssssmnessssssmmeessssssmees 464
USBD_PHDC_OS_RdUNLOCK() ...ceerrressmmrrrrrsssmmersssssnmeessssssmsesssssssnnens 466
USBD_PHDC_OS_WrINtrLOCK() ...cccerrreermerrrssssmersssssmnessssssnnesssssssnnens 467
USBD_PHDC_OS_WrINtrUNLOCK()ceeerrererrrrrrrerrreeeeeeemmmnnnnnnesnsesssaens 468
USBD_PHDC_OS_WTrBUIKLOCK() .eceerrrsearrrrrssssmerrssssmeersssssmnerssssssneees 469
USBD_PHDC_OS_WrBUIKUNLOCK()ccocterrrresmmersssssnmeessssssmeenssssssneens 471
Vendor Class APl REfErencecccceeecceemrrcssceersssssmeessssssesesssssssmees 473
Vendor Class FUNCHIONS ... 474
USBD_Vendor_INit() ..uueeecceecssmceererermerssssssssssssssssssessssssssssssssssnsmssssssnnees 474
USBD_Vendor_Add() ...cccceesmmmrmmmmrrmiiiiissssssmseneeesesesssssssssssssssssssssssesees 475
USBD_Vendor_CfgAdd() ...cccceriirrimmmrimnimmnsnisessssssssss s ssssmss s sssssnnnes 477
USBD_Vendor_ISCONN() ..ceeueueeeecrrrrrrrrereereereseseseesssnessmssssssssssssssssseees 479
ST 1D JY/=T oV [T gl = T) R PR PRR 481
USBD_Vendor_WI()cccvieeeeseerrssssmeesssssmeesssssssmssssssssmsessssssnsesssssssnnens 483
USBD_Vendor_ RAASYNC() ...eeeceererrrrrreisssssssssssmmeesserrsesssssssssssssmsensssnnens 485
USBD_Vendor_WIASYNC() ...cccceeerrrrrriiissssssssnnmeeenessssssssssssssssnssssssssseens 487
ST =10 JV/=T oTe [gl 1914 2 T [| IR 489
USBD_Vendor_INTrWH()ccccccceemmeermriiissssssssssssseesessssssssssssssssnssssssssneees 491
USBD_Vendor_INtrRAASYNC() weeevveeriiiiiiccicimnccreeeene s eessseccssmsmenesseneees 493
USBD_Vendor_INtrWFASYNC() ...occeemerrininmrnrinimmss s ssssse s sssmss s ssnees 495
USBDeV_API FUNCLIONSiiiiiceceeeeecceceen e e 497
USBDeV_GEetNDbIDeV()ccccccmrmrimmriiiiiccccmseccrree e s s s ssssene s ee e e ee e 497
USBDEV_OPEN() wrrrrrrrriiiiraasssssnmmmrerrresrsssssssssssssmsmnsssssesssssssssssssnnnnsssseses 499
USBDEV_ClOSE() .everrerermmmmmnnnnnnnnnrrrsrssssssrerrerereeesessesnsmnmsssssssssssssssssssenes 500
USBDev_GetNbrARSetting() «.ccceeeerrriririiircirncmreee s smnceeeeeeeees 501
USBDev_GetNbrAssociatedIF()coovviireeeeissecmrreeere e ccemeceeee e 503
USBDeV_SetARSEetting()ccoeeeerrrrrrrrrisssssssssnmmeenssrrsesssssssssssnsmsesssssnees 504
USBDev_GetCurARSEetting() ..-ceeeeerrrrririiiccissnmmreerrie e ses e ssmseeeeesenees 506
ST =1 D T=AV K51 o [Te] 015 o Y=Y =T o [| PR 508
USBDeV_BUIKIN_OPEN() -eeeueeeeeerrrrrrrrrrrrreresresereeseeeensmsmnnsnssssssnssssssens 509
USBDeVv_BuUIKOUt_OPeNn() ...ccccceerrrrmririrsscrcssnnmmeeneesesesssssssssssnssssseseneees 510
USBDeV_INtrIN_Open() ..ccccccecemrrrereeiressssssmceeee e se s se s s ssmsce e s e nees 511

Table of Contents

G-2-12
G-2-13
G-2-14
G-2-15
G-2-16
G-2-17
G-2-18
G-2-19
G-2-20

Appendix H
H-1
H-2
H-3
H-4
H-5
H-6

Appendix |
1-0-1
1-0-2
1-0-3
1-0-4
1-0-5

14

USBDeV_IntrOut_Open()ccccccerermririiisccssssnnmseereesssessessssssssssssssssssees 512
USBDeV_PipeGetAddr()ccccoeerrmriiiiiiiiicsmmmmneee e 513
USBDEeV_PipeClOSE() ...ceeerrnmmmmrrrrrrrrirssssssssssnnnmssssssesssssssssssssnnssssssssesees 514
USBDeV_PipeStall()cccceeerrmmmrrrrierriiessssssssssnmseeeessesssssssssssssmssesssseseees 515
ST 1D TSIV ST YA o Yo o | I 516
USBDEV_CIrREG() «eereeerrrerrssnnmmerreerrsrssssssssssssnmsnssssssesssasssssssnsmssnsssnnnes 517
USBDEV_PIPEWI() .oiiieiiecciiemmmrrirreesssssssssssssssmseesessessssssssssssssssssssssneees 520
USBDeV_PIPERA() ...ccocerrrerrmrrrirssceerssessmeesssssmme s s ssssnseessssssmsesssssssnens 522
USBDeV_PipeRAASYNC() ..uueeeeerrrrrrrriiiissssssssmsemerseeseesssssssssssssssssssssssenes 524
T4 o] @ o [527
GeNEriC EIror COUESiiiirrriririrreeeeerersssmre e s ssssme e e s s e e e e s s e e s senns 528
Device Error COAesciiviiiicirirmemriiriiss s sss s sssnsseseses s sessss s sssmmnnsssenees 528
Configuration Error Codescccvvmmmiiniimmnninnnsns s snanns 528
Interface Error COdescoooimiirciecereecemee e semee e e 529
Endpoint Error COdEscovmmimmiiiiiiiicccccssssecereee e ses e s sss s ssssmsnssssnees 529
OS Layer Error COdesuuuvmmmiimiismniiinissnssinsssssssisssssss s sssssssssssssnns 529
Memory FOOIPrint ... e s 531
Communications Device Classcccoiiiiiiiiiicriccccccceces e 532
Human Interface Device Classcccccceecerrreseeceeressccee e smee e 533
Mass Storage Classcccccvcemrrmrriiiiinisssssssssscsreee e se s s s ssssssssssseneees 534
Personal Healthcare Device Classccccvvrmmmrrmrirnnissssssssnmeeneesnees 535
RT3 e [0 gl =T 537

Chapter

About USB

This chapter presents a quick introduction to USB. The first section in this chapter
introduces the basic concepts of the USB specification Revision 2.0. The second section
explores the data flow model. The third section gives details about the device operation.
Lastly, the fourth section describes USB device logical organization.

The full protocol is described extensively in the USB Specification Revision 2.0 at
http://www.usb.org.

1-1 INTRODUCTION

The Universal Serial Bus (USB) is an industry standard maintained by the USB Implementers
Forum (USB-IF) for serial bus communication. The USB specification contains all the
information about the protocol such as the electrical signaling, the physical dimension of
the connector, the protocol layer, and other important aspects. USB provides several
benefits compared to other communication interfaces such as ease of use, low cost, low
power consumption and, fast and reliable data transfer.

1-1-1 BUS TOPOLOGY

USB can connect a series of devices using a tiered star topology. The key elements in USB
topology are the host, hubs, and devices, as illustrated in Figure 1-1. Each node in the
illustration represents a USB hub or a USB device. At the top level of the graph is the root
hub, which is part of the host. There is only one host in the system. The specification allows
up to seven tiers and a maximum of five non-root hubs in any path between the host and a
device. Each tier must contain at least one hub except for the last tier where only devices
are present. Each USB device in the system has a unique address assigned by the host
through a process called enumeration (see section 1-4-3 on page 25 for more details on
enumeration).

15

Chapter 1

The host learns about the device capabilities during enumeration, which allows the host
operating system to load a specific driver for a particular USB device. The maximum
number of peripherals that can be attached to a host is 127, including the root hub.

Host

Root Hub

Figure 1-1 Bus topology

1-1-2 USB HOST

The USB host communicates with the devices using a USB host controller. The host is
responsible for detecting and enumerating devices, managing bus access, performing error
checking, providing and managing power, and exchanging data with the devices.

1-1-3 USB DEVICE

A USB device implements one or more USB functions where a function provides one
specific capability to the system. Examples of USB functions are keyboards, webcam,
speakers, or a mouse. The requirements of the USB functions are described in the USB class
specification. For example, keyboards and mice are implemented using the Human
Interface Device (HID) specification.

USB devices must also respond to requests from the host. For example, on power up, or
when a device is connected to the host, the host queries the device capabilities during
enumeration, using standard requests.

16

Data Flow Model

1-2 DATA FLOW MODEL

This section defines the elements involved in the transmission of data across USB.

1-2-1 ENDPOINT

Endpoints function as the point of origin or the point of reception for data. An endpoint is a

logical entity identified using an endpoint address. The endpoint address of a device is

fixed, and is assigned when the device is designed, as opposed to the device address,

which is assigned by the host dynamically during enumeration. An endpoint address

consists of an endpoint number field (0 to 15), and a direction bit that indicates if the

endpoint sends data to the host (IN) or receives data from the host (OUT). The maximum

number of endpoints allowed on a single device is 32.

Endpoints contain configurable characteristics that define the behavior of a USB device:

Bus access requirements

Bandwidth requirement

Error handling

Maximum packet size that the endpoint is able to send or receive
Transfer type

Direction in which data is sent and receive from the host

ENDPOINT ZERO REQUIREMENT

Endpoint zero (also known as Default Endpoint) is a bi-directional endpoint used by the

USB host system to get information, and configure the device via standard requests. All

devices must implement an endpoint zero configured for control transfers (see section

“Control Transfers” on page 18 for more information).

17

Chapter 1

1-2-2 PIPES

A USB pipe is a logical association between an endpoint and a software structure in the USB
host software system. USB pipes are used to send data from the host software to the
device’s endpoints. A USB pipe is associated to a unique endpoint address, type of transfer,
maximum packet size, and interval for transfers.

The USB specification defines two types of pipes based on the communication mode:
B Stream Pipes: Data carried over the pipe is unstructured.
B Message Pipes: Data carried over the pipe has a defined structure.

The USB specification requires a default control pipe for each device. A default control pipe
uses endpoint zero. The default control pipe is a bi-directional message pipe.

1-2-3 TRANSFER TYPES

The USB specification defines four transfer types that match the bandwidth and services
requirements of the host and the device application using a specific pipe. Each USB transfer
encompasses one or more transactions that sends data to and from the endpoint. The
notion of transactions is related to the maximum payload size defined by each endpoint
type in that when a transfer is greater than this maximum, it will be split into one or more
transactions to fulfill the action.

CONTROL TRANSFERS

Control transfers are used to configure and retrieve information about the device
capabilities. They are used by the host to send standard requests during and after
enumeration. Standard requests allow the host to learn about the device capabilities; for
example, how many and which functions the device contains. Control transfers are also
used for class-specific and vendor-specific requests.

A control transfer contains three stages: Setup, Data, and Status. These stages are detailed in
Table 1-1.

18

Data Flow Model

Stage Description

Setup The Setup stage includes information about the request. This SETUP stage represents
one transaction.

Data The Data stage contains data associated with request. Some standard and class-
specific request may not require a Data stage. This stage is an IN or OUT directional
transfer and the complete Data stage represents one ore more transactions.

Status The Status stage, representing one transaction, is used to report the success or failure
of the transfer. The direction of the Status stage is opposite to the direction of the Data
stage. If the control transfer has no Data stage, the Status stage always is from the
device (IN).

Table 1-1 Control Transfer Stages

BULK TRANSFERS

Bulk transfers are intended for devices that exchange large amounts of data where the
transfer can take all of the available bus bandwidth. Bulk transfers are reliable, as error
detection and retransmission mechanisms are implemented in hardware to guarantee data
integrity. However, bulk transfers offer no guarantee on timing. Printers and mass storage
devices are examples of devices that use bulk transfers.

INTERRUPT TRANSFERS

Interrupt transfers are designed to support devices with latency constrains. Devices using
interrupt transfers can schedule data at any time. Devices using interrupt transfer provides a
polling interval which determines when the scheduled data is transferred on the bus.
Interrupt transfers are typically used for event notifications.

ISOCHRONOUS TRANSFERS

Isochronous transfers are used by devices that require data delivery at a constant rate with a
certain degree of error-tolerance. Retransmission is not supported by isochronous transfers.
Audio and video devices use isochronous transfers.

USB DATA FLOW MODEL

Table 1-2 shows a graphical representation of the data flow model.

19

Chapter 1

Physical

° Software Hardware °

Hardware ° Software o

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Devi trol : : : :
evice con .
] EP — 1 1 EP ¥ Device
f.and " i Ll i i Y H standard
configuration ¥ n
| EPgoum [P i ° i P! EPooun [request
1
Pipes! EP — 1 1 EP 1
1 1 1 1
As°f|F‘”at_'9 - 1 y tusB cable | LU USB
pplication ux ux .
EP1(OUT) — Domux i } Demux— EP1(OUT) t Function A
: : : |
1 1 1 1 1 1
1 1 1 1 1
Software ' i 1 Ep H
Application FPs H ! P = sn) usB
1 1 Function B
1 EP souri—— ! ! EP 50Ut !
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
i i i i
Host Software | Host controller 1 1 Device Controller | Device Firmware
1 1 1
1 1 1 :
Figure 1-2 USB data flow
F1-2(D The host software uses standard requests to query and configure the device

using the default pipe. The default pipe uses endpoint zero (EPO).

F1-2(2) USB pipes allow associations between the host application and the device’s
endpoints. Host applications send and receive data through USB pipes.

F1-2(3) The host controller is responsible for the transmission, reception, packing and
unpacking of data over the bus.

F1-2(4) Data is transmitted via the physical media.

F1-2(5) The device controller is responsible for the transmission, reception, packing
and unpacking of data over the bus. The USB controller informs the USB
device software layer about several events such as bus events and transfer

events.

F1-2(6) The device software layer responds to the standard request, and implements
one or more USB functions as specified in the USB class document.

20

Physical Interface and Power Management

TRANSFER COMPLETION

The notion of transfer completion is only relevant for control, bulk and interrupt transfers as
isochronous transfers occur continuously and periodically by nature. In general, control,
bulk and interrupt endpoints must transmit data payload sizes that are less than or equal to
the endpoint’s maximum data payload size. When a transfer’s data payload is greater than
the maximum data payload size, the transfer is split into several transactions whose payload
is maximum-sized except the last transaction which contains the remaining data. A transfer
is deemed complete when:

B The endpoint transfers exactly the amount of data expected.

B The endpoint transfers a short packet, that is a packet with a payload size less than the

maximum.

B The endpoint transfers a zero-length packet.

1-3 PHYSICAL INTERFACE AND POWER MANAGEMENT

USB transfers data and provides power using four-wire cables. The four wires are: Vi, D,
D™ and Ground. Signaling occurs on the D* and D™ wires.

1-3-1 SPEED

The USB 2.0 specification defines three different speeds.
B Low Speed: 1.5 Mb/s

B Full Speed: 12 Mb/s

B High Speed: 480 Mb/s

21

Chapter 1

1-3-2 POWER DISTRIBUTION

The host can supply power to USB devices that are directly connected to the host. USB
devices may also have their own power supplies. USB devices that use power from the
cable are called bus-powered devices. Bus-powered device can draw a maximum of 500
mA from the host. USB devices that have alternative source of power are called self-
powered devices.

1-4 DEVICE STRUCTURE AND ENUMERATION

Before the host application can communicate with a device, the host needs to understand
the capabilities of the device. This process takes place during device enumeration. After
enumeration, the host can assign and load a specific driver to allow communication
between the application and the device.

During enumeration, the host assigns an address to the device, reads descriptors from the
device, and selects a configuration that specifies power and interface requirements. In order
for the host learns about the device’s capabilities, the device must provide information
about itself in the form of descriptors.

This section describes the device logical organization from the USB host’s point of view.

1-4-1 USB DEVICE STRUCTURE

From the host point of view, USB devices are internally organized as a collection of
configurations, interfaces and endpoints.

CONFIGURATION

A USB configuration specifies the capabilities of a device. A configuration consists of a
collection of USB interfaces that implement one or more USB functions. Typically only one
configuration is required for a given device. However, the USB specification allows up to
255 different configurations. During enumeration, the host selects a configuration. Only one
configuration can be active at a time. The device uses a configuration descriptor to inform
the host about a specific configuration’s capabilities.

22

Device Structure and Enumeration

INTERFACE

A USB interface or a group of interfaces provides information about a function or class
implemented by the device. An interface can contain multiple mutually exclusive settings
called alternate settings. The device uses an interface descriptor to inform the host about a
specific interface’s capabilities. Each interface descriptor contains a class, subclass, and
protocol codes defined by the USB-IF, and the number of endpoints required for a
particular class implementation.

ALTERNATE SETTINGS

Alternate settings are used by the device to specify mutually exclusive settings for each
interface. The default alternate settings contain the default settings of the device. The device
also uses an interface descriptor to inform the host about an interface’s alternate settings.

ENDPOINT

An interface requires a set of endpoints to communicate with the host. Each interface has
different requirements in terms of the number of endpoints, transfer type, direction,
maximum packet size, and maximum polling interval. The device sends an endpoint
descriptor to notify the host about endpoint capabilities.

Figure 1-3 shows the hierarchical organization of a USB device. Configurations are grouped

based on the device’s speed. A high-speed device might have a particular configuration in
both high-speed and low/full speed.

23

Chapter 1

High-Speed Low/Full-Sped
Structure Structure

Other configuration

Interfaces
Alternate Settings

L-
EP!)
3 Endpoints
N

Figure 1-3 USB device structure

% Interfaces/Classes

1-4-2 DEVICE STATES

The USB 2.0 specification defines six different states and are detailed in Table 1-2.

Device States Description

Attached The device is in the Attached state when it is connected to the host or a hub port. The
hub must be connected to the host or to another hub.

Powered A device is considered in the Powered state when it starts consuming power from the
bus. Only bus-powered devices use power from the host. Self-powered devices are in
the Powered state after port attachment.

Default After the device has been powered, it should not respond to any request or
transactions until it receives a reset signal from the host. The device enters in the
Default state when it receives a reset signal from the host. In the Default state, the
device responds to standard requests at the default address 0.

Address During enumeration, the host assigns a unique address to the device. When this
occurs, the device moves from the Default state to the Address state.

24

Device Structure and Enumeration

Device States Description

Configurated After the host assigns an address to the device, the host must select a configuration.
After the host selects a configuration, the device enters the Configured state. In this
state, the device is ready to communicate with the host applications.

Suspended The device enters in Suspended state when no traffic has been seen in the bus for a
specific period of time. The device retains the address assigned by the host in the
Suspended state. The device returns to the previous state after traffic is present in the
bus.

Table 1-2 USB Device States

1-4-3 ENUMERATION

Enumeration is the process where the host configures the device and learns about the
device’s capabilities. The host starts enumeration after the device is attached to one of the
root or external hub ports. The host learns about the device’s manufacturer, vendor/product
IDs and release versions by sending a Get Descriptor request to obtain the device descriptor
and the maximum packet size of the default pipe (control endpoint 0). Once that is done,
the host assigns a unique address to the device which will tell the device to only answer
requests at this unique address. Next, the host gets the capabilities of the device by a series
of Get Descriptor requests. The host iterates through all the available configurations to
retrieve information about number of interfaces in each configuration, interfaces classes,
and endpoint parameters for each interface and will lastly finish the enumeration process by
selecting the most suitable configuration.

25

Chapter 1

26

Chapter

Getting Started

This chapter gives you some insight into how to install and use the nC/USB-Device stack.

The following topics are explained in this chapter:

Prerequisites

Downloading the source code files
Installing the files

Building the sample application

Running the sample application

After the completion of this chapter, you should be able to build and run your first USB

application using the nC/USB-Device stack.

27

Chapter 2

2-1 PREREQUISITES

Before running your first application, you must ensure that you have the minimal set of
required tools and components:

B Toolchain for your specific microcontroller.
B Development board.
B pC/USB-Device stack with the source code of at least one of the Micripm USB classes.

B USB device controller driver compatible with your hardware for the pC/USB-Device
stack.

B Board support package (BSP) for your development board.
B Example project for your selected RTOS (that is nC/OS-1I or pC/OS-IID).
If Micripm does not support your USB device controller or BSP, you will have to write your

own device driver. Refer to Chapter 6, “Device Driver Guide” on page 77 for more
information on writing your own USB device driver.

2-2 DOWNLOADING THE SOURCE CODE FILES

pC/USB-Device can be downloaded from the Micripm customer portal. The distribution
package includes the full source code and documentation. You can log into the Micripm
customer portal at the address below to begin your download (you must have a valid
license to gain access to the file):

http://micrium.com/login
pC/USB-Device depends on other modules, and you need to install all the required
modules before building your application. Depending on the availability of support for your

hardware platform, ports and drivers may or may not be available for download from the
customer portal. Table 2-1 shows the module dependency for pC/USB-Device.

28

Downloading the Source Code Files

Module Name Required Note(s)

uC/USB-Device Core YES Hardware independent USB stack.

uC/USB-Device Driver YES USB device controller driver. Available only if Micrium supports
your controller, otherwise you have to develop it yourself.

pC/USB-Device Vendor Class | Optional Available only if you purchased Vendor class.

uC/USB-Device MSC Optional Available only if you purchased Mass Storage Class (MSC).

uC/USB-Device HID Class Optional Available only if you purchased Human Interface Device (HID)
class.

uC/USB-Device CDC ACM Optional Available only if you purchased Communication Device Class
(CDC) with the Abstract Control Model (ACM) subclass.

uC/USB-Device PHDC Optional Available only if you purchased Personal Healthcare Device
Class (PHDC).

uC/CPU Core YES

uUC/CPU Port YES Available only if Micrium has support for your target architecture
(ARM, AVR32, MSP430, etc)

pC/LIB Core YES Micripm run-time library.

uC/LIB Port Optional Available only if Micripm has support for your target architecture
(ARM, AVR32, MSP430, etc)

uC/0OS-Il Core Optional Available only if your application is using uC/OS-II

uC/OS-Il Port Optional Available only if Micripm has support for your target architecture
(ARM, AVR32, MSP430, etc)

uC/0OS-lll Core Optional Available only if your application is using pC/OS-llI

uC/OS-Ill Port Optional Available only if Micripm has support for your target architecture

(ARM, AVR32, MSP430, etc)

Table 2-1 pC/USB-Device Module Dependency

Table 2-1 indicates that all the pC/USB-Device classes are optional because there is no

mandatory class to purchase with the nC/USB-Device Core and Driver. The class you will

have purchased will depend on your needs. But don’t forget that you need a class to build a
complete USB project. Table 2-1 also indicates that pC/OS-II and -III Core and Port are
optional. Indeed, pC/USB-Device stack does not assume a specific real-time operating

system to work with but it still requires one.

29

Chapter 2

2-3 INSTALLING THE FILES

Once all the distribution packages have been downloaded to your host machine, extract all
the files at the root of your C:\ drive for instance. The package may be extracted to any
location. After extracting all the files, the directory structure should look as shown in
Figure 2-1. In the example, all Micripm products sub-folders shown in Figure 2-1 will be
located in C:\Micrium\Software\

=+---{ff=7 uC-CPU

FR— {:__| <Architecture>

—{f7yuC-LIB

H
'
+

Figure 2-1 Directory Tree for yC/USB-Device

30

Building the Sample Application

2-4 BUILDING THE SAMPLE APPLICATION

This section describes all the steps required to build a USB-based application. The
instructions provided in this section are not intended for any particular toolchain, but
instead are described in a generic way that can be adapted to any toolchain.

The best way to start building a USB-based project is to start from an existing project. If you
are using pC/OS-II or pC/OS-III, Micrinm provides example projects for multiple
development boards and compilers. If your target board is not listed on Micripm’s web site,
you can download an example project for a similar board or microcontroller.

The purpose of the sample project is to allow a host to enumerate your device. You will add
a USB class instance to both, full-speed and high-speed configurations (f both are
supported by your controller). Refer to section 7-1 “Class Instance Concept” on page 99 for
more details about the class instance concept. After you have successfully completed and
run the sample project, you can use it as a starting point to run other USB class demos you
may have purchased.

pC/USB-Device requires a Real-Time Operating System (RTOS). The following assumes that
you have a working example project running on pC/OS-II or pC/OS-I1I.

2-4-1 UNDERSTANDING MICRIUM EXAMPLES
A Micripm example project is usually placed in the following directory structure.

\Micrium
\Software
\EvalBoards
\<manufacturer>
\<board_name>
\<compiler>
\<project name>

*, *

Note that Micripm does not provide by default an example project with the nC/USB-Device
distribution package. Micripm examples are provided to customers in specific situations. If it
happens that you receive a Micripm example, the directory structure shown above is
generally used by Micrium. You may use a different directory structure to store the
application and toolchain projects files.

31

Chapter 2

\Micrium
This is where Micrinm places all software components and projects. This directory is
generally located at the root directory.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards supported by Micripm.

\<manufacturer>
This is the name of the manufacturer of the evaluation board. In some cases this can be also
the name of the microcontroller manufacturer.

\<board name>
This is the name of the evaluation board.

\<compiler>
This is the name of the compiler or compiler manufacturer used to build the code for the
evaluation board.

\<project name>
The name of the project that will be demonstrated. For example a simple pC/USB-Device
with pC/OS-III project might have the project name ‘uCOS-III-USBD".

,
These are the source files for the project. This directory contains configuration files
app cfg.h, os cfg.h, os cfg app.h, cpu cfg.h and other project-required sources files.

os_cfg.h is a configuration file used to configure nC/OS-1II (or pC/OS-1I) parameters
such as the maximum number of tasks, events, objects, which pC/OS-III services are
enabled (semaphores, mailboxes, queues), and so on. os_cfg.h is a required file for
any pC/OS-II application. See the pC/OS-III documentation and books for further
information.

app.c contains the application code for the example project. As with most C programs,

code execution starts at main(). At a minimum, app.c initializes pC/OS-III and creates
a startup task that initializes other Micripm modules.

32

Building the Sample Application

app_cfg.h is a configuration file for your application. This file contains #defines to

configure the priorities and stack sizes of your application and the Micripm modules’
tasks.

app_<module>.c and app_<module>.h These optional files contain the Micripm
modules’ (uC/TCP-IP, nC/FS, nC/USB-Host, etc) initialization code. They may or may
not be present in the example projects.

2-4-2 COPYING AND MODIFYING TEMPLATE FILES

Copy the files from the application template and configuration folders into your application
as shown in Figure 2-2.

:----@ EvalBoards
e @ <manufacturer>

F— @ App B @ <board name>
H—----@ Device e E <compiler>

—----@ uC-USB-Device-V4

+——{B0 08 #--{ | <project name>
bd.
4| ucos-11 [spp_usbd.c
+-—{]uCOS-III [} app_usbd.h

D app_usbd_<class>.c

broees @Cfg [usbd_cfg.h
F— E Template ———— P D usbd_dev_cfg.h

D usbd_dev_cfg.c

Figure 2-2 Copying Template Files.

app_usbd. * is the master template for USB application-specific initialization code. This file
contains the function App_USBD_Init (), which initializes the USB stack and class-specific
demos.

app_usbd <class>.c contains a template to initialize and use a certain class. This file
contains the class demo application. In general, the class application initializes the class,
creates a class instance, and adds the instance to the full-speed and high-speed

configurations. Refer to the chapter(s) of the class(es) you purchased for more details about
the class demos.

33

Chapter 2

usbd_cfg.h is a configuration file used to setup pnC/USB-Device stack parameters such as
the maximum number of configurations, interfaces, or class-related parameters.

usbd_dev_cfg.c and usbd_dev_cfg.h are configuration files used to set device parameters
such as vendor ID, product ID, and device release number. They also serve to configure the
USB device controller driver parameters, such as base address, dedicated memory base
address and size, controller’s speed, and endpoint capabilities.

MODIFY DEVICE CONFIGURATION

Modify the device configuration file (usbd cfg.c) as needed for your application. See
below for details.

USBD_DEV_CFG USBD_DevCfg_Template = { (1)
O0XFFFE, (2)
0x1234,
0x0100,

"OEM MANUFACTURER", (3)

"OEM PRODUCT",
"1234567890ABCDEF",

USBD_LANG_ID ENGLISH US (4)
i
Listing 2-1 Device Configuration Template
L2-1(D) Give your device configuration a meaningful name by replacing the word
“Template”.

L2-1(2) Assign the Vendor ID, Product ID and Device Release Number. For
development purposes you can use the default values, but once you decide to
release your product, you must contact USB-IF in order to get valid IDs. USB-IF
maintains all USB Vendor ID and Product ID numbers.

L2-1(3) Specify human readable Vendor ID, Product ID, and Device Release Number
strings.

L2-1(4) A USB device can store strings in multiple languages. Specify the language

used in your strings. The #defines for the other languages are defined in the file
usbd _core.h in the section “Language Identifiers”.

34

Building the Sample Application

MODIFY DRIVER CONFIGURATION

Modify the driver configuration (usbd dev cfg.c) as needed for your controller. See

Listing 2-2 below for details.

USBD_DRV_CFG USBD_DrvCfg Template = { (1)
0x00000000, (2)
0x00000000, (3)
Ou,
USBD_DEV_SPD_FULL, (4)
USBD_DrvEP_InfoTbl_Template (5)
i
Listing 2-2 Driver Configuration Template
L2-2(D) Give your driver configuration a meaningful name by replacing the word

L2-2(2)

L2-2(3)

L2-2(4)

L2-2(5)

“Template”.
Specify the base address of your USB device controller.

If your target has dedicated memory for the USB controller, you can specify its
base address and size here. Depending on the USB controller, dedicated
memory can be used to allocate driver buffers or DMA descriptors.

Specify the USB device controller speed: USBD_DEV_SPD HIGH if your controller
supports high-speed or USBD DEV_SPD FULL if your controller supports only
full-speed.

Specify the endpoint information table. The endpoint information table should
be defined in your USB device controller BSP files. Refer to section 6-5-1
“Endpoint Information Table” on page 86 for more details about the endpoint
information table.

MODIFY USB APPLICATION INITIALIZATION CODE

Listing 2-3 shows the code that you should modify based on your specific configuration done

previously. You should modify the parts that are highlighted by the bold text. The code

snippet is extracted from the function App USBD Init() defined in app usbd.c. The

complete initialization sequence performed by App USBD Init() is presented in Listing 2-5.

35

Chapter 2

#include <usbd_bsp template.h> (1)

CPU_BOOLEAN App_USBD_Init (void)
{
CPU_INT08U dev_nbr;
CPU_INT08U cfg fs nbr;

USBD_ERR err;

USBD_Init(&err); (2)
dev_nbr = USBD_DevAdd(&USBD_DevCfg_Template, (3)
&App_ USBD_ BusFncts,

&USBD_DrvAPI_Template, (4)
&USBD_DrvCfg_Template, (5)
&USBD_DrvBSP_Template, (6)
&err);

if (USBD_DrvCfg_Template.Spd == USBD DEV_SPD HIGH) { (7)

cfg_hs_nbr = USBD_CfgAdd(dev_nbr,
USBD_DEV_ATTRIB_SELF POWERED,
100u,
USBD_DEV_SPD_HIGH,
"HS configuration",

&err);

Listing 2-3 App_USBD_lInit() in app_usbd.c

L2-3(D) Include the USB driver BSP header file that is specific to your board. This file
can be found in the following folder:

\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

L2-3(2) Initialize the USB device stack’s internal variables, structures and core RTOS
port.
L2-3(3) Specify the address of the device configuration structure that you modified in

the section “Modify Device Configuration” on page 34.

36

Building the Sample Application

12-3(4) Specify the address of the driver API structure. The driver’s API structure is
defined in the driver’s header file named usbd_drv_<controller>.h.

L2-3(5) Specify the address of the driver configuration structure that you modified in
the section “Modify Driver Configuration” on page 35.

L2-3(6) Specify the endpoint information table. The endpoint information table should
be defined in your USB device controller BSP files.

L2-3(7) If the device controller supports high-speed, create a high-speed configuration
for the specified device.

2-4-3 INCLUDING USB DEVICE STACK SOURCE CODE

First, include the following files in your project from the pC/USB-Device source code
distribution, as indicated in Figure 2-3.

--[f77 uC-USB-Device-V4

-;H-----@ Class
i}- ----- @ <class>

D usbd_<class>.c

i}-----@ <controller>
E D usbd_drv_<controller>.c

+f----|ff 7 <board name>

A @ os D usbd _bsp_<controller>.c
+ ------- [f=7 <RTOS>
D usbd_os.c
4---{7 77 Source

D usbd_os.c

D usbd_ep.c
D usbd_core.c

Figure 2-3 yC/USB-Device Source Code

37

Chapter 2

Second, add the following include paths to your project settings:

\Micrium\Software\uC-USB-Device\Source\
\Micrium\Software\uC-USB-Device\Class\<class>\
\Micrium\Software\uC-USB-Device\Drivers\<controller>
\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

2-4-4 MODIFYING APPLICATION CONFIGURATION FILE

The USB application initialization code templates assume the presence of app cfg.h. The
following #defines must be present in app cfg.h in order to build the sample application.

#define APP_CFG USBD_EN DEF_ENABLED (1)
#define USBD 0S_CFG_CORE_TASK PRIO 6u (2)
#define USBD_OS_CFG_TRACE TASK PRIO 7u
#define USBD 0S_CFG_CORE_TASK STK SIZE 256u
#define USBD_OS CFG_TRACE TASK PRIO 256u
#define APP CFG USBD_XXXX EN DEF_ENABLED (3)
#define LIB MEM CFG_OPTIMIZE ASM EN DEF_DISABLED (4)
#define LIB MEM CFG ARG _CHK EXT EN DEF_ENABLED
#define LIB MEM CFG_ALLOC EN DEF_ENABLED
#define LIB MEM CFG_HEAP SIZE 1024u
#define TRACE LEVEL_OFF ou (5)
#define TRACE_LEVEL INFO 1u
#define TRACE LEVEL_DBG 2u
#define APP _CFG TRACE LEVEL TRACE_LEVEL DBG (6)
#define APP CFG_TRACE printf (7)

#define APP_TRACE_INFO(x) \

((APP_CFG_TRACE_LEVEL >= TRACE LEVEL INFO) ? (void)(APP_CFG TRACE x) : (void)0)
#define APP TRACE DBG(X) \
((APP_CFG_TRACE LEVEL >= TRACE LEVEL DBG) ? (void)(APP_CFG TRACE x) : (void)0)

Listing 2-4 Application Configuration #defines

38

Building the Sample Application

L2-4(1)

L2-4(2)

L2-4(3)

L2-4(4)

L2-4(5)

L2-4(6)

L2-4(7)

APP_CFG _USBD_EN enables or disables the USB application initialization code.

These #defines relate to the nC/USB-Device OS port. The nC/USB-Device core
requires only one task to manage control requests and asynchronous transfers,
and a second, optional task to output trace events (if trace capability is
enabled). To properly set the priority of the core and debug tasks, refer to
section 5-2-1 “Task Priorities” on page 69.

This #define enables the USB class-specific demo. The token XXXX in the
constant APP_CFG_USBD_XXXX_EN is the name of the class and can be replaced
by CDC, HID, MSC, PHDC or VENDOR.

Configure the desired size of the heap memory. Heap memory is only used for
uC/USB-Device drivers that use internal buffers and DMA descriptors which are
allocated at run-time. Refer to the nC/LIB documentation for more details on
the other pC/LIB constants.

Most Micripm examples contain application trace macros to output human-
readable debugging information. Two levels of tracing are enabled: INFO and
DBG. INFO traces high-level operations, and DBG traces high-level operations
and return errors. Application-level tracing is different from nC/USB-Device
tracing (refer to Chapter 13, “Debug and Trace” on page 231 for more details).

Define the application trace level.
Specify which function should be used to redirect the output of human-

readable application tracing. You can select the standard output via printf(),
or another output such as a text terminal using a serial interface.

39

Chapter 2

2-5 RUNNING THE SAMPLE APPLICATION

The first step to integrate the demo application into your application code is to call
App USBD_Init(). This function is responsible for the following steps:

B Initializing the USB device stack.

B Creating and adding a device instance.

B Creating and adding configurations.

B Calling USB class-specific application code.

B Starting the USB device stack.

The App USBD Init() function is described in Listing 2-5.

CPU_BOOLEAN App USBD_Init (void)
{
CPU_INT08U dev_nbr;
CPU_INT08U cfg_hs nbr;
CPU_INT08U cfg_fs nbr;
CPU_BOOLEAN ok;
USBD_ERR err;

USBD_Init(&err); (1)
if (err!= USBD _ERR NONE) {

/* $$$$ Handle error. */

return (DEF_FAIL);

dev_nbr = USBD_DevAdd(&USBD_DevCfg_<controller>, (2)
&App_USBD BusFncts,
&USBD_DrvAPI_<controller>,
&USBD_DrvCfg_<controller>,
&USBD_DrvBSP_<board name>,

&err);
if (err != USBD_ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

cfg_hs_nbr = USBD_CFG_NBR NONE;
cfg_fs_nbr = USBD_CFG_NBR _NONE;

40

Running the Sample Application

if (USBD_DrvCfg <controller>.Spd == USBD_DEV_SPD HIGH) {

cfg_hs_nbr = USBD_CfgAdd(dev_nbr, (3)
USBD_DEV_ATTRIB_SELF POWERED,
100u,
USBD_DEV_SPD_HIGH,
"HS configuration",
&err);
if (err != USBD ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

}
}
cfg_fs_nbr = USBD_CfgAdd(dev_nbr, (4)
USBD_DEV_ATTRIB SELF POWERED,
100u,

USBD_DEV_SPD_FULL,
"FS configuration",
&err);
if (err != USBD_ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

¥
#if (APP_CFG_USBD_XXXX EN == DEF_ENABLED) (5)
ok = App USBD_XXXX_ Init(dev_nbr,
cfg_hs_nbr,
cfg_fs nbr);

if (ok != DEF OK) {
/* $$$$ Handle error. */
return (DEF_FAIL);

}
#endif
#if (APP_CFG_USBD_XXXX_EN == DEF_ENABLED) (5)
endif
USBD_DevStart(dev_nbr, &err); (6)
(void)ok;

return (DEF_OK);

Listing 2-5 App_USBD_lInit() Function

41

Chapter 2

L2-5(1)

L2-5(2)

L2-5(3)

L2-5(4)

L2-5(5)

L2-5(6)

42

USBD_Init() initializes the USB device stack. This must be the first USB
function called by your application’s initialization code. If nC/USB-Device is
used with pC/OS-II or -III, 0SInit () must be called prior to USBD Init() in
order to intialize the kernel services.

USBD DevAdd() creates and adds a USB device instance. A given USB device
instance is associated with a single USB device controller. pC/USB-Device can
support multiple USB device controllers concurrently. If your target supports
multiple controllers, you can create multiple USB device instances for them.
The function USBD DevAdd() returns a device instance number; this number is
used as a parameter for all subsequent operations.

Create and add a high-speed configuration to your device. USBD CfgAdd()
creates and adds a configuration to the USB device stack. At a minimum, your
USB device application only needs one full-speed and one high-speed
configuration if your device is a high-speed capable device. For a full-speed
device, only a full-speed configuration will be required. You can create as
many configurations as needed by your application, and you can associate
multiple instances of USB classes to these configurations. For example, you can
create a configuration to contain a mass storage device, and another
configuration for a human interface device such as a keyboard, and a vendor
specific device.

Create and add a full-speed configuration to your device.

Initialize the class-specific application demos by calling the function
App USBD XXXX Init() where XXXX can be CDC, HID, MSC, PHDC or
VENDOR. Class-specific demos are enabled and disabled using the
APP CFG USB_XXXX EN #define.

After all the class instances are created and added to the device configurations,
the application should call USBD DevStart(). This function connects the
device with the host by enabling the pull-up resistor on the D+ line.

Running the Sample Application

Table 2-2

lists the sections

you should refer to for more details about each

App USBD XXXX Init() function.

Class Function Refer to...

CDC ACM | App USBD CDC_Init() section 8-3-1 “General Configuration” on page 120

HID App USBD_HID Init() section 9-3-2 “Class Instance Configuration” on page 144
MSC App USBD_MSC Init() section 10-4-2 “Class Instance Configuration” on page 174
PHDC App USBD_PHDC Init() section 11-2-2 “Class instance configuration” on page 189
Vendor App USBD Vendor Init() | section 12-2-2 “Class Instance Configuration” on page 208

Table 2-2 List of Sections to Refer to for Class Demos Information

After building and downloading the application into your target, you should be able to

successfully connect your target to a host PC through USB. Once the USB sample

application is running, the host detects the connection of a new device and starts the

enumeration process. If you are using a Windows PC, it will load a driver which will

manage your device. If no driver is found for your device, Windows will display “found new

hardware” wizard so that you can specify which driver to load. Once the driver is loaded,

your device is ready for communication. Table 2-3 lists the different section(s) you should

refer to for more details on each class demo.

Class Refer to...

CDC ACM section 8-4-6 “Using the Demo Application” on page 129
HID section 9-4 “Using the Demo Application” on page 154
MSC section 10-5 “Using the Demo Application” on page 176
PHDC section 11-5 “Using the Demo Application” on page 200
Vendor section 12-4 “Using the Demo Application” on page 220

Table 2-3 List of Sections to Refer to for Class Demos Information

43

Chapter 2

44

Chapter

Host Operating Systems

The major host operating systems (OS), such as Microsoft Windows, Apple Mac OS and
Linux, recognize a wide range of USB devices belonging to standard classes defined by the
USB Implementers Forum. Upon connection of the USB device, any host operating systems
perform the following general steps:

1 Enumerating the USB device to learn about its characteristics.

2 Loading a proper driver according to its characteristics’ analysis in order to manage the
device.

3 Communicating with the device.

Step 2, where a driver is loaded to handle the device is performed differently by each major
host operating system. Usually, a native driver provided by the operating system manages a
device complying to a standard class (for instance, Audio, HID, MSC, Video, etc.) In this
case, the native driver loading is transparent to you. In general, the OS won'’t ask you for
specific actions during the driver loading process. On the other hand, a vendor-specific
device requires a vendor-specific driver provided by the device manufacturer. Vendor-
specific devices don't fit into any standard class or don’t use the standard protocols for an
existing standard class. In this situation, the OS may explicitly ask your intervention during
the driver loading process.

During step 3, your application may have to find the USB device attached to the OS before
communication with it. Each major OS uses a different method to allow you to find a
specific device.

This chapter gives you the necessary information in case your intervention is required
during the USB device driver loading and in case your application needs to find a device
attached to the computer. For the moment, this chapter describes this process only for the
Windows operating system.

45

Chapter 3

3-1 MICROSOFT WINDOWS

Microsoft offers class drivers for some standard USB classes. These drivers can also be
called native drivers. A complete list of the native drivers can be found in the MSDN
online documentation on the page titled “Drivers for the Supported USB Device Classes”
(http://msdn.microsoft.com/en-us/library/f£538820(VS.85) .aspx). If a connected
device belongs to a class for which a native driver exists, Windows automatically loads
the driver without any additional actions from you. If a vendor-specific driver is required
for the device, a manufacturer’s INF file giving instructions to Windows for loading the
vendor-specific driver is required. In some cases, a manufacturer’s INF file may also be
required to load a native driver.

When the device has been recognized by Windows and is ready for communication, your
application may need to use a Globally Unique IDentifier (GUID) to retrieve a device
handle that allows your application to communicate with the device.

These sections explain the use of INF files and GUIDs. Table 3-1 shows the USB classes to
which the information in the following sub-sections applies.

Section Micrium classes
section 3-1-1 “About INF Files” on page 46 CDC, PHDC and Vendor
section 3-1-2 “Using GUIDs” on page 51 HID, PHDC and Vendor.

Table 3-1 Micripm Classes Concerned by Windows USB Device Management

3-1-1 ABOUT INF FILES

An INF file is a setup information file that contains information used by Windows to install
software and drivers for one or more devices. The INF file also contains information to store
in the registry. Each of the drivers provided natively with the operating system has an
associated INF file stored in C:\WINDOWS\inf. For instance, when a HID or MSC device is
connected to the PC, Windows enumerates the device and implicitly finds an INF file
associated to a HID or MSC class that permits loading the proper driver. INF files for native
drivers are called system INF files. Any new INF files provided by manufacturers for vendor-
specific devices are copied into the folder C:\WINDOWS\inf. These INF files can be called
vendor-specific INF files. An INF file allows Windows to load one or more drivers for a
device. A driver can be native or provided by the device manufacturer.

46

Microsoft Windows

Table 3-2 shows the Windows driver(s) loaded for each Micripm class:

Micrium class Windows driver Driver type INF file type

CDC ACM usbser.sys Native Vendor-specific INF file

HID Hidclass.sys Native System INF file
Hidusb.sys

MSC Usbstor.sys Native System INF file

PHDC winusb.sys (for getting Native Vendor-specific INF file
started purpose only).

Vendor winusb.sys Native Vendor-specific INF file

Table 3-2 Windows Drivers Loaded for each Micripm Class

When a device is first connected, Windows searches for a match between the information
contained in system INF files and the information retrieved from device descriptors. If there
is no match, Windows asks you to provide an INF file for the connected device.

An INF file is arranged in sections whose names are surrounded by square brackets []. Each
section contains one or several entries. If the entry has a predefined keyword such as
“Class”, “Signature”, etc, the entry is called a directive. Listing 3-1 presents an example of an
INF file structure:

2 Version section
[Version] (1)
Signature = "$Windows NT$"

Class = Ports

ClassGuid = {4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%ProviderName$%
DriverVer=01/01/2012,1.0.0.0

; ========== Manufacturer/Models sections =================

[Manufacturer] (2)
%ProviderName% = DeviceList, NTx86, NTamd64

[DeviceList.NTx86] (3)
$PROVIDER CDC% = DriverInstall, USB\VID_ fffe&PID_1234&MI_00

47

Chapter 3

[DeviceList.NTamd64] (3)
$PROVIDER CDC% = DriverInstall, USB\VID_fffe&PID 1234&MI_00

== Installation sections ====

(4)

[DriverInstall]

include
CopyFiles
AddReg

= mdmcpq.inf
= FakeModemCopyFileSection
= LowerFilterAddReg, SerialPropPageAddReg

[DriverInstall.Services]

include

AddService

= mdmcpqg.inf
= usbser, 0x00000002, LowerFilter Service Inst

[SerialPropPageAddReq]

HKR, ,EnumPropPages32, , "MsPorts.dll,SerialPortPropPageProvider"

[Strings]

(5)

ProviderName = "Micrium"
PROVIDER CDC = "Micrium CDC Device"

L3-1(D)

L3-1(2)

L3-1(3)

L3-1(4)

48

Listing 3-1 Example of INF File Structure

The section [Version] is mandatory and informs Windows about the provider,
the version and other descriptive information about the driver package.

The section [Manufacturer] is mandatory. It identifies the device’s
manufacturer.

The following two sections are called Models sections and are defined on a
per-manufacturer basis. They gives more detailed instructions about the
driver(s) to install for the device(s). A section name can use extensions to
specify OSes and/or CPUs the entries apply to. In this example, .NTx86 and
.NTamd64 indicate that the driver can be installed on an NT-based Windows
(that is Windows 2000 and later), on x86- and x64-based PC respectively.

The installation sections actually install the driver(s) for each device described
in the Model section(s). The driver installation may involve reading existing
information from the Windows registry, modifying existing entries of the
registry or creating new entries into the registry.

Microsoft Windows

L3-1(5) The section [Strings] is mandatory and it is used to define each string key
token indicated by $string name$% in the INF file.

Refer to the MSDN online documentation on this web page for more details about INF
sections and directives: http://msdn.microsoft.com/en-us/library/f£549520.aspx.

You will be able to modify some sections in order to match the INF file to your device
characteristics, such as Vendor ID, Product ID and human-readable strings describing the
device. The sections are:

B Models section
B [Strings] section

To identify possible drivers for a device, Windows looks in the Models section for a device
identification string that matches a string created from information in the device’s
descriptors. Every USB device has a device ID, that is a bardware ID created by the
Windows USB host stack from information contained in the Device descriptor. A device ID
has the following form:

USB\Vid xxxx&Pid yyyy

XXXX, Yyyy, represent the value of the Device descriptor fields “idVendor” and “idProduct”
respectively (refer to the Universal Serial Bus Specification, revision 2.0, section 9.6.1 for
more details about the Device descriptor fields). This string allows Windows to load a driver
for the device. You can modify xxxx and yyyy to match your device’s Vendor and Product
IDs. In Listing 2-1, the hardware ID defines the Vendor ID OxFFFE and the Product ID
0x1234.

Composite devices, formed of several functions, can specify a driver for each function. In
this case, the device has a device ID for each interface that represents a function. A device

ID for an interface has the following form:

USB\Vid xxxx&Pid yyyy&MI_ww

49

Chapter 3

ww is equal to the “bInterfaceNumber” field in the Interface descriptor (refer to the Universal
Serial Bus Specification, revision 2.0, section 9.6.5 for more details on the Interface
descriptor fields). You can modify ww to match the position of the interface in the
Configuration descriptor. If the interface has the position #2 in the Configuration descriptor,
ww is equals to 02.

The [Strings] section contains a description of your device. In Listing 3-1, the strings
define the name of the device driver package provider and the device name. You can see
these device description strings in the Device Manager. For instance, Figure 3-1 shows a
virtual COM port created with the INF file from Listing 3-1. The string “Micrium” appears
under the “Driver Provider” name in the device properties. The string “Micrium CDC
Device” appears under the “Ports” group and in the device properties dialog box.

=4 Device Manager = = 2
File Action View Help
& FIEIHE R ERD
4 g=n PC
N 8 Computer Micrium CDC Device (COM15) Properties P9

=g Disk drives

K., Display adapters | General | Port Settings | Driver | Details|
-

e DVD/CD-ROM drives

Micrium CDC Device ({COM15)

b a Ellisys protocol analyzers ==
AL@‘ Human Interface Devices
: Uﬁ,‘ HID-compliant consumer contrel device Driver Provider: Micrium
&?t,‘ USE Input Device Driver Date: 15/10/2009

5 USBInput Device Driver Version: 1.0.0.0

; s IDE ATAATAPL comtrllers Digital Signer: Not digitally signed

> ﬁ Imaging devices

b & Keyboards Ta view details about the driverfiles.

b --B Mice and other pointing devices

» B Monitors To update the driver software for this device.
b ¥ Network adapters

8 b o Bk Drver | e ool oruitg o drver.
Y3 Micrium CDC Device (COMLS)
? USB Serial Port (COMT)

I Processors

-#y Sound, video and game controllers

Disable Disables the selected device.

To uninstall the driver (Advanced).

Uninstall

b M System devices
> a Universal Serial Bus contrellers [OK] [Cancel

Figure 3-1 Windows Device Manager Example for a CDC Device

50

Microsoft Windows

3-1-2 USING GUIDS

A Globally Unique IDentifier (GUID) is a 128-bit value that uniquely identifies a class or
other entity. Windows uses GUIDs for identifying two types of device classes:

B Device setup class
B Device interface class

A device setup GUID encompasses devices that Windows installs in the same way and using
the same class installer and co-installers. Class installers and co-installers are DLLs that
provide functions related to device installation. There is a GUID associated with each device
setup class. System-defined setup class GUIDs are defined in devguid.h. The device setup
class GUID defines the ..\CurrentControlSet\Control\Class\ClassGuid registry key
under which to create a new subkey for any particular device of a standard setup class. A
complete list of system-defined device setup classes offered by Microsoft Windows® is
available on MSDN online documentation (http://msdn.microsoft.com/en-us/
library/windows/hardware/f£553426 (v=vs.85) .aspx).

A device interface class GUID provides a mechanism for applications to communicate with
a driver assigned to devices in a class. A class or device driver can register one or more
device interface classes to enable applications to learn about and communicate with devices
that use the driver. Each device interface class has a device interface GUID. Upon a device;s
first attachment to the PC, the Windows I/O manager associates the device and the device
interface class GUID with a symbolic link name, also called a device path. The device path
is stored in the registry and persists across system reboot. An application can retrieve all the
connected devices within a device interface class. If the application has gotten a device path
for a connected device, this device path can be passed to a function that will return a
handle. This handle is passed to other functions in order to communicate with the
corresponding device.

Three of Micripm’s USB classes are provided with Visual Studio 2010 projects. These Visual
Studio projects build applications that interact with a USB device. They use a device
interface class GUID to detect any attached device belonging to the class. Table 3-3 shows
the Micripm class and the corresponding device interface class GUID used in the class
Visual Studio project.

51

Chapter 3

Micrium class Device interface class GUID Defined in

HID {4d1e55b2-£16f-11c£-88cb-001111000030} app_hid common.h
PHDC {143£20bd-7bd2-4ca6-9465-8882£2156bd6} usbdev_guid.h
Vendor {143£20bd-7bd2-4ca6-9465-8882£2156bd6} usbdev_guid.h

Table 3-3 Micrium Class and Device Interface Class GUID

The interface class GUID for the HID class is provided by Microsoft as part of system-

defined device interface classes, whereas the interface class GUID for PHDC and Vendor

classes has been generated with Visual Studio 2010 using the utility tool, guidgen.exe. This

tool is accessible from the menu Tools and the option Create GUID or, through the

command-line by selecting the menu Tools, option Visual Studio Command Prompt and by

typing guidgen at the prompt.

52

Chapter

Architecture

pC/USB-Device was designed to be modular and easy to adapt to a variety of Central
Processing Units (CPUs), Real-Time Operating Systems (RTOS), USB device controllers, and
compilers.

Figure 4-1 shows a simplified block diagram of all the pC/USB-Device modules and their
relationships.

53

Chapter 4

Application Run-Time Library
app_cfg.h usbd _cfg.h cpu_cfg.h os_cfg.h 1lib def.h
app.c usbd_dev_cfg.c/h os_app_cfg.c/h lib mem.c/h 1lib mem a.*
app_usbd.c lib_str.c/h

/)
v Application Layer

"""" Y A SN IR S S

MSC HID PHDC . Vendor
usbd msc.c/h] usbd_hid.c/h usbd_phdc.c/h ACM Serial usbd_vendor.c/h
_ ’Y Emulation
usbd_acm_serial.c/h 3
A 4 Y
SCSI HID Report
Commands Manager
usbd _scsi.c/h usbd_report.c/h CDC
t usbd cdc.c/h
Storage Driver
usbd_storage.c/h USB Classes
\ \4 \
____________ ;-----------------f--------------------f----- R N —
| Core B Endpoint
i usbd core.c/h [Management
H — usbd _ep.c
I USB Core
............ . --_----------_--_----T-JL-_----------_--_-------_--_----------_.
v
RTOS RTOS Device Controller
(Classes) (Core & EP) Driver
usbd_hid os.c/h usbd_os.c/h usbd_drv_<name>.c/h
usbd _phdc_os.c/h Y
usbd msc_os.c/h
Device Controller
BSP
usbd_bsp_<name>.c/h RaTnods
A "
—L Hardware Abstraction
CPU
cpu_core.c/h cpu.h | Hardware |
cpu_c.c
cpu_a.*

Figure 4-1 pC/USB-Device Architecture Block Diagram

54

Modules Relationship

4-1 MODULES RELATIONSHIP

4-1-1 APPLICATION

Your application layer needs to provide configuration information to pC/USB-Device in the
form of four C files: app cfg.h, usbd cfg.h, usbd dev cfg.c and usbd dev cfg.h:

B app cfg.h is an application-specific configuration file. It contains #defines to specify
task priorities and the stack size of each of the task within the application and the task
required by pC/USB-Device. Some small Micripm modules like pC/LIB (run-time
library) use app_cfg.h to configure parameters such as the heap size.

B Configuration data in usbd cfg.h consists of specifying the number of devices
supported in the stack, the maximum number of configurations, the maximum number
of interfaces and alternate interfaces, maximum number of opened endpoints per
device, class-specific configuration parameters and more. In all, there are approximately
20 #defines to set.

B Finally, usbd dev cfg.c/.h consists of device-specific configuration requirements
such as vendor ID, product ID, device release number and its respective strings. It also
contains device controller specific configurations such as base address, dedicated
memory base address and size, and endpoint management table.

Refer to Chapter 5, “Configuration” on page 65 for more information on how to configure
pC/USB-Device.

4-1-2 LIBRARIES

Given that pC/USB-Device is designed to be used in safety critical applications, some of the
“standard” library functions such as strcpy(), memset(), etc. have been rewritten to
conform to the same quality standards as the rest of the USB device stack. All these standard
functions are part of a separate Micripm’s product, pC/LIB. pC/USB-Device depends on this
product. In addition, some data objects in USB controller drivers are created at run-time
which implies the use of memory allocation from the heap function Mem HeapAlloc().

55

Chapter 4

4-1-3 USB CLASS LAYER

Your application will interface with pC/USB-Device using the class layer API. In this layer,
four classes defined by the USB-IF are implemented. In case you need to implement a
vendor-specific class, a fifth class, the “vendor” class, is available. This class provides
functions for simple communication via endpoints. The classes that pC/USB-Device
currently supports are the following:

B Communication Device Class (CDC)
CDC Abstract Control Model (ACM) subclass
B Human Interface Device Class (HID)
B Mass Storage Class (MSC)
B Personal Healthcare Device Class (PHDC)
B Vendor Class

You can also create other classes defined by the USB-IF. Refer to Chapter 7, “USB Classes”
on page 99 for more information on how a USB class interacts with the core layer.

4-1-4 USB CORE LAYER

USB core layer is responsible for creating and maintaining the logical structure of a USB
device. The core layer manages the USB configurations, interfaces, alternate interfaces and
allocation of endpoints based on the application or USB classes requirements and the USB
controller endpoints available. Standard requests, bus events (reset, suspend, connect and
disconnect) and enumeration process are also handled by the Core layer.

4-1-5 ENDPOINT MANAGEMENT LAYER

The endpoint management layer is responsible for sending and receiving data using
endpoints. Control, interrupt and bulk transfers are implemented in this layer. This layer
provides synchronous API for control, bulk and interrupt I/O operations and asynchronous
API for bulk and interrupt I/O operations.

56

Modules Relationship

4-1-6 REAL-TIME OPERATING SYSTEM (RTOS) ABSTRACTION
LAYER

pC/USB-Device assumes the presence of a RTOS, and a RTOS abstraction layer allows pC/
USB-Device to be independent of a specific RTOS. The RTOS abstraction layer is composed
of several RTOS ports, a core layer port and some class layer ports.

CORE LAYER PORT
At the very least, the RTOS for the core layer:

B Create at least one task for the core operation and one optional task for the debug trace
feature.

B Provide semaphore management (or the equivalent). Semaphores are used to signal
completion or error in synchronous I/O operations and trace events.

B Provide queue management for I/O and bus events.

pC/USB-Device is provided with ports for pC/OS-II and pC/OS-III. If a different RTOS is
used, you can use the files for pC/OS-II or pC/OS-IIT as template to interface to the RTOS
chosen. For more information on how to port pC/USB-Device to a RTOS, see Chapter 14,
“Porting pC/USB-Device to your RTOS” on page 237.

CLASS LAYER PORTS

Some classes requires a RTOS port (i.e., MSC, PHDC and HID). Refer to Table 14-2 on
page 239 for a list of sections containing more informations on the RTOS port of each of
these classes.

4-1-7 HARDWARE ABSTRACTION LAYER

pC/USB-Device works with nearly any USB device controller. This layer handles the
specifics of the hardware, e.g., how to initialize the device, how to open and configure
endpoints, how to start reception and transmission of USB packets, how to read and write
USB packets, how to report USB events to the core, etc. The USB device driver controller
functions are encapsulated and implemented in the usbd drv_<controller>.c file.

57

Chapter 4

In order to have independent configuration for clock gating, interrupt controller and general
purpose /O, a USB device controller driver needs an additional file. This file is called a
Board Support Package (BSP). The name of this file is usbd bsp <controller>.c. This file
contains all the details that are closely related to the hardware on which the product is used.
This file also defines the endpoints information table. This table is used by the core layer to
allocate endpoints according to the hardware capabilities.

4-1-8 CPU LAYER

pC/USB-Device can work with either an 8, 16, 32 or even 64-bit CPU, but it must have
information about the CPU used. The CPU layer defines such information as the C data type
corresponding to 16-bit and 32-bit variables, whether the CPU has little or big endian
memory organization, and how interrupts are disabled and enabled on the CPU.

CPU-specific files are found in the \uC-CPU directory and are used to adapt nC/USB-Device
to a different CPU.

4-2 TASK MODEL

pC/USB-Device requires two tasks: One core task and one optional task for tracing debug
events. The core task has three main responsibilities:

B Process USB bus events: Bus events such as reset, suspend, connect and disconnect are
processed by the core task. Based on the type of bus event, the core task sets the state
of the device.

B Process USB requests: USB requests are sent by the host using the default control
endpoint. The core task processes all USB requests. Some requests are handled by the

USB class driver, for those requests the core calls the class-specific request handler.

B Process I/O asynchronous transfers: Asynchronous I/O transfers are handled by the
core. Under completion, the core task invokes the respective callback for the transfer.

Figure 4-2 shows a simplified task model of pC/USB-Device along with application tasks.

58

Task Model

USB Class API

Endpoint1/O
Operation

Setup Packet

1/0 Events

Application
Output Function

Device
Controller

Figure 4-2 uC/USB-Device Task Model

4-2-1 SENDING AND RECEIVING DATA

Figure 4-3 shows a simplified task model of pC/USB-Device when data is transmitted and
received through the USB device controller. With pC/USB-Device, data can be sent
asynchronously or synchronously. In a synchronous operation, the application blocks
execution until the transfer operation completes, or an error or a time-out has occurred. In
an asynchronous operation, the application does not block. The core task notifies the
application when the transfer operation has completed through a callback function.

59

Chapter 4

App
Task

1) USB Class

Application
Callback

2

Transfer Ready Usgui\:‘eents
Semaphore 5
(5) (5)
(3) | Device driver | ?
1

----pp Asynchronous 1/0

+ Datapath
A 4

> Synchronous /0
USB Device Datapath
Controller

vy

Universal Serial Bus

Figure 4-3 Sending and Receiving a Packet

F4-3(1) An application task that wants to receive or send data interfaces with nC/USB-
Device through the USB classes API. The USB classes API interface with the
core API and the core interfaces with the endpoint layer API.

F4-3(2) The endpoint layer API prepares the data depending on the endpoint
characteristics.

F4-3(3) When the USB device controller is ready, the driver prepares the transmission
or the reception.

60

Task Model

F4-3(4) Once the transfer has completed, the USB device controller generates an
interrupt. Depending of the operation (transmission or reception) the USB
device controller’s driver ISR invokes the transmit complete or receive complete
function from the core.

F4-3(5) If the operation is synchronous, the transmit or receive complete function will
signal the transfer ready counting semaphore. If the operation is asynchronous,
the transmit or receive complete function will put a message in the USB core
event queue for deferred processing by the USB core task.

F4-3(6) If the operation is synchronous, the endpoint layer will wait on the counting
semaphore. The operation repeats steps 2 to 5 until the whole transfer has
completed.

F4-3(7) The core task waits on events to be put in the core event queue. In

asynchronous transfers, the core task will call the endpoint layer until the
operation is completed.

F4-3(8) In asynchronous mode, after the transfer has completed the core task will call
the application completion callback to notify the end of the I/O operation.

4-2-2 PROCESSING USB REQUESTS AND BUS EVENTS

USB requests are processed by the core task. Figure 4-4 shows a simplified task diagram of
a USB request processing. USB bus events such as reset, resume, connect, disconnect, and
suspend are processed in the same way as the USB requests. The core process the USB bus
events to modify and update the current state of the device.

61

Chapter 4

@)

0

Setup
Packet ISR

4

®)

Request Handler

Standard
Request Handler

/\

Class
Request Handler

USB Device
Controller
Figure 4-4 Processing USB Requests
F4-4(D) USB requests are sent using control transfers. During the setup stage of the

control transfer, the USB device controller generates an interrupt to notify the

driver that a new setup packet has arrived.

F4-4(2) The USB device controller driver ISR notifies the core by pushing the event in

the core event queue.

F4-4(3) The core task receives the message from the queue, and starts the parsing of

the USB request by calling the request handler.

F4-4(4) The request handler analyzes the request type and determines if the request is

a standard, vendor or class specific request.

F4-4(5) Standard requests are processed by the core layer. Vendor and class specific

requests are processed by the class driver, in the class layer.

62

Task Model

4-2-3 PROCESSING DEBUG EVENTS
pC/USB-Device contains an optional debug and trace feature. Debug events are managed in

the core layer using a dedicated task. Figure 4-5 describes how the core manage the debug
events.

)

usB

) / Class Layer \ o (4)
USB Debug

B Task

Core Layer
Free Debug \ Debuq Event
Events List usB List l

Driver Layer

Application
Specific Output ®)

Figure 4-5 Processing USB Debug Events

F4-5(1) The debug and trace module in the core contains a free list of USB debug
events. The debug events objects contain useful information such as the
endpoint number, interface number or the layer that generates the events.

F4-5(2) Multiple pC/USB-Device layers take available debug event objects to trace
useful information about different USB related events.

F4-5(3) Trace and debug information events are pushed in the debug event 1ist.ggg

F4-5(4) The debug task is dormant until a new debug event is available in the debug
event list. The debug task will parse the information contained in the debug
event object and it will output it in a human readable format using the
application specific output trace function USBD Trace().

F4-5(5) The application specific output function outputs the debug trace information.

For more information on the debug and trace module, see Chapter 13, “Debug and Trace”
on page 231.

63

Chapter 4

64

Chapter

Configuration

Prior to usage, nC/USB-Device must be properly configured. There are three groups of
configuration parameters:

B Static stack configuration
B Application specific configuration
B Device and device controller driver configuration

This chapter explains how to setup all these groups of configuration. The last section of this
chapter also provides examples of configuration following examples of typical usage.

5-1 STATIC STACK CONFIGURATION

pC/USB-Device is configurable at compile time via approximately 20 #defines in the
application’s copy of usbd cfg.h. pC/USB-Device uses #defines when possible because
they allow code and data sizes to be scaled at compile time based on enabled features and
the configured number of USB objects. This allows the Read-Only Memory (ROM) and
Random-Access Memory (RAM) footprints of pC/USB-Device to be adjusted based on
application requirements.

It is recommended that the configuration process begins with the recommended or default
configuration values which in the next sections will be shown in bold.

The sections in this chapter are organized following the order in pC/USB-Device’s template
configuration file, usbd cfg.h.

65

Chapter 5

5-1-1 GENERIC CONFIGURATION

USBD_CFG_OPTIMIZE_SPD

Selected portions of pC/USB-Device code may be optimized for either better performance
or for smallest code size by configuring USBD_CFG_OPTIMIZE SPD:

DEF_ENABLED Optimizes pC/USB-Device for best speed performance

DEF_DISABLED Optimizes pC/USB-Device for best binary image size

USBD_CFG_MAX_NBR_DEV

USBD_CFG_MAX NBR_DEV configures the maximum number of devices. This value should be
set to the number of device controllers used on your platform. Default value is 1.

5-1-2 USB DEVICE CONFIGURATION

USBD_CFG_MAX _NBR_CFG

USBD_CFG_MAX NBR CFG sets the maximum number of USB configurations used by your
device. Keep in mind that if you use a high-speed USB device controller, you will need at
least two USB configurations, one for low and full-speed and another for high-speed. Refer
to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on USB
configuration. Default value is 2.

5-1-3 INTERFACE CONFIGURATION

USBD_CFG_MAX_NBR_IF

USBD CFG MAX NBR IF configures the maximum number of interfaces available. This value
should at least be equal to USBD CFG MAX NBR CFG and greatly depends on the USB
class(es) used. Each class instance requires at least one interface, while CDC-ACM requires
two. Refer to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more
details on USB interfaces. Default value is 2.

66

Static Stack Configuration

USBD_CFG_MAX_NBR_IF_ALT

USBD CFG MAX NBR IF ALT defines the maximum number of alternate interfaces (alternate
settings) available. This value should at least be equal to USBD CFG MAX NBR IF. Refer to
the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on
alternate settings. Default value is 2.

USBD _CFG_MAX NBR _IF_GRP

USBD CFG MAX NBR IF GRP sets the maximum number of interface groups or associations
available. For the moment, Micripm offers only one USB class (CDC-ACM) that requires
interface groups. Refer to the Interface Association Descriptors USB Engineering Change
Notice for more details about interface associations. Default value is 0 (should be equal to
the number of instances of CDC-ACM).

USBD_CFG_MAX NBR EP_DESC

USBD_CFG_MAX NBR _EP DESC sets the maximum number of endpoint descriptors available.
This value greatly depends on the USB class(es) used. For information on how many
endpoints are needed for each class, refer to the class specific chapter. Keep in mind that
control endpoints do not need any endpoint descriptors. Default value is 2.

USBD_CFG_MAX NBR_EP_OPEN

USBD_CFG MAX NBR EP OPEN configures the maximum number of opened endpoints per
device. If you use more than one device, set this value to the worst case. This value greatly
depends on the USB class(es) used. For information on how many endpoints are needed for
each class, refer to the class specific chapter. Default value is 4 (2 control plus 2 other
endpoints).

5-1-4 STRING CONFIGURATION

USBD_CFG_MAX_NBR_STR

USBD CFG MAX NBR STR configures the maximum number of string descriptors supported.
Default value is 3 (1 Manufacturer string, 1 product string and 1 serial number string). This
value can be increased if, for example, you plan to add interface specific strings.

67

Chapter 5

5-1-5 DEBUG CONFIGURATION

Configurations in this section only need to be set if you use the core debugging service. For
more information on that service, see Chapter 13, “Debug and Trace” on page 231.

USBD_CFG_DBG_TRACE_EN

USBD_CFG DBG_TRACE EN enables or disables the core debug trace engine.
DEF_ENABLED Core debug trace engine is enabled.
DEF_DISABLED Core debug trace engine is disabled.

USBD _CFG_DBG_TRACE_NBR _EVENTS

USBD CFG DBG TRACE NBR EVENTS indicates the maximum number of debug trace events
that can be queued by the core debug trace engine. Default value is 10.

This configuration constant has no effect and will not allocate any memory if
USBD_CFG DBG TRACE EN is set to DEF_DISABLED.

5-1-6 COMMUNICATION DEVICE CLASS (CDC)
CONFIGURATION

For information on CDC configuration, refer to section 8-3 “Configuration” on page 120.

5-1-7 CDC ABSTRACT CONTROL MODEL (ACM) SERIAL CLASS
CONFIGURATION

For information on CDC-ACM class configuration, refer to section 8-4-2 “General
Configuration” on page 123.

5-1-8 HUMAN INTERFACE DEVICE (HID) CLASS
CONFIGURATION

For information on HID class configuration, refer to Section 9-3, “Configuration” on
page 143.

68

Application Specific Configuration

5-1-9 MASS STORAGE CLASS (MSC) CONFIGURATION

For information on MSC configuration, refer to Section 10-4, “Configuration” on page 173.

5-1-10 PERSONAL HEALTHCARE DEVICE CLASS (PHDC)
CONFIGURATION

For information on PHDC configuration, refer to section 11-2 “Configuration” on page 187.

5-1-11 VENDOR CLASS CONFIGURATION

For information on vendor class configuration, refer to Section 12-2, “Configuration” on
page 207.

5-2 APPLICATION SPECIFIC CONFIGURATION

This section defines the configuration constants related to pC/USB-Device but that are
application-specific. All these configuration constants relate to the RTOS. For many OSs, the
pC/USB-Device task priorities and stack sizes will need to be explicitly configured for the
particular OS (consult the specific OS’s documentation for more information).

These configuration constants should be defined in an application’s app cfg.h file.

5-2-1 TASK PRIORITIES

As mentioned in section 4-2 “Task Model” on page 58, pC/USB-Device needs one core task
and one optional debug task for its proper operation. The priority of pnC/USB-Device’s core
task greatly depends on the USB requirements of your application. For some applications, it
might be better to set it at a high priority, especially if your application requires a lot of
tasks and is CPU intensive. In that case, if the core task has a low priority, it might not be
able to process the bus and control requests on time. On the other hand, for some
applications, you might want to give the core task a low priority, especially if you plan using
asynchronous communication and if you know you will have quite a lot of code in your
callback functions. For more information on the core task, see section 4-2 “Task Model” on
page 58.

69

Chapter 5

The priority of the debug task should generally be low since it is not critical and the task
performed can be executed in the background.

For the pC/OS-II and pC/OS-II RTOS ports, the following macros must be configured
within app_cfg.h:

B USBD OS CFG CORE_TASK PRIO
B USBD OS CFG TRACE TASK PRIO

Note: if USBD_CFG_DBG_TRACE_EN is set to DEF_DISABLED, USBD OS CFG TRACE TASK PRIO
should not be defined.

5-2-2 TASK STACK SIZES

For the pC/OS-II and pC/OS-II RTOS ports, the following macros must be configured
within app_cfg.h to set the internal task stack sizes:

M USBD OS CFG CORE_TASK STK SIZE 1000
M USBD OS CFG TRACE TASK STK SIZE 1000

Note: if USBD CFG DBG TRACE EN is set to DEF DISABLED, USBD OS CFG TRACE TASK STK SIZE
should not be defined.

The arbitrary stack size of 1000 is a good starting point for most applications.

The only guaranteed method of determining the required task stack sizes is to calculate the
maximum stack usage for each task. Obviously, the maximum stack usage for a task is the
total stack usage along the task’s most-stack-greedy function path plus the (maximum) stack
usage for interrupts. Note that the most-stack-greedy function path is not necessarily the
longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function
should be performed statically by the compiler or by a static analysis tool since these can
calculate function/task maximum stack usage based on the compiler’s actual code
generation and optimization settings. So for optimal task stack configuration, we
recommend to invest in a task stack calculator tool compatible with your build toolchain.

70

Device and Device Controller Driver Configuration

5-3 DEVICE AND DEVICE CONTROLLER DRIVER
CONFIGURATION

In order to finalize the configuration of your device, you need to declare two structures, one
will contain information about your device (Vendor ID, Product ID, etc.) and another that
will contain information useful to the device controller driver. A reference to both of these
structures needs to be passed to the USBD DevAdd() function, which allocates a device
controller.

For more information on how to modify device and device controller driver configuration,
see section 2-4-2 “Copying and Modifying Template Files” on page 33.

5-4 CONFIGURATION EXAMPLES

This section provides examples of configuration for pC/USB-Device stack based on some
typical usages. This section will only give examples of static stack configuration, as the
application-specific configuration greatly depends on your application. Also, the device
configuration is related to your product’s context, and the device controller driver
configuration depends on the hardware you use.

The examples of typical usage that will be treated are the following:
B A simple full-speed USB device. This device uses Micripm’s vendor class.

B A composite high-speed USB device. This device uses Micripm’s PHDC and MSC
classes.

B A complex composite high-speed USB device. This device uses an instance of Micripm’s
HID class in two different configurations plus a different instance of Micripm’s CDC-
ACM class in each configuration. This device also uses an instance of Micripm’s vendor
class in the second configuration.

71

Chapter 5

5-4-1 SIMPLE FULL-SPEED USB DEVICE

Table 5-1 shows the values that should be set for the different configuration constants

described earlier if you build a simple full-speed USB device using Micripm’s vendor class.

Configuration Value Explanation

USBD_CFG _MAX NBR CFG 1 Since device is full speed, only one configuration is
needed.

USBD_CFG_MAX NBR IF 1 Since device only uses the vendor class, only one
interface is needed.

USBD_CFG MAX NBR IF ALT 1 No alternate interfaces are needed, but this value must at
least be equal to USBD_CFG_MAX NBR IF.

USBD_CFG MAX NBR IF GRP 0 No interface association needed.

USBD_CFG MAX NBR EP DESC 2oré4 Two bulk endpoints and two optional interrupt endpoints.

USBD_CFG_MAX NBR EP_OPEN 40r6 Two control endpoints for device’s standard requests.

Two bulk endpoints and two optional interrupt endpoints.

USBD_VENDOR CFG_MAX NBR DEV

Only one instance of vendor class is needed.

USBD_VENDOR CFG_MAX NBR CFG

72

Vendor class instance will only be used in one
configuration.

Table 5-1 Configuration Example of a Simple Full-Speed USB Device

Configuration Examples

5-4-2 COMPOSITE HIGH-SPEED USB DEVICE

Table 5-2 shows the values that should be set for the different configuration constants
described earlier if you build a composite high-speed USB device using Micripm’s PHDC
and MSC classes. The structure of this device is described in Figure 5-1.

/ High-speed \

SB dewce
FuII speed /H|gh speed
conflguratlon conflguratlon

/ PHDC / MSC \
Qeﬁafe Qterfay

/BulklN\ Bulk OUT ‘/ln/terrupt IN /" BukIN "/ Bulk OUT
\\endpom’y endpoint Qndpoint* ‘\\endpoy \\endpoiy

PHDC instance MSC instance

*Endpoint is optional

Figure 5-1 Composite High-Speed USB Device Structure

73

Chapter 5

Configuration Value Explanation

USBD_CFG _MAX NBR CFG 2 One configuration for full/low-speed and another for high-
speed.

USBD_CFG MAX NBR IF 4 One interface for PHDC and another for MSC. A different

interface for each configuration is also needed.

USBD_CFG_MAX NBR_IF ALT 4 No alternate interface needed, but this value must at least
be equal to USBD_CFG _MAX NBR_IF.

USBD_CFG MAX NBR IF GRP 0 No interface association needed.

USBD_CFG MAX NBR EP DESC 4or5 Two bulk endpoints for MSC.
Two bulk plus one optional interrupt endpoint for PHDC.

USBD_CFG MAX NBR EP OPEN 6or7 Two control endpoints for device’s standard requests.
Two bulk endpoints for MSC.
Two bulk plus 1 optional interrupt endpoint for PHDC.

USBD_PHDC_CFG_MAX NBR DEV 1 Only one instance of PHDC is needed. It will be shared
between all the configurations.

USBD_PHDC_CFG_MAX NBR CFG 2 PHDC instance can be used in both of device’s
configurations.

USBD_MSC CFG MAX NBR DEV 1 Only one instance of MSC is needed. It will be shared
between all the configurations.

USBD_MSC CFG MAX NBR CFG 2 MSC instance can be used in both of device’s
configurations.

Table 5-2 Configuration Example of a Composite High-Speed USB Device

5-4-3 COMPLEX COMPOSITE HIGH-SPEED USB DEVICE

Table 5-3 shows the values that should be set for the different configuration constants
described earlier if you build a composite high-speed USB device using a single instance of
Micripm’s HID class in two different configurations plus a different instance of Micripm’s CDC-
ACM class in each configuration. The device also uses an instance of Micripm’s vendor class in
its second configuration. See Figure 5-2 for a graphical description of this USB device.

74

Configuration Examples

- —

fﬁmmunication

/{\interface

‘mterrupt IN

endpoint

/” Bulk OUT
\\/@pomt

| Data interface -
/\/Bulk IN

\\ endpomt

el 1

—— CDC-ACM class instance 1

/ Full-speed
conflguratron

Interrupt IN

2 ndpornt
/‘/ HID \\
/ / interface —
High- speed i nterrupt ou
‘ configuration \endpoint*

\/

HID class instance
Configuration 1

Communlcatlon Interrupt
o~ mterfac endpornt
/ High-speed
\\USB device /" Bulk OUT
— - / ndpomt

Y Data interface

- Bulk IN_

- \\ndpornt

FuII speed

\\ figuration

\/

CDC-ACM class instance 2
7 BukIN
endpoint

(|gh speed
configuration /Bulk O
- J— endpomt
\/ Vendor

Interrupt IN
\gldpoint*

|
\gerface

nterrupt O
\\ndpornt

Vendor class instance

Configuration 2

*Endpoint is optional

Figure 5-2 Complex Composite High-Speed USB Device Structure

75

Chapter 5

Configuration Value Explanation
USBD_CFG _MAX NBR CFG 4 Two configurations for full/low-speed and two others for
high-speed.
USBD_CFG_MAX NBR IF 7 First configuration:
One interface for HID.
Two interfaces for CDC-ACM.
Second configuration:
One interface for HID.
Two interfaces for CDC-ACM.
One interface for vendor.
USBD_CFG MAX NBR IF ALT 7 No alternate interface needed, but this value must at least
be equal to USBD_CFG_MAX NBR IF.
USBD_CFG_MAX NBR IF GRP 2 CDC-ACM needs to group its communication and data
interfaces into a single USB function. Since there are two
CDC-ACM class instances, there will be two interface
groups.
USBD_CFG MAX NBR EP DESC 9,10, 11 One IN and (optional) OUT interrupt endpoint for HID.
or12 Three endpoints for first CDC-ACM class instance.
Three endpoints for second CDC-ACM class instance.
Two bulk plus two optional interrupt endpoints for vendor.
USBD_CFG _MAX NBR EP OPEN 8,9,10 In the worst case (host enables second configuration):
or 11 Two control endpoints for device’s standard requests.
One IN and (optional) OUT interrupt endpoint for HID.
Three endpoints for second CDC-ACM class instance.
Two bulk plus two optional interrupt endpoints for vendor.
USBD_HID CFG MAX NBR DEV 1 Only one instance of HID class is needed. It will be shared
between all the configurations.
USBD_HID CFG MAX NBR CFG 4 HID class instance can be used in all of device’s
configurations.
USBD_CDC_CFG_MAX NBR DEV 2 Two CDC base class instances are used.
USBD_CDC_CFG MAX NBR CFG 2 Each CDC base class instance can be used in one full-
speed and one high-speed configuration.
USBD_ACM SERIAL CFG_MAX NBR DEV 2 Two ACM subclass instances are used.
USBD_VENDOR_CFG_MAX NBR DEV 1 Only one vendor class instance is used.
USBD_VENDOR_CFG_MAX NBR CFG 2 The vendor class instance can be used in one full-speed

and one high-speed configuration.

Table 5-3 Configuration Example of a Complex Composite High-Speed USB Device

76

Chapter

Device Driver Guide

There are many USB device controllers available on the market and each requires a driver to
work with pC/USB-Device. The amount of code necessary to port a specific device to nC/
USB-Device greatly depends on the device’s complexity.

If not already available, a driver can be developed, as described in this chapter. However, it
is recommended to modify an already existing device driver with the new device’s specific
code following the Micripm coding convention for consistency. It is also possible to adapt

drivers written for other USB device stacks, especially if the driver is short and it is a matter
of simply copying data to and from the device.

6-1 DEVICE DRIVER ARCHITECTURE

This section describes the hardware (device) driver architecture for pC/USB-Device,
including:

B Device Driver API Definition(s)

B Device Configuration

B Memory Allocation

B CPU and Board Support

Micripm provides sample configuration code free of charge; however, the sample code will

likely require modification depending on the combination of processor, evaluation board,
and USB device controller(s).

7

Chapter 6

6-2 DEVICE DRIVER MODEL

No particular memory interface is required by pC/USB-Device's driver model. Therefore, the
USB device controller may use the assistance of a Direct Memory Access (DMA) controller
to transfer data or handle the data transfers directly.

6-3 DEVICE DRIVER API
All device drivers must declare an instance of the appropriate device driver API structure as
a global variable within the source code. The API structure is an ordered list of function

pointers utilized by nC/USB-Device when device hardware services are required.

A sample device driver API structure is shown below.

const USBD_DRV_API USBD_DrvAPI_<controller> = { USBD_DrvInit, (1)
USBD_DrvStart, (2)
USBD_DrvStop, (3)
USBD_DrvAddrSet, (4)
USBD_DrvAddrEn, (5)
USBD_DrvCfgSet, (6)
USBD_DrvCfgClr, (7)
USBD_DrvGetFrameNbr, (8)
USBD_DrvEP_Open, 9)
USBD_DrvEP_Close, (10)
USBD_DrvEP RxStart, (11)
USBD_DrvEP_Rx, (12)
USBD_DrvEP_RXZLP, (13)
USBD_DrvEP_Tx, (14)
USBD_DrvEP TxStart, (15)
USBD_DrvEP_TXZLP, (16)
USBD_DrvEP_Abort, (17)
USBD_DrvEP Stall, (18)
USBD_DrvISR Handler (19)

}i

Listing 6-1 Device Driver Interface API

Note: It is the device driver developers’ responsibility to ensure that all of the functions
listed within the API are properly implemented and that the order of the functions within
the API structure is correct. The different function pointers are:

78

Device Driver API

L6-1(1)

L6-1(2)

L6-1(3)

L6-1(4)

L6-1(5)

L6-1(6)

L6-1(7)

L6-1(8)

L6-1(9)

L6-1(10)

L6-1(11)

L6-1(12)

L6-1(13)

L6-1(14)

L6-1(15)

L6-1(16)

L6-1(17)

L6-1(18)

L6-1(19)

Device initialization/add

Device start

Device stop

Assign device address

Enable device address

Set device configuration

Clear device configuration

Retrieve frame number

Open device endpoint

Close device endpoint

Configure device endpoint to receive data
Receive from device endpoint

Receive zero-length packet from device endpoint
Configure device endpoint to transmit data
Transmit to device endpoint

Transmit zero-length packet to device endpoint
Abort device endpoint transfer

Stall device endpoint

Device interrupt service routine (ISR) handler

79

Chapter 6

The details of each device driver API function are described in Appendix B, “Device
Controller Driver API Reference” on page 323.

Note: pC/USB-Device device driver API function names may not be unique. Name clashes
between device drivers are avoided by never globally prototyping device driver functions
and ensuring that all references to functions within the driver are obtained by pointers
within the API structure. The developer may arbitrarily name the functions within the source
file so long as the API structure is properly declared. The user application should never
need to call API functions. Unless special care is taken, calling device driver functions may
lead to unpredictable results due to reentrancy.

When writing your own device driver, you can assume that each driver API function accepts
a pointer to a structure of the type USBD DRV as one of its parameters. Through this
structure, you will be able to access the following fields:

typedef struct usbd drv USBD_DRV;

typedef wusb_drv {

CPU_INTO08U DevNbr ; (1)
USBD_DRV_API *API_Ptr; (2)
USBD_DRV_CFG *CfgPtr; (3)
void *DataPtr; (4)
USBD_DRV_BSP_API *BSP_API_Ptr; (5)

}i
Listing 6-2 USB Device Driver Data Type
L6-2(1) Unique index to identify device.
L6-2(2) Pointer to USB device controller driver APL
L6-2(3) Pointer to USB device controller driver configuration.
L6-2(4) Pointer to USB device controller driver specific data.

L6-2(5) Pointer to USB device controller BSP.

80

Interrupt Handling

6-4 INTERRUPT HANDLING

Interrupt handling is accomplished using the following multi-level scheme.
1 Processor level kernel-aware interrupt handler

2 Device driver interrupt handler

During initialization, the device driver registers all necessary interrupt sources with the BSP
interrupt management code. You can also accomplish this by plugging an interrupt vector
table during compile time. Once the global interrupt vector sources are configured and an
interrupt occurs, the system will call the first-level interrupt handler. The first-level interrupt
handler is responsible for performing all kernel required steps prior to calling the USB
device driver interrupt handler: USBD DrvISR Handler(). Depending on the platform
architecture (that is the way the kernel handles interrupts) and the USB device controller
interrupt vectors, the device driver interrupt handler implementation may follow the models
below.

6-4-1 SINGLE USB ISR VECTOR WITH ISR HANDLER
ARGUMENT

If the platform architecture allows parameters to be passed to ISR handlers and the USB
device controller has a single interrupt vector for the USB device, the first-level interrupt
handler may be defined as:

PROTOTYPE

void USBD_BSP <controller> IntHandler (void *p_arg);

ARGUMENTS
p_arg Pointer to USB device driver structure that must be typecast to a pointer to
USBD_DRV.

81

Chapter 6

6-4-2 SINGLE USB ISR VECTOR

If the platform architecture does not allow parameters to be passed to ISR handlers and the
USB device controller has a single interrupt vector for the USB device, the first-level
interrupt handler may be defined as:

PROTOTYPE

void USBD BSP <controller> IntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally
in the driver. Since the pointer to the USB device structure is never modified, the BSP
initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-3 MULTIPLE USB ISR VECTORS WITH ISR HANDLER
ARGUMENTS

If the platform architecture allows parameters to be passed to ISR handlers and the USB
device controller has multiple interrupt vectors for the USB device (e.g., USB events, DMA
transfers), the first-level interrupt handler may need to be split into multiple sub-handlers.
Each sub-handler would be responsible for managing the status reported to the different
vectors. For example, the first-level interrupt handlers for a USB device controller that
redirects USB events to one interrupt vector and the status of DMA transfers to a second
interrupt vector may be defined as:

PROTOTYPE

void USBD BSP <controller> EventIntHandler (void *p arg);
void USBD BSP <controller> DMAIntHandler (void *p arg);

ARGUMENTS
p_arg Pointer to USB device driver structure that must be typecast to a pointer to
USBD_DRV.

82

Interrupt Handling

6-4-4 MULTIPLE USB ISR VECTORS

If the platform architecture does not allow parameters to be passed to ISR handlers and the
USB device controller has multiple interrupt vectors for the USB device (e.g., USB events,
DMA transfers), the first-level interrupt handler may need to be split into multiple sub-
handlers. Each sub-handler would be responsible for managing the status reported to the
different vectors. For example, the first-level interrupt handlers for a USB device controller
that redirects USB events to one interrupt vector and the status of DMA transfers to a second
interrupt vector may be defined as:

PROTOTYPE

void USBD BSP <controller> EventIntHandler (void);
void USBD_BSP <controller> DMAIntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally
in the driver. Since the pointer to the USB device structure is never modified, the BSP
initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-5 USBD _DrviSR HANDLER()

The device driver interrupt handler must notify the USB device stack of various status
changes. Table 6-1 shows each type of status change and the corresponding notification

function.
Connect Event USBD_EventConn()
Disconnect Event USBD_EventDisconn()
Reset Event USBD_EventReset ()
Suspend Event USBD_EventSuspend ()
Resume Event USBD_EventResume ()
High-Speed Handshake Event USBD_EventHS ()

83

Chapter 6

Setup Packet USBD_EventSetup()
Receive Packet Completed USBD_EP RxCmpl()
Transmit Packet Completed USBD_EP TxCmpl()

Table 6-1 Status Notification API

Each status notification API queues the event type to be processed by the USB stack’s event

processing task. Upon reception of an USB event, the interrupt service routine may perform

some operations associated to the event before notifying the stack. For example, the USB

device controller driver must perform the proper actions for the bus reset when an interrupt

request for that event is triggered. Additionally, it must also notify the USB device stack

about the bus reset event by invoking the proper status notification API. In general, the

device driver interrupt handler must perform the following functions:

1

84

Determine which type of interrupt event occurred by reading an interrupt status
register.

If a receive event has occurred, the driver must post the successful completion or the
error status to the USB device stack by calling USBD EP RxCmpl() for each transfer
received.

If a transmit complete event has occurred, the driver must post the successful
completion or the error status to the USB device stack by calling USBD_EP_TxCmpl () for
each transfer transmitted.

If a setup packet event has occurred, the driver must post the setup packet data in little-
endian format to the USB device stack by calling USBD EventSetup().

All other events must be posted to the USB device stack by a call to their corresponding
status notification API from Table 1. This allows the USB device stack to broadcast these

event notifications to the classes.

Clear local interrupt flags.

Device Configuration

6-5 DEVICE CONFIGURATION

The USB device characteristics must be shared with the USB device stack through
configuration parameters. All of these parameters are provided through two global
structures of type USBD_DRV_CFG and USBD DEV_CFG. These structures are declared in the
file usbd dev cfg.h, and defined in the file usbd dev cfg.c (refer to section 2-4-2
“Copying and Modifying Template Files” on page 33 for an example of initialization of these
structures). These files are distributed as templates, and you should modify them to have the
proper configuration for your USB device controller. The fields of the following structure
are the parameters needed to configure the USB device controller driver:

typedef const struct usb drv cfg {

CPU_ADDR BaseAddr; (1)
CPU_ADDR, MemAddr ; (2)
CPU_ADDR, MemSize; (3)
USBD_DEV_SPD, Spd; (4)
USBD_DRV_EP_INFO *EP_InfoTbl; (5)

} USBD_DRV_CFG;

Listing 6-3 USB Device Controller Driver Configuration Structure

L6-3(1) Base address of the USB device controller hardware registers.

L6-3(2) Base address of the USB device controller dedicated memory.

L6-3(3) Size of the USB device controller dedicated memory.

L6-3(4) Speed of the USB device controller. Can be set to either USBD DEV_SPD LOW

USBD_DEV_SPD FULL or USBD_DEV_SPD HIGH.

L6-3(5) USB device controller endpoint information table (see section 6-5-1 “Endpoint
Information Table” on page 86).

The fields of the following structure are the parameters needed to configure the USB device:

85

Chapter 6

typedef const struct usb_dev cfg {

CPU_INT16U VendorID; (1)
CPU_INT16U ProductID; (2)
CPU_INT16U DeviceBCD; (3)
const CPU_CHAR *ManufacturerStrPtr; (4)
const CPU_CHAR *ProductStrPtr; (5)
const CPU_CHAR *SerialNbrStrPtr; (6)
CPU_INT16U LangID; (7)

} USBD_DEV_CFG;

Listing 6-4 USB Device Configuration Structure

L6-4(1) Vendor ID.

L6-4(2) Product ID.

L6-4(3) Device release number.
L6-4(4) Pointer to manufacturer string.
L6-4(5) Pointer to product string.
L6-4(6) Pointer to serial number ID.

L6-4(7) Language ID.

6-5-1 ENDPOINT INFORMATION TABLE

The endpoint information table provides the hardware endpoint characteristics to the USB
device stack. When an endpoint is opened, the USB device stack’s core iterates through the
endpoint information table entries until the endpoint type and direction match the
requested endpoint characteristics. The matching entry provides the physical endpoint
number and maximum packet size information to the USB device stack. The entries on the
endpoint information table are organized as follows:

86

Device Configuration

typedef const struct wusbd drv_ep_ info {

CPU_INT08U Attrib; (1)
CPU_INTO8U Nbr; (2)
CPU_INT16U MaxPktSize; (3)

} USBD_DRV_EP_INFO;

L6-5(1)

L6-5(2)

L6-5(3)

Listing 6-5 Endpoint Information Table Entry

The endpoint Attrib is a combination of the endpoint type
USBD_EP INFO TYPE and endpoint direction USBD EP INFO DIR attributes.
The endpoint type can be defined as: USBD _EP INFO TYPE CTRL,
USBD EP INFO TYPE INTR USBD EP INFO TYPE BULK, or USBD EP INFO TYPE ISOC.
The endpoint direction can be defined as either USBD EP_INFO DIR IN or
USBD_EP_INFO DIR OUT.

The endpoint Nbr is the physical endpoint number used by the USB device
controller.

The endpoint MaxPktSize defines the maximum packet size supported by
hardware. The maximum packet size used by the USB device stack is validated
to follow the USB standard guidelines.

An example of an endpoint information table for a high-speed capable device is provided

below.

const USBD_DRV_EP_INFO USBD_DrvEP_ InfoTbl <controller>[] = {
{USBD_EP_INFO_TYPE CTRL | USBD_EP INFO DIR OUT, Ou, 64u},
{USBD_EP_INFO_TYPE_CTRL | USBD_EP_INFO DIR IN, Ou, 64u},
{USBD_EP_INFO_TYPE BULK | USBD_EP INFO TYPE_INTR | USBD_EP INFO DIR OUT, lu, 1024u},
{USBD_EP_INFO_TYPE BULK | USBD_EP INFO TYPE_ INTR | USBD_EP INFO DIR IN, 1lu, 1024u},
{DEF_BIT NONE , Ou, ou} (1)

}i

L6-6(1)

Listing 6-6 Example of Endpoint Information Table Configuration

The last entry on the endpoint information table must be an empty entry to
allow the USB device stack to determine the end of the table.

87

Chapter 6

6-6 MEMORY ALLOCATION

Memory allocation in the driver can be simplified by the use of memory allocation functions
available from pC/LIB. pnC/LIB’s memory allocation functions provide allocation of memory
from dedicated memory space (e.g., USB RAM) or general purpose heap. The driver may
use the pool functionality offered by pC/LIB. Memory pools use fixed-sized blocks that can
be dynamically allocated and freed during application execution. Memory pools may be
convenient to manage objects needed by the driver. The objects could be for instance data
structures mandatory for DMA operations. For more information on using pC/LIB memory
allocation functions, consult the pC/LIB documentation.

6-7 CPU AND BOARD SUPPORT

The USB device stack supports big-endian and little-endian CPU architectures. The setup
packet received as part of a control transfer must provide the content of the setup packet in
little-endian format to the stack. Therefore, if the USB device controller provides the content
in big-endian format, device drivers must swap the endianness of the setup packet’s
content.

In order for device drivers to be platform-independent, it is necessary to provide a layer of
code that abstracts details such as clocks, interrupt controllers, general-purpose input/
output (GPIO) pins, and other hardware modules configuration. With this board support
package (BSP) code layer, it is possible for the majority of the USB device stack to be
independent of any specific hardware, and for device drivers to be reused on different
architectures and bus configurations without the need to modify stack or driver source
code. These procedures are also referred as the USB BSP for a particular development
board.

A sample device BSP interface API structure is shown below.

const USBD_DRV_BSP API USBD_DrvBSP_<controller> = { USBD_BSP_Init, (1)
USBD_BSP_Conn, (2)
USBD_BSP_Disconn (3)

}i

Listing 6-7 Device BSP Interface API

88

USB Device Driver Functional Model

L6-7(D) Device BSP initialization function pointer
L6-7(2) Device BSP connect function pointer
L6-7(3) Device BSP disconnect function pointer

The details of each device BSP API function are described in section B-2 “Device Driver BSP
Functions” on page 350.

6-8 USB DEVICE DRIVER FUNCTIONAL MODEL

The USB device controller can operate in distinct modes while transferring data. This
section describes the common sequence of operations for the receive and transmit API
functions in the device driver, highlighting potential differences when the controller is
operating on FIFO or DMA mode. While there are some controllers that are strictly FIFO
based or DMA based, there are controllers that can operate in both modes depending on
hardware characteristics. For this type of controller, the device driver will employ the
appropriate sequence of operations depending, for example, on the endpoint type.

6-8-1 DEVICE SYNCHRONOUS RECEIVE

The device synchronous receive operation is initiated by the calls: USBD BulkRx(),
USBD CtrlRx(), and USBD IntrRx(). Figure 6-1 shows an overview of the device
synchronous receive operation.

USBD_EP_RX()
,\(1)

e
[USBD_DrEP_RxStart() |
o

(2)

(6) | Desvi'gcr‘fa?x “«—+_W USBDﬁEPﬁRmepI())\

(5)

’D/‘ ISR H dI}\
\\ evice andler
Y \ / Z USB Device

-
/\\USBDfDrvEPfo()) _ Interrupt

S I 3)

Figure 6-1 Device Synchronous Receive Diagram

89

Chapter 6

F6-1(1)

F6-1(2)

F6-1(3)

F6-1(4)

F6-1(5)

F6-1(6)

90

The upper layer API's, USBD BulkRx(), USBD CtrlRx(), and USBD_ IntrRx(),
call USBD_EP_Rx(), where USBD_DrvEP_RxStart() is invoked.

On DMA-based controllers, this device driver API is responsible for queuing a
receive transfer. The queued receive transfer does not need to satisfy the whole
requested transfer length at once. If multiple transfers are queued only the last
queued transfer must be signaled to the USB device stack. This is required
since the USB device stack iterates through the receive process until all
requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling
data to be received into the endpoint FIFO, including any related ISR’s.

While data is being received, the device synchronous receive operation waits
on the device receive signal.

The USB device controller triggers an interrupt request when it is finished
receiving the data. This invokes the USB device driver interrupt service routine
(ISR) handler, directly or indirectly, depending on the architecture.

Inside the USB device driver ISR handler, the type of interrupt request is
determined to be a receive interrupt. USBD_EP RxCmpl() is called to unblock
the device receive signal.

The device receive operation reaches the USBD_EP_Rx(), which internally calls
USBD_DrvEP Rx().

On DMA-based controllers, this device driver API is responsible for de-queuing
the completed receive transfer and returning the amount of data received. In
case the DMA-based controller requires the buffered data to be placed in a
dedicated USB memory region, the buffered data must be transferred into the
application buffer area.

On FIFO-based controllers, this device driver API is responsible for reading the
amount of data received by copying it into the application buffer area and
returning the data back to its caller.

The device receive operation iterates through the process until the amount of
data received matches the amount requested, or a short packet is received.

USB Device Driver Functional Model

6-8-2 DEVICE ASYNCHRONOUS RECEIVE

The device asynchronous receive operation is initiated by the calls: USBD BulkRxAsync ()
and USBD IntrRxAsync(). Figure 6-2 shows an overview of the device asynchronous
receive operation.

USBD_EP_Rx() / \ EP Queue
S /[4 3)
@ —— n()\:‘ [Core Task ;u—() :D:D:D: PR @ssoprfoCmpl())
% T/

(1)

Receive Complete Callback © ™ { Dewce ISR Handl%
«———{ USBD_DNEP_Rx()) USB Device
N Y

Interrupt

(5)

A 4
\/USBD DrvEP_| RxStan

. v

Figure 6-2 Device Asynchronous Receive Diagram

F6-2(1) The upper layer API's, USBD BulkRxAsync() and USBD IntrRxAsync(), call
USBD_EP_Rx() passing a receive complete callback function as an argument. In
USBD_EP_Rx(), the USBD_DrvEP_RxStart() function is invoked in the same
way as for the synchronous operation.

On DMA-based controllers, this device driver API is responsible for queuing a
receive transfer. The queued receive transfer does not need to satisfy the whole
requested transfer length at once. If multiple transfers are queued only the last
queued transfer must be signaled to the USB device stack. This is required
since the USB device stack iterates through the receive process until all
requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling
data to be received into the endpoint FIFO, including any related ISRs.

The call to USBD EP Rx() returns immediately to the application (without
blocking) while data is being received.

91

Chapter 6

F6-2(2)

F6-2(3)

F6-2(4)

F6-2(5)

F6-2(6)

92

The USB device controller triggers an interrupt request when it is finished
receiving the data. This invokes the USB device driver interrupt service routine
(ISR) handler, directly or indirectly, depending on the architecture.

Inside the USB device driver ISR handler, the type of interrupt request is
determined to be a receive interrupt. USBD_EP RxCmpl () is called to queue the
endpoint that had its transfer completed.

The core task de-queues the endpoint that completed a transfer and invokes
USBD_EP_Process (), which internally calls USBD_DrvEP_Rx().

On DMA-based controllers, this device driver API is responsible for de-queuing
the completed receive transfer and returning the amount of data received. In
case the DMA-based controller requires the buffered data to be placed in a
dedicated USB memory region, the buffered data must be transferred into the
application buffer area.

On FIFO-based controllers, this device driver API is responsible for reading the
amount of data received by copying it into the application buffer area and
returning the data back to its caller.

If the overall amount of data received is less than the amount requested and
the current transfer is not a short packet, USBD DrvEP_RxStart() is called to
request the remaining data.

On DMA-based controllers, this device driver API is responsible for queuing a
receive transfer. The queued receive transfer does not need to satisfy the whole
requested transfer length at once. If multiple transfers are queued only the last
queued transfer must be signaled to the USB device stack. This is required
since the USB device stack iterates through the receive process until all
requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling
data to be received into the endpoint FIFO, including any related ISRs.

The receive operation finishes when the amount of data received matches the
amount requested, or a short packet is received. The receive complete callback
is invoked to notify the application about the completion of the process.

USB Device Driver Functional Model

6-8-3 DEVICE SYNCHRONOUS TRANSMIT

The device synchronous transmit operation is initiated by the calls: USBD BulkTx(),
USBD_CtrlTx(), and USBD IntrTx(). Figure 6-3 shows an overview of the device
synchronous transmit operation.

USBD_EP_Tx()

~ (1)

USBD_DrvEP_Tx() /

P -

(USBD_DrvEP_TxStart() |

S
(©)
- 5
a D?S‘g:arx <« — 1+ _® —/\USBD_EP_TmepI()/\

[Device ISR Handle}
\\ / 2 USB Device

e Interrupt

(4)

Figure 6-3 Device Synchronous Transmit Diagram

F6-3(1) The upper layer API's, USBD BulkTx(), USBD CtrlTx(), and USBD_ IntrTx(),
call USBD EP Tx(), where USBD DrvEP Tx() is invoked.

On DMA-based controllers, this device driver API is responsible for preparing
the transmit transfer/descriptor and returning the amount of data to transmit. In
case the DMA-based controller requires the buffered data to be placed in a
dedicated USB memory region, the contents of the application buffer area must
be transferred into the dedicated memory region.

On FIFO-based controllers, this device driver API is responsible for writing the

amount of data to transfer into the FIFO and returning the amount of data to

transmit.

93

Chapter 6

F6-3(2)

F6-3(3)

F6-3(4)

F6-3(5)

F6-3(6)

94

The USBD DrvEP TxStart() API starts the transmit process.

On DMA-based controllers, this device driver API is responsible for queuing the
DMA transmit descriptor and enabling DMA transmit complete ISR’s.

On FIFO-based controllers, this device driver API is responsible for enabling
transmit complete ISR’s.

While data is being transmitted, the device synchronous transmit operation
waits on the device transmit signal.

The USB device controller triggers an interrupt request when it is finished
transmitting the data. This invokes the USB device driver interrupt service
routine (ISR) handler, directly or indirectly, depending on the architecture.

Inside the USB device driver ISR handler, the type of interrupt request is
determined as a transmit interrupt. USBD_EP_TxCmpl () is called to unblock the
device transmit signal.

On DMA-based controllers, the transmit transfer is de-queued from a list of
completed transfers.

The device transmit operation iterates through the process until the amount of
data transmitted matches the requested amount.

USB Device Driver Functional Model

6-8-4 DEVICE ASYNCHRONOUS TRANSMIT

The device asynchronous transmit operation is initiated by the calls: USBD BulkTxAsync ()

and USBD IntrTxAsync(). Figure 6-4 shows an overview of the device asynchronous

transmit operation

F6-4(1)

USBD_EP_Tx()

-

USBD_DVEP_Tx()

™

(USBDﬁDrvEPiTxStart()\\
__ -

2)

/ \ EP Queue
Transmit Complete Callback 7) / \ _ (5)

USBD_EP_TxCmpl()

N
i (®) Yo

= | Device ISR HanQ()\
USBELDNEP,Tx()\ USB Device S \\ /
—

Interrupt
(©)]

e

(USBD_DrvEP_TxStart()

Figure 6-4 Device Asynchronous Transmit Diagram

The upper layer API's, USBD BulkTxAsync() and USBD IntrTxAsync(), call
USBD_EP Tx() passing a transmit complete callback function as an argument.
In USBD_EP_Tx(), the USBD_DrvEP_Tx() function is invoked in the same way
as for the synchronous operation.

On DMA-based controllers, this device driver API is responsible for preparing
the transmit transfer/descriptor and returning the amount of data to transmit. In
case the DMA-based controller requires the buffered data to be placed in a
dedicated USB memory region, the contents of the application buffer area must
be transferred into the dedicated memory region.

On FIFO-based controllers, this device driver API is responsible for writing the

amount of data to transfer into the FIFO and returning the amount of data to
transmit.

95

Chapter 6

F6-4(2)

F6-4(3)

F6-4(4)

F6-4(5)

F6-4(6)

F6-4(7)

96

The USBD DrvEP TxStart() API starts the transmit process.

On DMA-based controllers, this device driver API is responsible for queuing the
DMA transmit descriptor and enabling DMA transmit complete ISR’s.

On FIFO-based controllers, this device driver API is responsible for enabling
transmit complete ISR’s.

The call to USBD EP Tx() returns immediately to the application (without
blocking) while data is being transmitted.

The USB device controller triggers an interrupt request when it is finished
transmitting the data. This invokes the USB device driver interrupt service
routine (ISR) handler, directly or indirectly, depending on the architecture.

Inside the USB device driver ISR handler, the type of interrupt request is
determined as a transmit interrupt. USBD_EP_TxCmpl() is called to queue the
endpoint that had its transfer completed.

On DMA-based controllers, the transmit transfer is de-queued from the list of
completed transfers.

The core task de-queues the endpoint that completed a transfer.

If the overall amount of data transmitted is less than the amount requested,
USBD DrvEP Tx() and USBD_DrvEP TxStart() are called to transmit the
remaining amount of data.

The device transmit operation finishes when the amount of data transmitted
matches the amount requested. The transmit complete callback is invoked to
notify the application about the completion of the process.

USB Device Driver Functional Model

6-8-5 DEVICE SET ADDRESS

The device set address operation is performed by the setup transfer handler when a

SET ADDRESS request is received. Figure 6-5 shows an overview of the device set address

operation.

F6-5(1)

F6-5(2)

F6-5(3)

Setup Transfer::Set Address

S)

-
(USBD_DrvAddrSet() |

o S

v (2

[Setup Transfer::Tx Status |

N AN)]
w:/ USBD_DrvAddrEn() \w
o W,

Figure 6-5 Device Set Address Diagram

Once the arguments of the setup request are validated, USBD DrvAddrSet() is
called to inform the device driver layer of the new address. For controllers that
have hardware assistance in setting the device address after the status stage,
this device driver API is used to configure the device address and enable the
transition after the status stage. For controllers that activate the device address
as soon as configured, this device driver API should not perform any action.

The setup request status stage is transmitted to acknowledge the address
change.

After the status stage, the USBD DrvAddrEn() is called to inform the device
driver layer to enable the new device address. For controllers that activate the
device address as soon as configured, this device driver API is responsible for
setting and enabling the new device address. For controllers that have
hardware assistance in setting the device address after the status stage, this
device driver API should not perform any action, since USBD DrvAddrSet ()
has already taken care of setting the new device.

97

Chapter 6

98

Chapter

USB Classes

The USB classes available for the pC/USB-Device stack have some common characteristics.
This chapter explains these characteristics and the interactions with the core layer allowing
you to better understand the operation of classes.

7-1 CLASS INSTANCE CONCEPT

The USB classes available with the pC/USB-Device stack implement the concept of class
instances. A class instance represents one function within a device. The function can be
described by one interface or by a group of interfaces and belongs to a certain class.

Each USB class implementation has some configuration and functions in common based on
the concept of class instance. The common configuration and functions are presented in
Table 7-1. In the column heading 'Constants or Function', XXXX below can be replaced by
the name of the class: CDC, HID, MSC, PHDC or VENDOR (Vendor for function names). .

Constant or function Description

USBD_XXXX CFG MAX NBR DEV Configures the maximum number of class instances.

USBD_XXXX CFG_MAX NBR CFG Configures the maximum number of configurations per device. During the class
initialization, a created class instance will be added to one or more
configurations.

USBD_XXXX Add() Creates a new class instance.

USBD_XXXX CfgAdd() Adds an existing class instance to the specified device configuration.
Table 7-1 Constants and Functions Related to the Concept of Multiple Class Instances

In terms of code implementation, the class will declare a local global table that contains a
class control structure. The size of the table is determined by the constant
USBD XXXX CFG MAX NBR DEV. This class control structure is associated with one class

99

Chapter 7

instance and will contain certain information to manage the class instance. See section 7-2
“Class Instance Structures” on page 108 for more details about this class control structure.

The following illustrations present several case scenarios. Each illustration is followed by a
code listing showing the code corresponding to the case scenario. Figure 7-1 represents a
typical USB device. The device is Full-Speed (FS) and contains one single configuration.
The function of the device is described by one interface composed of a pair of endpoints
for the data communication. One class instance is created and it will allow you to manage
the entire interface with its associated endpoint.

KS device \

Configuration 0

v
Interface 0

Default interface
Alternate 0

\ Endpoint IN \ \ Endpoint OUT \

Class instance 0
\ %

Figure 7-1 Multiple Class Instances - FS Device (1 Configuration with 1 Interface)

The code corresponding to Figure 7-1 is shown in Listing 7-1.

100

Class Instance Concept

USBD_ERR

err;

CPU_INTO08U class_0;

USBD_XXXX_Init(&err); (1)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

class_0 = USBD_XXXX Add(&err); (2)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

USBD_XXXX CfgAdd(class_0, dev_nbr, cfg 0, &err); (3)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

L7-1(1)

L7-1(2)

L7-1(3)

Listing 7-1 Multiple Class Instances - FS Device (1 Configuration with 1 Interface) - Code

Initialize the class. Any internal variables, structures, and class Real-Time
Operating System (RTOS) port will be initialized.

Create the class instance, class_0. The function USBD XXXX Add() allocates a
class control structure associated to class 0. Depending on the class, besides
the parameter for an error code, USBD XXXX Add() may have additional
parameters representing class-specific information stored in the class control
structure.

Add the class instance, class_0, to the specified configuration number, cfg 0.
USBD_XXXX CfgAdd() will create the interface 0 and its associated endpoints
IN and OUT. Hence, the class instance encompasses the interface 0 and its
endpoints. Any communication done on the interface 0 will use the class
instance number, class_0.

Figure 7-2 represents an example of a high-speed capable device. The device can support

High-Speed (HS) and Full-Speed (FS). The device will contain two configurations: one valid

if the device operates at full-speed and another if it operates at high-speed. In each

configuration, interface O is the same but its associated endpoints are different. The

difference will be the endpoint maximum packet size which varies according to the speed.

101

Chapter 7

If a high-speed host enumerates this device, by default, the device will work in high-speed
mode and thus the high-speed configuration will be active. The host can learn about the
full-speed capabilities by getting a Device_Qualifier descriptor followed by an
Other_Speed_Configuration descriptor. These two descriptors describe a configuration of a
high-speed capable device if it were operating at its other possible speed (refer to Universal
Serial Bus 2.0 Specification revision 2.0, section 9.6, for more details about these
descriptors). In our example, the host may want to reset and enumerate the device again in
full-speed mode. In this case, the full-speed configuration is active. Whatever the active
configuration, the same class instance is used. Indeed, the same class instance can be added
to different configurations. A class instance cannot be added several times to the same

configuration.
/ Configuration 0 HS/FS device Configuration 0 \
(full-speed) (high-speed)
I I
v v
Interface 0 Interface 0O

Default interface Default interface
Alternate 0 Alternate 0

\ Endpoint IN \ \ Endpoint OUT \ \ Endpoint IN \ \ Endpoint OUT \

Class instance 0 Class instance 0

Figure 7-2 Multiple Class Instances - HS/FS Device (2 Configurations and 1 Single Interface)

The code corresponding to Figure 7-2 is shown in Listing 7-2.

102

Class Instance Concept

USBD_ERR err;
CPU_INTO08U class_0;

USBD_XXXX_Init(&err); (1)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

class_0 = USBD_XXXX Add(&err); (2)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

USBD_XXXX CfgAdd(class_0, dev_nbr, cfg 0 fs, &err); (3)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

USBD_XXXX CfgAdd(class_0, dev_nbr, cfg 0 _hs, &err); (4)
if (err != USBD ERR NONE) {
/* $$$$ Handle the error. */

L7-2(1)

L7-2(2)

L7-2(3)

L7-2(4)

Listing 7-2 Multiple Class Instances - HS/FS Device (2 Configurations and 1 Single Interface) - Code

Initialize the class. Any internal variables, structures, and class RTOS port will
be initialized.

Create the class instance, class_0. The function USBD_XXXX Add() allocates a
class control structure associated to class 0. Depending on the class, besides
the parameter for an error code, USBD_XXXX Add() may have additional
parameters representing class-specific information stored in the class control
structure.

Add the class instance, class 0, to the full-speed configuration, cfg 0 fs.
USBD_XXXX CfgAdd() will create the interface 0 and its associated endpoints
IN and OUT. If the full-speed configuration is active, any communication done

on the interface 0 will use the class instance number, class_0.

Add the class instance, class_0, to the high-speed configuration, cfg 0 hs.

103

Chapter 7

In the case of the high-speed capable device presented in Figure 7-2, in order to enable the
use of Device_Qualifier and Other_Speed_Configuration descriptors, the function
USBD_CfgOtherSpeed() should be called during the pC/USB-Device initialization.
Listing 2-5 presents the function App USBD Init() defined in app usbd.c. This function
shows an example of the nC/USB-Device initialization sequence. USBD_CfgOtherSpeed()
should be called after the creation of a high-speed and a full-speed configurations with
USBD _CfgAdd(). Listing 7-3 below shows the use USBD CfgOtherSpeed() based on
Listing 2-5. Error handling is omitted for clarity.

CCPU_BOOLEAN App USBD_Init (void)
{
CPU_INT08U dev_nbr;
CPU_INTO08U cfg 0_fs;
CPU_INT08U cfg 0_hs;
USBD_ERR err;

(1)
if (USBD_DrvCfg_ <controller>.Spd == USBD_DEV_SPD_HIGH) {

cfg 0_hs = USBD _CfgAdd(dev_nbr, (2)
USBD_DEV_ATTRIB SELF POWERED,
100u,

USBD_DEV_SPD HIGH,
"HS configuration",
&err);
}
cfg 0_fs = USBD _CfgAdd(dev_nbr, (3)
USBD_DEV_ATTRIB_SELF POWERED,
100u,
USBD_DEV_SPD_FULL,
"FS configuration",
&err);

USBD_CfgOtherSpeed(dev_nbr, (4)
cfg_0_hs,
cfg 0 fs,

&err);

return (DEF_OK);

Listing 7-3 Use of USBD_CfgOtherSpeed()

104

Class Instance Concept

L7-3(D)

L7-3(2)

L7-3(3)

L7-3(4)

Refer to Listing 2-5 for the beginning of the initialization.

Create the high-speed configuration, cfg 0 hs, to your high-speed capable
device.

Create the full-speed configuration, cfg 0 fs, to your high-speed capable
device.

Associate the high-speed configuration cfg 0 hs with its other-speed
counterpart, cfg 0 fs.

Figure 7-3 represents a more complex example. A full-speed device is composed of two

configurations. The device has two functions which belong to the same class. Each function

is described by two interfaces. Each interface has a pair of bidirectional endpoints. In this

example, two class instances are created. Each class instance is associated with a group of

interfaces as opposed to Figure 7-1 and Figure 7-2 where the class instance was associated

to a single interface.

105

Chapter 7

Default interface
Alternate 0

/ Interface 0

Interface 1

Endpoint
ouT

Endpoint
IN

Default interface
Alternate 0

Endpoint
Alternate 1 out
Alternate 2

Default interface
Alternate 0

Class instance 0

Configuration 0

Endpoint

> Interface2 [Endpoint

Default interface
Alternate 0

Alternate 1
Alternate 2

Default interface
Alternate 0

\ Interface 3

Class instance 1

FS device

Endpoint
IN
Endpoint
ouT

Endpoint
IN
Endpoint

ouT

Interface 0

Default interface
Alternate 0

Alternate 1
Alternate 2

Default interface
Alternate 0

Interface 1
B

Class instance 0

Configuration 1

Endpoint
IN
Endpoint
ouT
Endpoint
IN
Endpoint
ouT

> interface2 |-

Default interface
Alternate 0

Alternate 1
Class instance 1 Alternate 2

Figure 7-3 Multiple Class Instances - FS Device (2 Configurations and Multiple Interfaces)

\A Interface 3

The code corresponding to Figure 7-3 is shown in Listing 7-4. The error handling is omitted
for clarity.

106

Class Instance Concept

USBD_ERR
CPU_INTO08U class_0;
CPU_INT08U class_1;

err;

USBD_XXXX Init(&err); (1)
class_0 = USBD_XXXX Add(&err); (2)
class_1 = USBD_XXXX Add(s&err); (3)
USBD_XXXX CfgAdd(class_0, dev_nbr, cfg 0, &err); (4)
USBD_XXXX CfgAdd(class_1, dev_nbr, cfg 0, &err); (5)
USBD_XXXX CfgAdd(class_0, dev_nbr, cfg 1, &err); (6)
USBD_XXXX CfgAdd(class_1, dev_nbr, cfg 1, &err); (6)

L7-4(1)

L7-4(2)

L7-4(3)

L7-4(4)

L7-4(5)

L7-4(6)

Listing 7-4 Multiple Class Instances - FS Device (2 Configurations and Multiple Interfaces) - Code

Initialize the class. Any internal variables, structures, and class RTOS port will
be initialized.

Create the class instance, class_0. The function USBD _XXXX Add() allocates a
class control structure associated to class 0.

Create the class instance, class 1. The function USBD XXXX Add() allocates
another class control structure associated to class 1.

Add the class instance, class 0, to the configuration, cfg 0.
USBD_XXXX CfgAdd() will create the interface 0, interface 1, alternate
interfaces, and the associated endpoints IN and OUT. The class instance
number, class_0, will be used for any data communication on interface 0 or
interface 1.

Add the class instance, class 1, to the configuration, cfg 0.
USBD_XXXX CfgAdd() will create the interface 2, interface 3 and their
associated endpoints IN and OUT. The class instance number, class_1, will be
used for any data communication on interface 2 or interface 3.

Add the same class instances, class 0 and class 1, to the other
configuration, cfg_1.

107

Chapter 7

You can refer to section 5-4 “Configuration Examples” on page 71 for some configuration
examples showing multiple class instances applied to composite devices. Composite
devices uses at least two different classes provided by the nC/USB-Device stack. The section
5-4-2 “Composite High-Speed USB device” on page 73 gives a concrete example based on
Figure 7-2. See section 5-4-3 “Complex Composite High-Speed USB device” on page 74 for
a hybrid example that corresponds to Figure 7-2 and Figure 7-3.

7-2 CLASS INSTANCE STRUCTURES

When a class instance is created, a control structure is allocated and associated to a specific
class instance. The class uses this control structure for its internal operations. All the
Micripm USB classes define a class control structure data type. Listing 7-5 shows the
structure declaration with the common fields.

struct usbd xxxx ctrl {

CPU_INTO08U DevNbr; (1)
CPU_INTO08U ClassNbr; (2)
USBD_XXXX STATE State; (3)
USBD_XXXX COMM *CommPtr; (4)

(5)
}i

Listing 7-5 Class Instance Control Structure

L7-5(D The device number to which the class instance is associated with.

L7-5(2) The class instance number.

L7-5(3) The class instance state.

L7-5(4) A pointer to a class instance communication structure. This structure holds

information regarding the interface’s endpoints used for data communication.
Listing 7-6 presents the communication structure.

L7-5(5) Class-specific fields.

108

Class Instance Structures

During the communication phase, the class communication structure is used by the class for
data transfers on the endpoints. It allows you to route the transfer to the proper endpoint
within the interface. There will be one class communication structure per configuration to
which the class instance has been added. Listing 7-6 presents this structure.

struct usbd xxxx comm {

USBD_XXXX CTRL *CtrlPtr; (1)
CPU_INTO08U ClassEpInAddr; (2)
CPU_INTO08U ClassEpOutAdd2; (2)

(2)
}i

Listing 7-6 Class Instance Communication Structure

L7-6(1) A pointer to the class instance control structure to which the communication
relates to.
L7-6(2) Class-specific fields. In general, this structure stores mainly endpoint addresses

related to the class. Depending on the class, the structure may store other types
of information. For instance, the Mass Storage Class stores information about
the Command Block and Status Wrappers.

Micripm’s USB classes define a class state for each class instance created. The class state
values are implemented in the form of an enumeration:

typedef enum usbd xxxx state {
USBD_XXXX_STATE NONE = 0,
USBD_XXXX_STATE_INIT,
USBD_XXXX_STATE_CFG

} USBD_XXXX_STATE;

Figure 7-4 defines a class state machine which applies to all the Micripm classes. Three class
states are used.

109

Chapter 7

F7-4(1)

F7-4(2)

F7-4(3)

110

NONE

M

Figure 7-4 Class State Machine

A class instance has been added to a configuration, the class instance state
transitions to the ‘Init’ state. No data communication on the class endpoint(s)
can occur yet.

The host has sent the SET CONFIGURATION request to activate a certain
configuration. The Core layer calls a class callback informing about the
completion of the standard enumeration. The class instance state transitions to
the ‘Cfg’ state. This state indicates that the device has transitioned to the
‘Configured’ state defined by the Universal Serial Bus Specification revision 2.0.
The data communication may begin. Some classes such as the MSC class may
require that the host sends some class-specific requests before the
communication on the endpoints really starts.

The Core layer calls another class callback informing that the host has sent a
SET CONFIGURATION request with a new configuration number or with the
value 0 indicating a configuration reset, or that the device has been physically
disconnected from the host. In all these cases, the current active configuration
becomes inactive. The class instance state transitions to the ‘Init’ state. Any
ongoing transfers on the endpoints managed by the class instance have been
aborted by the Core layer. No more communication is possible until the host
sends a new SET CONFIGURATION request with a non-null value or until the
device is plugged again to the host.

Class and Core Layers Interaction through Callbacks

7-3 CLASS AND CORE LAYERS INTERACTION THROUGH
CALLBACKS

Upon reception of standard, class-specific and/or vendor requests, the Core layer can notify
the Class layer about the event associated with the request via the use of class callbacks.
Each Micripm class must define a class callbacks structure of type USBD CLASS DRV that
contains function pointers. Each callback allows the class to perform a specific action if it is
required. Listing 7-7 shows a generic example of class callback structure. In the listing, XXXX
could be replaced with CDC, HID, MSC, PHDC or Vendor.

static USBD CLASS_DRV USBD_XXXX Drv = {

USBD_XXXX Conn, (1)
USBD_XXXX_Disconn, (2)
USBD_XXXX UpdateAltSetting, (3
USBD_XXXX UpdateEPState, (4)
USBD_XXXX_IFDesc, (5)
USBD_XXXX IFDescGetSize, (6)
USBD_XXXX_ EPDesc, (7)
USBD_XXXX EPDescGetSize, (8)
USBD_XXXX_ IFReq, (9)
USBD_XXXX ClassReq, (10)
USBD_XXXX VendorReq (11)

}i

Listing 7-7 Class Callback Structure

L7-7(1) Notify the class that a configuration has been activated.
L7-7(2) Notify the class that a configuration has been deactivated.
L7-7(3) Notify the class that an alternate interface setting has been updated.

L7-7(4) Notify the class that an endpoint state has been updated by the host. The state
is generally stalled or not stalled.

L7-7(5) Ask the class to build the interface class-specific descriptors.
L7-7(6) Ask the class for the total size of interface class-specific descriptors.
L7-7(7) Ask the class to build endpoint class-specific descriptors.

111

Chapter 7

L7-7(8) Ask the class for the total size of endpoint class-specific descriptors.
L7-7(9) Ask the class to process a standard request whose recipient is an interface.
L7-7(10) Ask the class to process a class-specific request.

L7-7(11D) Ask the class to process a vendor-specific request.

A class is not required to provide all the callbacks. If a class for instance does not define
alternate interface settings and does not process any vendor requests, the corresponding
function pointer will be a null-pointer. Listing 7-8 presents the callback structure for that case.

static USBD_CLASS DRV USBD_XXXX Drv = {
USBD_XXXX_Conn,
USBD_XXXX Disconn,
0,
USBD_XXXX UpdateEPState,
USBD_XXXX_IFDesc,
USBD_XXXX IFDescGetSize,
USBD_XXXX_EPDesc,
USBD_XXXX EPDescGetSize,
USBD_XXXX_ IFReq,
USBD_XXXX ClassReq,
0

}i

Listing 7-8 Class Callback Structure with Null Function Pointers

If a class is composed of one interface then one class callback structure is required. If a
class is composed of several interfaces then the class may define several class callback
structures. In that case, a callback structure may be linked to one or several interfaces. For
instance, the Communication Device Class (CDC) is composed of one Communication
Interface and one or more Data Interfaces. The Communication interface will be linked to a
callback structure. The Data interfaces may be linked to another callback structure common
to all Data interfaces.

The class callbacks are called by the core task when receiving a request from the host sent
over control endpoints (refer to section 4-2 “Task Model” on page 58 for more details on the
core task). Table 7-2 indicates which callbacks are mandatory and optional and upon
reception of which request the core task calls a specific callback.

112

Class and Core Layers Interaction through Callbacks

Request type | Callback Request Mandatory? / Note

Standard Conn() SET CONFIGURATION Yes / Host selects a non-null configuration
number.

Standard Disconn() SET CONFIGURATION Yes / Host resets the current configuration or
device physically detached from host.

Standard UpdateAltSetting() | SET INTERFACE No / Callback skipped if no alternate
settings are defined for one or more
interfaces.

Standard UpdateEPState() SET FEATURE No / Callback skipped if the state of the

CLEAR FEATURE endpoint is not used.

Standard IFDesc() GET DESCRIPTOR No / Callback skipped if no class-specific
descriptors for one or more interfaces.

Standard IFDescGetSize() GET DESCRIPTOR No / Callback skipped if no class-specific
descriptors for one or more interfaces.

Standard EPDesc () GET_DESCRIPTOR No / Callback skipped if no class-specific
descriptors for one or more endpoints.

Standard EPDescGetSize() GET_DESCRIPTOR No / Callback skipped if no class-specific
descriptors for one or more endpoints.

Standard IFReq() GET_DESCRIPTOR No / Callback skipped if no standard
descriptors provided by a class.

Class ClassReq() - No / Callback skipped if no class-specific
requests defined by the class specification.

Vendor VendorReq() - No / Callback skipped if no vendor requests.

Table 7-2 Class Callbacks and Requests Mapping

113

Chapter 7

114

Chapter

Communications Device Class

This chapter describes the Communications Device Class (CDC) class and the associated
CDC subclass supported by pC/USB-Device. pC/USB-Device currently supports the Abstract
Control Model (ACM) subclass, which is especially used for serial emulation.

The CDC and the associated subclass implementation complies with the following
specifications:

B Universal Serial Bus, Class Definitions for Communications Devices, Revision 1.2,
November 3 2010.

B Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2,
February 9, 2007.

CDC includes various telecommunication and networking devices. Telecommunication
devices encompass analog modems, analog and digital telephones, ISDN terminal adapters,
etc. Networking devices contain, for example, ADSL and cable modems, Ethernet adapters
and hubs. CDC defines a framework to encapsulate existing communication services
standards, such as V.250 (for modems over telephone network) and Ethernet (for local area
network devices), using a USB link. A communication device is in charge of device
management, call management when needed and data transmission. CDC defines seven
major groups of devices. Each group belongs to a model of communication which may
include several subclasses. Each group of devices has its own specification besides the CDC
base class. The seven groups are:

B Public Switched Telephone Network (PSTN), devices including voiceband modems,
telephones and serial emulation devices.

B Integrated Services Digital Network (ISDN) devices, including terminal adaptors and
telephones.

115

Chapter 8

B Ethernet Control Model (ECM) devices, including devices supporting the IEEE 802
family (for instance cable and ADSL modems, WiFi adaptors).

B Asynchronous Transfer Mode (ATM) devices, including ADLS modems and other
devices connected to ATM networks (workstations, routers, LAN switches).

B Wireless Mobile Communications (WMC) devices, including multi-function
communications handset devices used to manage voice and data communications.

B Ethernet Emulation Model (EEM) devices which exchange Ethernet-framed data.

B Network Control Model (NCM) devices, including high-speed network devices (High
Speed Packet Access modems, Line Terminal Equipment)

8-1 OVERVIEW

A CDC device is composed of several interfaces to implement a certain function, that is
communication capability. It is formed by the following interfaces:

B Communications Class Interface (CCID)

B Data Class Interface (DCD

A CCI is responsible for the device management and optionally the call management. The
device management enables the general configuration and control of the device and the
notification of events to the host. The call management enables calls establishment and
termination. Call management might be multiplexed through a DCI. A CCI is mandatory for
all CDC devices. It identifies the CDC function by specifying the communication model
supported by the CDC device. The interface(s) following the CCI can be any defined USB
class interface, such as Audio or a vendor-specific interface. The vendor-specific interface is
represented specifically by a DCI.

A DCI is responsible for data transmission. The data transmitted and/or received do not follow

a specific format. Data could be raw data from a communication line, data following a
proprietary format, etc. All the DCIs following the CCI can be seen as subordinate interfaces.

116

Overview

A CDC device must have at least one CCI and zero or more DCIs. One CCI and any

subordinate DCI together provide a feature to the host. This capability is also referred to as

a function. In a CDC composite device, you could have several functions. Hence, the device

would be composed of several sets of CCI and DCI(s) as shown in Figure 8-1.

CDC Device
Function #1 Function #2 Function #3
| coi | | col | cel
o] || [oa]
DCI

Figure 8-1 CDC Composite Device

A CDC device is likely to use the following combination of endpoints:

B A pair of control IN and OUT endpoints called the default endpoint.

B An optional bulk or interrupt IN endpoint.

B A pair of bulk or isochronous IN and OUT endpoints.

Table 8-1 indicates the usage of the different endpoints and by which interface of the CDC

they are used:

Endpoint Direction Interface | Usage

Control IN Device-to-host CCl Standard requests for enumeration, class-specific
requests, device management and optionally call
management.

Control OUT Host-to-device CCl Standard requests for enumeration, class-specific
requests, device management and optionally call
management.

Interrupt or bulk IN Device-to-host CCl Events notification, such as ring detect, serial line
status, network status.

Bulk or isochronous IN Device-to-host DCI Raw or formatted data communication.

Bulk or isochronous OUT Host-to-device DCI Raw or formatted data communication.

Table 8-1 CDC Endpoint Usage

117

Chapter 8

Most communication devices use an interrupt endpoint to notify the host of events.

Isochronous endpoints should not be used for data transmission when a proprietary

protocol relies on data retransmission in case of USB protocol errors. Isochronous

communication can inherently loose data since it has no retry mechanisms.

The seven major models of communication encompass several subclasses. A subclass

describes the way the device should use the CCI to handle the device management and call

management. Table 8-2 shows all the possible subclasses and the communication model

they belong to.

Communication

Subclass Example of devices using this subclass
model

Direct Line Control Model PSTN Modem devices directly controlled by the USB host

Abstract Control Model PSTN Serial emulation devices, modem devices controlled through
a serial command set

Telephone Control Model PSTN Voice telephony devices

Multi-Channel Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,
telephones

CAPI Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,
telephones

Ethernet Networking Control ECM DOC-SIS cable modems, ADSL modems that support

Model PPPoE emulation, Wi-Fi adaptors (IEEE 802.11-family), IEEE
802.3 adaptors

ATM Networking Control ATM ADSL modems

Model

Wireless Handset Control WMC Mobile terminal equipment connecting to wireless devices

Model

Device Management WMC Mobile terminal equipment connecting to wireless devices

Mobile Direct Line Model WMC Mobile terminal equipment connecting to wireless devices

OBEX WMC Mobile terminal equipment connecting to wireless devices

Ethernet Emulation Model EEM Devices using Ethernet frames as the next layer of transport.
Not intended for routing and Internet connectivity devices

Network Control Model NCM IEEE 802.3 adaptors carrying high-speed data bandwidth on

118

network

Table 8-2 CDC Subclasses

Architecture

8-2 ARCHITECTURE

Figure 8-2 shows the general architecture between the host and the device using CDC

available from Micripm.

Host operating system

‘ Application ‘

| USB Host stack |
i it a7

1 _

Control 0
IN & OUT

T AT <

Bulk || Bulk ||
IN | OUT |

Interrupt

r
|
| N |lout
|
\
|

L] e cDC =

& |

CDC Subclass

&

Application

USB Device

* optional

Figure 8-2 General Architecture between a Host and Micripm’s CDC

The host operating system (OS) enumerates the device using the control endpoints. Once the
enumeration phase is done, the host can configure the device by sending class-specific requests
to the Communications Class Interface (CCD via the control endpoints. The class-specific
requests vary according to the CDC subclasses. Micripm’s CDC base class offers the possibility to
allocate an interrupt endpoint for event notification, depending on the subclass needs.

Following enumeration and configuration of the device, the host can start the transmission/
reception of data to/from the device using the bulk endpoints belonging to the Data Class
Interface (DCD). Isochronous endpoints are not supported in the current implementation.
The CDC base class enables you to have several DCIs along with the CCI. The application
can communicate with the host using the communication API offered by the CDC subclass.

119

Chapter 8

8-3 CONFIGURATION

8-3-1 GENERAL CONFIGURATION

Some constants are available to customize the CDC base class. These constants are located

in the USB device configuration file, usbd cfg.h. Table 8-3 shows their description.

Constant

Description

USBD_CDC_CFG_MAX NER DEV

Configures the maximum number of class instances. Each associated
subclass also defines a maximum number of subclass instances. The sum of
all the maximum numbers of subclass instances must not be greater than
USBD_CDC_CFG MAX NBR DEV.

USBD_CDC_CFG MAX NBR CFG

Configures the maximum number of configurations in which CDC class is
used. Keep in mind that if you use a high-speed device, two configurations
will be built, one for full-speed and another for high-speed.

USBD_CDC_CFG_MAX_NBR_DATA IF

Configures the maximum number of Data interfaces. The minimum value is 1.

Table 8-3 CDC Class Configuration Constants

Listing 8-1 shows the App USBD CDC Init() function defined in the application template

file app usbd_cdc.c. This function performs CDC and associated subclass initialization.

CPU_BOOLEAN App USBD_CDC_Init (CPU_INTO8U dev nbr,

USBD_ERR err;

USBD_CDC_Init(&err);

120

CPU_INT08U cfg_ hs,
CPU_INTO8U cfg fs)

(1)

(2)

Listing 8-1 CDC Initialization Example

ACM Subclass

L8-1(D) Initialize CDC internal structures and variables. This is the first function you
should call and you should do it only once.

L8-1(2) Call all the required functions to initialize the subclass(es). Refer to section 8-4-
2 “General Configuration” on page 123 for ACM subclass initialization.

8-4 ACM SUBCLASS

The ACM subclass is used by two types of communication devices:

B Devices supporting AT commands (for instance, voiceband modems).

B Serial emulation devices which are also called Virtual COM port devices.
Micripm’s ACM subclass implementation complies with the following specification:

B Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2,
February 9, 2007.

8-4-1 OVERVIEW

The general characteristics of the CDC base class in terms of Communications Class
Interface (CCID) and Data Class Interface (DCD were presented in section 8-1 “Overview” on
page 116. In this section, a CCI of type ACM is considered. It will consist of a default
endpoint for the management element and an interrupt endpoint for the notification
element. A pair of bulk endpoints is used to carry unspecified data over the DCIL.

Several subclass-specific requests exists for the ACM subclass. They allow you to control and
configure the device. The complete list and description of all ACM requests can be found in
the specification “Universal Serial Bus, Communications, Subclass for PSTN Devices, revision
1.2, February 9, 2007, section 6.2.2. From this list, Micripm’s ACM subclass supports:

121

Chapter 8

Subclass request Description

SetCommFeature The host sends this request to control the settings for a particular communications
feature. Not used for serial emulation.

GetCommFeature The host sends this request to get the current settings for a particular communications

feature. Not used for serial emulation.

ClearCommFeature The host sends this request to clear the settings for a particular communications
feature. Not used for serial emulation.

SetLineCoding The host sends this request to configure the ACM device settings in terms of baud rate,
number of stop bits, parity type and number of data bits. For a serial emulation, this
request is sent automatically by a serial terminal each time you configure the serial
settings for an open virtual COM port.

GetLineCoding The host sends this request to get the current ACM settings (baud rate, stop bits, parity,
data bits). For a serial emulation, serial terminals send this request automatically during
virtual COM port opening.

SetControlLineState The host sends this request to control the carrier for half duplex modems and indicate
that Data Terminal Equipment (DTE) is ready or not. In the serial emulation case, the DTE
is a serial terminal. For a serial emulation, certain serial terminals allow you to send this
request with the controls set.

SetBreak The host sends this request to generate an RS-232 style break. For a serial emulation,
certain serial terminals allow you to send this request.

Table 8-4 ACM Requests Supported by Micripum

Micripm’s ACM subclass uses the interrupt IN endpoint to notify the host about the current
serial line state. The serial line state is a bitmap informing the host about:

B Data discarded because of overrun

B Parity error

B Framing error

B State of the ring signal detection

B State of break detection mechanism

B State of transmission carrier

B State of receiver carrier detection

122

ACM Subclass

8-4-2 GENERAL CONFIGURATION

Table 8-5 shows the constant available to customize the ACM serial emulation subclass. This
constant is located in the USB device configuration file, usbd cfg.h.

Constant

Description

USBD_ACM_SERTAI, CFG MAX NBR DEV

Configures the maximum number of subclass instances. The constant
value cannot be greater than USBD_CDC_CFG MAX NBR DEV. Unless you
plan on having multiple configurations or interfaces using different
class instances, this can be set to 1.

Table 8-5 ACM Serial Emulation Subclass Configuration Constants

8-4-3 SUBCLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 8-6 summarizes the initialization functions provided by the

ACM subclass. For more details about the functions’ parameters, refer to section C-2 “CDC

ACM Subclass Functions” on page 369.

Function name

Operation

USBD_ACM Seriallnit()

Initializes ACM subclass internal structures and variables.

USBD_ACM SerialAdd()

Creates a new instance of ACM subclass.

USBD_ACM SerialCfgAdd()

Adds an existing ACM instance to the specified device configuration.

USBD_ACM SerialLineCodingReg()

Registers line coding notification callback.

USBD_ACM SerialLineCtrlReg()

Registers line control notification callback.

Table 8-6 ACM Subclass Initialization APl Summary

123

Chapter 8

You

need to call these functions in the order shown below to successfully initialize the ACM

subclass:

124

Call USBD_ACM SerialInit()

This function initializes all internal structures and variables that the ACM subclass needs.
You should call this function only once even if you use multiple class instances.

Call USBD_ACM SerialAdd()

This function allocates an ACM subclass instance. Internally, this function allocates a
CDC class instance. It also allows you to specify the line state notification interval
expressed in milliseconds.

Call USBD ACM SerialLineCodingReg()

This function allows you to register a callback used by the ACM subclass to notify the
application about a change in the serial line coding settings (that is baud rate, number
of stop bits, parity and number of data bits).

Call USBD ACM SerialLineCtrlReg()

This function allows you to register a callback used by the ACM subclass to notify the
application about a change in the serial line state (that is carrier control and a flag
indicating that data equipment terminal is present or not).

Call USBD_ACM SerialCfgAdd()

Finally, once the ACM subclass instance has been created, you must add it to a specific
configuration.

ACM Subclass

Listing 8-2 illustrates the use of the previous functions for initializing the ACM subclass. Note

that the error handling has been omitted for clarity.

static void App USBD_CDC_SerialLineCtrl (CPU_INT08U
CPU_INTO8U
CPU_INTO08U
void

static CPU_BOOLEAN App USBD_CDC_SerialLineCoding(CPU_INTO08U

USBD_ACM SERIAL LINE CODING

void
CPU_BOOLEAN App USBD CDC Init (CPU_INT08U dev nbr,
CPU_INT08U cfg_hs,

CPU_INTO8U cfg_fs)

USBD_ERR err;
CPU_INT08U subclass_nbr;

USBD_CDC_Init(&err);

USBD_ACM SerialInit(&err);

subclass_nbr = USBD_ACM SerialAdd(100u, &err);

USBD_ACM SerialLineCodingReg(subclass_nbr,

(4)

(5)

(1)

(2)

(3)
(4)

App_USBD_CDC_SerialLineCoding,

(void *)o0,

&err);

USBD_ACM SerialLineCtrlReg(subclass_nbr,
App_USBD_CDC_SerialLineCtrl,
(void *)0,

&err);

if (cfg_hs != USBD_CFG_NBR NONE) {
USBD_ACM_SerialCfgAdd(subclass_nbr, dev_nbr, cfg_hs, &err);

if (cfg _fs != USBD_CFG NBR NONE) {
USBD_ACM SerialCfgAdd(subclass_nbr, dev_nbr, cfg fs, &err);

(3)

(6)

(7)

subclass_nbr,

events,

events_chngd,
*p_arg);

subclass_nbr,
*p_line coding,

*p_arg);

Listing 8-2 CDC ACM Subclass Initialization Example

125

Chapter 8

L8-2(D)

L8-2(2)

L8-2(3)

L8-2(4)

L8-2(5)

L8-2(6)

L8-2(7)

Initialize CDC internal structures and variables.
Initialize CDC ACM internal structures and variables.

Create a new CDC ACM subclass instance. In this example, the line state
notification interval is 100 ms. In the CCI, an interrupt IN endpoint is used to
asynchronously notify the host of the status of the different signals forming the
serial line. The line state notification interval corresponds to the interrupt
endpoint’s polling interval.

Register the application callback, App USBD CDC SerialLineCoding(). It is
called by the ACM subclass when the class-specific request SET _LINE CODING
has been received by the device. This request allows the host to specify the
serial line settings (baud rate, stop bits, parity and data bits). Refer to “CDC
PSTN Subclass, revision 1.27, section 6.3.10 for more details about this class-
specific request.

Register the application callback, App USBD CDC SerialLineCtrl(). It is
called by the ACM subclass when the class-specific request
SET CONTROL LINE STATE has been received by the device. This request
generates RS-232/V.24 style control signals. Refer to “CDC PSTN Subclass,
revision 1.2, section 6.3.12 for more details about this class-specific request.

Check if the high-speed configuration is active and proceed to add the ACM
subclass instance to this configuration.

Check if the full-speed configuration is active and proceed to add the ACM
subclass instance to this configuration.

Listing 8-2 also illustrates an example of multiple configurations. The functions
USBD_ACM SerialAdd() and USBD ACM SerialCfgAdd() allow you to create multiple
configurations and multiple instances architecture. Refer to section 7-1 “Class Instance

Concept” on page 99 for more details about multiple class instances.

126

ACM Subclass

8-4-4 SUBCLASS NOTIFICATION AND MANAGEMENT

You have access to some functions provides in the ACM subclass which relate to the ACM
requests and the serial line state previously presented in section 8-4-1 “Overview” on
page 121. Table 8-7 shows these functions. Refer to section C-2 “CDC ACM Subclass

Functions” on page 369 for more details about the functions’ parameters.

Function

Relates to...

Description

USBD_ACM SerialLineCodingGet ()

SetLineCoding

Application can get the current line coding
settings set either by the host with
SetLineCoding requests or by

USBD_ACM SerialLineCodingSet()

USBD_ACM SerialLineCodingSet()

GetLineCoding

Application can set the line coding. The host can
retrieve the settings with the GetLineCoding
request.

USBD_ACM SerialLineCodingReg()

SetLineCoding

Application registers a callback called by the
ACM subclass upon reception of the
SetLineCoding request. Application can
perform any specific operations.

USBD_ACM SerialLineCtrlGet()

SetControlLineState

Application can get the current control line state
set by the host with the SetControlLineState
request.

USBD_ACM SerialLineCtrlReg()

SetControlLineState

Application registers a callback called by the
ACM subclass upon reception of the
SetControlLineState request. Application can
perform any specific operations.

USBD_ACM SerialLineStateSet()

Serial line state

Application can set any line state event(s). While
setting the line state, an interrupt IN transfer is
sent to the host to inform about it a change in
the serial line state.

USBD_ACM SerialLineStateClr()

Serial line state

Application can clear two events of the line
state: transmission carrier and receiver carrier
detection. All the other events are self-cleared
by the ACM serial emulation subclass.

Table 8-7 ACM Subclass Functions Related to the Subclass Requests and Notifications

Micripm’s ACM subclass always uses the interrupt endpoint to notify the host of the serial

line state. You cannot disable the interrupt endpoint.

127

Chapter 8

8-4-5 SUBCLASS INSTANCE COMMUNICATION

Micripm’s ACM subclass offers the following functions to communicate with the host. For
more details about the functions’ parameters, refer to section C-2 “CDC ACM Subclass
Functions” on page 3609.

Function name Operation
USBD_ACM SerialRx() Receives data from host through a bulk OUT endpoint. This function is blocking.
USBD_ACM SerialTx() Sends data to host through a bulk IN endpoint. This function is blocking.

Table 8-8 CDC ACM Communication APl Summary

USBD_ACM SerialRx() and USBD ACM SerialTx() provide synchronous communication
which means that the transfer is blocking. Upon calling the function, the application blocks
until transfer completion with or without an error. A timeout can be specified to avoid
waiting forever. Listing 8-3 presents a read and write example to receive data from the host
using the bulk OUT endpoint and to send data to the host using the bulk IN endpoint.

CPU_INTO8U rx buf[2];
CPU_INTO8U tx_buf[2];
USBD_ERR @iz

(void)USBD_ACM SerialRx(subclass_nbr, (1)
&rx buf[0], (2)
2u,
Ou, (3)
&err);

if (err != USBD_ERR NONE) {
/* Handle the error. */

(void)USBD_ACM SerialTx(subclass_nbr, (1)
&tx buf[0], (4)
2u,
Ou, (3)
&err);

if (err != USBD_ERR NONE) {
/* Handle the error. */

Listing 8-3 Serial Read and Write Example

128

ACM Subclass

L8-3(D) The class instance number created with USBD_ACM SerialAdd() will serve
internally to the ACM subclass to route the transfer to the proper bulk OUT or
IN endpoint.

L8-3(2) The application must ensure that the buffer provided to the function is large
enough to accommodate all the data. Otherwise, synchronization issues might
happen.

L8-3(3) In order to avoid an infinite blocking situation, a timeout expressed in
milliseconds can be specified. A value of ‘0’ makes the application task wait
forever.

L8-3(4) The application provides the initialized transmit buffer.

8-4-6 USING THE DEMO APPLICATION

Micripm provides a demo application that lets you test and evaluate the class
implementation. Source template files are provided for the device.

CONFIGURING DEVICE APPLICATION

The serial demo allows you to send and/or receive serial data to and/or from the device
through a virtual COM port. The demo is implemented in the application file,
app usbd cdc.c, provided for nC/OS-1I and pC/OS-III. app usbd cdc.c is located in
these two folders:

B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

129

Chapter 8

Table 8-9 describes the constants usually defined in app cfg.h which allows you to use the
serial demo.

Constant Description

APP CFG_USBD_CDC_EN General constant to enable the CDC ACM demo application.
Must be set to DEF_ENABLED.

APP CFG USBD_CDC_SERIAL TEST EN Constant to enable the serial demo. Must be set to
DEF_ENABLED.

APP CFG_USBD_CDC_SERIAL TASK PRIO Priority of the task used by the serial demo.

APP CFG_USBD_CDC_SERIAL TASK STK SIZE Stack size of the task used by the serial demo. A default

value can be 256.

Table 8-9 Device Application Configuration Constants

RUNNING THE DEMO APPLICATION

In this section, we will assume Windows as the host operating system. Upon connection of
your CDC ACM device, Windows will enumerate your device and load the native driver
usbser.sys to handle the device communication. The first time you connect your device to
the host, you will have to indicate to Windows which driver to load using an INF file (refer
to section 3-1-1 “About INF Files” on page 46 for more details about INF). The INF file tells
Windows to load the usbser.sys driver. Indicating the INF file to Windows has to be done
only once. Windows will then automatically recognize the CDC ACM device and load the
proper driver for any new connection. The process of indicating the INF file may vary
according to the Windows operating system version:

B Windows XP directly opens the Found New Hardware Wizard. Follow the different steps
of the wizard until you reach the page where you can indicate the path of the INF file.

B Windows Vista and later won't open a “Found New Hardware Wizard”. It will just
indicate that no driver was found for the vendor device. You have to manually open the
wizard. When you open the Device Manager, your CDC ACM device should appear
with a yellow icon. Right-click on your device and choose ‘Update Driver Software...’ to
open the wizard. Follow the different steps of the wizard until the page where you can
indicate the path of the INF file.

130

ACM Subclass

The INF file is located in:
\Micrium\Software\uC-USB-Device-V4\App\Host\0OS\Windows\CDC\INF

Refer to section 3-1-1 “About INF Files” on page 46 for more details about how to edit the
INF file to match your Vendor ID (VID) and Product ID (PID). The provided INF files
define, by default, OXFFFE for VID and 0x1234 for PID. Once the driver is loaded, Windows
creates a virtual COM port as shown in Figure 8-3.

= Device Manager | = | B e
File Action View Help
G AEN s A

285 pC
- 1M Computer

g Disk drives
. B, Display adapters
b i DVD/CD-ROM drives
b -§ Ellisys protocol analyzers
b ng Human Interface Devices
b g IDE ATAJATAPI controllers
b %5 Imaging devices
b2 Keyboards
b % Mice and other pointing devices
b A Monitors
b ¥ Metwork adapters
» B Portable Devices
47 Ports (COM & LPT)
. .JTF Micrium CDC Device (COM14)

¢ TR USE Serial Port (COMT)

b I3 Processors

b % Sound, video and game controllers
b 1M Systern devices

b -§ Universal Serial Bus controllers

Figure 8-3 Windows Device Manager and Created Virtual COM Port

Figure 8-4 presents the steps to follow to use the serial demo.

131

Chapter 8

F8-4(1)

F8-4(2)

F8-4(3)

132

Figure 8-4 Serial Demo

Open a serial terminal (for instance, HyperTerminal). Open the COM port
matching to your CDC ACM device with the serial settings (baud rate, stop
bits, parity and data bits) you want. This operation will send a series of CDC
ACM class-specific = requests (GET LINE CODING, SET LINE CODING,
SET CONTROL LINE STATE) to your device. Note that Windows Vista and later
don’t provide HyperTerminal anymore. You may use other free serial
terminals such TeraTerm (http://ttssh2.sourceforge.]jp/), Hercules
(http://www.hw-group.com/products/hercules/index en.html),
RealTerm (http://realterm.sourceforge.net/), etc.

In order to start the communication with the serial task on the device side, the
Data Terminal Ready (DTR) signal must be set and sent to the device. The DTR
signal prevents the serial task from sending characters if the terminal is not
ready to receive data. Sending the DTR signal may vary depending on your
serial terminal. For example, Hyperlerminal sends a properly set DTR signal
automatically upon opening of the COM port. Hercules terminal allows you to
set and clear the DTR signal from the graphical user interface (GUD with a
checkbox. Other terminals do not permit to set/clear DTR or the DTR set/
clear’s functionality is difficult to find and to use.

Once the serial task receives the DTR signal, the task sends a menu to the serial
terminal with two options as presented in Figure 8-5.

ACM Subclass

F8-4(4) The menu option #1 is the Echo 1 demo. It allows you to send one unique
character to the device. This character is received by the serial task and sent
back to the host.

F8-4(5) The menu options #2 is the Echo N demo. It allows you to send several

characters to the device. All the characters are received by the serial task and
sent back to the host. The serial task can receive a maximum of 512 characters.

% Micrium CDC Serial Dema - HyperTerminal = B %
File Edit View Call Transfer Help

0= 3 0y &

===== |JSB CDC ACM Serial Emulation Demo ======

1. Echo 1 demo.
2. Echo N demo.
Option:

Connected 0:00:33 Auto detect 2400 8-N-1 NUM

Figure 8-5 CDC Serial Demo Menu in HyperTerminal

To support the two demos, the serial task implements a state machine as shown in Figure 8-
6. Basically, the state machine has two paths corresponding to the user choice in the serial
terminal menu.

Figure 8-6 Serial Demo State Machine

133

Chapter 8

F8-6(1)

F8-6(2)

F8-6(3)

Once the DTR signal has been received, the serial task is in the MENU state.

If you choose the menu option #1, the serial task will echo back any single

character sent by the serial terminal as long as “Ctrl+C” is not pressed.

If you choose the menu option #2, the serial task will echo all the received

characters sent by the serial terminal as long as “Ctrl+C” is not pressed.

Table 8-10 shows four possible serial terminals which you may use to test the CDC ACM

class.

Terminal

DTR set/clear

Menu option(s)
usable

HyperTerminal Yes (properly set DTR signal automatically sent upon COM port 1and2
opening)

Hercules Yes (a checkbox in the GUI allows you to set/clear DTR) 1and2

RealTerm Yes (Set/Clear DTR buttons in the GUI) 1and2

TeraTerm Yes (DTR can be set using a macro. GUI does NOT allows you to set/ 1and2

134

clear DTR easily)

Table 8-10 Serial Terminals and CDC Serial Demo

Chapter

Human Interface Device Class

This chapter describes the Human Interface Device (HID) class supported by
pC/USB-Device. The HID implementation complies with the following specifications:

B Device Class Definition for Human Interface Devices (HID), 6/27/01, Version 1.11.
B Universal Serial Bus HID Usage Tables, 10/28/2004, Version 1.12.

The HID class encompasses devices used by humans to control computer operations.
Keyboards, mice, pointing devices, game devices are some examples of typical HID devices.
The HID class can also be used in a composite device that contains some controls such as
knobs, switches, buttons and sliders. For instance, mute and volume controls in an audio
headset are controlled by the HID function of the headset. The headset also has an audio
function. HID data can exchange data for any purpose using only control and interrupt
transfers. The HID class is one of the oldest and most popular USB classes. All the major
host operating systems provide a native driver to manage HID devices. That's why a variety
of vendor-specific devices work with the HID class. This class also includes various types of
output directed to the user information (e.g. LEDs on a keyboard).

135

Chapter 9

9-1 OVERVIEW
A HID device is composed of the following endpoints:

B A pair of control IN and OUT endpoints called the default endpoint.

B An interrupt IN endpoint.
B An optional interrupt OUT endpoint.

Table 9-1 describes the usage of the different endpoints:

Endpoint Direction Usage

Control IN Device-to-host Standard requests for enumeration, class-specific requests, and data
communication (Input, Feature reports sent to the host with GET REPORT
request).

Control OUT Host-to-device Standard requests for enumeration, class-specific requests and data

communication (Output, Feature reports received from the host with
SET REPORT request).

Interrupt IN Device-to-host Data communication (Input and Feature reports).

Interrupt OUT Host-to-device Data communication (Output and Feature reports).

Table 9-1 HID Class Endpoints Usage

9-1-1 REPORT

A host and a HID device exchange data using reports. A report contains formatted data
giving information about controls and other physical entities of the HID device. A control is
manipulable by the user and operates an aspect of the device. For instance, a control can be
a button on a mouse or a keyboard, a switch, etc. Other entities inform the user about the
state of certain device’s features. For instance, LEDs on a keyboard notify the user about the
caps lock on, about the numeric keypad active, etc.

136

Overview

The format and the use of a report data is understood by the host by analyzing the content
of a Report descriptor. Analyzing the content is done by a parser. The Report descriptor
describes the data provided by each control in a device. It is composed of items. An item is
a piece of information about the device and consists of a 1-byte prefix and variable-length
data. Refer to “Device Class Definition for Human Interface Devices (HID) Version 1.117,
section 5.6 and 6.2.2 for more details about the item format.

There are three principal types of items:

B Main item defines or groups certain types of data fields.

B Global item describes data characteristics of a control.

B Local item describes data characteristics of a control.

Each item type is defined by different functions. An item function can also be called an
item. An item function can be seen as a sub-item that belongs to one of the 3 principal item
types. Table 9-2 gives a brief overview of the item’s functions in each item type. For a

complete description of the items in each category, refer to “Device Class Definition for
Human Interface Devices (HID) Version 1.11”, section 6.2.2.

Item type | Item function Description
Main Input Describes information about the data provided by one ore more physical
controls.

Output Describes data sent to the device.

Feature Describes device configuration information sent to or received from the
device which influences the overall behavior of the device or one of its
components.

Collection Group related items (Input, Output or Feature).

End of Collection Closes a collection.

137

Chapter 9

Item type | Item function Description
Global Usage Page Identifies a function available within the device.
Logical Minimum Defines the lower limit of the reported values in logical units.
Logical Maximum Defines the upper limit of the reported values in logical units.
Physical Minimum Defines the lower limit of the reported values in physical units, that is the
Logical Minimum expressed in physical units.
Physical Maximum Defines the upper limit of the reported values in physical units, that is the
Logical Maximum expressed in physical units.
Unit Exponent Indicates the unit exponent in base 10. The exponent ranges from -8 to +7.
Unit Indicates the unit of the reported values. For instance, length, mass,
temperature units, etc.
Report Size Indicates the size of the report fields in bits.
Report ID Indicates the prefix added to a particular report.
Report Count Indicates the number of data fields for an item.
Push Places a copy of the global item state table on the CPU stack.
Pop Replaces the item state table with the last structure from the stack.
Local Usage Represents an index to designate a specific Usage within a Usage Page. It

138

indicates the vendor’s suggested use for a specific control or group of
controls. A usage supplies information to an application developer about
what a control is actually measuring.

Usage Minimum

Defines the starting usage associated with an array or bitmap.

Usage Maximum

Defines the ending usage associated with an array or bitmap.

Designator Index

Determines the body part used for a control. Index points to a designator in
the Physical descriptor.

Designator Minimum

Defines the index of the starting designator associated with an array or bitmap.

Designator Maximum

Defines the index of the ending designator associated with an array or bitmap.

String Index

String index for a String descriptor. It allows a string to be associated with a
particular item or control.

String Minimum

Specifies the first string index when assigning a group of sequential strings
to controls in an array or bitmap.

String Maximum

Specifies the last string index when assigning a group of sequential strings
to controls in an array or bitmap.

Delimiter

Defines the beginning or end of a set of local items.

Table 9-2 ltem’s Function Description for each Item Type

Overview

A control’s data must define at least the following items:

B Input, Output or Feature Main items.
B Usage Local item.

B Usage Page Global item.

B Logical Minimum Global item.

B Logical Maximum Global item.

B Report Size Global item.

B Report Count Global item.

Table 9-1 shows the representation of a Mouse Report descriptor content from a host HID
parser perspective. The mouse has three buttons (left, right and wheel). The code presented

in Listing 9-2 is an example of code implementation corresponding to this mouse Report
descriptor representation.

/ @ Collection: Usage: \
Application Mouse
.
Collection: < Usage:
Physical Pointer

v v v
ﬁput Report Input Report\ mnput Report 4

-

3

=

(data) (constant) (data) L @
Usage Min: Report Logical Min:
button 1 Count: 1 -127
Usage Max: Report Size: Logical Max:
button 3 13 127
Logical Min: Report
0 Count: 2
Logical Max: Report Size:
1 8
Report
Count: 3
Report Size:

(1) Usage Page: Generic Desktop

1
K (4) Usage Page: Button / w’)) Usage Page: Generic Desktoﬂ

Figure 9-1 Report Descriptor Content from a Host HID Parser View

139

Chapter 9

F9-1(1)

F9-1(2)

F9-1(3)

F9-1(4)

F9-1(5)

140

The Usage Page item function specifies the general function of the device. In
this example, the HID device belongs to a generic desktop control.

The Collection Application groups Main items that have a common purpose
and may be familiar to applications. In the diagram, the group is composed of
three Input Main items. For this collection, the suggested use for the controls is
a mouse as indicated by the Usage item.

Nested collections may be used to give more details about the use of a single
control or group of controls to applications. In this example, the Collection
Physical, nested into the Collection Application, is composed of the same 3
Input items forming the Collection Application. The Collection Physical is used
for a set of data items that represent data points collected at one geometric
point. In the example, the suggested use is a pointer as indicated by the Usage
item. Here the pointer usage refers to the mouse position coordinates and the
system software will translate the mouse coordinates in movement of the
screen Cursor.

Nested usage pages are also possible and give more details about a certain
aspect within the general function of the device. In this case, two Inputs items
are grouped and correspond to the buttons of the mouse. One Input item
defines the three buttons of the mouse (right, left and wheel in terms of
number of data fields for the item (Report Count item), size of a data field
(Report Size item) and possible values for each data field (Usage Minimum and
Maximum, Logical Minimum and Maximum items). The other Input item is a
13-bit constant allowing the Input report data to be aligned on a byte
boundary. This Input item is used only for padding purpose.

Another nested usage page referring to a generic desktop control is defined for the
mouse position coordinates. For this usage page, the Input item describes the data
fields corresponding to the x- and y-axis as specified by the two Usage items.

Overview

After analyzing the previous mouse Report descriptor content, the host’s HID parser is able
to interpret the Input report data sent by the device with an interrupt IN transfer or in
response to a GET REPORT request. The Input report data corresponding to the mouse
Report descriptor shown in Figure 9-1 is presented in Table 9-3. The total size of the report
data is 4 bytes. Different types of reports may be sent over the same endpoint. For the
purpose of distinguishing the different types of reports, a 1-byte report ID prefix is added to
the data report. If a report ID was used in the example of the mouse report, the total size of
the report data would be 5 bytes.

Bit offset Bit count Description

0 1 Button 1 (left button).

1 1 Button 2 (right button).
2 1 Button 3 (wheel button).
3 13 Not used.

16 8 Position on axis X.

24 8 Position on axis Y.

Table 9-3 Input Report Sent to Host and Corresponding to the State of a 3-Buttons Mouse.

A Physical descriptor indicates the part or parts of the body intended to activate a control or
controls. An application may use this information to assign a functionality to the control of a
device. A Physical descriptor is an optional class-specific descriptor and most devices have
little gain for using it. Refer to “Device Class Definition for Human Interface Devices (HID)
Version 1.11” section 6.2.3 for more details about this descriptor.

141

Chapter 9

9-2 ARCHITECTURE

Figure 9-2 shows the general architecture between the host and the device using the HID
class offered by Micripm.

Host operating system

‘ Application ‘

| USB Host stack |

{H} !
<5
Control 0 3
IN&OUT| = HID 0S
Interrupt Interrupt
IN OUT 1 HiD Report
ﬁ HID class parser
L] R
Application
USB Device

Figure 9-2 General Architecture Between a Host and HID Class

The host operating system (OS) enumerates the device using the control endpoints. Once
the enumeration phase is done, the host starts the transmission/reception of reports to/from
the device using the interrupt endpoints.

On the device side, the HID class interacts with an OS layer specific to this class. The HID
OS layer provides specific OS services needed for the internal functioning of the HID class.
This layer does not assume a particular OS. By default, Micripm provides the HID OS layer
for pC/OS-IT and pC/OS-II. If you need to port the HID class to your own OS, refer to
section 9-5 “Porting the HID Class to a RTOS” on page 160 for more details about the HID
OS layer.

During the HID class initialization phase, a report parser module is used to validate the

report provided by the application. If any error is detected during the report validation, the
initialization will fail.

142

Configuration

9-3 CONFIGURATION

9-3-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the USB

device configuration file, usbd cfg.h . Table 9-4 shows their description.

Constant

Description

USBD_HID CFG MAX NBR DEV

Configures the maximum number of class instances. Unless you plan
on having multiple configurations or interfaces using different class
instances, this can be set to 1.

USBD_HID CFG MAX NBR CFG

Configures the maximum number of configurations in which HID class
is used. Keep in mind that if you use a high-speed device, two
configurations will be built, one for full-speed and another for
high-speed.

USBD_HID CFG_MAX NBR REPORT ID

Configures the maximum number of report IDs allowed in a report. The
value should be set properly to accommodate the number of report ID
to be used in the report. The minimum value is 1.

USBD_HID CFG MAX NBR REPORT PUSHPOP

Configures the maximum number of Push and Pop items used in a
report. If the constant is set to 0, no Push and Pop items are present in
the report.

Table 9-4 HID Class Configuration Constants

The HID class uses an internal class to manage periodic input reports. The task priority and

stack size shown in Table 9-5 are defined in the application configuration file, app cfg.h.

Refer to section 9-6 “Periodic Input Reports Task” on page 161 for more details about the

HID internal task.

Constant

Description

USBD_HID OS CFG_TMR TASK PRIO

Configures the priority of the HID periodic input reports task.

USBD_HID OS CFG_TMR TASK STK SIZE

Configures the stack size of the HID periodic input reports task.

Table 9-5 HID Internal Task’s Configuration Constants

143

Chapter 9

9-3-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 9-6 summarizes the initialization functions provided by the

HID class. For more details about the functions parameters, refer to Appendix D, “HID API

Reference” on page 387.

Function name Operation

USBD_HID Init() Initializes HID class internal structures, variables and the OS layer.
USBD_HID Add() Creates a new instance of HID class.

USBD_HID CfgAdd() Adds an existing HID instance to the specified device configuration.

Table 9-6 HID Class Initialization APl Summary

You need to call these functions in the order shown below to successfully initialize the HID

class:

1 Call USBD_HID Init()

This is the first function you should call and you should do it only once even if you use

multiple class instances. This function initializes all internal structures and variables that
the class needs and also the HID OS layer.

2 Call USBD HID Add()

This function allocates an HID class instance. It also allows you to specify the following

instance characteristics:

144

The country code of the localized HID hardware.
The Report descriptor content and size.

The Physical descriptor content and size.

The polling internal for the interrupt IN endpoint.

The polling internal for the interrupt OUT endpoint.

Configuration

B A flag enabling or disabling the Output reports reception with the control endpoint.
When the control endpoint is not used, the interrupt OUT endpoint is used instead
to receive Output reports.

B A structure that contains 4 application callbacks used for class-specific requests
processing.

3 Call USBD HID CfgAdd()

Finally, once the HID class instance has been created, you must add it to a specific
configuration.

Listing 9-1 illustrates the use of the previous functions for initializing the HID class.

static USBD_HID CALLBACK App USBD HID Callback = { (3)
App USBD_HID GetFeatureReport,
App USBD _HID SetFeatureReport,
App_USBD_HID GetProtocol,
App USBD_HID_SetProtocol,
b
CPU_BOOLEAN App USBD_HID Init (CPU_INT08U dev_nbr,
CPU_INTO08U cfg_hs,

CPU_INT08U cfg_ fs)

USBD_ERR err;
CPU_INTO08U class_nbr;

USBD_HID Init(&err); (1)
if (err != USBD ERR NONE) {

/* Handle the error. */

(2)

145

Chapter 9

class nbr = USBD_HID Add(USBD_HID SUBCLASS BOOT,
USBD_HID PROTOCOL_MOUSE,
USBD_HID COUNTRY_ CODE NOT SUPPORTED,
&App_USBD_HID ReportDesc([0],
sizeof (App USBD_HID ReportDesc),
(CPU_INTO8U *)0,
Ou,
2u,
2u,
DEF_YES,
&App_USBD_HID Callback, (3)
&err);
if (err != USBD_ERR NONE) {
/* Handle the error. */

if (cfg_hs != USBD_CFG_NBR_NONE) {
USBD_HID CfgAdd(class_nbr, dev_nbr, cfg hs, &err); (4)
if (err != USBD ERR NONE) {
/* Handle the error. */

if (cfg_fs != USBD CFG_NBR NONE) {
USBD_HID CfgAdd(class_nbr, dev_nbr, cfg fs, &err); (5)
if (err != USBD_ERR NONE) {
/* Handle the error. */

}
}
Listing 9-1 HID Class Initialization Example
L9-1(1D) Initialize HID internal structures, variables and OS layer.
1L9-1(2) Create a new HID class instance. In this example, the subclass is “Boot”, the

protocol is “Mouse” and the country code is unknown. A table,
App USBD HID ReportDesc|], representing the Report descriptor is passed to
the function (refer to Listing 9-2 for an example of Report descriptor content
and section 9-1-1 “Report” on page 136 for more details about the Report
descriptor format). No Physical descriptor is provided by the application. The
interrupt IN endpoint is used and has a 2 frames or microframes polling
interval. The use of the control endpoint to receive Output reports is enabled.
The interrupt OUT endpoint will not be used. Hence, the interrupt OUT polling

146

Configuration

interval of 2 is ignored by the class. The structure App USBD HID Callback is
also passed and references 4 application callbacks which will be called by the
HID class upon processing of the class-specific requests.

L9-1(3) There are 4 application callbacks for class-specific requests processing. There is
one callback for each of the following requests: GET REPORT, SET REPORT,
GET_PROTOCOL and SET PROTOCOL. Refer to “Device Class Definition for
Human Interface Devices (HID) Version 1.117, section 7.2 for more details
about these class-specific requests.

L9-1(4) Check if the high-speed configuration is active and proceed to add the HID
instance previously created to this configuration.

L9-1(5) Check if the full-speed configuration is active and proceed to add the HID
instance to this configuration.

Listing 9-1 also illustrates an example of multiple configurations. The functions
USBD HID Add() and USBD HID CfgAdd() allow you to create multiple configurations and
multiple instances architecture. Refer to section Table 7-1 “Constants and Functions Related
to the Concept of Multiple Class Instances” on page 99 for more details about multiple class
instances.

Listing 9-2 presents an example of table declaration defining a Report descriptor
corresponding to a mouse. The example matches the mouse report descriptor viewed by
the host HID parser in Figure 9-1. The mouse report represents an Input report. Refer to
section 9-1-1 “Report” on page 136 for more details about the Report descriptor format. The
items inside a collection are intentionally indented for code clarity.

147

Chapter 9

static CPU_INT08U App USBD_HID ReportDesc[] = { (1)
USBD_HID GLOBAL USAGE PAGE + 1, USBD_HID USAGE_PAGE_GENERIC_DESKTOP_CONTROLS, (2)
USBD_HID LOCAL_USAGE + 1, USBD_HID CA MOUSE, (3)
USBD_HID MAIN COLLECTION + 1, USBD_HID COLLECTION_APPLICATION, (4)

USBD_HID LOCAL_USAGE + 1, USBD_HID CP_POINTER, (5)
USBD_HID MAIN COLLECTION + 1, USBD _HID COLLECTION PHYSICAL, (6)
(7)

USBD_HID GLOBAL USAGE PAGE + 1, USBD_HID USAGE_PAGE_BUTTON,

USBD_HID LOCAL USAGE_MIN + 1, 0x01,

USBD_HID_ LOCAL_USAGE MAX + 1, 0x03,

USBD_HID GLOBAL_LOG_MIN + 1, 0x00,

USBD_HID GLOBAL LOG_MAX + 1, 0x01,

USBD_HID GLOBAL REPORT COUNT + 1, 0x03,

USBD_HID GLOBAL REPORT SIZE + 1, 0x01,

USBD_HID MAIN INPUT + 1, USBD HID MAIN DATA

USBD_HID MAIN VARIABLE |
USBD_HID MAIN ABSOLUTE,
(8)
USBD_HID GLOBAL REPORT COUNT + 1, 0x01,
USBD_HID GLOBAL REPORT SIZE + 1, 0x0D,

USBD_HID MAIN INPUT + 1, USBD_HID MAIN CONSTANT,
(9)
USBD_HID GLOBAL USAGE PAGE + 1, USBD_HID USAGE_PAGE_GENERIC_DESKTOP_CONTROLS,
USBD_HID LOCAL_USAGE + 1, USBD_HID DV X,
USBD_HID LOCAL USAGE + 1, USBD_HID DV_Y,
USBD_HID GLOBAL LOG MIN + 1, 0x81,
USBD_HID GLOBAL LOG_MAX + 1, OX7F,
USBD_HID GLOBAL_REPORT SIZE + 1, 0x08,
USBD_HID GLOBAL REPORT COUNT + 1, 0x02,
USBD_HID MAIN INPUT + 1, USBD_HID MAIN DATA
USBD_HID MAIN VARIABLE |
USBD_HID MAIN RELATIVE,
USBD_HID MAIN ENDCOLLECTION, (10)
USBD_HID MAIN ENDCOLLECTION (11)
i
Listing 9-2 Mouse Report Descriptor Example
L9-2(D) The table representing a mouse Report descriptor is initialized in such way that

each line corresponds to a short item. The latter is formed from a 1-byte prefix
and a 1-byte data. Refer to “Device Class Definition for Human Interface
Devices (HID) Version 1.117, sections 5.3 and 6.2.2.2 for more details about
short items format. This table content corresponds to the mouse Report
descriptor content viewed by a host HID parser in Figure 9-1.

L9-2(2) The Generic Desktop Usage Page is used.

148

Configuration

L9-2(3)

L9-2(4)

L9-2(5)

L9-2(6)

L9-2(7)

L9-2(8)

L9-2(9)

L9-2(10)

L9-2(11)

Within the Generic Desktop Usage Page, the usage tag suggests that the group
of controls is for controlling a mouse. A mouse collection typically consists of
two axes (X and Y) and one, two, or three buttons.

The mouse collection is started.

Within the mouse collection, a usage tag suggests more specifically that the
mouse controls belong to the pointer collection. A pointer collection is a
collection of axes that generates a value to direct, indicate, or point user
intentions to an application.

The pointer collection is started.

The Buttons Usage Page defines an Input item composed of three 1-bit fields.
Each 1-bit field represents the mouse’s button 1, 2 and 3 respectively and can
return a value of 0 or 1.

The Input Item for the Buttons Usage Page is padded with 13 other bits.
Another Generic Desktop Usage Page is indicated for describing the mouse
position with the axes X and Y. The Input item is composed of two 8-bit fields
whose value can be between -127 and 127.

The pointer collection is closed.

The mouse collection is closed.

149

Chapter 9

9-3-3 CLASS INSTANCE COMMUNICATION

The HID class offers the following functions to communicate with the host. For more details
about the functions parameters, refer to Appendix D, “HID API Reference” on page 387.

Function name Operation

USBD_HID Rd() Receives data from host through interrupt OUT endpoint. This function
is blocking.

USBD_HID Wr() Sends data to host through interrupt IN endpoint. This function is
blocking.

USBD_HID RdAsync() Receives data from host through interrupt OUT endpoint. This function
is non-blocking.

USBD_HID WrAsync() Sends data to host through interrupt IN endpoint. This function is
non-blocking.

Table 9-7 HID Communication API Summary

9-3-4 SYNCHRONOUS COMMUNICATION
Synchronous communication means that the transfer is blocking. Upon function call, the
applications blocks until the transfer completion with or without an error. A timeout can be

specified to avoid waiting forever.

Listing 9-3 presents a read and write example to receive data from the host using the
interrupt OUT endpoint and to send data to the host using the interrupt IN endpoint.

150

Configuration

CPU_INTO08U rx buf[2];
CPU_INTO8U tx buf[2];
USBD_ERR err;

(void)USBD_HID_ Rd(class_nbr, (1)
(void *)&rx buf[0], (2)
2u,
Ou, (3)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

(void)USBD_HID Wr(class_nbr, (1)
(void *)&tx buf[0], (4)
2u,
Ou, (3)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

Listing 9-3 Synchronous Bulk Read and Write Example

L9-3(D) The class instance number created from USBD_HID Add() will serve internally
for the HID class to route the transfer to the proper interrupt OUT or IN
endpoint.

L9-3(2) The application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might
happen. Internally, the read operation is done either with the control endpoint
or with the interrupt endpoint depending on the control read flag set when
calling USBD_HID Add().

L9-3(3) In order to avoid an infinite blocking situation, a timeout expressed in
milliseconds can be specified. A value of ‘0’ makes the application task wait
forever.

L9-3(4) The application provides the initialized transmit buffer.

151

Chapter 9

9-3-5 ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,
the application passes the transfer information to the device stack and does not block.
Other application processing can be done while the transfer is in progress over the USB
bus. Once the transfer is completed, a callback is called by the device stack to inform the

application about the transfer completion.

Listing 9-4 shows an example of an asynchronous read and write.

void App USBD_HID Comm (CPU_INT08U class_nbr)
{

CPU_INT08U rx buf[2];

CPU_INTO08U tx buf[2];

USBD_ERR err;

USBD_HID RdAsync(class_nbr, (1)
(void *)&rx buf[0], (2)
2u,
App_USBD_HID RxCmpl, (3)
(void *) Ou, (4)
&err);

if (err != USBD_ERR NONE) {
/* Handle the error. */

}
USBD_HID_ WrAsync(class_nbr, (1)
(void *)&tx buf[0], (5)
2u,
App_USBD_HID TxCmpl, (3)
(void *) Ou, (4)
&err);

if (err != USBD ERR NONE) {
/* $$$$ Handle the error. */

(3)
static void App USBD HID RxCmpl (CPU_INT08U class_nbr,
void *p_buf,
CPU_INT32U buf_len,
CPU_INT32U xfer len,
void *p_callback_arg,
USBD_ERR err)

152

Configuration

{
(void)class_nbr;
(void)p_buf;
(void)buf len;
(void)xfer len;
(void)p_callback arg; (4)
if (err == USBD_ERR NONE) {
/* $$$$ Do some processing. */
} else {
/* $$$$ Handle the error. */
}
}
(3)
static void App USBD HID TxCmpl (CPU_INT08U class nbr,
void *p_buf,
CPU_INT32U buf_ len,
CPU_INT32U xfer len,
void *p_callback_arg,
USBD_ERR err)
{
(void)class_nbr;
(void)p_buf;
(void)buf len;
(void)xfer len;
(void)p_callback arg; (4)
if (err == USBD_ERR NONE) {
/* $$$$ Do some processing. */
} else {
/* $$$$ Handle the error. */
}
}
Listing 9-4 Asynchronous Bulk Read and Write Example
L9-4(1) The class instance number serves internally for the HID class to route the
transfer to the proper interrupt OUT or IN endpoint.
L9-4(2) The application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might
happen. Internally, the read operation is done either with the control endpoint
or with the interrupt endpoint depending on the control read flag set when
calling USBD_HID Add().

153

Chapter 9

L9-4(3) The application provides a callback passed as a parameter. Upon completion of
the transfer, the device stack calls this callback so that the application can
finalize the transfer by analyzing the transfer result. For instance, upon read
operation completion, the application may do a certain processing with the
received data. Upon write completion, the application may indicate if the write
was successful and how many bytes were sent.

L9-4(4) An argument associated to the callback can be also passed. Then in the
callback context, some private information can be retrieved.

L9-4(5) The application provides the initialized transmit buffer.

9-4 USING THE DEMO APPLICATION

Micripm provides a demo application that lets you test and evaluate the class
implementation. Source template files are provided for the device. Executable and source
files are provided for Windows host PC.

9-4-1 CONFIGURING PC AND DEVICE APPLICATIONS
The HID class provides two demos:

B Mouse demo exercises Input reports sent to the host. Each report gives periodically the
current state of a simulated mouse.

B Vendor-specific demo exercises Input and Output reports. The host sends an Output
report or receives an Input report according to your choice.

On the device side, the demo application file, app usbd hid.c, offering the two HID
demos is provided for nC/OS-II and pC/OS-IIL. It is located in these two folders:

B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II
B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

The use of these constants usually defined in app cfg.h allows you to use one of the HID
demos.

154

Using the Demo Application

Constant Description

APP CFG_USBD HID EN General constant to enable the Vendor class demo
application. Must be set to DEF_ENABLED.

APP CFG USBD_HID TEST MOUSE_EN Enables or disables the mouse demo. The possible values
are DEF_ENABLED or DEF DISABLED. If the constant is set to
DEF_DISABLED, the vendor-specific demo is enabled.

APP_CFG_USBD_HID MOUSE TASK PRIO Priority of the task used by the mouse demo.
APP_CFG_USBD_HID READ TASK PRIO Priority of the read task used by the vendor-specific demo.
APP_CFG_USBD_HID WRITE TASK PRIO Priority of the write task used by the vendor-specific demo.
APP_CFG_USBD_HID TASK STK SIZE Stack size of the tasks used by mouse or vendor-specific

demo. A default value can be 256.

Table 9-8 Device Application Constants Configuration

On the Windows side, the mouse demo influences directly the cursor on your monitor

while the vendor-specific demo requires a custom application. The latter is provided by a

Visual Studio solution located in this folder:

B \Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010

The solution HID.sln contains two projects:

H “HID - Control” tests the Input and Output reports transferred through the control
endpoints. The class-specific requests GET REPORT and SET REPORT allows the host to

receive Input reports and send Output reports respectively.

B “HID - Interrupt” tests the Input and Output reports transferred through the interrupt IN
and OUT endpoints.

155

Chapter 9

An HID device is defined by a Vendor ID (VID) and Product ID (PID). The VID and PID
will be retrieved by the host during the enumeration to build a string identifying the HID
device. The “HID - Control” and “HID - Interrupt” projects contain both a file named
app_hid common.c. This file declares the following local constant:

static const TCHAR App DevPathStr[] = _TEXT("hid#vid fffe&pid 1234"); (1)

Listing 9-5 Windows Application and String to Detect a Specific HID Device

L9-5(D) This constant allows the application to detect a specified HID device connected
to the host. The VID and PID given in App DevPathStr variable must match
with device side values. The device side VID and PID are defined in the
USBD_DEV_CFG structure in the file usbd dev_cfg.c. Refer to the section
“Modify Device Configuration” on page 34 for more details about the
USBD _DEV_CFG structure. In this example, VID = fffe and PID = 1234 in
hexadecimal format.

9-4-2 RUNNING THE DEMO APPLICATION

The mouse demo does not require anything on the Windows side. You just need to plug the
HID device running the mouse demo to the PC and see the screen cursor moving.

Figure 9-3 presents the mouse demo with the host and device interactions:

Windows PC USB Device
Host

(1) Mouse task

S R Send input
N > Input report report

Figure 9-3 HID Mouse Demo

156

Using the Demo Application

F9-3(1)

F9-3(2)

On the device side, the task App USBD HID MouseTask() simulates a mouse
movement by setting the coordinates X and Y to a certain value and by sending
the Input report that contains these coordinates. The Input report is sent by
calling the USBD HID Wr() function through the interrupt IN endpoint. The
mouse demo does not simulate any button clicks; only mouse movement.

The host Windows PC polls the HID device periodically following the polling
interval of the interrupt IN endpoint. The polling interval is specified in the
Endpoint descriptor matching to the interrupt IN endpoint. The host receives
and interprets the Input report content. The simulated mouse movement is
translated into a movement of the screen cursor. While the device side
application is running, the screen cursor moves endlessly.

The vendor-specific demo requires you to launch a Windows executable. Two executables

are already provided in the following folder:

B \Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010\exe\

The two executables have been generated with a Visual Studio 2010 project available in
\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010\.

B HID - Control.exe for the vendor-specific demo utilizing the control endpoints to send

Output reports or receive Input reports.

B HID - Interrupt.exe for the vendor-specific demo utilizing the interrupt endpoints to

send Output reports or receive Input reports.

Figure 9-4 presents the vendor-specific demo with the host and device interactions:

157

Chapter 9

F9-4(1)

F9-4(2)

F9-4(3)

F9-4(4)

158

Windows PC USB Device
Host
(1) Control menu (3) Read task

Receive or

Receive Output
write reports

from/to device

report

Output report

(2) Interrupt menu Input Report (4) Write task

i

Receive or

: Send Input
write reports

from/to device

report

Figure 9-4 HID Vendor-Specific Demo

A menu will appear after launching HID - Control.exe. You will have three
choices: “1. Sent get report”, “2. Send set report” and “3. Exit”. Choice 1 will
send a GET REPORT request to obtain an Input report from the device. The
content of the Input report will be displayed in the console. Choice 2 will send

a SET REPORT request to send an Output report to the device.

A menu will appear after launching HID - Interrupt.exe. You will have three
choices: “1. Read from device”, “2. Write from device” and “3. Exit”. The choice
1 will initiate an interrupt IN transfer to obtain an Input report from the device.
The content of the Input report will be displayed in the console. Choice 2 will
initiate an interrupt OUT transfer to send an Output report to the device.

On the device side, the task App USBD HID ReadTask() is used to receive
Output reports from the host. The synchronous HID read function,
USBD_HID Rd(), will receive the Output report data. Nothing is done with the
received data. The Output report has a size of 4 bytes.

Another task, App USBD HID WriteTask(), will send Input reports to the host
using the synchronous HID write function, USBD_HID Wr(). The Input report
has a size of 4 bytes.

Using the Demo Application

Figure 9-5 and Figure 9-6 show screenshot examples corresponding to HID - Control.exe
and HID - Interrupt.exe respectively.

B CAMicriumi\Saftware\uC-USE-Device-VAApp HostOS\Windows\HIDWVisual Studio 2010\ Debugh... = M

Successfully Opened HID Compliant Device.

++++++++
I Menu |
++++++++

1. Send get report
2. Send set report
3. Exit

Enter the Choice = 1

4 Bytes Received From Device.

2 4 6 8

FEEEE R

i Menu |

FEEEE R

1. Send get report

2. Send set report

3. Exit

Enter the Choice = 2

4 Bytes Sent To Device.

18 28 38 48

Figure 9-5 HID - Control.exe (Vendor-Specific Demo)

1 C\MicriumiSoftwaretuC-USB-Device-VAApp\Host\OS\Windows\HIDWVisual Studio 2010\Debug),.. |ﬂ|ﬁ']
Successfully Opened HID Compliant Dewice.

N

i Menu |
++++ 4+

1. Read from Device
2. Urite to Device
3. Exit
Enter the Choice : 1
Last 4 Bytes Received From Device.
2 4 6 8
++++ 4+

i Menu |
+++tdd++

1. Read from Device
2. Urite to Device
3. Exit

Enter the Choice : 2

Sent 4 Bytes to Device: 18 20 38 48

Figure 9-6 HID - Interrupt.exe (Vendor-Specific Demo)

159

Chapter 9

9-5 PORTING THE HID CLASS TO A RTOS
The HID class uses its own RTOS layer for different purposes:

B A locking system is used to protect a given Input report. A host can get an Input report
by sending a GET REPORT request to the device using the control endpoint or with an
interrupt IN transfer. GET REPORT request processing is done by the device stack while
the interrupt IN transfer is done by the application. When the application executes the
interrupt IN transfer, the Input report data is stored internally. This report data stored
will be sent via a control transfer when GET REPORT is received. The locking system
ensures the data integrity between the Input report data storage operation done within
an application task context and the GET REPORT request processing done within the
device stack’s internal task context.

B A locking system is used to protect the Output report processing between an
application task and the device stack’s internal task when the control endpoint is used.
The application provides to the HID class a receive buffer for the Output report in the
application task context. This receive buffer will be used by the device stack’s internal
task upon reception of a SET REPORT request. The locking system ensures the receive
buffer and related variables integrity.

B A locking system is used to protect the interrupt IN endpoint access from multiple
application tasks.

B A synchronization mechanism is used to implement the blocking behavior of
USBD_HID Rd() when the control endpoint is used.

B A synchronization mechanism is used to implement the blocking behavior of
USBD_HID Wr() because the HID class internally uses the asynchronous interrupt API
for HID write.

B A task is used to process periodic Input reports. Refer to section 9-6 “Periodic Input
Reports Task” on page 161 for more details about this task.

By default, Micripm will provide an RTOS layer for both pC/OS-II and nC/OS-III. However,
it is possible to create your own RTOS layer. Your layer will need to implement the
functions listed in Table 9-9. For a complete API description, refer to Appendix D, “HID API
Reference” on page 387.

160

Periodic Input Reports Task

Function name

Operation

USBD_HID OS_Init()

Creates and initializes the task and semaphores.

USBD_HID OS_InputLock()

Locks Input report.

USBD_HID OS InputUnlock()

Unlocks Input report.

USBD_HID_OS_InputDataPend()

Waits for Input report data write completion.

USBD_HID OS InputDataPendAbort()

Aborts the wait for Input report data write completion.

USBD_HID OS_InputDataPost()

Signals that Input report data has been sent to the host.

USBD_HID_OS_OutputLock()

Locks Output report.

USBD_HID OS_OutputUnlock()

Unlocks Output report.

USBD_HID OS_OutputDataPend()

Waits for Output report data read completion.

USBD_HID OS OutputDataPendAbort ()

Aborts the wait for Output report data read completion.

USBD_HID OS_OutputDataPost ()

Signals that Output report data has been received from the host.

USBD_HID OS_TxLock()

Locks class transmit.

USBD_HID OS_TxUnlock()

Unlocks class transmit.

USBD_HID OS TmrTask()

Task processing periodic input reports. Refer to section 9-6 “Periodic
Input Reports Task” on page 161 for more details about this task.

Table 9-9 HID OS Layer APl Summary

9-6 PERIODIC INPUT REPORTS TASK

In order to save bandwidth, the host has the ability to silence a particular report in an

interrupt IN endpoint by limiting the reporting frequency. The host sends the SET IDLE

request to realize this operation. The HID class implemented by Micripm contains an

internal task responsible for respecting the reporting frequency limitation applying to one or

several input reports. Figure 9-7 shows the periodic input reports tasks functioning.

161

Chapter 9

F9-7(1D

F9-7(2)

F9-7(3)

162

Input Report

Periodic input
reports task

duration count
or

(5) Send input

report data

Internal data
buffer

(6)

oo | Aot

Figure 9-7 Periodic Input Reports Task

The device receives a SET IDLE request. This request specifies an idle duration
for a given report ID. Refer to “Device Class Definition for Human Interface
Devices (HID) Version 1.11”, section 7.2.4 for more details about the SET IDLE
request. A report ID allows you to distinguish among the different types of
reports sent over the same endpoint.

A report ID structure allocated during the HID class initialization phase is
updated with the idle duration. An idle duration counter is initialized with the
idle duration value. Then the report ID structure is inserted at the end of a
linked list containing input reports ID structures. The idle duration value is
expressed in 4-ms unit which gives a range of 4 to 1020 ms. If the idle duration
is less than the interrupt IN endpoint polling interval, the reports are generated
at the polling interval.

Every 4 ms, the periodic input report task browses the input reports ID list. For
each input report ID, the task performs one of two possible operations. The
task period matches the 4-ms unit used for the idle duration. If no SET IDLE

Periodic Input Reports Task

F9-7(4)

F9-7(5)

F9-7(6)

requests have been sent by the host, the input reports ID list is empty and the
task has nothing to process. The task processes only report IDs different from 0
and with an idle duration greater than 0.

For a given input report ID, the task verifies if the idle duration has elapsed. If
the idle duration has not elapsed, the counter is decremented and no input
report is sent to the host.

If the idle duration has elapsed, that is the idle duration counter has reached
zero, an input report is sent to the host by calling the USBD HID Wr() function
via the interrupt IN endpoint.

The input report data sent by the task comes from an internal data buffer
allocated for each input report described in the Report descriptor. An
application task can call the USBD HID Wr() function to send an input report.
After sending the input report data, USBD_HID Wr() updates the internal buffer
associated to an input report ID with the data just sent. Then, the periodic
input reports task always sends the same input report data after each idle
duration elapsed and until the application task updates the data in the internal
buffer. There is some locking mechanism to avoid corruption of the input
report ID data in the event of a modification happening at the exact time of
transmission done by the periodic input report task.

The periodic input reports task is implemented in the HID OS layer in the function
USBD_HID OS_TmrTask(). Refer to section D-2 “HID OS Functions” on page 402 for more
details about this function.

163

Chapter 9

164

Chapter

10

Mass Storage Class

This section describes the mass storage device class (MSC) supported by nC/USB-Device.
The MSC implementation offered by nC/USB-Device is in compliance with the following
specifications:

B Universal Serial Bus Mass Storage Class Specification Overview, Revision 1.3 Sept. 5, 2008.
B Universal Serial Bus Mass Storage Class Bulk-Only Transport, Revision 1.0 Sept. 31, 1999.

MSC is a protocol that enables the transfer of information between a USB device and a host.
The information is anything that can be stored electronically: executable programs, source
code, documents, images, configuration data, or other text or numeric data. The USB device
appears as an external storage medium to the host, enabling the transfer of files via drag
and drop.

A file system defines how the files are organized in the storage media. The USB mass
storage class specification does not require any particular file system to be used on
conforming devices. Instead, it provides a simple interface to read and write sectors of data
using the Small Computer System Interface (SCSD) transparent command set. As such,
operating systems may treat the USB drive like a hard drive and can format it with any file
system they like.

The USB mass storage device class supports two transport protocols:

B Bulk-Only Transport (BOT)

B Control/Bulk/Interrupt (CBD) Transport.

The mass storage device class supported by pC/USB-Device implements the SCSI
transparent command set using the BOT protocol only, which signifies that only bulk

endpoints will be used to transmit data and status information.

165

Chapter 10

10-1 OVERVIEW

10-1-1 MASS STORAGE CLASS PROTOCOL

The MSC protocol is composed of three phases:

B The Command Transport

B The Data Transport

B The Status Transport

Mass storage commands are sent by the host through a structure called the Command Block

Wrapper (CBW). For commands requiring a data transport stage, the host will attempt to

send or receive the exact number of bytes from the device as specified by the length and

flag fields of the CBW. After the data transport stage, the host attempts to receive a

Command Status Wrapper (CSW) from the device detailing the status of the command as

well as any data residue (if any). For commands that do not include a data transport stage,

the host attempts to receive the CSW directly after CBW is sent. The protocol is detailed in

Figure 10-1.

Command Transport

(CBW)

e

Data-Out (from Host)

I

4

4

%

Data-In (to Host)

]

4

Status Transport

(CsW)

166

Figure 10-1 MSC Protocol

Overview

10-1-2 ENDPOINTS

On the device side, in compliance with the BOT specification, the MSC is composed of the

following endpoints:

B A pair of control IN and OUT endpoints called default endpoint.

B A pair of bulk IN and OUT endpoints.

Table 10-lindicates the different usages of the endpoints.

Endpoint Direction Usage

Control IN Device to Host Enumeration and MSC class-specific requests
Control OUT Host to Device

Bulk IN Device to Host Send CSW and data

Bulk OUT Host to Device Receive CBW and data

Table 10-1 MSC Endpoint Usage

10-1-3 MASS STORAGE CLASS REQUESTS

There are two defined control requests for the MSC BOT protocol. These requests and their

descriptions are detailed in Table 10-2.

Class Requests

Description

Bulk-Only Mass Storage Reset

This request is used to reset the mass storage device and its associated
interface. This request readies the device to receive the next command block.

Get Max LUN

This request is used to return the highest logical unit number (LUN) supported
by the device. For example, a device with LUN 0 and LUN 1 will return a value
of 1. A device with a single logical unit will return 0 or stall the request. The
maximum value that can be returned is 15.

Table 10-2 Mass Storage Class Requests

167

Chapter 10

10-1-4 SMALL COMPUTER SYSTEM INTERFACE (SCSI)

SCSI is a set of standards for handling communication between computers and peripheral
devices. These standards include commands, protocols, electrical interfaces and optical
interfaces. Storage devices that use other hardware interfaces such as USB, use SCSI
commands for obtaining device/host information and controlling the device’s operation and
transferring blocks of data in the storage media.

SCSI commands cover a vast range of device types and functions and as such, devices need
a subset of these commands. In general, the following commands are necessary for basic
communication:

B INQUIRY

B READ CAPACITY (10)

B READ(10)

B REQUEST SENSE

B TEST UNIT READY

B WRITE(10)

Refer to Table 10-3 to see the full list of implemented SCSI commands by pC/USB-Device.

168

Architecture

10-2 ARCHITECTURE
10-2-1 MSC ARCHITECTURE

Figure 10-2 shows the general architecture of a USB Host and a USB MSC Device.

USB Host

Mass Storage and SCSI Drivers

I

Host Stack

Control 0
BulkIN IN and OUT Bulk OUT
Endpoint Endpoint Endpoint

Mass Storage Class

‘ SCSI Layer ‘

:

‘ Storage Layer ‘

g

‘ Storage Medium ‘

USB Device

Figure 10-2 MSC Architecture

On the host side, the application communicates with the MSC device by interacting with the
native mass storage drivers and SCSI drivers. In compliance with the BOT specification, the
host utilizes the default control endpoint to enumerate the device and the Bulk IN/OUT

endpoints to communicate with the device.

169

Chapter 10

10-2-2 SCSI COMMANDS

The host sends SCSI commands to the device via the Command Descriptor Block (CDB).
These commands set specific requests for transfer of blocks of data and status, and control
information such as a device’s capacity and readiness to exchange data. The pC/USB MSC
Device supports the following subset of SCSI Primary and Block Commands detailed in
Table 10-3.

SCSI Command Function

INQUIRY Requests the device to return a structure that contains information
about itself. A structure shall be returned by the device despite of the
media’s readiness to respond to other commands. Refer to SCSI
Primary Commands documentation for the full command description.

TEST UNIT READY Requests the device to return a status to know if the device is ready to
use. Refer to SCSI Primary Commands documentation for the full
command description.

READ CAPACITY (10) Requests the device to return how many bytes a device can store.
Refer to SCSI Block Commands documentation for the full command
description.

READ (10) Requests to read a block of data from the device’s storage media.
Please refer to SCSI Block Commands documentation for the full
command description.

WRITE (10) Requests to write a block of data to the device’s storage media. Refer
to SCSI Block Commands documentation for the full command
description.

VERIFY (10) Requests the device to test one or more sectors. Refer to SCSI Block
Commands documentation for the full command description.

MODE SENSE (6) and (10) Requests parameters relating to the storage media, logical unit or the
device itself. Refer to SCSI Primary Commands documentation for the
full command description.

REQUEST SENSE Requests a structure containing sense data. Refer to SCSI Primary
Commands documentation for the full command description.

PREVENT ALLOW MEDIA REMOVAL Requests the device to prevent or allow users to remove the storage
media from the device. Refer to SCSI Primary Commands
documentation for the full command description.

Table 10-3 SCSI Commands

170

RTOS Layer

10-2-3 STORAGE LAYER AND STORAGE MEDIUM

The storage layer is the interface between the pC/USB MSC Device and the file system
storage medium. The storage layer is responsible of initializing, reading and writing to the
storage medium as well as obtaining information regarding its capacity and status. By
default, Micripm will provide a storage layer implementation (named RAMDisk) by utilizing
the hardware’s platform memory as storage medium. Aside from this implementation, you
have the option to use Micripm’s pC/FS or even utilize a file system storage medium of your
own. In the event you use a file system storage medium of your own, you will need to
create a storage layer port to communicate your storage medium to the pC/USB MSC
Device. Please refer to section 10-6 “Porting MSC to a Storage Layer” on page 180 to learn
how to implement this storage layer.

10-3 RTOS LAYER

MSC device communication relies on a task handler that implements the MSC protocol. This
task handler needs to be notified when the device is properly enumerated before
communication begins. Once communication begins, the task must also keep track of
endpoint update statuses to correctly implement the MSC protocol. These types of
notification are handled by RTOS signals. For the MSC RTOS layer, there are two
semaphores created. One for enumeration process and one for communication process. By
default, Micripm will provide RTOS layers for both nC/OS-1I and pC/OS-III. However, it is
also possible to create your own RTOS layer. Please refer to section 10-7 “Porting MSC to a
RTOS” on page 181 to learn how to port to a different RTOS.

10-3-1 MASS STORAGE TASK HANDLER

The MSC task handler implements the MSC protocol, responsible for the communication
between the device and the host. The task handler is initialized when USBD_MSC_Init()
is called. The MSC protocol is handled by a state machine comprised of 9 states. The
transition between these states are detailed in Figure 10-3.

171

Chapter 10

NONE - .
Device
J Disconnected

N Device
D%VécE—En'or¢ yConnected |nvalid Restall Bulk Restall Bulk Buk IN and
EP Error cBw IN out OUT Stalls
Cleared
RESET RECOVERY RESET RECOVERY
cew BULK IN STALL BULK OUT STALL RESET RECOVERY
Valid CBW T
with No Data
Phase
Transfer
Error Bulk OUT Stall
Cleared
Valid —»| BULKOUT STALL
CBW
Y
Data Stall
DATA
Data Stall
Bulk IN Stall
Cleared
E— BULK IN STALL
Transfer Valid

L ;\

CsSw ‘

Receive Next

CBW

Figure 10-3 MSC State Machine

Upon detecting that the MSC device is connected, the device will enter an infinite loop
waiting to receive the first CBW from the host. Depending on the command received, the
device will either enter the data phase or transmit CSW phase. In the event of any stall
conditions in the data phase, the host must clear the respective endpoint before
transitioning to the CSW phase. If an invalid CBW is received from the host, the device shall
enter reset recovery state where both endpoints are stalled to complete the full reset with
the host issuing the Bulk-Only Mass Storage Reset Class Request. After a successful CSW
phase or a reset recovery, the task will return to receive the next CBW command. If at any
stage the device is disconnected from the host the state machine will transition to the None
state.

172

Configuration

10-4 CONFIGURATION

10-4-1 GENERAL CONFIGURATION

There are various configuration constants necessary to customize the MSC device. These
constants are located in the usbd_cfg.h file. Table 10-4 shows a description of each

constant.

Constant Description

USBD_MSC CFG MAX NBR DEV Configures the maximum number of class instances. Unless you
plan having multiple configuration or interfaces using different
class instances, this should be set to 1.

USBD_MSC CFG MAX NBR CFG Configures the maximum number of configuration in which MSC
is used. Keep in mind that if you use a high-speed device, two
configurations will be built, one for full-speed and another for
high-speed.

USBD_MSC CFG MAX LUN Configures the maximum number of logical units. This value must
be at least 1.

USBD_MSC CFG DATA LEN Configures the read/write data length in octets. The default value
set is 2048

Table 10-4 MSC Configuration Constants

Since MSC device relies on a task handler to implement the MSC protocol, this OS-task’s
priority and stack size constants need to be configured. These constants are summarized in
Table 10-5.

Constant Description

USBD_MSC OS_CFG _TASK PRIO MSC task handler’s priority level. The priority level must be lower
(higher valued) than the start task and core task priorities.

USBD _MSC OS CFG TASK STK SIZE MSC task handler’s stack size. Default value is set to 256.

Table 10-5 MSC OS-Task Handler Configuration Constants

173

Chapter 10

10-4-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 10-6 summarizes the initialization functions provided by the

MSC implementation. Please refer to section E-1 “Mass Storage Class Functions” on page 420
for a full listing of the MSC APL

Function name Operation

USBD_MSC_Init() Initializes MSC internal structures and variables.
USBD_MSC_Add() Adds a new instance of the MSC.

USBD_MSC_CfgAdd() Adds existing MSC instance into USB device configuration.
USBD_MSC LunAdd() Adds a LUN to the MSC interface.

Table 10-6 Class Instance API Functions

To successfully initialize the MSC, you need to follow these steps:

174

Call USBD MSC_Init()

This is the first function you should call, and it should be called only once regardless of
the number of class instances you intend to have. This function will initialize all internal
structures and variables that the class will need. It will also initialize the real-time
operating system (RTOS) layer.

Call USBD_MSC_Add()

This function will add a new instance of the MSC.

Call USBD MSC_CfgAdd()

Once the class instance is correctly configured and initialized, you will need to add it to
a USB configuration. High speed devices will build two separate configurations, one for

full speed and one for high speed by calling USBD MSC CfgAdd() for each speed

configuration.

Configuration

4 Call USBD MSC_LunAdd()

Lastly, you add a logical unit to the MSC interface by calling this function. You will
specify the type and volume of the logical unit you want to add as well as device details
such as vendor ID, product ID, product revision level and read only. Logical units are
added by a device driver string name composed of the storage device driver name and
the logical unit number as follows: <device_driver_name>:<logical_unit_number>:.

The logical unit number starts counting from number 0. For example, if a device has
only one logical unit, the <logical_unit_number> specified in this field should be 0.

Listing 10-1 shows how the latter functions are called during MSC initialization.

USBD_ERR Eigisy
CPU_INTO08U msc_nbr;
CPU_BOOLEAN valid;

USBD_MSC_Init(&err); (1)
if (err != USBD ERR NONE){
return (DEF_FAIL);

msc_nbr = USBD_MSC_Add(&err); (2)
if (cfg_hs != USBD_CFG NBR NONE){
valid = USBD_MSC CfgAdd (msc_nbr, (3)
dev_nbr,
cfg_hs,
&err);

if (valid != DEF_YES) {
return (DEF_FAIL);

if (cfg_fs != USBD_CFG_NBR NONE){
valid = USBD_MSC_CfgAdd (msc_nbr, (4)
dev_nbr,
cfg_fs,
&err);
if (valid != DEF_YES) {
return (DEF_FAIL);

175

Chapter 10

USBD_MSC_LunAdd((void *)”ram:0:”, (5)
msc_nbr,
“Micrium”,
“MSC RamDisk”,
0x0000,
DEF_FALSE,
&err);

if (err != USBD_ERR_NONE){

return (DEF_FAIL);

}

return (DEF_OK) ;

Listing 10-1 MSC Initialization

L10-1(D) Initialize internal structures and variables used by MSC BOT.
L10-1(2) Add a new instance of the MSC.

L10-1(3) Check if high speed configuration is active and proceed to add an existing MSC
interface to the USB configuration.

L10-1(4) Check if full speed configuration is active and proceed to add an existing MSC
interface to the USB configuration.

L10-1(5) Add a logical unit number to the MSC interface by specifying the type and
volume. Note that in this example the <device_driver_name> string is “ram”
and <logical_unit_number> string is “0”.

10-5 USING THE DEMO APPLICATION

The MSC demo consists of two parts:

B Any file explorer application (Windows, Linux, Mac) from a USB host. For instance, in
Windows, mass-storage devices appear as drives in My Computer. From Windows

Explorer, users can copy, move, and delete files in the devices.

B The USB Device application on the target board which responds to the request of the
host.

176

Using the Demo Application

pC/USB Device allows the explorer application to access a MSC device such as a NAND/
NOR Flash memory, RAM disk, Compact Flash, Secure Digital etc. Once the device is
configured for MSC and is connected to the PC host, the operating system will try to load
the necessary drivers to manage the communication with the MSC device. For example,
Windows loads the built-in drivers disk.sys and PartMgr.sys. You will be able to interact with
the device through the explorer application to validate the device stack with MSC.

10-5-1 USB DEVICE APPLICATION

On the target side, the user configures the application through the app cfg.h file.
Table 10-7 lists a few preprocessor constants that must be defined.

Preprocessor Constants Description Default Value

APP CFG_USBD_EN Enables uC/USB Device in the DEF_ENABLED
application.

APP_CFG_USBD_MSC_EN Enables MSC in the application. DEF_ENABLED

Table 10-7 Application Preprocessor Constants

If RAMDisk storage is used, ensure that the associated storage layer files are included in the
project and configure the following constants detailed in Table 10-8.

Preprocessor Constants Description Default Value
USBD_RAMDISK CFG NBR UNITS Number of RAMDISK units. 1
USBD_RAMDISK CFG BLK SIZE RAMDISK block size. 512
USBD_RAMDISK CFG NBR BLKS RAMDISK number of blocks. (4*1024*1)
USBD_RAMDISK CFG BASE ADDR RAMDISK base address in memory. 0XA000000

This constant is optional and is used to
define the data area of the RAMDISK. If
it is defined, RAMDISK’s data area will

be set from this base address directly. If
it is not defined, RAMDISK’s data area

will be represented as a table from the

program’s data area.

Table 10-8 RAM Disk Preprocessor Constants

177

Chapter 10

If pC/FS storage is used, ensure that the associated pC/FS storage layer files are included in
the project and configure the following constants detailed in Table 10-8:

Preprocessor Constant Description Default Value
APP CFG FS EN Enables uC/FS in the application DEF_ENABLED
APP CFG _FS DEV _CNT File system device count. 1
APP_CFG_FS_VOL_CNT File system volume count. 1

APP_CFG_FS FILE CNT File system file count. 2
APP_CFG_FS_DIR CNT File system directory count. 1

APP_CFG_FS BUF_CNT File system buffer count. (2 * APP_CFG_FS_VOL CNT)
APP_CFG_FS_DEV_DRV_CNT File system device driver count. 1
APP_CFG_FS_WORKING DIR CNT File system working directory count. 0

APP CFG _FS MAX SEC SIZE File system max sector size. 512

APP CFG _FS RAM NBR SEC File system number of RAM sectors. 8192

APP CFG_FS RAM SEC SIZE File system RAM sector size. 512

APP CFG_FS NBR TEST File system number of tests. 10

APP CFG FS IDE EN Enables IDE device in file system. DEF_DISABLED
APP CFG _FS MSC _EN Enables MSC device in file system. DEF_DISABLED
APP_CFG_FS NOR _EN Enables NOR device in file system. DEF_DISABLED
APP_CFG_FS RAM EN Enables RAM device in file system. DEF_ENABLED
APP_CFG_FS_SD_EN Enables SD device in file system. DEF_DISABLED
APP_CFG_FS_SD_CARD_EN Enables SD card device in file system. DEF_ENABLED

Table 10-9 uC/FS Preprocessor Constants

178

Using the Demo Application

10-5-2 USB HOST APPLICATION

To test the pC/USB-Device stack with MSC, the user can use the Windows Explorer as a
USB Host application.

When the device configured for the MSC demo is connected to the PC, Windows loads the
appropriate drivers as shown in Figure 10-4.

jﬂ Installing device driver software % *
Click here for status.

) [

Figure 10-4 MSC Device Driver Detection on Windows Host

Open a Windows Explorer and a removable disk appears as shown in Figure 10-5.

e
g !v‘ » Computer ») - Search Computer
Organize » AutoPlay Eject Properties System properties Uninstall or change a program Map network drive 3> &> 00 ®
I» 3. Favorites 4 Hard Disk Drives (2)
[+ Libraries w {;:_:;7

N ACER(C:) DATA(D)
3 1@ lomegroup
4 Devices with Removable Storage (2)

| &> (8 Computer |

> € Network DVDRW Removable
Drive (E:) Disk (L:)

~ Removable Disk (L) Spaceused: L | Totalsize 12MB
w" Removable Disk Space freet 1.2MB File system: FAT32

Figure 10-5 MSC Device on Windows 7 Explorer

179

Chapter 10

When you open the removable disk, if it is the first time the MSC device is connected to the
PC and is not formatted, Windows will ask to format it to handle files on the mass storage.
When formatting, choose the File System you want. In embedded systems, the most
widespread file system is the FAT.

If the mass storage device is a volatile memory such as a SDRAM, every time the target
board is switched off, the data of the memory is lost, and so is the file system data
information. Hence, the next time the target is switched on, the SDRAM is blank and
reconnecting the mass storage to the PC, you will have to format again the mass storage

device.

Once the device is correctly formatted, you are ready to test the MSC demo. Below are a
few examples of what you can do:

B You can create one or more text files.

B You can write data in these files.

B You can open them to read the content of the files.
B You can copy/paste data.

B You can delete one or more files.

All of these actions will generate SCSI commands to write and read the mass storage device.

10-6 PORTING MSC TO A STORAGE LAYER

The storage layer port must implement the API functions summarized in Table 10-10. You
can start by referencing to the storage port template located under:

Micrium\Software\uC-USB-Device-V4\Class\MSC\Storage\Template

Please refer to section E-3 “MSC Storage Layer Functions” on page 434 for a full listing of the
storage layer API.

180

Porting MSC to a RTOS

Function Name

Operation

USBD_StorageInit()

Initializes the storage medium.

USBD_StorageCapacityGet ()

Gets the capacity of the storage medium

USBD_StorageRd()

Reads data from the storage medium

USBD_StorageWr ()

Writes data to the storage medium

USBD_StorageStatusGet ()

Gets the status of the storage medium. If the storage medium is a removable
device such as an SD/MMC card, this function will return if the storage is
inserted or removed.

Table 10-10 Storage API Functions

10-7 PORTING MSC TO A RTOS

The RTOS layer must implement the API functions listed in Table 10-11. You can start by

referencing the RTOS port template located under:

Micrium\Software\uC-USB-Device-V4\Class\MSC\OS\Template

Please refer to section E-2 “MSC OS Functions” on page 428 for a full API description.

Function

Operation

USBD_MSC_0S_Init()

Initializes MSC OS interface. This function will create both signals
(semaphores) for communication and enumeration processes. Furthermore,
this function will create the MSC task used for the MSC protocol.

USBD_MSC OS_CommSignalPost ()

Posts a semaphore used for MSC communication,

USBD_MSC_0OS_CommSignalPend()

Waits on a semaphore to become available for MSC communication.

USBD_MSC_OS_CommSignalDel ()

Deletes a semaphore if no tasks are waiting for it for MSC communication.

USBD_MSC_OS_EnumSignalPost ()

Posts a semaphore used for MSC enumeration process.

USBD_MSC_0OS_EnumSignalPend()

Waits for a semaphore to become available for MSC enumeration process.

Table 10-11 RTOS API Functions

181

Chapter 10

182

Chapter

11

Personal Healthcare Device Class

This section describes the Personal Healthcare Device Class (PHDC) supported by
pC/USB-Device. The implementation offered refers to the following USB-IF specification:

B USB Device Class Definition for Personal Healthcare Devices, release 1.0, Nov. 8 2007.

PHDC allows you to build USB devices that are meant to be used to monitor and improve
personal healthcare. Lots of modern personal healthcare devices have arrived on the market
in recent years. Glucose meter, pulse oximeter and blood-pressure monitor are some
examples. A characteristic of these devices is that they can be connected to a computer for
playback, live monitoring or configuration. One of the typical ways to connect these devices
to a computer is by using a USB connection, and that’s why PHDC has been developed.

Although PHDC is a standard, most modern Operating Systems (OS) do not provide any
specific driver for this class. When working with Microsoft Windows®, developers can use
the WinUsb driver provided by Microsoft to create their own driver. The Continua Health
Alliance also provides an example of a PHDC driver based on libusb (an open source USB
library, for more information, see http://www.libusb.org/). This example driver is part of
the Vendor Assisted Source-Code (VASO).

183

Chapter 11

11-1 OVERVIEW

11-1-1 DATA CHARACTERISTICS

Personal healthcare devices, due to their nature, may need to send data in 3 different ways:

B Episodic: Data is sent sporadically each time user accomplishes a specific action.

B Store and forward: data is collected and stored on device while it is not connected. The

data is then forwarded to the host once it is connected.

B Continuous: Data is sent continuously to the host for continuous monitoring.

Considering these needs, data transfers will be defined in terms of latency and reliability.
PHDC defines three levels of reliability and four levels of latency:

B Reliability: Good, better and best.
B Latency: Very-high, high, medium and low.

For example, a device that sends continuous data for monitoring will send them as low
latency and good reliability.

PHDC does not support all latency/reliability combinations. Here is a list of supported
combinations:

B Low latency, good reliability.

B Medium latency, good reliability.
B Medium latency, better reliability.
B Medium latency, best reliability.
B High latency, best reliability.

B Very high latency, best reliability.

184

Overview

These combinations are called quality of service (QoS).

QoS Latenc Raw info Transfer Typical use
(Latency / reliability) v rate direction(s) P
Low / good <20ms 50 bits/sec to IN Real-time monitoring, with fast
1.2M bits/sec analog sampling rate.
Medium / good < 200ms 50 bits/sec to IN
1.2M bits/s
Medium / better < 200ms 10s of byte IN Data from measured parameter
range collected off-line and replayed or
sent real-time.
Medium / best < 200ms 10s of byte IN, OUT Events, notifications, request,
range control and status of physiological
and equipment functionality.
High / best <2s 10s of byte IN, OUT Physiological and equipment
range alarms.
Very high / best < 20s 10s of byte IN, OUT Transfer reports, histories or off-line
range to collection of data.
gigabytes of
data

Table 11-1 QoS Levels Description

11-1-2 OPERATIONAL MODEL

The requirements for data transfer QoS in personal healthcare devices can be accomplished

by PHDC using bulk endpoints and, optionally, an interrupt endpoint. Table 11-2 and

Figure 11-1 show the mapping between QoS and endpoint types.

Endpoint Usage

Bulk OUT All QoS host to device data transfers.

Bulk IN Very high, high and medium latency device to host data transfers.
Interrupt IN Low latency device to host data transfers.

Table 11-2 Endpoint - QoS Mapping

185

Chapter 11

DEVICE HOST

Medium / good
Medium / better

Medium / best
High / best
Very high / best

Medium / best / \
High / best (Bulk OUT

| Very high / best A Bulk IN USB Connection

Low / good (Interrupt IN*

Figure 11-1 QoS - Endpoint Mapping

PHDC does not define a protocol for data and messaging. It is only intended to be used as
a communication layer. Developers can use either data and messaging protocol defined in
ISO/IEEE 11073-20601 base protocol or a vendor-defined protocol. Figure 11-2 shows the
different software layers needed in a personal healthcare device.

Personal healthcare application

Data messaging and protocol
layer. (ex. ISO/IEEE 11073 based
or vendor defined)

USB Personal Healthcare Device
Class layer

Figure 11-2 Personal Healthcare Device Software Layers

Since transfers having different QoS will have to share a single bulk endpoint, host and
device need a way to inform each other what is the QoS of the current transfer. A metadata
message preamble will then be sent before a single or a group of regular data transfers. This

preamble will contain the information listed in Table 11-3.

186

Configuration

Offset Field Size (bytes) Description

0 aSignature 16 Constant used to verify preamble validity. Always
set to “PhdcQoSSignature” string.

16 bNumTransfers 1 Count of following transfers to which QoS setting
applies.

17 bQoSEncodingVersion 1 QoS information encoding version. Should be 0x01.

18 bmLatencyReliability | 1 Bitmap that refers to latency / reliability bin for data.

19 bOpaqueDataSize 1 Length, in bytes, of opaque data.

20 bOpaqueData [0.. Optional data usually application specific that is

MaxPacketSize - 21] | opaque to the class.

11-2 CONFIGURATION

Table 11-3 Metadata Preamble

11-2-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the

usbd_cfg.h file. Table 11-4 shows a description of each of them.

Constant

Description

USBD_PHDC _CFG MAX NBR DEV

Configures the maximum number of class instances. Unless you plan
having multiple configuration or interfaces using different class
instances, this can be set to 1.

USBD_PHDC_CFG_MAX NBR CFG

high-speed.

Configures the maximum number of configuration in which PHDC is
used. Keep in mind that if you use a high-speed device, two
configurations will be built, one for full-speed and another for

USBD_PHDC CFG_DATA OPAQUE MAX LEN

Maximum length in octets that opaque data can be. Must always be
equal or less to MaxPacketSize - 21.

187

Chapter 11

Constant

Description

USBD_PHDC_OS_CFG SCHED EN

If using pC/OS-Il or uC/OS-IIl RTOS port, enable or disable the
scheduler feature. You should set it to DEF_DISABLED if device only use
one QoS level to send data, for instance. (See section 11-4 “RTOS
QoS-based scheduler” on page 196)

WARNING: If you set this constant to DEF_ENABLED, you MUST ensure

that the scheduler’s task has a lower priority (i.e. higher priority value)
than any task that can write PHDC data.

Table 11-4 Configuration Constants Summary

If you set USBD PHDC OS CFG SCHED EN to DEF_ENABLED and you use a pC/OS-II or

pC/OS-TIT RTOS port, PHDC will n

eed an internal task for the scheduling operations. There

are two application specific configurations that must be set in this case. They should be

defined in the app_cfg.h file. Table 11-5 describes these configurations.

Constant

Description

USBD_PHDC OS CFG_SCHED TASK PRIO

QoS based scheduler’s task priority.

WARNING: You must ensure that the scheduler’s task has a lower
priority (i.e. higher priority value) than any task writing PHDC data.

USBD_PHDC OS_CFG_SCHED TASK STK SIZE

188

QoS based scheduler’s task stack size. Default value is 512.

Table 11-5 Application-Specific Configuration Constants

Configuration

11-2-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure
the class to suit its needs. Table 11-6 summarizes the initialization functions provided by the
PHDC implementation. For a complete API reference, see section F-1 “PHDC Functions” on

page 442.
Function name Operation
USBD_PHDC Init() Initializes PHDC internal structures and variables.
USBD_PHDC_Add() Adds a new instance of PHDC.
USBD_PHDC_RACfg() Configures read communication pipe parameters.
USBD_PHDC WrCfg() Configures write communication pipe parameters.
USBD_PHDC 11073 _ExtCfg() Configures 11073 function extension(s).
USBD_PHDC_CfgAdd() Adds PHDC instance into USB device configuration.

Table 11-6 PHDC Initialization APl Summary

You need to follow these steps to successfully initialize PHDC:
1 Call USBD_PHDC Init()

This is the first function you should call, and you should do it only once, even if you
use multiple class instances. This function will initialize all internal structures and
variables that the class will need. It will also initialize the real-time operating system
(RTOS) layer.

2 Call USBD PHDC Add()

This function will allocate a PHDC instance. This call will also let you determine if the
PHDC instance is capable of sending / receiving metadata message preamble and if it
uses vendor defined or ISO/IEEE 11073 based data and messaging protocol.

Another parameter of this function lets you specify a callback function that the class will
call when host enables / disables metadata message preambles. This is useful for the
application as the behavior in communication will differ depending on the metadata
message preamble state.

189

Chapter 11

190

If your application needs to send low latency / good reliability data, the class will need
to allocate an interrupt endpoint. The interval of the endpoint will be specified in this
call as well.

Call USBD PHDC RdCfg() and USBD PHDC WrCfg()

The next step is to call USBD PHDC RdCfg() and USBD_PHDC WrCfg(). These functions
will let you set the latency / reliability bins that the communication pipe will carry. Bins
are listed in Table 11-7. It will also be used to specify opaque data to send within extra
endpoint metadata descriptor (see “USB Device Class Definition for Personal Healthcare
Devices”, Release 1.0, Section 5 for more details on PHDC extra descriptors)..

Name Description
USBD_PHDC_LATENCY VERYHIGH RELY BEST Very-high latency, best reliability.
USBD_PHDC_LATENCY HIGH RELY BEST High latency, best reliability.
USBD_PHDC_LATENCY MEDIUM RELY BEST Medium latency, best reliability.
USBD_PHDC LATENCY MEDIUM RELY BETTER Medium latency, better reliability.
USBD_PHDC_LATENCY MEDIUM RELY GOOD Medium latency, good reliability.
USBD_PHDC_LATENCY LOW RELY GOOD Low latency, good reliability.

Table 11-7 Listing of QoS Bins

Call USBD_PHDC_11073_ExtCfg() (optional)

If PHDC instance uses ISO/IEEE 11073 based data and messaging protocol, a call to this
function will let you configure the device specialization code(s).

Call USBD_PHDC CfgAdd()

Finally, once the class instance is correctly configured and initialized, you will need to
add it to a USB configuration. This is done by calling USBD PHDC CfgAdd().

Configuration

Listing 11-1 shows an example of initialization and configuration of a PHDC instance. If you
need more than one class instance of PHDC for your application, refer to section 7-1 “Class
Instance Concept” on page 99 for generic examples of how to build your device.

CPU_BOOLEAN App USBD PHDC Init(CPU_INT08U dev nbr,
CPU_INT08U cfg_hs,
CPU_INT08U cfg_fs)

USBD_ERR err;
CPU_INT08U class_nbr;

USBD_PHDC_Init(&err); (1)
class_nbr = USBD_PHDC_Add(DEF_YES, (2)
DEF YES,
App_USBD_PHDC_SetPreambleEn,
10,
&err);

latency rely flags = USBD_PHDC_ LATENCY VERYHIGH RELY BEST |
USBD_PHDC_LATENCY HIGH RELY BEST
USBD_PHDC_LATENCY MEDIUM RELY BEST;
USBD_PHDC_RdCfg(class_nbr, (3)
latency rely flags,
opaque_data_rx,
sizeof (opaque_data_rx),
&err);
USBD_PHDC_WrCfg(class_nbr, (3)
USBD_PHDC_LATENCY VERYHIGH RELY BEST,
opaque_data_tx,

sizeof (opaque_data tx),

&err);
USBD_PHDC_11073_ExtCfg(class_nbr, dev_specialization, 1, &err); (4)
valid cfg hs = USBD_PHDC_CfgAdd(class_nbr, dev_nbr, cfg hs, &err); (5)
valid cfg fs = USBD_PHDC_CfgAdd(class_nbr, dev_nbr, cfg fs, &err); (6)

Listing 11-1 PHDC Instance Initialization and Configuration Example
L11-1(1D) Initialize PHDC internal members and variables.
L11-1(2) Create a PHDC instance, this instance support preambles and ISO/IEEE 11073

based data and messaging protocol.

191

Chapter 11

L11-1(3)

L11-1(4)

L11-1(5)

L11-1(6)

Configure read and write pipes with correct QoS and opaque data.
Add ISO/IEEE 11073 device specialization to PHDC instance.
Add class instance to high-speed configuration.

Add class instance to full-speed configuration.

11-3 CLASS INSTANCE COMMUNICATION

Now that the class instance has been correctly initialized, it’s time to exchange data. PHDC

offers 4 functions for that. Table 11-8 summarizes the communication functions provided by
the PHDC implementation. See Appendix F, “PHDC API Reference” on page 441 for a

complete API reference.

Function name Operation

USBD_PHDC RdPreamble() Reads metadata preamble.
USBD_PHDC Rd() Reads PHDC data.
USBD_PHDC_WrPreamble() Writes metadata preamble.
USBD_PHDC Wr() Writes PHDC data.

Table 11-8 PHDC Communication APl Summary

11-3-1 COMMUNICATION WITH METADATA PREAMBLE

Via the preamble enabled callback, the application will be notified once host enables

metadata preamble. If metadata preambles are enabled, you should use the following

procedure to perform a read:

B Call USBD PHDC RdPreamble(). Device expects metadata preamble from the host. This
function will return opaque data and the number of incoming transfers that the host

specified. Note that if the host disables preamble while the application is pending on

that function, it will immediately return with error “USBD_ERR OS ABORT".

192

Class Instance Communication

B Call USBD PHDC Rd() a number of times corresponding to the number of incoming
transfers returned by USBD PHDC RdPreamble(). Application must ensure that the
buffer provided to the function is large enough to accommodate all the data. Otherwise,
synchronization issues might happen. Note that if the host enables preamble while the
application is pending on that function, it will immediately return with error
“USBD_ERR OS_ABORT".

CPU_INT16U App USBD_PHDC Rd(CPU_INT08U class_nbr,
CPU_INT08U *p data_opaque buf
CPU_INT08U *p_data opaque_len,
CPU_INT08U *p_buf,
USBD_ERR *p_err)

CPU_INTO08U nbr_xfer;
CPU_INT16U xfer len;

*p_data_opaque_len = USBD_PHDC_RdPreamble (class_nbr, (1)
(void *)p_data opaque buf, (2)
USBD_PHDC_CFG_DATA OPAQUE MAX LEN,
&nbr_xfer, (3)
0, (4)
p_err);
for (i = 0; i < nbr_xfers; i++) { (5)
xfer len = USBD_PHDC_Rd(class_nbr,
(void *)p_buf, (6)
APP_USBD_PHDC_ITEM DATA LEN MAX,
0, (4)
p_err);

/* Handle received data. */

return (xfer_ len);

Listing 11-2 PHDC Read Procedure

L11-2(D) The class instance number obtained with USBD PHDC Add() will serve
internally to the PHDC class to route the data to the proper endpoints.

193

Chapter 11

L11-2(2)

L11-2(3)

L11-2(4)

L11-2(5)

L11-2(6)

Buffer that will contain opaque data. Application must ensure that the buffer
provided is large enough to accommodate all the data. Otherwise,
synchronization issues might happen.

Variable that will contain the number of following transfers to which this
preamble applies.

In order to avoid infinite blocking situation, a timeout expressed in
milliseconds can be specified. A value of ‘0’ makes the application task wait
forever.

Read all the USB transfers to which the preamble applies.
Buffer that will contain the data. Application must ensure that the buffer

provided is large enough to accommodate all the data. Otherwise,
synchronization issues might happen.

You should use the following procedure to perform a write:

B Call USBD PHDC WrPreamble(). Host expects metadata preamble from the device.
Application will have to specify opaque data, transfer’s QoS (see Table 11-7), and a

number of following transfers to which the selected QoS applies.

B Call USBD PHDC Wr() a number of times corresponding to the number of transfers

following the preamble.

CPU_INT16U App_USBD_PHDC_ Wr(CPU_INT08U class_nbr,
LATENCY RELY FLAGS latency_ rely,
CPU_INTO8U nbr xfer,
CPU_INTO8U *p_data_opaque buf
CPU_INT08U data_opaque buf_ len,
CPU_INTO08U *p_buf,
CPU_INTO8U buf_len,
USBD_ERR *p_err)

194

Class Instance Communication

{
(void)USBD_PHDC_WrPreamble (class_nbr, (1)
(void *)p_data_opaque_buf, (2)
data_opaque_buf len,
latency_rely, (3)
nbr_xfer, (4)
0, (5)
p_err);
for (i = 0; i < nbr xfer; i++) { (6)
/* Prepare data to send. */
xfer len = USBD_PHDC_Wr (class_nbr, (1)
(void *)p buf, (7)
buf_len,
latency rely, (3)
OI
p_err);

Listing 11-3 PHDC Write Procedure

L11-3(1) The class instance number obtained with USBD PHDC Add() will serve
internally to the PHDC class to route the data to the proper endpoints.

L11-3(2) Buffer that contains opaque data.
L11-3(3) Latency / reliability (QoS) of the following transfer(s).

L11-3(4) Variable that contains the number of following transfers to which this preamble
will apply.

L11-3(5) In order to avoid infinite blocking situation, a timeout expressed in
milliseconds can be specified. A value of ‘0’ makes the application task wait
forever.

L11-3(6) Write all the USB transfers to which the preamble will apply.

L11-3(7) Buffer that contains the data.

195

Chapter 11

11-3-2 COMMUNICATION WITHOUT METADATA PREAMBLE

If device does not support metadata preamble or if it supports them but it has not been
enabled by the host, you should not call USBD PHDC RdPreamble() and
USBD_PHDC WrPreamble().

11-4 RTOS QOS-BASED SCHEDULER

Since it is possible to send data with different QoS using a single bulk endpoint, you might
want to prioritize the transfers by their QoS latency (medium latency transfers processed
before high latency transfers, for instance). This kind of prioritization is implemented inside
PHDC pC/OS-1I and pC/OS-III RTOS layer. Table 11-9 shows the priority value associated
with each QoS latency (the lowest priority value will be treated first).

QoS latency QoS based scheduler associated priority
Very high latency 3
High latency 2
Medium latency 1

Table 11-9 QoS Based Scheduler Priority Values

For instance, let’s say that your application has 3 tasks. Task A has an OS priority of 1, task
B has an OS priority of 2 and task C has an OS priority of 3. Note that a low priority number
indicates a high priority task. Now say that all 3 tasks want to write PHDC data of different
QoS latency. Task A wants to write data that can have very high latency, task B wants to
write data that can have medium latency, and finally, task C wants to write data that can
have high latency. Table 11-10 shows a summary of the tasks involved in this example.

Task Qo-S latency of data to 0s priority Qo-S priority of data to
write write

A Very high 1 3

B Medium 2 1

C High 3 2

Table 11-10 QoS-Based Scheduling Example

196

RTOS QoS-based scheduler

If no QoS based priority management is implemented, the OS will then resume the tasks in
the order of their OS priority. In this example, the task that has the higher OS priority, A,
will be resumed first. However, that task wants to write data that can have very high latency
(QoS priority of 3). A better choice would be to resume task B first, which wants to send
data that can have medium latency (QoS priority of 1). Figure 11-3 and Figure 11-4
represent this example without and with a QoS-based scheduler, respectively.

Task A
OS priority 1 Task
Very-high latency data

Task B
OS priority 2 Task
Medium latency data

Task C
OS priority 3 Task
High latency data

Figure 11-3 Task Execution Order, Without QoS Based Scheduling

PHDC scheduler [[

A
(@] T v

Task A ‘
OS priority 1 Task ®) Task
Very-high latency data

) v @)

Task B
OS priority 2 Task Task

Medium latency data

3) v

Task C
OS priority 3 Task Task

High latency data

Figure 11-4 Task Execution Order, with QoS Based Scheduling

F11-4(1)

F11-4(2)

F11-4(3) A task currently holds the lock on the write bulk endpoint, task A, B and C are
added to the wait list until the lock is released.

197

Chapter 11

F11-4(4) The lock has been released. The QoS based scheduler’s task is resumed, and
finds the task that should be resumed first (according to the QoS of the data it
wants to send). Task B is resumed.

F11-4(5) Task B completes its execution and releases the lock on the pipe. This resumes
the scheduler’s task.

F11-4(6) Again, the QoS based scheduler finds the next task that should be resumed.
Task C is resumed.

F11-4(7) Task C has completed its execution and releases the lock. Scheduler task is
resumed and determines that task A is the next one to be resumed.

The QoS-based scheduler is implemented in the RTOS layer. Three functions are involved in
the execution of the scheduler.

Function name Called by Operation

USBD_PHDC_0S_WrBulkLock () USBD_PHDC Wr() or Locks write bulk pipe.
USBD_PHDC WrPreamble(), depending if
preambles are enabled or not.

USBD_PHDC 0S_WrBulkUnlock() USBD_PHDC _Wr() . Unlocks write bulk pipe.
USBD_PHDC_OS_WrBulkSchedTask () N/A. Determines next task to
resume.

Table 11-11 QoS-Based Scheduler APl Summary

Pseudocode for these three functions are shown in Listing 11-4, Listing 11-5 and
Listing 11-6.

198

RTOS QoS-based scheduler

void USBD_PHDC_OS_WrBulkLock (CPU_INT08U class_nbr,
CPU_INTO8U prio,
CPU_INT16U timeout ms,
USBD_ERR *p_err)

Increment transfer count of given priority (QoS);
Post scheduler lock semaphore;

Pend on priority specific semaphore;

Decrement transfer count of given priority (QoS);

Listing 11-4 Pseudocode of USBD_PHDC_OS_WrBulkLock()

void USBD_PHDC_OS_WrBulkUnlock (CPU_INT08U class_nbr)
{

Post scheduler release semaphore;

Listing 11-5 Pseudocode of USBD_PHDC_0OS_WrBulkUnlock()

static void USBD_PHDC OS_WrBulkSchedTask (void *p_arg)

{
Pend on scheduler lock semaphore;
Get next highest QoS ready;
PostSem(SemList[QoS]);
Pend on scheduler release semaphore;
}

Listing 11-6 Pseudocode of QoS-Based Scheduler’s Task

199

Chapter 11

11-5 USING THE DEMO APPLICATION

Micripm provides a demo application that lets you test and evaluate the class
implementation. Source files are provided for the device (for pC/OS-II and pC/OS-III only).
Executable and source files are provided for the host (Windows only).

11-5-1 SETUP THE APPLICATION

On the target side, two applications are available: app usbd phdc single.c and
app_usbd phdc multiple.c. You should compile only one of these files with your project.
Table 11-12 provide a description of each one. Both files are located in the following folders:

\Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II
\Micrium\Software\uC-USB-Device-V4\App\Device\0S\uCOS-III

File Description

app usbd phdc single.c Only one task is used to send all data of different QoS. Usually used with
USBD_PHDC OS CFG_SCHED EN set to DEF DISABLED.

app usbd phdc multiple.c One task per QoS level is used to send data. Usually used with
USBD_PHDC _OS _CFG_SCHED EN set to DEF _ENABLED.

Table 11-12 Device Demo Application Files
Several constants are available to customize the demo application on both device and host

(Windows) side. Table 11-13 describe device side constants that are located in the app cfg.h
file. Table 11-14 describe host side constants that are located in the app phdc.c file.

Constant Description

APP_CFG_USBD PHDC EN Set to DEF_ENABLED to enable the demo application.

APP CFG_USBD PHDC TX COMM TASK PRIO Priority of the write task.

APP CFG_USBD_PHDC_RX COMM TASK PRIO Priority of the read task.

APP_CFG_USBD_PHDC_TASK STK SIZE Stack size of both read and write tasks. Default value is 512.

APP_CFG_USBD_PHDC_ITEM DATA LEN MAX Set this constant to the maximum number of bytes that can be
transferred as data. Must be >= 5.

APP CFG USBD PHDC ITEM NBR MAX Set this constant to the maximum number of items that the
application should support. Must be >= 1.

Table 11-13 Device Side Demo Application’s Configuration Constants

200

Using the Demo Application

Constant

Description

APP ITEM DATA LEN MAX

Set this constant to the maximum number of bytes that can be
transferred as data. Must be >= 5.

APP_ITEM DATA OPAQUE LEN MAX

Set this constant to the maximum number of bytes that can be
transferred as opaque data. Must be <= (MaxPacketSize - 21).

APP_ITEM NBR MAX

Set this constant to the maximum number of items that the application
should support. Must be >= 1.

APP_STAT COMP_PERIOD

Set this constant to the period (in ms) on which the statistic of each

transfer (mean and standard deviation) should be computed.

APP_ITEM PERIOD MIN

Set this constant to the minimum period (in ms) that a user can specify for
an item.

APP_ITEM PERIOD MAX

Set this constant to the maximum period (in ms) that a user can specify
for an item.

APP_ITEM PERIOD MULTIPLE

Set this constant to a multiple (in ms) that periodicity of items specified by
the user must comply.

Table 11-14 Host Side (Windows) Demo Application’s Configuration Constants

Since Microsoft does not provide any specific driver for PHDC, you will have to indicate to

windows which driver to load using an “inf” file. The “inf” file will ask Windows to load the

WinUSB generic driver (provided by Microsoft). The application uses the USBDev_API,
which is a wrapper of the WinUSB driver (refer to section 12-3 “USBDev_API” on page 214).

Windows will ask for the INF file (refer to section 3-1-1 “About INF Files” on page 46) the
first time the device will be plugged-in. It is located in the following folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\0OS\Windows\PHDC\ INF

Once the driver is successfully loaded, the Windows host application is ready to be

launched. The executable is located in the following folder:

\Micrium\Software\uC-USB-Device-V4\App\Host \OS\Windows\PHDC\Visual Studio 2010\exe

201

Chapter 11

11-5-2 RUNNING THE DEMO APPLICATION

In this demo application, you can ask the device to continuously send data of different QoS
level and using a given periodicity. Each requested transfer is called an “item”. Using the
monitor, you can see each transfer’s average periodicity and standard deviation. The
monitor will also show the data and opaque data that you specified. At startup, the
application will always send a default item with a periodicity of 100 ms. This item will send
the device CPU usage and the value of a counter that is incremented each time the item is

sent. The default item uses low latency / good reliability as QoS. Figure 11-5 shows the
demo application at startup.

T
i | C:\PHDC.exe = ﬂli']

PHDC MONITOR

Items Latency ~Reliabhility Period HMean
{ms2> {ms2>
Low/Good 188 188

[Bus usage: B.001:x

Press ‘'1' to add a new item
Press *2' to exit

Figure 11-5 Demo Application at Startup

At this point, you have the possibility to add a new item by pressing 1. You will be
prompted to specify the following values:

B Periodicity of the transfer
B QoS (Latency / reliability) of the transfer
B Opaque data (if QoS is not low latency / good reliability)

B Data

202

Porting PHDC to a RTOS

Figure 11-6 shows the demo application with a few items added.

T
i | C\PHDC.exe = _Elli-J

PHDC MONITOR

Latency ~Reliability Period Mean Std Dev Opague datarsdata
{ms > {ms > {ms) Chytes)

Low/Good 188 188 a Counter: 2074

CPU: 4

Low/Good Low latency data
Medium/Good Item 2 » Medium latency data
Medium/Better Item 3 » Medium latency data
Medium~Best Item 4 / Medium latency data
HighsBest Item 5 » High latency data
Uery high-sBest Item 6 ~ Uery high latency data

[Bus usage: B.825x

*1' to add a new item
2' to exit

Figure 11-6 Demo Application with five ltems Added

11-6 PORTING PHDC TO A RTOS

Since PHDC communication functions can be called from different tasks at application level,
there is a need to protect the resources they use (in this case, the endpoint). Furthermore,
since it is possible to send data with different QoS using a single bulk endpoint, an
application might want to prioritize the transfers by their QoS (i.e. medium latency transfers
processed before high latency transfers). This kind of prioritization can be
implemented/customized inside the RTOS layer (see Section 11-4, “RTOS QoS-based
scheduler” on page 196, for more information). By default, Micripm will provide an RTOS
layer for both pC/OS-1I and pC/OS-III. However, it is possible to create your own RTOS
layer. Your layer will need to implement the functions listed in Table 11-15. For a complete
API description, see Appendix F, “PHDC API Reference” on page 441.

203

Chapter 11

Function name Operation

USBD_PHDC OS_Init() Initializes all internal members / tasks.
USBD_PHDC_OS_RdLock() Locks read pipe.
USBD_PHDC_OS_RdUnlock() Unlocks read pipe.
USBD_PHDC OS WrBulkLock() Locks write bulk pipe.
USBD_PHDC OS WrBulkUnlock() Unlocks write bulk pipe.
USBD_PHDC_OS_WrIntrLock() Locks write interrupt pipe.
USBD_PHDC OS WrIntrUnlock() Unlocks write interrupt pipe.
USBD_PHDC OS Reset() Resets OS layer members.

Table 11-15 OS Layer APl Summary

204

Chapter

12

Vendor Class

The Vendor class allows you to build vendor-specific devices implementing for instance a
proprietary protocol. It relies on a pair of bulk endpoints to transfer data between the host
and the device. Bulk transfers are typically convenient for transferring large amounts of
unstructured data and provides reliable exchange of data by using an error detection and
retry mechanism. Besides bulk endpoints, an optional pair of interrupt endpoints can also
be used. Any operating system (OS) can work with the Vendor class provided that the OS
has a driver to handle the Vendor class. Depending on the OS, the driver can be native or
vendor-specific. For instance, under Microsoft Windows®, your application interacts with
the WinUSB driver provided by Microsoft to communicate with the vendor device.

205

Chapter 12

12-1 OVERVIEW

Figure 12-1 shows the general architecture between the host and the device using the
Vendor class. In this example, the host operating system is Windows.

Windows PC Host

‘ Application ‘

\ USBDev_API |

&

\ Winusb.sys |

\ Windows host stack \

l:
Control 0
IN & OUT S
Bulk Bulk Interrupt | Interrupt
IN ouT IN ouT
ﬁ H Vendor class ”
1 7
Application
USB Device

Figure 12-1 General Architecture Between Windows Host and Vendor Class

On the Windows side, the application communicates with the vendor device by interacting
with the USBDev_API library. This library provided by Micripm offers an API to manage a
device and its associated pipes, and to communicate with the device through control, bulk
and interrupt endpoints. USBDev_API is a wrapper that allows the use of the WinUSB
functions exposed by Winusb.dIl.

On the device side, the Vendor class is composed of the following endpoints:

B A pair of control IN and OUT endpoints called the default endpoint.

B A pair of bulk IN and OUT endpoints.

B A pair of interrupt IN and OUT endpoints. This pair is optional.

206

Configuration

Table 12-1 indicates the usage of the different endpoints:

Endpoint Direction Usage

Control IN Device-to-host Standard requests for enumeration and vendor-specific requests.
Control OUT Host-to-device

Bulk IN Device-to-host | Raw data communication. Data can be structured according to a
Bulk OUT Host-to-device | proprietary protocol.

Interrupt IN Device-to-host | Raw data communication or notification. Data can be structured
Interrupt OUT Host-to-device | according to a proprietary protocol.

Table 12-1 Vendor Class Endpoints Usage

The device application can use bulk and interrupt endpoints to send or receive data to or

from the host. It can only use the default endpoint to decode vendor-specific requests sent

by the host. The standard requests are managed internally by the Core layer of

pC/USB-Device.

12-2 CONFIGURATION

12-2-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the USB

device configuration file, usbd cfg.h. Table 12-2 shows their description.

Constant

Description

USBD_VENDOR CFG_MAX NBR DEV

Configures the maximum number of class instances. Unless you plan
on having multiple configurations or interfaces using different class
instances, this can be set to 1.

USBD_VENDOR_CFG_MAX NBR CFG

Configures the maximum number of configuration in which Vendor
class is used. Keep in mind that if you use a high-speed device, two
configurations will be built, one for full-speed and another for
high-speed.

Table 12-2 General Configuration Constants Summary

207

Chapter 12

12-2-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 12-3 summarizes the initialization functions provided by the

Vendor class. For more details about the functions parameters, refer to section G-1 “Vendor

Class Functions” on page 474.

Function name Operation
USBD_Vendor_Init() Initializes Vendor class internal structures and variables.
USBD_Vendor Add() Creates a new instance of Vendor class.
USBD_Vendor CfgAdd() Adds Vendor instance to the specified device configuration.
Table 12-3 Vendor Class Initialization API Summary
You need to call these functions in the order shown below to successfully initialize the

Vendor class:

208

Call USBD Vendor Init()

This is the first function you should call and you should do it only once even if you use
multiple class instances. This function initializes all internal structures and variables that
the class needs.

Call USBD Vendor Add()

This function allocates a Vendor class instance. This function allows you to include a
pair of interrupt endpoints for the considered class instance. If the interrupt endpoints
are included, the polling interval can also be indicated. The polling interval will be the
same for interrupt IN and OUT endpoints. Moreover, another parameter lets you specify
a callback function used when receiving vendor requests. This callback allows the
decoding of vendor-specific requests utilized by a proprietary protocol.

Call USBD Vendor CfgAdd()

Finally, once the Vendor class instance has been created, you must add it to a specific
configuration.

Configuration

Listing 12-1 illustrates the use of the previous functions for initializing the Vendor class.

(1)
static CPU_BOOLEAN App USBD_Vendor_ VendorReq (CPU_INTO8U class_nbr,
const USBD_SETUP REQ *p setup req);

CPU_BOOLEAN App_USBD_Vendor Init (CPU_INTO8U dev_nbr,
CPU_INT08U cfg_hs,
CPU_INT08U cfg fs)

USBD_ERR err;
CPU_INT08U class_nbr;

USBD_Vemdor_ Init(&err); (2)
if (err != USBD ERR NONE) {
/* $$$$ Handle the error. */

}
(3)
class_nbr = USBD_Vendor Add(DEF_FALSE,
Ou,
App_USBD_Vendor_VendorReq, (1)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

if (cfg_hs != USBD CFG_NBR NONE) {
USBD_Vendor_ CfgAdd(class_nbr, dev_nbr, cfg hs, &err); (4)
if (err != USBD ERR NONE) {
/* $$$$ Handle the error. */

if (cfg_fs != USBD_CFG_NBR_NONE) {
USBD_Vendor_CfgAdd(class_nbr, dev_nbr, cfg fs, &err); (5)
if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

Listing 12-1 Vendor Class Initialization Example

L12-1(1D) Provide an application callback for vendor requests decoding.

L12-1(2) Initialize Vendor internal structures, variables.

209

Chapter 12

L12-1(3) Create a new Vendor class instance. In this example, DEF_FALSE indicates that
no interrupt endpoints are used. Hence, the polling interval is set to 0. The
callback App USBD Vendor VendorReq() is passed to the function.

L12-1(4) Check if the high-speed configuration is active and proceed to add the Vendor
instance previously created to this configuration.

L12-1(5) Check if the full-speed configuration is active and proceed to add the Vendor
instance to this configuration.

Code Listing 12-1 also illustrates an example of multiple configurations. The functions
USBD Vendor Add() and USBD Vendor CfgAdd() allow you to create multiple
configurations and multiples instances architecture. Refer to section 7-1 “Class Instance
Concept” on page 99 for more details about multiple class instances.

12-2-3 CLASS INSTANCE COMMUNICATION

The Vendor class offers the following functions to communicate with the host. For more
details about the functions parameters, refer to section G-1 “Vendor Class Functions” on

page 474.

Function name Operation

USBD_Vendor Rd() Receive data from host through bulk OUT endpoint. This function is blocking.

USBD_Vendor Wr() Send data to host through bulk IN endpoint. This function is blocking.

USBD_Vendor RdAsync() Receive data from host through bulk OUT endpoint. This function is
non-blocking.

USBD_Vendor WrAsync() Send data to host through bulk IN endpoint. This function is non-blocking.

USBD_Vendor_IntrRd() Receive data from host through interrupt OUT endpoint. This function is
blocking.

USBD_Vendor_IntrWr() Sends data to host through interrupt IN endpoint. This function is blocking.

USBD_Vendor IntrRdAsync() Receives data from host through interrupt OUT endpoint. This function is
non-blocking.

USBD_Vendor IntrWrAsync() Sends data to host through interrupt IN endpoint. This function is non-blocking.

Table 12-4 Vendor Communication APl Summary

210

Configuration

12-2-4 SYNCHRONOUS COMMUNICATION

Synchronous communication means that the transfer is blocking. Upon function call, the
applications blocks until the transfer completion with or without an error. A timeout can be
specified to avoid waiting forever.

Listing 12-2 presents a read and write example to receive data from the host using the bulk
OUT endpoint and to send data to the host using the bulk IN endpoint.

CPU_INTO08U rx buf[2];
CPU_INT08U tx buf[2];
USBD_ERR err;

(void)USBD_Vendor Rd(class_nbr, (1)
(void *)&rx buf[0], (2)
2u,
Ou, (3)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

(void)USBD_Vendor Wr (class_nbr, (1)
(void *)&tx buf[0], (4)
2u,
Ou, (3)
DEF_FALSE, (5)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

Listing 12-2 Synchronous Bulk Read and Write Example

L12-2(D) The class instance number created with USBD_Vendor Add() will serve internally
to the Vendor class to route the transfer to the proper bulk OUT or IN endpoint.

L12-2(2) Application must ensure that the buffer provided to the function is large enough
to accommodate all the data. Otherwise, synchronization issues might happen.

L12-2(3) In order to avoid an infinite blocking situation, a timeout expressed in milliseconds
can be specified. A value of ‘0’ makes the application task wait forever.

211

Chapter 12

L12-2(4) Application provides the initialized transmit buffer.

L12-2(5) If this flag is set to DEF_TRUE and the transfer length is multiple of the endpoint
maximum packet size, the device stack will send a zero-length packet to the
host to signal the end of transfer.

The use of interrupt endpoint communication functions, USBD_Vendor IntrRd() and
USBD_Vendor IntrWr(), is similar to bulk endpoint communication functions presented in
Listing 12-2.

12-2-5 ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,
the application passes the transfer information to the device stack and does not block.
Other application processing can be done while the transfer is in progress over the USB
bus. Once the transfer has completed, a callback is called by the device stack to inform the
application about the transfer completion. Listing 12-3 shows an example of asynchronous
read and write.

void App USBD_Vendor Comm (CPU_INT08U class_nbr)
{

CPU_INTO08U rx buf[2];

CPU_INTO08U tx buf[2];

USBD_ERR err;

USBD_Vendor_RdAsync (class_nbr, (1)
(void *)&rx buf[0], (2)
2u,
App_USBD_Vendor RxCmpl, (3)
(void *) Ou, (4)
&err);

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

}
USBD_Vendor_ WrAsync (class_nbr, (1)
(void *)&tx buf[0], (5)
2u,
App_USBD_Vendor TxCmpl, (3)
(void *) Ou, (4)
DEF_FALSE, (6)
&err);

212

Configuration

if (err != USBD_ERR NONE) {
/* $$$$ Handle the error. */

(3)
static void App USBD Vendor RxCmpl (CPU_INT08U class_nbr,
void *p_buf,
CPU_INT32U buf_len,
CPU_INT32U xfer len,
void *p_callback_arg,
USBD_ERR err)
(void)class_nbr;
(void)p_buf;
(void)buf len;
(void)xfer len;
(void)p_callback arg; (4)
if (err == USBD_ERR NONE) {
/* $$$$ Do some processing. */
} else {
/* $$$$ Handle the error. */
}
(3)
static void App USBD Vendor TxCmpl (CPU_INTO08U class_nbr,
void *p_buf,
CPU_INT32U buf_len,
CPU_INT32U xfer len,
void *p_callback_arg,
USBD_ERR err)
(void)class_nbr;
(void)p_buf;
(void)buf_len;
(void)xfer len;
(void)p_callback_arg; (4)

if (err == USBD_ERR NONE) {

/* $$$$ Do some processing. */
} else {

/* $$$$ Handle the error. */

Listing 12-3 Asynchronous Bulk Read and Write Example

213

Chapter 12

L12-3(1) The class instance number serves internally to the Vendor class to route the
transfer to the proper bulk OUT or IN endpoint.

L12-3(2) Application must ensure that the buffer provided to the function is large
enough to accommodate all the data. Otherwise, synchronization issues might
happen.

L12-3(3) The application provides a callback passed as a parameter. Upon completion of
the transfer, the device stack calls this callback so that the application can
finalize the transfer by analyzing the transfer result. For instance, upon read
operation completion, the application may do a certain processing with the
received data. Upon write completion, the application may indicate if the write
was successful and how many bytes were sent.

L12-3(4) An argument associated to the callback can be also passed. Then in the
callback context, some private information can be retrieved.

L12-3(5) Application provides the initialized transmit buffer.

L12-3(6) If this flag is set to DEF_TRUE and the transfer length is a multiple of the
endpoint maximum packet size, the device stack will send a zero-length packet
to the host to signal the end of transfer.

The use of interrupt endpoint communication functions, USBD Vendor IntrRdAsync() and
USBD Vendor IntrWrAsync(), is similar to bulk endpoint communication functions
presented in Listing 12-3.

12-3 USBDev_API

Windows application communicates with a vendor device through USBDev_API. The latter
is a wrapper developed by Micripm allowing the application to access the WinUSB
functionalities to manage a USB device. Windows USB (WinUSB) is a generic driver for USB
devices. The WinUSB architecture consists of a kernel-mode driver (Winusb.sys) and a
user-mode dynamic link library (Winusb.d1l) that exposes WinUSB functions. USBDev_API
eases the use of WinUSB by providing a comprehensive API (refer to section G-2
“USBDev_API Functions” on page 497 for the complete list). Figure 12-2 shows the
USBDev_API library and WinUSB.

214

USBDev_API

Windows PC Host

Application ‘

USBDev_API |

&

Winusb.dIl |

User space

Kernel space

Winusb.sys \

Windows host stack |

ﬁ}

<

USB Vendor device

Figure 12-2 USBDev_API and WinUSB

For more about WinUSB architecture, refer to Microsoft’'s MSDN online documentation at:
http://msdn.microsoft.com/en-us/library/f£540207 (v=VS.85) .aspx

12-3-1 DEVICE AND PIPE MANAGEMENT

USBDev_API offers the following functions to manage a device and its function’s pipes.

Function name

Operation

USBDev_GetNbrDev ()

Gets number of devices belonging to a specified Globally Unique
IDentifier (GUID) and connected to the host. Refer to section 12-4-4
“GUID” on page 228 for more details about the GUID.

USBDev_Open()

Opens a device.

USBDev_Close()

Closes a device.

USBDev_BulkIn Open()

Opens a bulk IN pipe.

USBDev_BulkOut_Open()

Opens a bulk OUT pipe.

USBDev_IntIn Open()

Opens an interrupt IN pipe.

USBDev_IntOut_Open()

Opens an interrupt OUT pipe.

USBDev_PipeClose()

Closes a pipe.

Table 12-5 USBDev_API Device and Pipe Management API

215

Chapter 12

Listing 12-4 shows an example of device and pipe management. The steps to manage a
device typically consist in:

B Opening the vendor device connected to the host.
B Opening required pipes for this device.

B Communicating with the device via the open pipes.
B Closing pipes.

B Closing the device.

HANDLE dev_handle;
HANDLE bulk_in handle;
HANDLE bulk out_ handle;
DWORD err;

DWORD nbr_dev;

nbr_dev = USBDev_GetNbrDev(USBDev_GUID, &err); (1)
if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */

dev_handle = USBDev_Open(USBDev_GUID, 1, &err); (2)
if (dev_handle == INVALID HANDLE VALUE) {
/* $$$$ Handle the error. */

bulk_in handle = USBDev_BulkIn Open(dev_handle, 0, 0, &err); (3)
if (bulk_in handle == INVALID HANDLE VALUE) {
/* $$$$ Handle the error. */

bulk out handle = USBDev_BulkOut Open(dev_handle, 0, 0, &err); (3)
if (bulk_out handle == INVALID HANDLE VALUE) {
/* $$$$ Handle the error. */

/* Communicate with the device. */ (4)
(5)
USBDev_PipeClose(bulk_in_handle, &err);

if (err != ERROR_SUCCESS) {
/* $$$$ Handle the error. */

216

USBDev_API

USBDev_PipeClose(bulk out handle, &err);
if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */

}

USBDev_Close(dev_handle, &err); (6)
if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */

}

L12-4(1)

L12-4(2)

L12-4(3)

L12-4(4)

L12-4(5)

L12-4(6)

Listing 12-4 USBDev_API Device and Pipe Management Example

Get the number of devices connected to the host under the specified GUID. A
GUID provides a mechanism for applications to communicate with a driver
assigned to devices in a class. The number of devices could be used in a loop
to open at once all the devices. In this example, one device is assumed.

Open the device by retrieving a general device handle. This handle will be
used for pipe management and communication.

Open a bulk pipe by retrieving a pipe handle. In the example, a bulk IN and a
OUT pipe are open. If the pipe does not exist for this device, an error is
returned. When opening a pipe, the interface number and alternate setting
number are specified. In the example, bulk IN and OUT pipes are part of the
default interface. Opening an interrupt IN and OUT pipes with
USBDev_IntIn Open() or USBDev_IntOut Open() is similar to bulk IN and
OUT pipes.

Transferring data on the open pipes can take place now. The pipe
communication is describes in section 12-3-2 “Device Communication” on
page 218.

Close a pipe by passing the associated handle. The closing operation aborts
any transfer in progress for the pipe and frees any allocated resources.

Close the device by passing the associated handle. The operation frees any

allocated resources for this device. If a pipe has not been closed by the
application, this function will close any forgotten open pipes.

217

Chapter 12

12-3-2 DEVICE COMMUNICATION

SYNCHRONOUS COMMUNICATION

Synchronous communication means that the transfer is blocking. Upon function call, the
applications blocks until the end of transfer completed with or without an error. A timeout
can be specified to avoid waiting forever. Listing 12-5 presents a read and write example
using a bulk IN pipe and a bulk OUT pipe.

UCHAR rx buf[2];
UCHAR tx buf[2];

DWORD err;

(void)USBDev_PipeRd(bulk in_handle, (1)
&rx buf[0], (2)
21,
5000u, (3)
&err);

if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */
}

(void)USBDev_PipeWr (bulk out_ handle, (1)
&tx buf[0], (4)
2,
5000u, (3)
&err);

if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */
}

Listing 12-5 USBDev_API Synchronous Read and Write Example

L12-5(1D) The pipe handle gotten with USBDev_BulkIn Open() or USBDev_BulkOut Open()
is passed to the function to schedule the transfer for the desired pipe.

L12-5(2) The application provides a receive buffer to store the data sent by the device.
L12-5(3) In order to avoid an infinite blocking situation, a timeout expressed in
milliseconds can be specified. A value of ‘0’ makes the application thread wait

forever. In the example, a timeout of 5 seconds is set.

L12-5(4) Application provides the transmit buffer that contains the data for the device.

218

USBDev_API

ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,
the application passes the transfer information to the device stack and does not block.
Other application processing can be done while the transfer is in progress over the USB
bus. Once the transfer has completed, a callback is called by USBDev_API to inform the
application about the transfer completion.

Code Listing 12-6 presents a read example. The asynchronous write is not offered by
USBDev_API.

UCHAR rx buf[2];

DWORD err;
USBDev_PipeRdAsync (bulk _in handle, (1)
&rx buf[0], (2)
2u,
App_PipeRdAsyncComplete, (3)
(void *)0u, (4)
&err);

if (err != ERROR SUCCESS) {
/* $$$$ Handle the error. */

(3)
static void App PipeRdAsyncComplete(void *p_buf,
DWORD buf_len,
DWORD xfer len,
void *p callback arg,
DWORD err)

(void)p_buf;

(void)buf_len;

(void)xfer len;

(void)p_callback arg; (4)

if (err == ERROR SUCCESS) {
/* $$$$ Process the received data. */

} else {
/* $$$$ Handle the error. */

Listing 12-6 USBDev_API Asynchronous Read Example

219

Chapter 12

L12-6(1)

L12-6(2)

L12-6(3)

L12-6(4)

The pipe handle gotten with USBDev_BulkIn Open() is passed to the function
to schedule the transfer for the desired pipe.

The application provides a receive buffer to store the data sent by the device.

The application provides a callback passed as a parameter. Upon completion of
the transfer, USBDev_API calls this callback so that the application can finalize
the transfer by analyzing the transfer result. For instance, upon read operation
completion, the application may do a certain processing with the received data.

An argument associated to the callback can be also passed. Then in the
callback context, some private information can be retrieved.

12-4 USING THE DEMO APPLICATION

Micripm provides a demo application that lets you test and evaluate the class

implementation. Source template files are provided for the device. Executable and source

files are provided for Windows host PC.

12-4-1 CONFIGURING PC AND DEVICE APPLICATIONS

The demo used between the host and the device is the Echo demo. This demo implements

a simple protocol allowing the device to echo the data sent by the host.

On the device side, the demo application file, app usbd vendor.c, provided for nC/OS-1I
and pC/OS-II is located in these two folders:

B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

B \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

app_usbd vendor.c contains the Echo demo available in two versions:

B The Echo Sync demo exercises the synchronous communication API described in

section 12-2-4 “Synchronous Communication” on page 211.

B The Echo Async demo exercises the asynchronous communication API described in

section 12-2-5 “Asynchronous Communication” on page 212.

220

Using the Demo Application

The use of these constants defined usually in app cfg.h allows you to use the vendor
demo application.

Constant Description

APP CFG_USBD VENDOR EN General constant to enable the Vendor class demo
application. Must be set to DEF_ENABLED.

APP CFG_USBD_VENDOR ECHO SYNC EN Enables or disables the Echo Sync demo. The possible
values are DEF_ENABLED or DEF_DISABLED.

APP_CFG_USBD_VENDOR ECHO_ASYNC EN Enables or disables the Echo Async demo. The possible
values are DEF_ENABLED or DEF_DISABLED.

APP_CFG_USBD_VENDOR ECHO SYNC TASK PRIO Priority of the task used by the Echo Sync demo.
APP_CFG_USBD VENDOR_ECHO_ASYNC TASK PRIO Priority of the task used by the Echo Async demo.
APP_CFG_USBD_VENDOR TASK STK SIZE Stack size of the tasks used by Echo Sync and Async

demos. A default value can be 256.

Table 12-6 Device Application Constants Configuration

APP CFG USBD VENDOR ECHO SYNC EN and APP CFG USBD VENDOR ECHO ASYNC EN can
be set to DEF_ENABLED at the same time. The vendor device created will be a composite
device formed with two vendor interfaces. One will represent the Echo Sync demo and the
other the Echo Async demo.

On the Windows side, the demo application file, app_vendor echo.c, is part of a Visual
Studio solution located in this folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\Visual Studio 2010
app_vendor echo.c allows you to test:
B One single device. That is Echo Sync or Async demo is enabled on the device side.

B One composite device. That is Echo Sync and Async demos are both enabled on the
device side.

B Multiple devices (single or composite devices).

221

Chapter 12

app_vendor echo.c contains some constants to customize the demo.

Constant Description

APP CFG_RX ASYNC EN Enables or disables the use of the asynchronous API for IN pipe. The possible
values are TRUE or FALSE.

APP_MAX NBR VENDOR DEV Defines the maximum number of connected vendor devices supported by the
demo.

Table 12-7 Windows Application Constants Configuration

The constants configuration for the Windows application are independent from the device
application constants configuration presented in Table 12-6.

12-4-2 EDITING AN INF FILE

An INF file contains directives telling to Windows how to install one or several drivers for
one or more devices. Refer to section 3-1-1 “About INF Files” on page 46 for more details
about INF file use and format. The Vendor class includes two INF files located in
\Micrium\Software\uC-USB-Device-V4\App\Host\0OS\Windows\Vendor\INF:

B WinUSB single.inf, used if the device presents only one Vendor class interface.

B WinUSB composite.inf, used if the device presents at least one Vendor class interface
along with another interface.

The two INF files allows you to load the WinUSB.sys driver provided by Windows.
WinUSB single.inf defines this default hardware ID string:

USB\VID FFFE&PID 1003

While WinUSB_composite.inf defines this one:

USB\VID FFFE&PID 1001&MI_00

The hardware ID string contains the Vendor ID (VID) and Product ID (PID). In the default
strings, the VID is FFFE and the PID is either 1003 or 1001. The VID/PID values should

match the ones from the USB device configuration structure defined in usb _dev cfg.c.
Refer to section “Modify Device Configuration” on page 34 for more details about the USB

222

Using the Demo Application

device configuration structure.

If you want to define your own VID/PID, you must modify the previous default hardware
ID strings with your VID/PID.

In the case of a composite device formed of several vendor interfaces, in order to load
WinUSB.sys for each vendor interface, the manufacturer section in WinUSB_composite.inf
can be modified as shown in Listing 12-7. Let’s assume a device with two vendor interfaces.

[MyDevice WinUSB.NTx86]
%$USB\MyDevice.DeviceDesc% =USB_Install, USB\VID FFFE&PID 1001&MI_00
$USB\MyDevice.DeviceDesc$ =USB_Install, USB\VID_FFFE&PID_ 1001&MI_01

[MyDevice WinUSB.NTamd64]
$USB\MyDevice.DeviceDesc$ =USB_Install, USB\VID_FFFE&PID_1001&MI_00
$USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID 1001&MI_01

[MyDevice WinUSB.NTia64]
%$USB\MyDevice.DeviceDesc% =USB_Install, USB\VID FFFE&PID 1001&MI_00
%$USB\MyDevice.DeviceDesc% =USB_Install, USB\VID FFFE&PID 1001&MI_01

Listing 12-7 INF File Example for Composite Device Formed of Several Vendor Interfaces.

You can also modify the [Strings] section of the INF file in order to add the strings that best
describe your device. Listing 12-8 shows the editable [Strings] section common to
WinUSB_single.inf and WinUSB composite.inf.

[Strings]

ProviderName ="Micrium" (1)
USB\MyDevice.DeviceDesc ="Micrium Vendor Specific Device" (2)
ClassName ="USB Sample Class" (3)

Listing 12-8 Editable Strings in the INF File to Describe the Vendor Device.

L12-8(1) Specify the name of your company as the driver provider.

L12-8(2) Write the name of your device.

223

Chapter 12

L12-8(3) You can modify this string to give a new name to the device group in which
your device will appear under Device Manager. In this example, “Micrium
Vendor Specific Device” will appear under the “USB Sample Class” group. Refer
to Figure 3-1 “Windows Device Manager Example for a CDC Device” on
page 50 for an illustration of the strings use by Windows.

12-4-3 RUNNING THE DEMO APPLICATION

Figure 12-3 presents the Echo demo with host and device interactions:

Windows PC USB Device
Host (2) Sync task

1. Rx header
2. Rx payload
3. Tx payload

Rx header callback ->

(3) Async task 2. Rx payload preparation

1. Tx header
2. Tx payload
3. Rx payload

Payload

(1) Main thread

1. Rx header
preparation

Rx payload callback ->
3. Tx payload preparation

Payload

Tx payload callback ->

1. Rx header preparation
OR

2. Rx payload preparation

Figure 12-3 Echo Demo

F12-3(1) The Windows application executes a simple