

TwinDie™ 1.2V DDR4 SDRAM

MT40A1G16 – 64 Meg x 16 x 16 Banks x 1 Ranks

Description

The 16Gb (TwinDie™) DDR4 SDRAM uses Micron's 8Gb DDR4 SDRAM die; two x8s combined to make one x16. Similar signals as mono x16, there is one extra ZQ connection for faster ZQ Calibration and a BG1 control required for x8 addressing. Refer to Micron's 8Gb DDR4 SDRAM data sheet (x8 option) for the specifications not included in this document. Specifications for base part number MT40A1G8 correlate to TwinDie manufacturing part number MT40A1G16.

Features

- Uses two x8 8Gb Micron die to make one x16
- Single rank TwinDie
- $V_{DD} = V_{DDQ} = 1.2V$ (1.14–1.26V)
- 1.2VV_{DDQ}-terminated I/O
- JEDEC-standard ball-out
- Low-profile package
- T_C of 0°C to 95°C
 - 0°C to 85°C: 8192 refresh cycles in 64ms
 - 85°C to 95°C: 8192 refresh cycles in 32ms

Options	Marking
• Configuration <ul style="list-style-type: none"> – 64 Meg x 16 x 16 banks x 1 rank 	1G16
• 96-ball FBGA package (Pb-free) <ul style="list-style-type: none"> – 9.5mm x 14mm x 1.2mm Die Rev :A – 8.0mm x 14mm x 1.2mm Die Rev :B, D – 7.5mm x 13.5mm x 1.2mm Die Rev :E 	HBA WBU KNR
• Timing – cycle time ¹ <ul style="list-style-type: none"> – 0.625ns @ CL = 22 (DDR4-3200) – 0.682ns @ CL = 21 (DDR4-2933) – 0.750ns @ CL = 19 (DDR4-2666) – 0.750ns @ CL = 18 (DDR4-2666) – 0.833ns @ CL = 17 (DDR4-2400) – 0.833ns @ CL = 16 (DDR4-2400) – 0.937ns @ CL = 15 (DDR4-2133) – 1.071ns @ CL = 13 (DDR4-1866) 	-062E -068 -075 -075E -083 -083E -093E -107E
• Self refresh <ul style="list-style-type: none"> – Standard 	None
• Operating temperature <ul style="list-style-type: none"> – Commercial (0°C ≤ T_C ≤ 95°C) 	None
• Revision <ul style="list-style-type: none"> – :A – :B, D – :E 	:A :B, D :E

Note: 1. CL = CAS (READ) latency.

Table 1: Key Timing Parameters

Speed Grade ¹	Data Rate (MT/s)	Target t _{RCD} -t _{RP} -CL	t _{RCD} (ns)	t _{RP} (ns)	CL (ns)
-062Y	3200	22-22-22	13.75 (13.32)	13.75 (13.32)	13.75 (13.32)
-062E	3200	22-22-22	13.75	13.75	13.75
-068	2933	21-21-21	14.32 (13.75)	14.32 (13.75)	14.32 (13.75)
-075E	2666	18-18-18	13.50	13.50	13.50
-075	2666	19-19-19	14.25	14.25	14.25
-083E	2400	16-16-16	13.32	13.32	13.32
-083	2400	17-17-17	14.16 (13.75)	14.16 (13.75)	14.16 (13.75)
-093E	2133	15-15-15	14.06 (13.50)	14.06 (13.50)	14.06 (13.50)
-093	2133	16-16-16	15.00	15.00	15.00
-107E	1866	13-13-13	13.92 (13.50)	13.92 (13.50)	13.92 (13.50)

Note: 1. Refer to Speed Bin Tables for additional details.

Table 2: Addressing

Parameter	1024 Meg x 16
Configuration	64 Meg x 16 x 16 banks x 1 rank
Bank group address	BG[1:0]
Bank count per group	4
Bank address in bank group	BA[1:0]
Row addressing	64K (A[15:0])
Column addressing	1K (A[9:0])
Page size	1KB

Note: 1. Page size is per bank, calculated as follows:

Page size = $2^{\text{COLBITS}} \times \text{ORG}/8$, where COLBIT = the number of column address bits and ORG = the number of DQ bits.

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

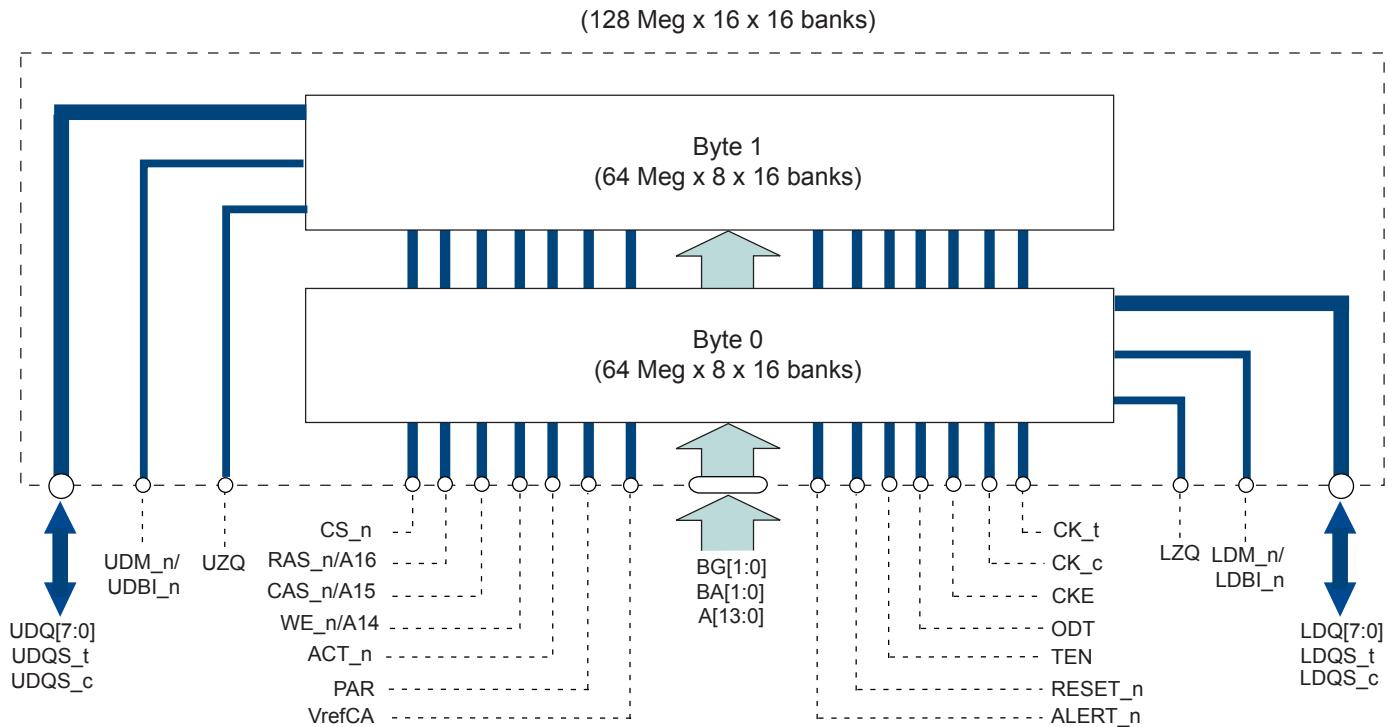
Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

Ball Assignments

Figure 1: 96-Ball x16 SR DDP Ball Assignments


	1	2	3	4	5	6	7	8	9	
A			UDQ0							A
B							UDQS_c	V _{SSQ}	V _{DDQ}	B
C		V _{PP}	V _{SS}	V _{DD}			UDQS_t	UDQ1	V _{DD}	C
D	V _{DDQ}	UDQ4	UDQ2				UDQ3	UDQ5	V _{SSQ}	D
E	V _{DD}	V _{SSQ}	UDQ6				UDQ7	V _{SSQ}	V _{DDQ}	E
F				NF/UDM_n/ UDBI_n	V _{SSQ}				NF/UDM_n/ UDBI_n	F
G	V _{SSQ}	V _{DDQ}	LDQS_c				LDQ1	V _{DDQ}	LZQ	G
H				V _{DDQ}	LDQ0	LDQS_t			V _{DD}	H
J	V _{SSQ}	LDQ4	LDQ2				LDQ3	LDQ5	V _{SSQ}	J
K		V _{DD}	V _{DDQ}	LDQ6			LDQ7	V _{DDQ}	V _{DD}	K
L	V _{SS}	CKE	ODT				CK_t	CK_c	V _{SS}	L
M	V _{DD}	WE_n/A14	ACT_n				CS_n	RAS_n/A16	V _{DD}	M
N	V _{REFCA}	BG0	A10/AP				A12/BC_n	CAS-n/A15	BG1	N
P	V _{SS}	BA0	A4				A3	BA1	TEN	P
R	RESET_n	A6	A0				A1	A5	ALERT_n	R
T	V _{DD}	A8	A2				A9	A7	V _{PP}	T
	V _{SS}	A11	PAR				V _{SS}	A13	V _{DD}	

Notes:

1. See Ball Descriptions in the monolithic data sheet.
2. A slash "/" defines a selectable function. For example: Ball E2 = NF/UDM_n/UDBI_n where either NF, UDM_n, or UDBI_n is defined via MRS.

Functional Block Diagrams

Figure 2: Functional Block Diagram (128 Meg x 16 x 16 Banks x 1 Rank)

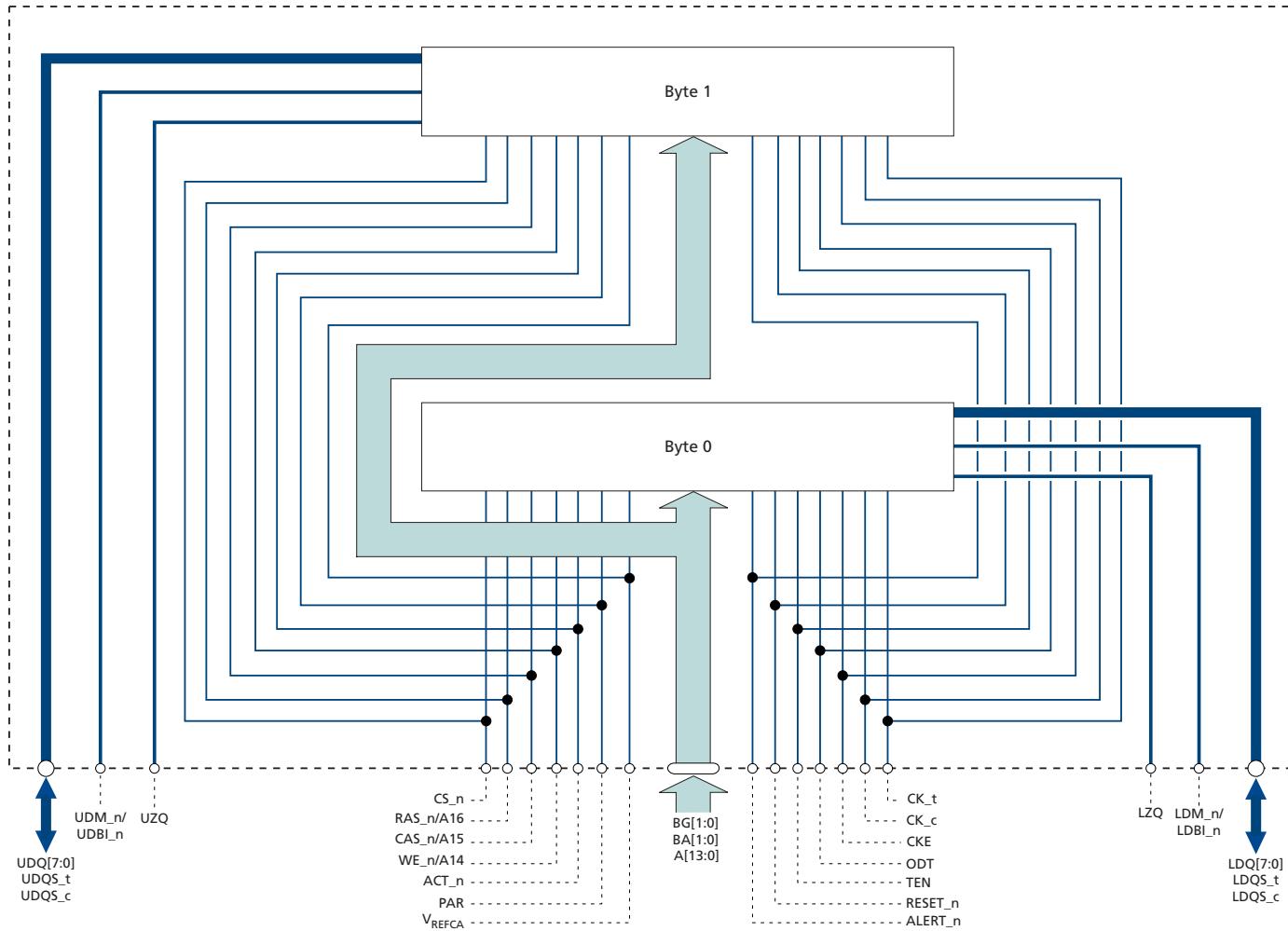
Connectivity Test Mode

Connectivity test (CT) mode for the x16 TwinDie single rank (SR) device is the same as two mono x8 devices connected in parallel. The mapping is restated for clarity.

Minimum Terms Definition for Logic Equations

The test input and output pins are related by the following equations, where INV denotes a logical inversion operation and XOR a logical exclusive OR operation:

MT0 = XOR (A1, A6, PAR)
MT1 = XOR (A8, ALERT_n, A9)
MT2 = XOR (A2, A5, A13)
MT3 = XOR (A0, A7, A11)
MT4 = XOR (CK_c, ODT, CAS_n/A15)
MT5 = XOR (CKE, RAS_n/A16, A10/AP)
MT6 = XOR (ACT_n, A4, BA1)
MT7L = XOR (BG1, LDM_n/LDBI_n, CK_t)
MT7U = XOR (BG1, UDM_n/UDBI_n, CK_t)
MT8 = XOR (WE_n/A14, A12 / BC, BA0)
MT9 = XOR (BG0, A3, RESET_n and TEN)


Logic Equations for a x16 TwinDie, SR Device

Byte 0	Byte 1
LDQ0 = MT0	UDQ0 = MT0
LDQ1 = MT1	UDQ1 = MT1
LDQ2 = MT2	UDQ2 = MT2
LDQ3 = MT3	UDQ3 = MT3
LDQ4 = MT4	UDQ4 = MT4
LDQ5 = MT5	UDQ5 = MT5
LDQ6 = MT6	UDQ6 = MT6
LDQ7 = MT7L	UDQ7 = MT7U
LDQS_t = MT8	UDQS_t = MT8
LDQS_c = MT9	UDQS_c = MT9

x16 TwinDie, SR Internal Connections

The figure below shows the internal connections of the x16 TwinDie, SR. The diagram shows why byte 0 and byte 1 outputs have the same logic equations except LDQ7 and UDQ7; they are different because the DM_n/DBI_n pins are not common for each byte.

Figure 3: x16 TwinDie, SR

Electrical Specifications – Leaks

Table 3: Input and Output Leaks

Symbol	Parameter	Min	Max	Units	Notes
I_I	Input leakage current Any input $0V \leq V_{IN} \leq V_{DD}$, V_{REF} pin $0V \leq V_{IN} \leq 1.1V$ (All other pins not under test = 0V)	-4	4	μA	1
I_{VREF}	V_{REF} supply leakage current $V_{REFDQ} = V_{DD}/2$ or $V_{REFCA} = V_{DD}/2$ (All other pins not under test = 0V)	-4	4	μA	2
I_{ZQ}	Input leakage on ZQ pin	-50	10	μA	
I_{TEN}	Input leakage on TEN pin	-12	20	μA	
I_{OZPD}	Output leakage: $V_{OUT} = V_{DDQ}$	-	10	μA	3
I_{OZPU}	Output leakage: $V_{OUT} = V_{SSQ}$	-50	-	μA	3, 4

Notes:

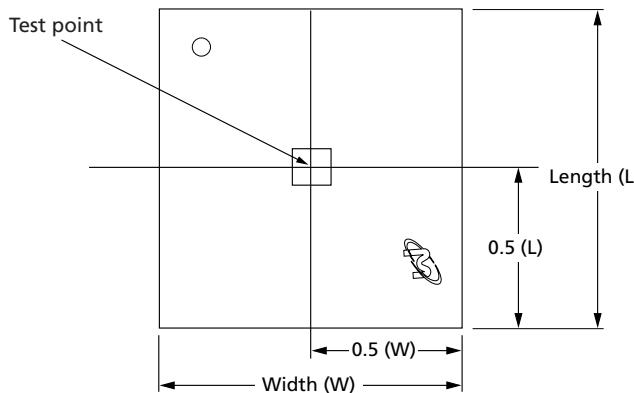
1. Any input $0V < V_{IN} < 1.1V$
2. $V_{REFCA} = V_{DD}/2$, V_{DD} at valid level.
3. DQs are disabled.
4. ODT is disabled with the ODT input HIGH.

Temperature and Thermal Impedance

It is imperative that the DDR4 SDRAM device's temperature specifications, shown in the following table, be maintained in order to ensure the junction temperature is in the proper operating range to meet data sheet specifications. An important step in maintaining the proper junction temperature is using the device's thermal impedances correctly. The thermal impedances listed in Table 5 (page 9) apply to the current die revision and packages.

Incorrectly using thermal impedances can produce significant errors. Read Micron technical note TN-00-08, "Thermal Applications," prior to using the values listed in the thermal impedance table. For designs that are expected to last several years and require the flexibility to use several DRAM die shrinks, consider using final target theta values (rather than existing values) to account for increased thermal impedances from the die size reduction.

The DDR4 SDRAM device's safe junction temperature range can be maintained when the T_C specification is not exceeded. In applications where the device's ambient temperature is too high, use of forced air and/or heat sinks may be required to satisfy the case temperature specifications.


Table 4: Thermal Characteristics

Notes 1–3 apply to entire table

Parameter	Symbol	Value	Units	Notes
Operating temperature	T_C	0 to 85	°C	
		0 to 95	°C	4

Notes:

1. MAX operating case temperature T_C is measured in the center of the package, as shown below.
2. A thermal solution must be designed to ensure that the device does not exceed the maximum T_C during operation.
3. Device functionality is not guaranteed if the device exceeds maximum T_C during operation.
4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs interval refresh rate. The use of self refresh temperature (SRT) or automatic self refresh (ASR), if available, must be enabled.

Figure 4: Temperature Test Point Location

Table 5: Thermal Impedance

Die Rev.	Substrate conductivity	Θ_{JA} (°C/W) Airflow = 0m/s	Θ_{JA} (°C/W) Airflow = 1m/s	Θ_{JA} (°C/W) Airflow = 2m/s	Θ_{JB} (°C/W)	Θ_{JC} (°C/W)	Notes
A	Low	TBD	TBD	TBD	N/A	TBD	1
	High	TBD	TBD	TBD	TBD	N/A	
B, D	Low	43.9	33.0	29.5	N/A	3.3	1
	High	27.1	21.7	20.1	10.5	N/A	
E	Low	TBD	TBD	TBD	N/A	TBD	1
	High	TBD	TBD	TBD	TBD	N/A	

Note:

1. Thermal resistance data is based on a number of samples from multiple lots and should be viewed as a typical number.

DRAM Package Electrical Specifications

Table 6: DRAM Package Electrical Specifications for x16 Devices

Notes 1–4 apply to the entire table

Parameter	Symbol	DDR4-1600, -1866		DDR4-2133, -2400		DDR4-2666, -2933		Unit	Notes	
		Min	Max	Min	Max	Min	Max			
Input/ output	Zpkg	Z _{IO}	30	50	30	50	30	50	ohm	5, 6
	Package delay	T _{d_{IO}}	60	120	60	120	60	120	ps	6, 7
	Lpkg	L _{IO}	–	5.0	–	5.0	–	5.0	nH	
	Cpkg	C _{IO}	–	3.0	–	3.0	–	3.0	pF	
DQSL_t/ DQSL_c/ DQSU_t/ DQSU_c	Zpkg	Z _{IO DQS}	30	50	30	50	30	50	ohm	5
	Package delay	T _{d_{IO DQS}}	60	120	60	120	60	120	ps	7
	Lpkg	L _{IO DQS}	–	5.0	–	5.0	–	5.0	nH	
	Cpkg	C _{IO DQS}	–	3.0	–	3.0	–	3.0	pF	
DQSL_t/ DQSL_c, DQSU_t/ DQSU_c,	Delta Zpkg	DZ _{IO DQS}	–	20	–	20	–	20	ohm	5, 8
	Delta delay	DT _{d_{IO DQS}}	–	45	–	45	–	45	ps	7, 8
Input CTRL pins	Zpkg	Z _{I CTRL}	35	65	35	65	35	65	ohm	5, 9
	Package delay	T _{d_{I CTRL}}	75	120	75	120	75	120	ps	7, 9
	Lpkg	L _{I CTRL}	–	6.5	–	6.5	–	6.5	nH	
	Cpkg	C _{I CTRL}	–	2.5	–	2.5	–	2.5	pF	
Input CMD ADD pins	Zpkg	Z _{I ADD CMD}	35	65	35	65	35	65	ohm	5, 10
	Package delay	T _{d_{I ADD CMD}}	70	125	70	125	70	125	ps	7, 10
	Lpkg	L _{I ADD CMD}	–	6.5	–	6.5	–	6.5	nH	
	Cpkg	C _{I ADD CMD}	–	3.0	–	3.0	–	3.0	pF	
CK_t, CK_c	Zpkg	Z _{CK}	30	55	30	55	30	55	ohm	5
	Package delay	T _{d_{CK}}	80	135	80	135	80	135	ps	7
	Delta Zpkg	DZ _{DCK}	–	0.5	–	0.5	–	0.5	ohm	5, 11
	Delta delay	DT _{d_{DCK}}	–	1.2	–	1.2	–	1.2	ps	7, 11
Input CLK	Lpkg	L _{I CLK}	–	6.0	–	6.0	–	6.0	nH	
	Cpkg	C _{I CLK}	–	3.0	–	3.0	–	3.0	pF	
ZQ Zpkg		Z _{O ZQ}	–	40	–	40	–	40	ohm	5
ZQ delay		T _{d_{O ZQ}}	30	135	30	135	30	135	ps	7
ALERT Zpkg		Z _{O ALERT}	30	55	30	55	30	55	ohm	5
ALERT delay		T _{d_{O ALERT}}	65	110	65	110	65	110	ps	7

Notes:

1. The package parasitic (L and C) are not subject to production testing. If the package parasitic (L and C) are measured, the capacitance is measured with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} shorted with all other signal pins floating. The inductance is measured with V_{DD}, V_{DDQ}, V_{SS}, and V_{SSQ} shorted and all other signal pins shorted at the die, not pin, side.
2. Package implementations should satisfy targets if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum

values shown. The package design targets are provided for reference, system signal simulations should not use these values but use the Micron package model.

3. It is assumed that Lpkg can be approximated as $L_{pkg} = Z_0 \times T_d$.
4. It is assumed that Cpkg can be approximated as $C_{pkg} = T_d / Z_0$.
5. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Z_{pkg} (total per pin) = $\sqrt{L_{pkg} \times C_{pkg}}$.
6. Z_{IO} and Td_{IO} apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.
7. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: T_{pkg} (total per pin) = $\sqrt{L_{pkg} \times C_{pkg}}$.
8. Absolute value of Z_{IO} (DQS_t), Z_{IO} (DQS_c) for impedance (Z) or absolute value of Td_{IO} (DQS_t), Td_{IO} (DQS_c) for delay (Td).
9. Z_{I_CTRL} and Td_{I_CTRL} apply to ODT, CS_n, and CKE.
10. $Z_{I_ADD_CMD}$ and $Td_{I_ADD_CMD}$ apply to A[17:0], BA[1:0], BG[1:0], RAS_n, CAS_n, and WE_n.
11. Absolute value of Z_{CK_t} , Z_{CK_c} for impedance (Z) or absolute value of Td_{CK_t} , Td_{CK_c} for delay (Td).

Table 7: Pad Input/Output Capacitance

Parameter	Symbol	DDR4-1600, -1866, -2133		DDR4-2400, -2666		DDR4-2933		Unit	Notes
		Min	Max	Min	Max	Min	Max		
Input/output capacitance: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C_{IO}	1.8	2.8	1.8	2.8	1.8	2.8	pF	1, 2, 3
Input capacitance: CK_t and CK_c	C_{CK}	2.1	2.9	2.1	2.9	2.1	2.9	pF	1, 2, 3, 4
Input capacitance delta: CK_t and CK_c	C_{DCK}	0	0.05	0	0.05	0	0.05	pF	1, 2, 3, 5
Input/output capacitance delta: DQS_t and DQS_c	C_{DQS}	0	0.05	0	0.05	0	0.05	pF	1, 3
Input capacitance: CTRL, ADD, CMD input-only pins	C_I	1.6	2.6	1.6	2.6	1.6	2.6	pF	1, 3, 6
Input capacitance delta: All CTRL input-only pins	C_{DI_CTRL}	-0.9	0.9	-0.9	0.9	-0.9	0.9	pF	1, 3, 7
Input capacitance delta: All ADD/CMD input-only pins	$C_{DI_ADD_CMD}$	-0.9	0.9	-0.9	0.9	-0.9	0.9	pF	1, 3, 8, 9
Input/output capacitance delta: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c	C_{DIO}	-0.16	0.16	-0.16	0.16	-0.16	0.16	pF	1, 2, 10, 11
Input/output capacitance: ALERT pin	C_{ALERT}	1.1	2.3	1.1	2.3	1.1	2.3	pF	1, 3
Input/output capacitance: ZQ pin	C_{ZQ}	-	3.7	-	3.7	-	3.7	pF	1, 3, 12
Input/output capacitance: TEN pin	C_{TEN}	0.2	2.3	0.2	2.3	0.2	2.3	pF	1, 3, 13

Notes: 1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading matches DQ and DQS.

2. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The capacitance, if and when, is measured according to the JEP147 specification, "Procedure for Measuring Input Capacitance Using a Vector Network Analyzer (VNA)," with V_{DD} , V_{DDQ} , V_{SS} , and V_{SSQ} applied and all other pins floating (except the pin under test, CKE, RESET_n and ODT, as necessary). $V_{DD} = V_{DDQ} = 1.5V$, $V_{BIAS} = V_{DD}/2$ and on-die termination off.
3. This parameter applies to SR x16 TwinDie, obtained by de-embedding the package L and C parasitics.
4. $C_{DIO} = C_{IO}(DQ, DM) - 0.5 \times (C_{IO}(DQS_t) + C_{IO}(DQS_c))$.
5. Absolute value of $C_{IO}(DQS_t)$, $C_{IO}(DQS_c)$
6. Absolute value of CCK_t , CCK_c
7. C_l applies to ODT, CS_n, CKE, A[15:0], BA[1:0], RAS_n, CAS_n, and WE_n.
8. C_{DI_CTRL} applies to ODT, CS_n, and CKE.
9. $C_{DI_CTRL} = C_l(CTRL) - 0.5 \times (C_l(CLK_t) + C_l(CLK_c))$.
10. $C_{DI_ADD_CMD}$ applies to A[15:0], BA1:0], RAS_n, CAS_n and WE_n.
11. $C_{DI_ADD_CMD} = C_l(ADD_CMD) - 0.5 \times (C_l(CLK_t) + C_l(CLK_c))$.
12. Maximum external load capacitance on ZQ pin: 5pF.
13. Only applicable if TEN pin does not have an internal pull-up.

Current Specifications – Limits

Table 8: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. A

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	Unit	Notes
I_{DD0} : One bank ACTIVATE-to-PRECHARGE current	110	120	130	TBD	mA	2, 3, 4
I_{PP0} : One bank ACTIVATE-to-PRECHARGE I_{PP} current	6	6	6	TBD	mA	
I_{DD1} : One bank ACTIVATE-to-READ-to-PRECHARGE current	140	150	160	TBD	mA	3, 4, 5
I_{DD2N} : Precharge standby current	90	100	110	TBD	mA	4, 6, 7, 8, 9, 10, 11
I_{DD2NT} : Precharge standby ODT current	110	120	130	TBD	mA	4, 11
I_{DD2P} : Precharge power-down current	50	60	70	TBD	mA	4, 11
I_{DD2Q} : Precharge quiet standby current	90	90	100	TBD	mA	4, 11
I_{DD3N} : Active standby current	110	110	120	TBD	mA	4, 11
I_{PP3N} : Active standby I_{PP} current	6	6	6	TBD	mA	
I_{DD3P} : Active power-down current	70	80	80	TBD	mA	4, 11
I_{DD4R} : Burst read current	300	300	350	TBD	mA	4, 14, 13, 11
I_{DD4W} : Burst write current	300	320	350	TBD	mA	4, 11, 15, 16, 17, 18
I_{DD5R} : Distributed refresh current (1X REF)	128	128	136	TBD	mA	4, 19, 20
I_{PP5R} : Distributed refresh I_{PP} current (1X REF)	10	10	10	TBD	mA	
I_{DD6N} : Self refresh current; 0–85°C	60	60	60	TBD	mA	11, 21
I_{DD6E} : Self refresh current; 0–95°C	70	70	70	TBD	mA	11, 22
I_{DD6R} : Self refresh current; 0–45°C	50	50	50	TBD	mA	11, 23, 24
I_{DD6A} : Auto self refresh current (25°C)	40	40	40	TBD	mA	11, 24
I_{DD6A} : Auto self refresh current (45°C)	50	50	50	TBD	mA	11, 24
I_{DD6A} : Auto self refresh current (75°C)	70	70	70	TBD	mA	11, 24
I_{PP6X} : Auto self refresh current I_{PP} current	10	10	10	TBD	mA	11, 24
I_{DD7} : Bank interleave read current	400	410	430	TBD	mA	4
I_{PP7} : Bank interleave read I_{PP} current	30	30	30	TBD	mA	
I_{DD8} : Maximum power-down current	40	40	40	TBD	mA	11

Notes:

1. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
2. When additive latency is enabled for I_{DD0} , current changes by approximately 0%.
3. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
4. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}\text{C} \leq T_C \leq 85^{\circ}\text{C}$:

When $T_C < 0^\circ\text{C}$: I_{DD2P} and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by +4%; and I_{DD7} must be derated by +11%.

When $T_C > 85^\circ\text{C}$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by +3%; I_{DD2P} must be derated by +40%.

5. When additive latency is enabled for I_{DD1} , current changes by approximately +4%.
6. When additive latency is enabled for I_{DD2N} , current changes by approximately 0%.
7. When DLL is disabled for I_{DD2N} , current changes by approximately -23%.
8. When CAL is enabled for I_{DD2N} , current changes by approximately -25%.
9. When gear-down is enabled for I_{DD2N} , current changes by approximately 0%.
10. When CA parity is enabled for I_{DD2N} , current changes by approximately +7%.
11. I_{PP3N} test and limit is applicable for all I_{DD2x} , I_{DD3x} , I_{DD4x} , I_{DD6x} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PPs} for the noted I_{DD} tests.
12. When additive latency is enabled for I_{DD3N} , current changes by approximately +0.6%.
13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
15. When additive latency is enabled for I_{DD4W} , current changes by approximately +4%.
16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
17. When write CRC is enabled for I_{DD4W} , current changes by approximately -3%.
18. When CA parity is enabled for I_{DD4W} , current changes by approximately +12%.
19. When 2X REF is enabled for I_{DD5R} , current changes by approximately -14%.
20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -33%.
21. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (0–85°C).
22. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
23. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).
24. I_{DD6R} and I_{DD6A} values are typical.

Table 9: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. B

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I_{DD0} : One bank ACTIVATE-to-PRE-CHARGE current	90	96	102	108	114	mA	2, 3, 4
I_{PP0} : One bank ACTIVATE-to-PRE-CHARGE I_{PP} current	6	6	6	6	6	mA	
I_{DD1} : One bank ACTIVATE-to-READ-to-PRECHARGE current	114	120	126	132	138	mA	3, 4, 5
I_{DD2N} : Precharge standby current	66	68	70	72	74	mA	4, 6, 7, 8, 9, 10, 11
I_{DD2NT} : Precharge standby ODT current	90	100	100	110	120	mA	4, 11
I_{DD2P} : Precharge power-down current	50	50	50	50	50	mA	4, 11
I_{DD2Q} : Precharge quiet standby current	60	60	60	60	60	mA	4, 11
I_{DD3N} : Active standby current	80	86	92	98	104	mA	4, 11

Table 9: x16 I_{DD}, I_{PP}, and I_{DDQ} Current Limits – Rev. B (Continued)

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I _{PP3N} : Active standby I _{PP} current	6	6	6	6	6	mA	
I _{DD3P} : Active power-down current	70	74	78	82	86	mA	4, 11
I _{DD4R} : Burst read current	250	270	292	314	336	mA	4, 14, 13, 11
I _{DD4W} : Burst write current	230	246	264	282	300	mA	4, 11, 15, 16, 17, 18
I _{DD5R} : Distributed refresh current (1X REF)	100	106	112	118	124	mA	4, 19, 20
I _{PP5R} : Distributed refresh I _{PP} current (1X REF)	10	10	10	10	10	mA	
I _{DD6N} : Self refresh current; 0–85°C	60	60	60	60	60	mA	11, 21
I _{DD6E} : Self refresh current; 0–95°C	70	70	70	70	70	mA	11, 22
I _{DD6R} : Self refresh current; 0–45°C	40	40	40	40	40	mA	11, 23, 24
I _{DD6A} : Auto self refresh current (25°C)	17.2	17.2	17.2	17.2	17.2	mA	11, 24
I _{DD6A} : Auto self refresh current (45°C)	40	40	40	40	40	mA	11, 24
I _{DD6A} : Auto self refresh current (75°C)	60	60	60	60	60	mA	11, 24
I _{PP6X} : Auto self refresh current I _{PP} current	10	10	10	10	10	mA	11, 24
I _{DD7} : Bank interleave read current	340	350	360	370	380	mA	4
I _{PP7} : Bank interleave read I _{PP} current	30	30	30	30	30	mA	
I _{DD8} : Maximum power-down current	50	50	50	50	50	mA	11

Notes:

1. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
2. When additive latency is enabled for I_{DD0}, current changes by approximately 0%.
3. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
4. The I_{DD} values must be derated (increased) when operated outside of the range 0°C ≤ T_C ≤ 85°C:

When T_C < 0°C: I_{DD2P} and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by +4%; and I_{DD7} must be derated by +11%.

When T_C > 85°C: I_{DD0}, I_{DD1}, I_{DD2N}, I_{DD2NT}, I_{DD2Q}, I_{DD3N}, I_{DD3P}, I_{DD4R}, I_{DD4W}, and I_{DD5R} must be derated by +3%; I_{DD2P} must be derated by +40%.

5. When additive latency is enabled for I_{DD1}, current changes by approximately +4%.
6. When additive latency is enabled for I_{DD2N}, current changes by approximately 0%.
7. When DLL is disabled for I_{DD2N}, current changes by approximately -23%.
8. When CAL is enabled for I_{DD2N}, current changes by approximately -25%.
9. When gear-down is enabled for I_{DD2N}, current changes by approximately 0%.

10. When CA parity is enabled for I_{DD2N} , current changes by approximately +7%.
11. I_{PP3N} test and limit is applicable for all I_{DD2x} , I_{DD3x} , I_{DD4x} , I_{DD6x} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP} s for the noted I_{DD} tests.
12. When additive latency is enabled for I_{DD3N} , current changes by approximately +0.6%.
13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.
14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
15. When additive latency is enabled for I_{DD4W} , current changes by approximately +4%.
16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
17. When write CRC is enabled for I_{DD4W} , current changes by approximately -3%.
18. When CA parity is enabled for I_{DD4W} , current changes by approximately +12%.
19. When 2X REF is enabled for I_{DD5R} , current changes by approximately -14%.
20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -33%.
21. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (0–85°C).
22. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
23. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).
24. I_{DD6R} and I_{DD6A} values are typical.

Table 10: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. D

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I_{DD0} : One bank ACTIVATE-to-PRECHARGE current	90	96	102	108	114	mA	2, 3, 4
I_{PP0} : One bank ACTIVATE-to-PRECHARGE I_{PP} current	6	6	6	6	6	mA	
I_{DD1} : One bank ACTIVATE-to-READ-to-PRECHARGE current	114	120	126	132	138	mA	3, 4, 5
I_{DD2N} : Precharge standby current	66	68	70	72	74	mA	4, 6, 7, 8, 9, 10, 11
I_{DD2NT} : Precharge standby ODT current	90	100	100	110	120	mA	4, 11
I_{DD2P} : Precharge power-down current	50	50	50	50	50	mA	4, 11
I_{DD2Q} : Precharge quiet standby current	60	60	60	60	60	mA	4, 11
I_{DD3N} : Active standby current	90	96	102	108	112	mA	4, 11
I_{PP3N} : Active standby I_{PP} current	6	6	6	6	6	mA	
I_{DD3P} : Active power-down current	70	74	78	82	86	mA	4, 11
I_{DD4R} : Burst read current	250	270	292	314	336	mA	4, 14, 13, 11
I_{DD4W} : Burst write current	250	264	284	300	320	mA	4, 11, 15, 16, 17, 18

Table 10: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. D (Continued)

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I_{DD5R} : Distributed refresh current (1X REF)	112	116	122	128	132	mA	4, 19, 20
I_{PP5R} : Distributed refresh I_{PP} current (1X REF)	10	10	10	10	10	mA	
I_{DD6N} : Self refresh current; 0–85°C	62	62	62	62	62	mA	11, 21
I_{DD6E} : Self refresh current; 0–95°C	72	72	72	72	72	mA	11, 22
I_{DD6R} : Self refresh current; 0–45°C	42	42	42	42	42	mA	11, 23, 24
I_{DD6A} : Auto self refresh current (25°C)	17.2	17.2	17.2	17.2	17.2	mA	11, 24
I_{DD6A} : Auto self refresh current (45°C)	42	42	42	42	42	mA	11, 24
I_{DD6A} : Auto self refresh current (75°C)	62	62	62	62	62	mA	11, 24
I_{PP6X} : Auto self refresh current I_{PP} current	10	10	10	10	10	mA	11, 24
I_{DD7} : Bank interleave read current	340	350	360	370	380	mA	4
I_{PP7} : Bank interleave read I_{PP} current	30	30	30	30	30	mA	
I_{DD8} : Maximum power-down current	50	50	50	50	50	mA	11

Notes:

1. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
2. When additive latency is enabled for I_{DD0} , current changes by approximately 0%.
3. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
4. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}\text{C} \leq T_{\text{C}} \leq 85^{\circ}\text{C}$:

When $T_{\text{C}} < 0^{\circ}\text{C}$: I_{DD2P} and I_{DD3P} must be derated by 6%; I_{DD4R} and I_{DD4W} must be derated by +4%; and I_{DD7} must be derated by +11%.

When $T_{\text{C}} > 85^{\circ}\text{C}$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by +3%; I_{DD2P} must be derated by +40%.

5. When additive latency is enabled for I_{DD1} , current changes by approximately +4%.
6. When additive latency is enabled for I_{DD2N} , current changes by approximately 0%.
7. When DLL is disabled for I_{DD2N} , current changes by approximately -23%.
8. When CAL is enabled for I_{DD2N} , current changes by approximately -25%.
9. When gear-down is enabled for I_{DD2N} , current changes by approximately 0%.
10. When CA parity is enabled for I_{DD2N} , current changes by approximately +7%.
11. I_{PP3N} test and limit is applicable for all I_{DD2X} , I_{DD3X} , I_{DD4X} , I_{DD6X} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PPs} for the noted I_{DD} tests.
12. When additive latency is enabled for I_{DD3N} , current changes by approximately +0.6%.
13. When additive latency is enabled for I_{DD4R} , current changes by approximately +5%.

14. When read DBI is enabled for I_{DD4R} , current changes by approximately 0%.
15. When additive latency is enabled for I_{DD4W} , current changes by approximately +4%.
16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
17. When write CRC is enabled for I_{DD4W} , current changes by approximately -3%.
18. When CA parity is enabled for I_{DD4W} , current changes by approximately +12%.
19. When 2X REF is enabled for I_{DD5R} , current changes by approximately -14%.
20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -33%.
21. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (0–85°C).
22. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
23. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).
24. I_{DD6R} and I_{DD6A} values are typical.

Table 11: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. E

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I_{DD0} : One bank ACTIVATE-to-PRECHARGE current	78	82	86	90	94	mA	2, 3, 4
I_{PP0} : One bank ACTIVATE-to-PRECHARGE I_{PP} current	6	6	6	6	6	mA	
I_{DD1} : One bank ACTIVATE-to-READ-to-PRECHARGE current	110	114	118	122	126	mA	3, 4, 5
I_{DD2N} : Precharge standby current	58	60	62	64	66	mA	4, 6, 7, 8, 9, 10, 11
I_{DD2NT} : Precharge standby ODT current	72	76	80	84	88	mA	4, 11
I_{DD2P} : Precharge power-down current	44	44	44	44	44	mA	4, 11
I_{DD2Q} : Precharge quiet standby current	52	52	52	52	52	mA	4, 11
I_{DD3N} : Active standby current	70	74	78	82	86	mA	4, 11
I_{PP3N} : Active standby I_{PP} current	6	6	6	6	6	mA	
I_{DD3P} : Active power-down current	58	60	62	64	66	mA	4, 11
I_{DD4R} : Burst read current	270	290	312	334	356	mA	4, 14, 13, 11
I_{DD4W} : Burst write current	228	246	264	282	300	mA	4, 11, 15, 16, 17, 18
I_{DD5R} : Distributed refresh current (1X REF)	92	94	96	98	100	mA	4, 19, 20
I_{PP5R} : Distributed refresh I_{PP} current (1X REF)	10	10	10	10	10	mA	
I_{DD6N} : Self refresh current; 0–85°C	68	68	68	68	68	mA	11, 21

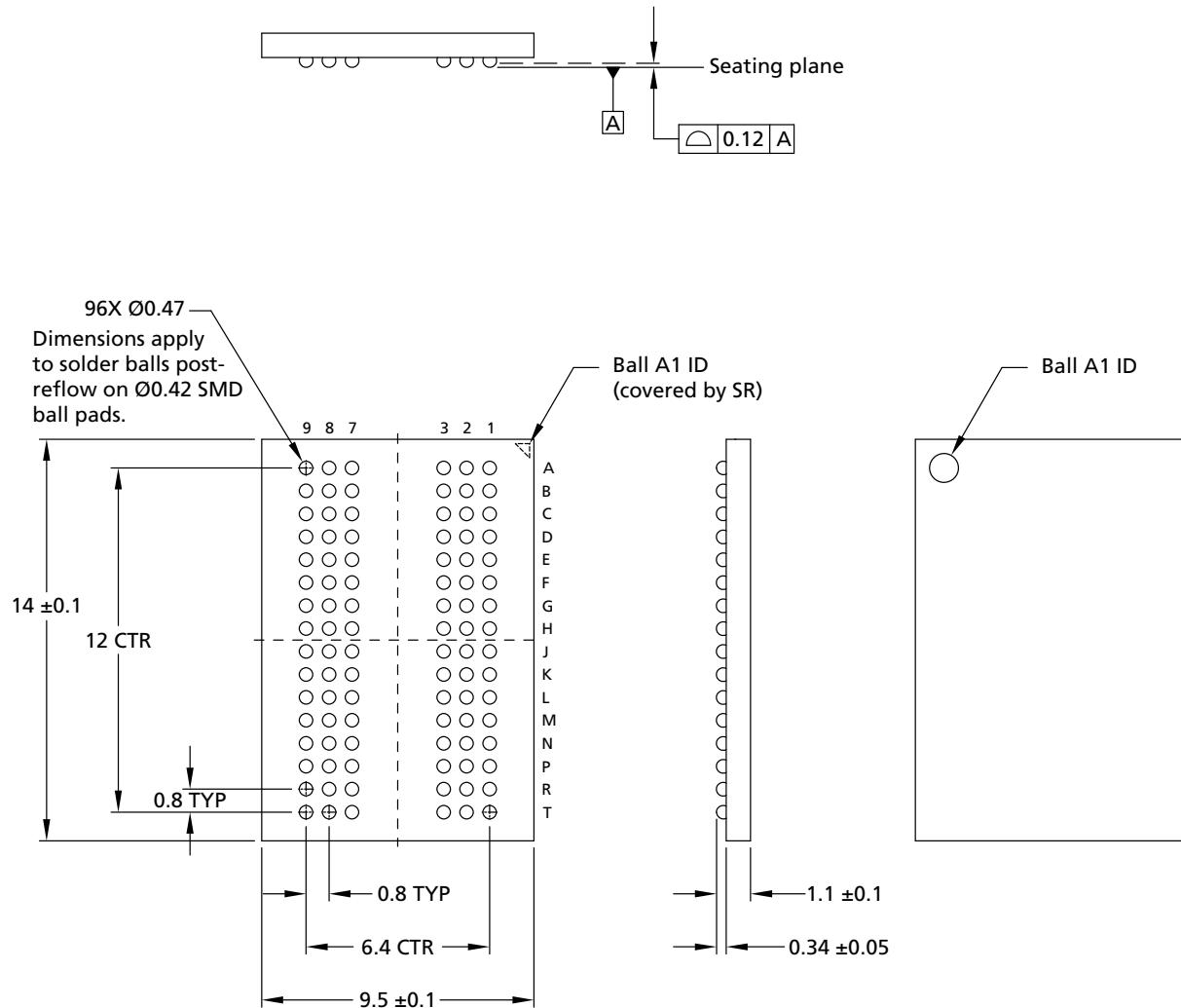
Table 11: x16 I_{DD} , I_{PP} , and I_{DDQ} Current Limits – Rev. E (Continued)

Symbol	DDR4-2133 ¹	DDR4-2400	DDR4-2666	DDR4-2933	DDR4-3200	Unit	Notes
I_{DD6E} : Self refresh current; 0–95°C	116	116	116	116	116	mA	11, 22
I_{DD6R} : Self refresh current; 0–45°C	42	42	42	42	42	mA	11, 23, 24
I_{DD6A} : Auto self refresh current (25°C)	17.2	17.2	17.2	17.2	17.2	mA	11, 24
I_{DD6A} : Auto self refresh current (45°C)	42	42	42	42	42	mA	11, 24
I_{DD6A} : Auto self refresh current (75°C)	62	62	62	62	62	mA	11, 24
I_{PP6X} : Auto self refresh current I_{PP} current	10	10	10	10	10	mA	11, 24
I_{DD7} : Bank interleave read current	340	350	360	370	380	mA	4
I_{PP7} : Bank interleave read I_{PP} current	26	26	26	26	26	mA	
I_{DD8} : Maximum power-down current	36	36	36	36	36	mA	11

Notes:

1. DDR4-1600 and DDR4-1866 use the same I_{DD} limits as DDR4-2133.
2. When additive latency is enabled for I_{DD0} , current changes by approximately +1%.
3. I_{PP0} test and limit is applicable for I_{DD0} and I_{DD1} conditions.
4. The I_{DD} values must be derated (increased) when operated outside of the range $0^{\circ}\text{C} \leq T_{\text{C}} \leq 85^{\circ}\text{C}$:

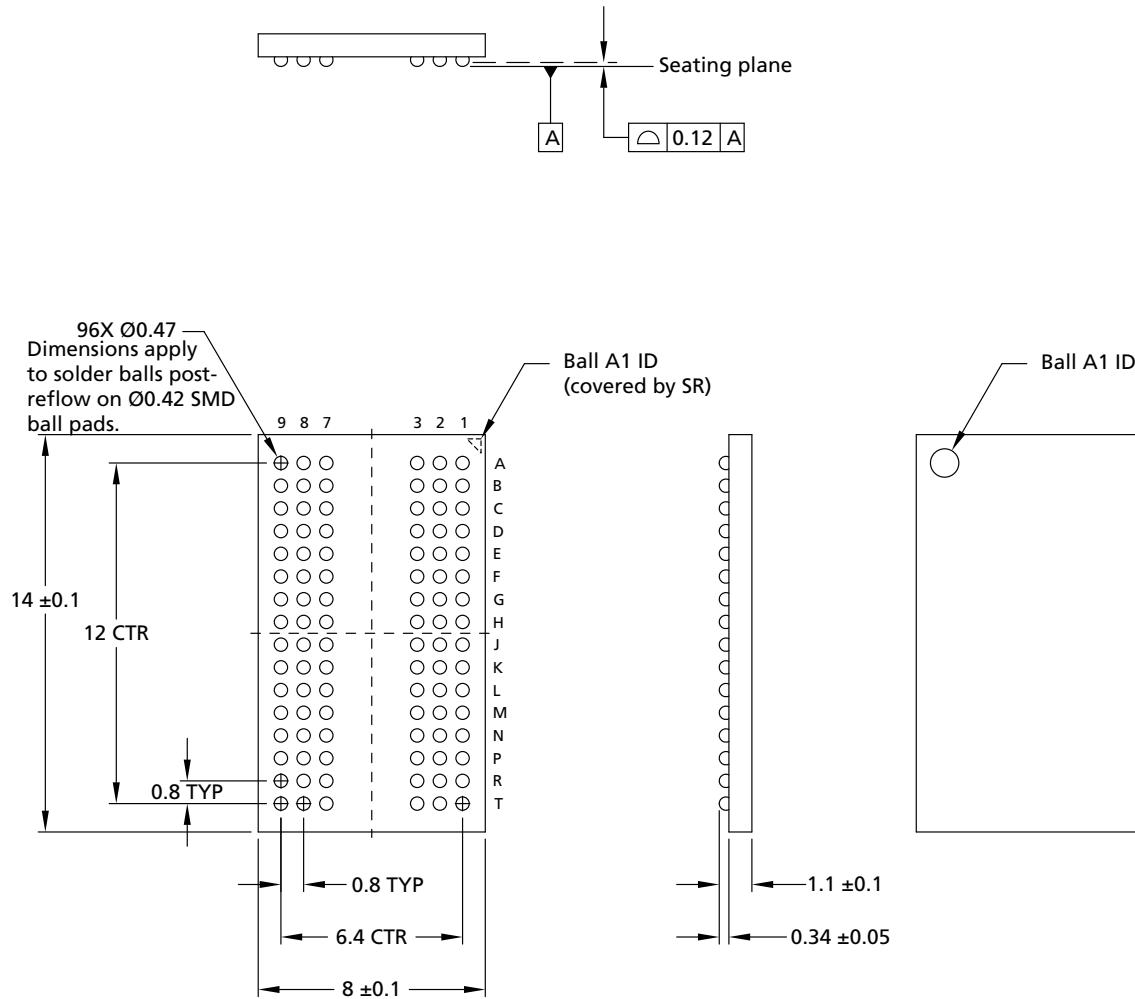
When $T_{\text{C}} < 0^{\circ}\text{C}$: I_{DD2P} and I_{DD3P} must be derated by +6%; I_{DD4R} and I_{DD4W} must be derated by +4%; and I_{DD7} must be derated by +11%.

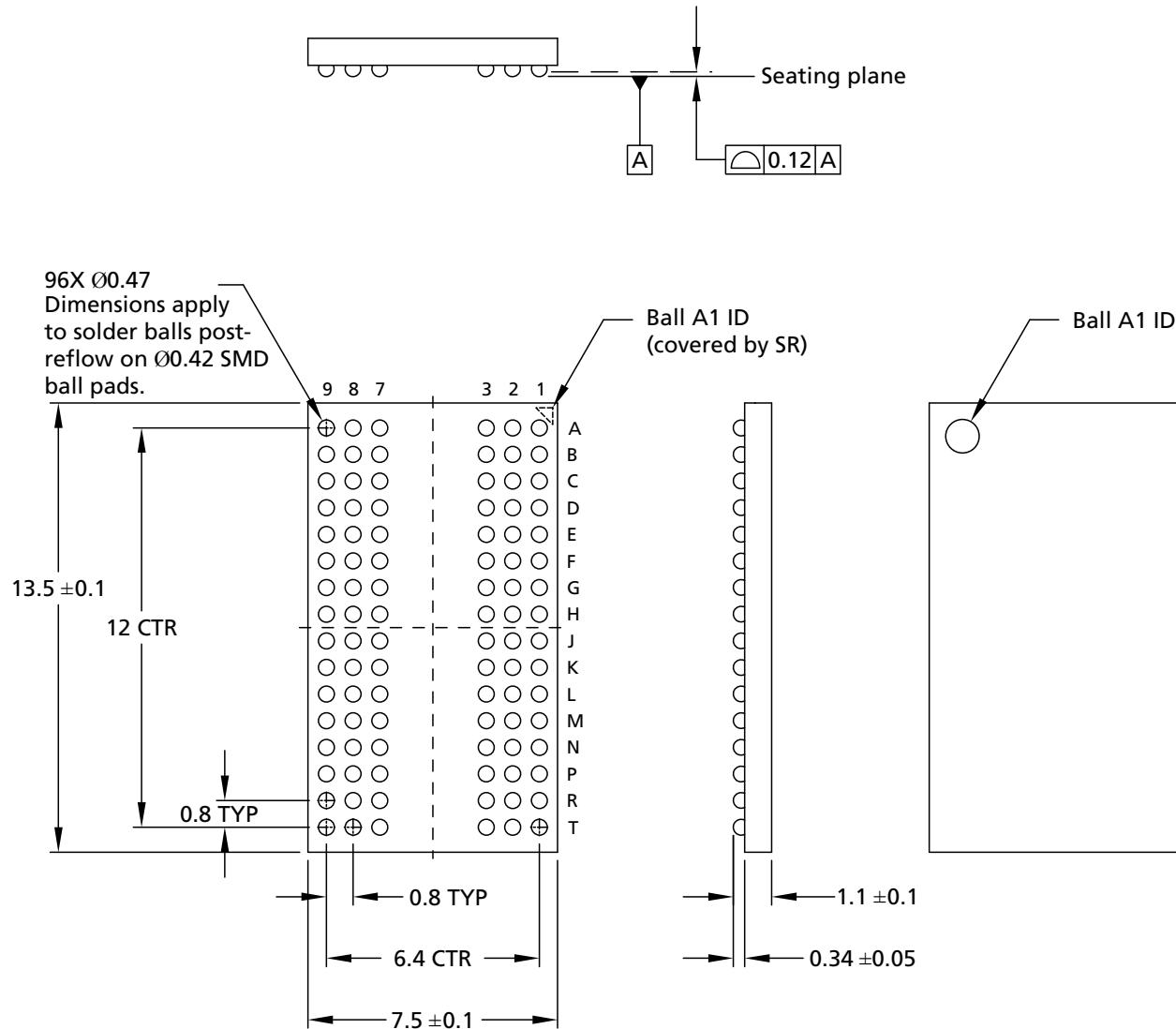

When $T_{\text{C}} > 85^{\circ}\text{C}$: I_{DD0} , I_{DD1} , I_{DD2N} , I_{DD2NT} , I_{DD2Q} , I_{DD3N} , I_{DD3P} , I_{DD4R} , I_{DD4W} , and I_{DD5R} must be derated by +3%; I_{DD2P} must be derated by +10%.

5. When additive latency is enabled for I_{DD1} , current changes by approximately +8%.
6. When additive latency is enabled for I_{DD2N} , current changes by approximately +1%.
7. When DLL is disabled for I_{DD2N} , current changes by approximately -6%.
8. When CAL is enabled for I_{DD2N} , current changes by approximately -30%.
9. When gear-down is enabled for I_{DD2N} , current changes by approximately 0%.
10. When CA parity is enabled for I_{DD2N} , current changes by approximately +10%.
11. I_{PP3N} test and limit is applicable for all I_{DD2x} , I_{DD3x} , I_{DD4x} , I_{DD6x} , and I_{DD8} conditions; that is, testing I_{PP3N} should satisfy the I_{PP} for the noted I_{DD} tests.
12. When additive latency is enabled for I_{DD3N} , current changes by approximately +1%.
13. When additive latency is enabled for I_{DD4R} , current changes by approximately +4%.
14. When read DBI is enabled for I_{DD4R} , current changes by approximately -14%.
15. When additive latency is enabled for I_{DD4W} , current changes by approximately +3%.
16. When write DBI is enabled for I_{DD4W} , current changes by approximately 0%.
17. When write CRC is enabled for I_{DD4W} , current changes by approximately +5%.
18. When CA parity is enabled for I_{DD4W} , current changes by approximately +12%.
19. When 2X REF is enabled for I_{DD5R} , current changes by approximately -25%.

20. When 4X REF is enabled for I_{DD5R} , current changes by approximately -35%.
21. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (0–85°C).
22. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (0–95°C).
23. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (0–45°C).
24. I_{DD6R} and I_{DD6A} values are typical.

Package Dimensions


Figure 5: 96-Ball FBGA Die Rev. A (package code HBA)


Notes:

1. All dimensions are in millimeters.
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).

Figure 6: 96-Ball FBGA Die Rev. B (package code WBU)

Notes: 1. All dimensions are in millimeters.
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).

Figure 7: 96-Ball FBGA Die Rev. E (package code KNR)

Notes:

1. All dimensions are in millimeters.
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000
www.micron.com/products/support Sales inquiries: 800-932-4992

Micron and the Micron logo are trademarks of Micron Technology, Inc. TwinDie is a trademark of Micron Technology, Inc.
 All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.

OCEAN CHIPS

Океан Электроники

Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибутором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибутором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

JONHON

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: <http://oceanchips.ru/>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А