DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT7030 9-bit x 64-word FIFO register; 3-state

File under Integrated Circuits, IC06

FEATURES

- Synchronous or asynchronous operation
- 3-state outputs
- Master-reset input to clear control functions
- 33 MHz (typ.) shift-in, shift-out rates with or without flags
- Very low power consumption
- Cascadable to 25 MHz (typ.)
- Readily expandable in word and bit dimensions
- Pinning arranged for easy board layout: input pins directly opposite output pins
- Output capability: standard
- ICC category: LSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 7030$ are high-speed Si-gate CMOS devices specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT7030 is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 9 bits. A 33 MHz data-rate makes it ideal for high-speed applications. Even at high frequencies, the I_{CC} dynamic is very low ($\mathrm{f}_{\max }=18 \mathrm{MHz} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ produces a dynamic I_{CC} of 80 mA). If the device is not continuously operating at $\mathrm{f}_{\max }$, then $I_{C C}$ will decrease proportionally.

With separate controls for shift-in (SI) and shift-out ($\overline{\mathrm{SO}}$), reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a master-reset input ($\overline{\mathrm{MR}}$) and an output enable input ($\overline{\mathrm{OE}})$. Flags for data-in-ready (DIR) and data-out-ready (DOR) indicate the status of the device.

Devices can be interconnected easily to expand word and bit dimensions. All output pins are directly opposite the corresponding input pins thus simplifying board layout in expanded applications.

INPUTS AND OUTPUTS

Data inputs (D_{0} to D_{8})

As there is no weighting of the inputs, any input can be assigned as the MSB. The size of the FIFO memory can be reduced from the 9×64 configuration, i.e. 8×64, 7×64, down to 1×64, by tying unused data input pins to $V_{C C}$ or GND.

Data outputs ($\mathbf{Q}_{\mathbf{0}}$ to $\mathbf{Q}_{\mathbf{8}}$)

As there is no weighting of the outputs, any output can be assigned as the MSB. The size of the FIFO memory can be reduced from the 9×64 configuration as described for data inputs. In a reduced format, the unused data output pins must be left open circuit.

Master-reset ($\overline{\mathbf{M R}}$)

When $\overline{\mathrm{MR}}$ is LOW, the control functions within the FIFO are cleared, and data content is declared invalid. The data-in-ready (DIR) flag is set HIGH and the data-out-ready (DOR) flag is set LOW. The output stage remains in the state of the last word that was shifted out, or in the random state existing at power-up.

Status flag outputs (DIR, DOR)

Indication of the status of the FIFO is given by two status flags, data-in-ready (DIR) and data-out-ready (DOR):

DIR $=$ HIGH indicates the input stage is empty and ready to accept valid data
DIR = LOW indicates that the FIFO is full or that a previous shift-in operation is not complete (busy)
DOR $=$ HIGH assures valid data is present at the outputs Q_{0} to Q_{8} (does not indicate that new data is awaiting transfer into the output stage)
DOR = LOW indicates the output stage is busy or there is no valid data

Shift-in control (SI)

Data is loaded into the input stage on a LOW-to-HIGH transition of SI. A HIGH-to-LOW transition triggers an automatic data transfer process (ripple through). If SI is held HIGH during reset, data will be loaded at the rising edge of the $\overline{M R}$ signal.

Shift-out control ($\overline{\mathbf{S O}}$)

A LOW-to-HIGH transition of $\overline{\text { SO }}$ causes the DOR flags to go LOW. A HIGH-to-LOW transition of $\overline{\text { SO }}$ causes upstream data to move into the output stage, and empty locations to move towards the input stage (bubble-up).

Output enable ($\overline{\mathrm{OE}})$

The outputs Q_{0} to Q_{8} are enabled when $\overline{O E}=L O W$. When $\overline{\mathrm{OE}}=\mathrm{HIGH}$ the outputs are in the high impedance OFF-state.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PHL/ }} \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{MR}}$ to DIR and DOR $\overline{\mathrm{SO}}$ to Q_{n}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\begin{aligned} & 21 \\ & 36 \end{aligned}$	$\begin{aligned} & 26 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{f}_{\text {max }}$	maximum clock frequency SI and $\overline{\mathrm{SO}}$		33	29	MHz
C_{1}	input capacitance		3.5	3.5	pF
C_{P}	power dissipation capacitance per package	notes 1 and 2	660	660	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu W\right)$:

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left(C_{L} \times V_{C C}^{2} \times f_{o}\right) \text { where: }
$$

$f_{i}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\sum\left(\mathrm{C}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right)=$ sum of outputs
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,2,14$	GND	ground (0 V)
3	DIR	data-in-ready output
4	SI	shift-in input (LOW-to-HIGH, edge-triggered)
$5,6,7,8,9,10,11,12,13$	D_{0} to D_{8}	parallel data inputs
15	$\overline{\mathrm{OE}}$	output enable input (active LOW)
$24,23,22,21,20,19,18,17,16$	Q_{0} to Q_{8}	3-state parallel data outputs
25	DOR	data-out-ready output
26	$\overline{\mathrm{SO}}$	shift-out input (HIGH-to-LOW, edge-triggered)
27	$\overline{\mathrm{MR}}$	asynchronous master-reset input (active LOW)
28	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Note

1. Pin 14 must be connected to GND. Pins 1 and 2 can be left floating or connected to GND, however it is not allowed to let current flow in either direction between pins 1, 2 and 14.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

APPLICATIONS

- High-speed disc or tape controller
- Video timebase correction
- A/D output buffers
- Voice synthesis
- Input/output formatter for digital filters and FFTs
- Bit-rate smoothing

FUNCTIONAL DESCRIPTION

Data input

Following power-up, the master-reset ($\overline{\mathrm{MR}})$ input is pulsed LOW to clear the FIFO memory (see Fig.8). The data-in-ready flag (DIR = HIGH) indicates that the FIFO input stage is empty and ready to receive data. When DIR is valid (HIGH), data present at D_{0} to D_{8} can be shifted-in using the SI control input. With $\mathrm{SI}=\mathrm{HIGH}$, data is shifted into the input stage and a busy indication is given by DIR going LOW.
The data remains at the first location in the FIFO until SI is set to LOW. With SI = LOW data moves through the FIFO to the output stage, or to the last empty location. If the FIFO is not full after the SI pulse, DIR again becomes valid (HIGH) to indicate that space is available in the FIFO. The DIR flag remains LOW if the FIFO is full (see Fig.6). The SI pulse must be made LOW in order to complete the shift-in process.

With the FIFO full, SI can be held HIGH until a shift-out $(\overline{\mathrm{SO}})$ pulse occurs. Then, following a shift-out of data, an empty location appears at the FIFO input and DIR goes HIGH to allow the next data to be shifted-in. This remains at the first FIFO location until SI again goes LOW (see Fig.7).

Data transfer

After data has been transferred from the input stage of the FIFO following SI = LOW, data moves through the FIFO asynchronously and is stacked at the output end of the register. Empty locations appear at the input end of the FIFO as data moves through the device.

Data output

The data-out-ready flag (DOR $=\mathrm{HIGH})$ indicates that there is valid data at the output $\left(Q_{0}\right.$ to $\left.Q_{8}\right)$. The initial master-reset at power-on ($\overline{\mathrm{MR}}=\mathrm{LOW}$) sets DOR to LOW (see Fig.8). After $\overline{M R}=$ HIGH, data shifted into the FIFO moves through to the output stage causing DOR to go HIGH. As the DOR flag goes HIGH, data can be shifted-out using the $\overline{\mathrm{SO}}$ control input. With $\overline{\mathrm{SO}}=\mathrm{HIGH}$, data in the output stage is shifted out and a busy indication is given by DOR going LOW. When $\overline{\text { SO }}$ is made LOW, data moves through the FIFO to fill the output stage and an empty location appears at the input stage. When the output stage is filled DOR goes HIGH, but if the last of the valid data has been shifted out leaving the FIFO empty the DOR flag remains LOW (see Fig.9). With the FIFO empty, the last word that was shifted-out is latched at the output Q_{0} to Q_{8}.

With the FIFO empty, the $\overline{\mathrm{SO}}$ input can be held HIGH until the SI control input is used. Following an SI pulse, data moves through the FIFO to the output stage, resulting in the DOR flag pulsing HIGH and a shift-out of data occurring. The $\overline{\mathrm{SO}}$ control must be made LOW before additional data can be shifted out (see Fig.10).

High-speed burst mode

If it is assumed that the shift-in/shift-out pulses are not applied until the respective status flags are valid, it follows that the shift-in/shift-out rates are determined by the status flags. However, without the status flags a high-speed burst mode can be implemented. In this mode, the burst-in/burst-out rates are determined by the pulse widths of the shift-in/shift-out inputs and burst rates of 35 MHz can be obtained. Shift pulses can be applied without regard to the status flags but shift-in pulses that would overflow the storage capacity of the FIFO are not allowed (see Figs 11 and 12).

Expanded format

With the addition of a logic gate, the FIFO is easily expanded to increase word length (see Fig.17). The basic operation and timing are identical to a single FIFO, with the exception of an additional gate delay on the flag outputs. If during application, the following occurs:

- SI is held HIGH when the FIFO is empty, some additional logic is required to produce a composite DIR pulse (see Figs 7 and 18).
- $\overline{\mathrm{SO}}$ is held HIGH when the FIFO is full, some additional logic is required to produce a composite DOR pulse (see Figs 10 and 18).

Due to the part-to-part spread of the ripple through time, the flag signals of $\mathrm{FIFO}_{\mathrm{A}}$ and $\mathrm{FIFO}_{\mathrm{B}}$ will not always coincide and the AND-gate will not produce a composite flag signal. The solution is given in Fig. 18.

The " 7030 " is easily cascaded to increase the word capacity and no external components are needed. In the cascaded configuration, all necessary communications and timing are performed by the FIFOs. The intercommunication speed is determined by the minimum flag pulse widths and the flag delays. The data rate of cascaded devices is typically 25 MHz . Word-capacity can be expanded to and beyond 128 -words $\times 9$-bits (see Fig.19).

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
I CC category: LSI

AC CHARACTERISTICS FOR 74HC
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{M R}$ to DIR, DOR		$\begin{aligned} & 69 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 210 \\ & 42 \\ & 36 \end{aligned}$		265 53 45		$\begin{array}{\|l} \hline 315 \\ 63 \\ 54 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay SI to DIR		$\begin{array}{\|l\|} \hline 77 \\ 28 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 235 \\ 47 \\ 40 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 295 \\ 59 \\ 50 \\ \hline \end{array}$		355 71 60	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay SO to DOR		$\begin{aligned} & 102 \\ & 37 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \end{aligned}$		$\begin{aligned} & 395 \\ & 79 \\ & 67 \end{aligned}$		$\begin{aligned} & \hline 475 \\ & 95 \\ & 81 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay DOR to Q_{n}		$\begin{aligned} & \hline 11 \\ & 4 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 35 \\ 7 \\ 6 \end{array}$		$\begin{array}{\|l\|} \hline 45 \\ 9 \\ 8 \end{array}$		$\begin{array}{\|l\|} \hline 55 \\ 11 \\ 9 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 10
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{\mathrm{SO}}$ to Q_{n}		$\begin{aligned} & \hline 113 \\ & 41 \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 345 \\ & 69 \\ & 59 \end{aligned}$		$\begin{array}{\|l} \hline 430 \\ 86 \\ 73 \end{array}$		$\begin{array}{\|l} \hline 520 \\ 104 \\ 88 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 14
$\mathrm{t}_{\text {PLH }}$	propagation delay/ ripple through delay SI to DOR		$\begin{array}{\|l\|} \hline 2.5 \\ 0.9 \\ 0.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8.0 \\ 1.6 \\ 1.3 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 10 \\ 2.0 \\ 1.6 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 12 \\ 2.4 \\ 1.9 \\ \hline \end{array}$	$\mu \mathrm{s}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 10
$\mathrm{t}_{\text {PLH }}$	propagation delay/ bubble-up delay $\overline{\mathrm{SO}}$ to DIR		$\begin{aligned} & \hline 3.3 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 10.0 \\ 2.0 \\ 1.6 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 12 \\ 2.5 \\ 2.0 \end{array}$		$\begin{array}{\|l\|} \hline 15 \\ 3.0 \\ 2.4 \end{array}$	$\mu \mathrm{s}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 7
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable $\overline{O E}$ to Q_{n}		$\begin{aligned} & 52 \\ & 19 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 175 \\ & 35 \\ & 30 \end{aligned}$		$\begin{aligned} & 220 \\ & 44 \\ & 37 \end{aligned}$		$\begin{aligned} & 265 \\ & 53 \\ & 45 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 16
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable $\overline{O E}$ to Q_{n}		$\begin{aligned} & \hline 50 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \end{aligned}$		$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 33 \end{array}$		$\begin{array}{\|l} \hline 225 \\ 45 \\ 38 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 16
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		19 7 6	$\begin{array}{\|l} \hline 75 \\ 15 \\ 13 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 95 \\ 19 \\ 16 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 110 \\ 22 \\ 19 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 14
tw	SI pulse width HIGH or LOW	$\begin{aligned} & 50 \\ & 10 \\ & 9 \end{aligned}$	$\begin{aligned} & 14 \\ & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 65 \\ & 13 \\ & 11 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 6

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS	
		74HC								$V_{C c}$ (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
tw	$\overline{\text { SO }}$ pulse width HIGH or LOW	$\begin{array}{\|l} \hline 100 \\ 20 \\ 17 \end{array}$	$\begin{aligned} & 33 \\ & 12 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \end{aligned}$		$\begin{array}{\|l\|} \hline 150 \\ 30 \\ 26 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 9
tw	DIR pulse width HIGH	$\begin{array}{\|l} 10 \\ 5 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 47 \\ 17 \\ 14 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 4 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 4 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 38 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 7
tw	DOR pulse width HIGH	$\begin{aligned} & 10 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 47 \\ & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 29 \\ & 25 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 180 \\ & 36 \\ & 31 \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 38 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Fig. 10
t_{w}	$\overline{\mathrm{MR}}$ pulse width LOW	$\begin{aligned} & 70 \\ & 14 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 8 \\ 6 \end{array}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$		$\begin{aligned} & \hline 105 \\ & 21 \\ & 18 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 8
trem	removal time $\overline{\mathrm{MR}}$ to SI	$\begin{array}{\|l\|} \hline 80 \\ 16 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 8 \\ & 7 \end{aligned}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 15
$\mathrm{t}_{\text {su }}$	set-up time D_{n} to SI	$\begin{array}{\|l\|} \hline-35 \\ -7 \\ -6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline-36 \\ -13 \\ -10 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline-45 \\ -9 \\ -8 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline-55 \\ -11 \\ -9 \\ \hline \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ \hline \end{array}$	Fig. 13
th_{h}	$\begin{aligned} & \text { hold time } \\ & \mathrm{D}_{\mathrm{n}} \text { to } \mathrm{SI} \end{aligned}$	$\begin{aligned} & \hline 135 \\ & 27 \\ & 23 \end{aligned}$	$\begin{aligned} & 44 \\ & 16 \\ & 13 \end{aligned}$		$\begin{array}{\|l\|} \hline 170 \\ 34 \\ 29 \end{array}$		$\begin{aligned} & 205 \\ & 41 \\ & 35 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Fig. 13
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ burst mode		$\begin{aligned} & 9.9 \\ & 30 \\ & 36 \end{aligned}$		$\begin{aligned} & \hline 2.8 \\ & 14 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 12 \\ & 14 \end{aligned}$		MHz	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 11 and 12
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ using flags		$\begin{aligned} & 9.9 \\ & 30 \\ & 36 \end{aligned}$		$\begin{aligned} & \hline 2.8 \\ & 14 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 2.4 \\ & 12 \\ & 14 \end{aligned}$		MHz	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	Figs 6 and 9
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ cascaded		$\begin{aligned} & \hline 7.6 \\ & 23 \\ & 27 \end{aligned}$		$\begin{aligned} & \hline 2.2 \\ & 11 \\ & 13 \end{aligned}$		$\begin{aligned} & \hline 1.8 \\ & 9.2 \\ & 11 \end{aligned}$		MHz	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	Figs 6 and 9

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".
Output capability: standard
I CC category: LSI

Note to HCT types

The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given in the family specifications.
To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{\mathrm{OE}}$	1.00
SI	1.50
$\frac{\mathrm{D}_{\mathrm{n}}}{\mathrm{MR}}$	0.75
$\overline{\mathrm{SO}}$	1.50

AC CHARACTERISTICS FOR 74HCT

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								V_{Cc} (V)	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\overline{M R}$ to DIR, DOR		30	51		53		63	ns	4.5	Fig. 8
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay SI to DIR		29	49		61		74	ns	4.5	Fig. 6
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay SO to DOR		39	67		84		101	ns	4.5	Fig. 9
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & \overline{S O} \text { to } Q_{n} \end{aligned}$		46	78		98		117	ns	4.5	Fig. 14
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay DOR to Q_{n}		7	12		15		18	ns	4.5	Fig. 10
$\mathrm{t}_{\text {PLH }}$	propagation delay/ripple through delay SI to DOR		0.9	1.6		2.0		2.4	$\mu \mathrm{s}$	4.5	Fig. 10
$\mathrm{t}_{\text {PLH }}$	propagation delay/ bubble-up delay $\overline{\mathrm{SO}}$ to DIR		1.2	2.0		2.5		3.0	$\mu \mathrm{s}$	4.5	Fig. 7
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable $\overline{\mathrm{OE}}$ to Q_{n}		20	35		44		53	ns	4.5	Fig. 16
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	3-state output disable $\overline{O E}$ to Q_{n}		19	35		44		53	ns	4.5	Fig. 16
$\mathrm{t}_{\text {THL }} / \mathrm{t}_{\text {TLH }}$	output transition time		7	15		19		22	ns	4.5	Fig. 14

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS	
		74HCT								$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	WAVEFORMS
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
tw	SI pulse width HIGH or LOW	12	6		15		18		ns	4.5	Fig. 6
tw	$\overline{\overline{S O}}$ pulse width HIGH or LOW	15	9		19		22		ns	4.5	Fig. 9
tw	DIR pulse width HIGH	7	22	37	6	46	6	56	ns	4.5	Fig. 7
tw	DOR pulse width HIGH	6	20	35	5	44	5	53	ns	4.5	Fig. 10
tw	$\overline{\text { MR pulse width }}$ LOW	18	10		23		27		ns	4.5	Fig. 8
$\mathrm{t}_{\text {rem }}$	removal time $\overline{\mathrm{MR}}$ to SI	18	10		23		27		ns	4.5	Fig. 15
$\mathrm{t}_{\text {su }}$	set-up time D_{n} to SI	-5	-16		-4		-4		ns	4.5	Fig. 13
th	$\begin{array}{\|c} \text { hold time } \\ D_{n} \text { to } \mathrm{SI} \\ \hline \end{array}$	30	18		38		45		ns	4.5	Fig. 13
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ burst mode	15	26		12		10		MHz	4.5	Figs 11 and 12
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\text { SO }}$ using flags	15	26		12		10		MHz	4.5	Figs 6 and 9
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency SI, $\overline{\mathrm{SO}}$ cascaded	13	22		10		8.6		MHz	4.5	Figs 6 and 9

AC WAVEFORMS

Shifting in sequence FIFO empty to FIFO full

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 6 Waveforms showing the SI input to DIR output propagation delay. The SI pulse width and SI maximum pulse frequency.

With FIFO full; SI held HIGH in anticipation of empty location

Notes to Fig. 6

1. DIR initially HIGH; FIFO is prepared for valid data.
2. SI set HIGH; data loaded into input stage.
3. DIR drops LOW, input stage "busy".
4. SI set LOW; data from first location "ripple through".
5. DIR goes HIGH, status flag indicates FIFO prepared for additional data.
6. Repeat process to load 2nd word through to 64th word into FIFO.
7. DIR remains LOW; with attempt to shift into full FIFO, no data transfer occurs.

Notes to Fig. 7

1. FIFO is initially full, shift-in is held HIGH.
2. $\overline{\mathrm{SO}}$ pulse; data in the output stage is unloaded, "bubble-up process of empty locations begins".
3. DIR HIGH; when empty location reached input stage, flag indicates FIFO is prepared for data input.
4. DIR returns to LOW; FIFO is full again.
5. SI brought LOW; necessary to complete shift-in process, DIR remains LOW, because FIFO is full.

Master reset applied with FIFO full

Shifting out sequence; FIFO full to FIFO empty

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. $H C T: V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 9 Waveforms showing the $\overline{\mathrm{SO}}$ input to DIR output propagation delay. The $\overline{\mathrm{SO}}$ pulse width and $\overline{\mathrm{SO}}$ maximum pulse frequency.

Notes to Fig. 8

1. DIR LOW, output ready HIGH; assume FIFO is full.
2. $\overline{M R}$ pulse LOW; clears FIFO.
3. DIR goes HIGH; flag indicates input prepared for valid data.
4. DOR drops LOW; flag indicates FIFO empty.

Notes to Fig. 9

1. DOR HIGH; no data transfer in progress, valid data is present at output stage.
2. $\overline{\mathrm{SO}}$ set HIGH; results in DOR going LOW.
3. DOR drops LOW; output stage "busy".
4. $\overline{\mathrm{SO}}$ is set LOW; data in the input stage is unloaded, and new data replaces it as empty location "bubbles-up" to input stage.
5. DOR goes HIGH; transfer process completed, valid data present at output after the specified propagation delay.
6. Repeat process to unload the 3rd through to the 64th word from FIFO.
7. DOR remains LOW; FIFO is empty.

With FIFO empty; $\overline{\mathrm{SO}}$ is held HIGH in anticipation

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.

HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 10 Waveforms showing ripple through delay SI input to DOR output, DOR output pulse width and propagation delay from the DOR pulse to the Q_{n} output.

Notes to Fig. 10

1. FIFO is initially empty, $\overline{\mathrm{SO}}$ is held HIGH.
2. SI pulse; loads data into FIFO and initiates ripple through process.
3. DOR flag signals the arrival of valid data at the output stage.
4. Output transition; data arrives at output stage after the specified propagation delay between the rising edge of the DOR pulse to the Q_{n} output.
5. DOR goes LOW; FIFO is empty again.
6. SO set LOW; necessary to complete shift-out process. DOR remains LOW, because FIFO is empty.

Shift-in operation; high-speed burst mode

In the high-speed mode, the burst-in rate is determined by the minimum shift-in HIGH and shift-in LOW specifications. The DIR status flag is a don't care condition, and a shift-in pulse can be applied regardless of the flag. A SI pulse which would overflow the storage capacity of the FIFO is ignored.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=G N D$ to V_{cc}.

HCT: $V_{M}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .
Fig. 11 Waveforms showing SI minimum pulse width and SI maximum pulse frequency, in high-speed shift-in burst mode.

Shift-out operation; high-speed burst mode

The shaded areas indicate when the input is permitted to change for predictable output performance.
(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
$\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{GND}$ to 3 V .
Fig. 13 Waveforms showing hold and set-up times for D_{n} input to $S I$ input.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 16 Waveforms showing the 3-state enable and disable times for input $\overline{\mathrm{OE}}$.

APPLICATION INFORMATION

The PC74HC/HCT7030 is easily expanded to increase word length. Composite DIR and DOR flags are formed with the addition of an AND gate. The basic operation and timing are identical to a single FIFO, with the exception of an added gate delay on the flags.

Fig. 17 Expanded FIFO for increased word length; 64 words $\times 18$ bits.

This circuit is only required if the SI input is constantly held HIGH, when the FIFO is empty and the automatic shift-in cycles are started or if $\overline{\mathrm{SO}}$ output is constantly held HIGH, when the FIFO is full and the automatic shift-out cycles are started (see Figs 7 and 10).

Fig. 18 Expanded FIFO for increased word length.

Expanded format

Fig. 19 shows two cascaded FIFOs providing a capacity of 128 words $\times 9$ bits.
Fig. 20 shows the signals on the nodes of both FIFOs after the application of a SI pulse, when both FIFOs are initially empty. After a rippled through delay, data arrives at the output of FIFO_{A}. Due to $\overline{\mathrm{SO}}_{A}$ being HIGH , a DOR pulse is generated. The requirements of $S I_{B}$ and $D_{n B}$ are satisfied by the $D O R_{A}$ pulse width and the timing between the rising edge of DOR_{A} and Q_{nA}. After a second ripple through delay, data arrives at the output of $\mathrm{FIFO}_{\mathrm{B}}$.
Fig. 21 shows the signals on the nodes of both FIFOs after the application of a $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulse, when both FIFOs are initially full. After a bubble-up delay a DIR_{B} pulse is generated, which acts as a $\overline{\mathrm{SO}}_{A}$ pulse for $\mathrm{FIFO}{ }_{A}$. One word is transferred from the output of FIFO_{A} to the input of FIFO_{B}. The requirements of the $\overline{\mathrm{SO}}_{\mathrm{A}}$ pulse for FIFO_{A} is satisfied by the pulse width of $\mathrm{DOR}_{\mathrm{B}}$. After a second bubble-up delay an empty space arrives at D_{nA}, at which time DIR $_{A}$ goes HIGH.
Fig. 22 shows the waveforms at all external nodes of both FIFOs during a complete shift-in and shift-out sequence.

The PC74HC/HCT7030 is easily cascaded to increase word capacity without any external circuitry. In cascaded format, all necessary communications are handled by the FIFOs. Figs 17 to 19 demonstrate the intercommunication timing between FIFO_{A} and $\mathrm{FIFO}_{\text {B. }}$. Fig. 22 gives an overview of pulses and timing of two cascaded FIFOs, when shifted full and shifted empty again.

Fig. 19 Cascading for increased word capacity; 128 words $\times 9$ bits.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 20 FIFO to FIFO communication; input timing under empty condition.

Notes to Fig. 20

1. $\mathrm{FIFO}_{\mathrm{A}}$ and FIFO $_{B}$ initially empty, $\overline{\mathrm{SO}}_{\mathrm{A}}$ held HIGH in anticipation of data.
2. Load one word into $\mathrm{FIFO}_{\mathrm{A}}$; SI pulse applied, results in DIR pulse.
3. Data out ${ }_{A} /$ data in ${ }_{\mathrm{B}}$ transition; valid data arrives at FIFO $_{A}$ output stage after a specified delay of the DOR flag, meeting data input set-up requirements of $\mathrm{FIFO}_{\mathrm{B}}$.
4. $\mathrm{DOR}_{\mathrm{A}}$ and SI_{B} pulse HIGH ; (ripple through delay after $\mathrm{SI}_{\mathrm{A}} \mathrm{LOW}$) data is unloaded from $\mathrm{FIFO}_{\mathrm{A}}$ as a result of the data output ready pulse, data is shifted into $\mathrm{FIFO}_{\mathrm{B}}$.
5. $\mathrm{DIR}_{\mathrm{B}}$ and $\overline{\mathrm{SO}}_{\mathrm{A}}$ go LOW; flag indicates input stage of FIFO_{B} is busy, shift-out of FIFO $_{A}$ is complete.
6. $\mathrm{DIR}_{\mathrm{B}}$ and $\overline{\mathrm{SO}}_{\mathrm{A}}$ go HIGH automatically; the input stage of $\mathrm{FIFO}_{\mathrm{B}}$ is again able to receive data, $\overline{\mathrm{SO}}$ is held HIGH in anticipation of additional data.
7. $\mathrm{DOR}_{\mathrm{B}}$ goes HIGH ; (ripple through delay after $\mathrm{SI}_{\mathrm{B}} \mathrm{LOW}$) valid data is present one propagation delay later at the $\mathrm{FIFO}_{\mathrm{B}}$ output stage.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 21 FIFO to FIFO communication; output timing under full condition.

Notes to Fig. 21

1. $\mathrm{FIFO}_{\mathrm{A}}$ and $\mathrm{FIFO}_{\mathrm{B}}$ initially full, SI_{B} held HIGH in anticipation of shifting in new data as empty location bubbles-up.
2. Unload one word from $\mathrm{FIFO}_{\mathrm{B}}$; $\overline{\text { SO }}$ pulse applied, results in DOR pulse.
3. $\mathrm{DIR}_{\mathrm{B}}$ and $\overline{\mathrm{SO}}_{\mathrm{A}}$ pulse HIGH ; (bubble-up delay after $\overline{\mathrm{SO}}_{\mathrm{B}} \mathrm{LOW}$) data is loaded into $\mathrm{FIFO}_{\mathrm{B}}$ as a result of the DIR pulse, data is shifted out of FIFO $_{A}$.
4. $\mathrm{DOR}_{\mathrm{A}}$ and SI_{B} go LOW; flag indicates the output stage of $\mathrm{FIFO}_{\mathrm{A}}$ is busy, shift-in to $\mathrm{FIFO}_{\mathrm{B}}$ is complete.
5. $\mathrm{DOR}_{\mathrm{A}}$ and SI_{B} go HIGH ; flag indicates valid data is again available at $\mathrm{FIFO}_{\mathrm{A}}$ output stage, Sl_{B} is held HIGH, awaiting bubble-up of empty location.
6. $\mathrm{DIR}_{\mathrm{A}}$ goes HIGH ; (bubble-up delay after $\overline{\mathrm{SO}}_{\mathrm{A}}$ LOW) an empty location is present at input stage of $\mathrm{FIFO}_{\mathrm{A}}$.

Sequence 1 (Both FIFOs empty, starting shift-in process):
After a $\overline{M R}$ pulse has been applied FIFO $_{A}$ and FIFO B are empty. The DOR flags of FIFO $_{A}$ and FIFO $_{B}$ go LOW due to no valid data being present at the outputs. The DIR flags are set HIGH due to the FIFOs being ready to accept data. $\overline{\mathrm{SO}}_{\mathrm{B}}$ is held HIGH and two SI_{A} pulses are applied (1). These pulses allow two data words to ripple through to the output stage of $\mathrm{FIFO}_{\mathrm{A}}$ and to the input stage of $\mathrm{FIFO}_{\mathrm{B}}$ (2). When data arrives at the output of $\mathrm{FIFO}_{\mathrm{B}}$, a $\mathrm{DOR}_{\mathrm{B}}$ pulse is generated (3). When $\overline{\mathrm{SO}}_{\mathrm{B}}$ goes LOW, the first bit is shifted out and a second bit ripples through to the output after which DOR $_{B}$ goes HIGH (4).
Sequence 2 (FIFOB runs full):
After the $\overline{M R}$ pulse, a series of 64 SI pulses are applied. When 64 words are shifted in, DIR ${ }_{B}$ remains LOW due to $\mathrm{FIFO}_{\mathrm{B}}$ being full (5). $\mathrm{DOR}_{\mathrm{A}}$ goes LOW due to $\mathrm{FIFO}_{\mathrm{A}}$ being empty.
Sequence 3 ($\mathrm{FIFO}_{\mathrm{A}}$ runs full):
When 65 words are shifted in, DOR $_{A}$ remains HIGH due to valid data remaining at the output of FIFO $_{A}$. Q_{nA} remains HIGH, being the polarity of the 65th data word (6). After the 128 th SI pulse, DIR remains LOW and both FIFOs are full (7). Additional pulses have no effect.
Sequence 4 (Both FIFOs full, starting shift-out process):
SI_{A} is held HIGH and two SO_{B} pulses are applied (8). These pulses shift out two words and thus allow two empty locations to bubble-up to the input stage of $\mathrm{FIFO}_{\mathrm{B}}$, and proceed to $\mathrm{FIFO}_{\mathrm{A}}$ (9). When the first empty location arrives at the input of $\mathrm{FIFO}_{\mathrm{A}}$, a DIR $_{A}$ pulse is generated (10) and a new word is shifted into $\mathrm{FIFO}_{\mathrm{A}}$. SI_{A} is made LOW and now the second empty location reaches the input stage of FIFO_{A}, after which $\mathrm{DIR}_{\mathrm{A}}$ remains HIGH (11).
Sequence 5 ($\mathrm{FIFO}_{\mathrm{A}}$ runs empty):
At the start of sequence 5 FIFO $_{\text {A }}$ contains 63 valid words due to two words being shifted out and one word being shifted in in sequence 4. An additional series of $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulses are applied. After $63 \overline{\mathrm{SO}}_{\mathrm{B}}$ pulses, all words from $\mathrm{FIFO}_{\mathrm{A}}$ are shifted into $\mathrm{FIFO}_{\mathrm{B}}$. $\mathrm{DOR}_{\mathrm{A}}$ remains LOW (12).
Sequence 6 ($\mathrm{FIFO}_{\mathrm{B}}$ runs empty):
After the next $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulse, DIR ${ }_{B}$ remains HIGH due to the input stage of $\mathrm{FIFO}_{\mathrm{B}}$ being empty (13). After another $63 \overline{\mathrm{SO}}_{\mathrm{B}}$ pulses, DOR ${ }_{\mathrm{B}}$ remains LOW due to both FIFOs being empty (14). Additional $\overline{\mathrm{SO}}_{\mathrm{B}}$ pulses have no effect. The last word remains available at the output Q_{n}.

Fig. 22 Waveforms showing the functionality and intercommunication between two FIFOs (refer to Fig.19).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

NXP:
74HC7030D 74HC7030D-T 74HC7030N 74HCT7030D 74HCT7030D-T 74HCT7030N

OCEAN CHIPS
 Океан Электроники
 Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». JONHON
«JONHON» (основан в 1970 г.)
Разъемы специального, военного и аэрокосмического назначения:
(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)
«FORSTAR» (основан в 1998 г.)
ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:
(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

