1 kb Microwire Serial EEPROM ## Description The CAT93C46R is a 1 kb CMOS Serial EEPROM device which is organized as either 64 registers of 16 bits or 128 registers of 8 bits, as determined by the state of the ORG pin. The CAT93C46R features sequential read and self-timed internal write with auto-clear. On-chip Power-On Reset circuitry protects the internal logic against powering up in the wrong state. In contrast to the CAT93C46, the CAT93C46R features an internal instruction clock counter which provides improved noise immunity for Write/Erase commands. #### **Features** - High Speed Operation: 4 MHz @ 5 V, 2 MHz @ 1.8 V - 1.8 V to 5.5 V Supply Voltage Range - Selectable x8 or x16 Memory Organization - Sequential Read - Software Write Protection - Power-up Inadvertant Write Protection - Low Power CMOS Technology - 1,000,000 Program/Erase Cycles - 100 Year Data Retention - Industrial Temperature Range - 8-pin PDIP, SOIC, TSSOP and 8-pad TDFN Packages - This Device is Pb–Free, Halogen Free/BFR Free and RoHS Compliant* Figure 1. Functional Symbol *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## ON Semiconductor® http://onsemi.com PDIP-8 L SUFFIX CASE 646AA SOIC-8 V SUFFIX CASE 751BD SOIC-8 X SUFFIX CASE 751BE TDFN-8 VP2 SUFFIX CASE 511AK #### **PIN CONFIGURATIONS** | cs म | <u> </u> | $ ot= v_{cc}$ | NC \Box | O 1 | ── ORG | |------|----------|---------------|-----------------|------------|--------| | sк म | | ⊞ NC | V _{CC} | | ── GND | | 미며 | | ─ ORG | cs ⊏ | | ⊞ DO | | DO Щ | | □ GND | SK ⊏ | | ⊞ DI | PDIP (L), SOIC (V, X), TSSOP (Y), TDFN (VP2) SOIC (W) (Top Views) # **PIN FUNCTION** | Pin Name | Function | | |-----------------|---------------------|--| | CS | Chip Select | | | SK | Clock Input | | | DI | Serial Data Input | | | DO | Serial Data Output | | | V _{CC} | Power Supply | | | GND | Ground | | | ORG | Memory Organization | | | NC | No Connection | | Note: When the ORG pin is connected to V_{CC} , the x16 organization is selected. When it is connected to ground, the x8 pin is selected. If the ORG pin is left unconnected, then an internal pull–up device will select the x16 organization. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. **Table 1. ABSOLUTE MAXIMUM RATINGS** | Parameter | Value | Units | |--|--------------|-------| | Storage Temperature | -65 to +150 | °C | | Voltage on Any Pin with Respect to Ground (Note 1) | -0.5 to +6.5 | V | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Table 2. RELIABILITY CHARACTERISTICS (Note 2) | Symbol | Symbol Parameter | | Units | |---------------------------|-------------------------------------|-----|------------------------| | N _{END} (Note 3) | N _{END} (Note 3) Endurance | | Program / Erase Cycles | | T _{DR} | Data Retention | 100 | Years | ^{2.} These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods. Table 3. D.C. OPERATING CHARACTERISTICS (V_{CC} = +1.8 V to +5.5 V, unless otherwise specified.) | Symbol | Parameter | Test Conditions | Min | Max | Units | |------------------|--|--|-----------------------|-----------------------|-------| | I _{CC1} | Power Supply Current (Write) | f _{SK} = 1 MHz
V _{CC} = 5.0 V | | 1 | mA | | I _{CC2} | Power Supply Current (Read) | f _{SK} = 1 MHz
V _{CC} = 5.0 V | | 500 | μΑ | | I _{SB1} | Power Supply Current (Standby) (x8 Mode) | CS = 0 V
ORG = GND | | 10 | μΑ | | I _{SB2} | Power Supply Current (Standby) (x16 Mode) | CS = 0 V
ORG = Float or V _{CC} | | 10 | μΑ | | ILI | Input Leakage Current | V _{IN} = 0 V to V _{CC} | | 2 | μΑ | | I _{LO} | Output Leakage Current (Including ORG pin) | $V_{OUT} = 0 \text{ V to } V_{CC},$ $CS = 0 \text{ V}$ | | 2 | μΑ | | V_{IL1} | Input Low Voltage | $4.5 \text{ V} \leq \text{V}_{CC} < 5.5 \text{ V}$ | -0.1 | 0.8 | V | | V _{IH1} | Input High Voltage | $4.5 \text{ V} \leq \text{V}_{CC} < 5.5 \text{ V}$ | 2 | V _{CC} + 1 | V | | $V_{\rm IL2}$ | Input Low Voltage | $1.8 \text{ V} \le \text{V}_{\text{CC}} < 4.5 \text{ V}$ | 0 | V _{CC} x 0.2 | V | | V _{IH2} | Input High Voltage | $1.8 \text{ V} \le \text{V}_{CC} < 4.5 \text{ V}$ | V _{CC} x 0.7 | V _{CC} + 1 | V | | V _{OL1} | Output Low Voltage | $4.5 \text{ V} \le \text{V}_{CC} < 5.5 \text{ V}$
$\text{I}_{OL} = 2.1 \text{ mA}$ | | 0.4 | V | | V _{OH1} | Output High Voltage | $4.5 \text{ V} \leq \text{V}_{CC} < 5.5 \text{ V}$ $I_{OH} = -400 \mu\text{A}$ | 2.4 | | V | | V _{OL2} | Output Low Voltage | $1.8 \text{ V} \le \text{V}_{CC} < 4.5 \text{ V}$
$\text{I}_{OL} = 1 \text{ mA}$ | | 0.2 | V | | V _{OH2} | Output High Voltage | $1.8 \text{ V} \le \text{V}_{CC} < 4.5 \text{ V}$
$\text{I}_{OH} = -100 \mu\text{A}$ | V _{CC} - 0.2 | | ٧ | ^{1.} The DC input voltage on any pin should not be lower than -0.5 V or higher than $V_{CC} + 0.5$ V. During transitions, the voltage on any pin may undershoot to no less than -1.5 V or overshoot to no more than $V_{CC} + 1.5$ V, for periods of less than 20 ns. ^{3.} Block Mode, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ ## **Table 4. PIN CAPACITANCE** | Symbol | Test | Conditions | Min | Тур | Max | Units | |---------------------------|-------------------------------------|------------------------|-----|-----|-----|-------| | C _{OUT} (Note 4) | Output Capacitance (DO) | V _{OUT} = 0 V | | | 5 | pF | | C _{IN} (Note 4) | Input Capacitance (CS, SK, DI, ORG) | $V_{IN} = 0 V$ | | | 5 | pF | ^{4.} These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods. # Table 5. A.C. CHARACTERISTICS (Note 5) | | | V _{CC} = 1.8 V - 5.5 \ | | V _{CC} = 4. | | | |--------------------------|------------------------------|---------------------------------|------|----------------------|-----|-------| | Symbol | Parameter | Min | Max | Min | Max | Units | | t _{CSS} | CS Setup Time | 50 | | 50 | | ns | | t _{CSH} | CS Hold Time | 0 | | 0 | | ns | | t _{DIS} | DI Setup Time | 100 | | 50 | | ns | | t _{DIH} | DI Hold Time | 100 | | 50 | | ns | | t _{PD1} | Output Delay to 1 | | 0.25 | | 0.1 | μs | | t _{PD0} | Output Delay to 0 | | 0.25 | | 0.1 | μs | | t _{HZ} (Note 6) | Output Delay to High-Z | | 100 | | 100 | ns | | t _{EW} | Program/Erase Pulse Width | | 5 | | 5 | ms | | t _{CSMIN} | Minimum CS Low Time | 0.25 | | 0.1 | | μs | | t _{SKHI} | Minimum SK High Time | 0.25 | | 0.1 | | μs | | tsklow | Minimum SK Low Time | 0.25 | | 0.1 | | μs | | t _{SV} | Output Delay to Status Valid | | 0.25 | | 0.1 | μs | | SK _{MAX} | Maximum Clock Frequency | DC | 2 | DC | 4 | MHz | # Table 6. POWER-UP TIMING (Notes 4 and 7) | Symbol | Parameter | Max | Units | |------------------|-----------------------------|-----|-------| | t _{PUR} | Power-up to Read Operation | 1 | ms | | t _{PUW} | Power-up to Write Operation | 1 | ms | ^{7.} t_{PUR} and t_{PUW} are the delays required from the time V_{CC} is stable until the specified operation can be initiated. # **Table 7. A.C. TEST CONDITIONS** | 1440.0 1174.0 1 201 001121110110 | | | |----------------------------------|---|---| | Input Rise and Fall Times | ≤ 50 ns | | | Input Pulse Voltages | 0.4 V to 2.4 V | $4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$ | | Timing Reference Voltages | 0.8 V, 2.0 V | $4.5 \text{ V} \leq \text{V}_{CC} \leq 5.5 \text{ V}$ | | Input Pulse Voltages | 0.2 V _{CC} to 0.7 V _{CC} | $1.8 \text{ V} \le \text{V}_{CC} \le 4.5 \text{ V}$ | | Timing Reference Voltages | 0.5 V _{CC} | $1.8 \text{ V} \le \text{V}_{CC} \le 4.5 \text{ V}$ | | Output Load | Current Source I _{OLmax} /I _{OHmax} ; C _L = 100 pF | | ^{5.} Test conditions according to "A.C. Test Conditions" table.6. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC-Q100 and JEDEC test methods. **Table 8. INSTRUCTION SET** | | | | Add | ress | Da | ıta | | |-------------|-----------|--------|---------|--------|-------|--------|---------------------| | Instruction | Start Bit | Opcode | х8 | x16 | х8 | x16 | Comments | | READ | 1 | 10 | A6-A0 | A5-A0 | | | Read Address AN-A0 | | ERASE | 1 | 11 | A6-A0 | A5-A0 | | | Clear Address AN-A0 | | WRITE | 1 | 01 | A6-A0 | A5-A0 | D7-D0 | D15-D0 | Write Address AN-A0 | | EWEN | 1 | 00 | 11XXXXX | 11XXXX | | | Write Enable | | EWDS | 1 | 00 | 00XXXXX | 00XXXX | | | Write Disable | | ERAL | 1 | 00 | 10XXXXX | 10XXXX | | | Clear All Addresses | | WRAL | 1 | 00 | 01XXXXX | 01XXXX | D7-D0 | D15-D0 | Write All Addresses | ## **Device Operation** The CAT93C46R is a 1024-bit nonvolatile memory intended for use with industry standard microprocessors. The CAT93C46R can be organized as either registers of 16 bits or 8 bits. When organized as X16, seven 9-bit instructions control the reading, writing and erase operations of the device. When organized as X8, seven 10-bit instructions control the reading, writing and erase operations of the device. The CAT93C46R operates on a single power supply and will generate on chip the high voltage required during any write operation. Instructions, addresses, and write data are clocked into the DI pin on the rising edge of the clock (SK). The DO pin is normally in a high impedance state except when reading data from the device, or when checking the ready/busy status after a write operation. The ready/busy status can be determined after the start of a write operation by selecting the device (CS high) and polling the DO pin; DO low indicates that the write operation is not completed, while DO high indicates that the device is ready for the next instruction. If necessary, the DO pin may be placed back into a high impedance state during chip select by shifting a dummy "1" into the DI pin. The DO pin will enter the high impedance state on the rising edge of the clock (SK). Placing the DO pin into the high impedance state is recommended in applications where the DI pin and the DO pin are to be tied together to form a common DI/O pin. The Ready/Busy flag can be disabled only in Ready state; no change is allowed in Busy state. The format for all instructions sent to the device is a logical "1" start bit, a 2-bit (or 4-bit) opcode, 6-bit address (an additional bit when organized X8) and for write operations a 16-bit data field (8-bit for X8 organization). #### Read Upon receiving a READ command and an address (clocked into the DI pin), the DO pin of the CAT93C46R will come out of the high impedance state and, after sending an initial dummy zero bit, will begin shifting out the data addressed (MSB first). The output data bits will toggle on the rising edge of the SK clock and are stable after the specified time delay (tpD0 or tpD1). ## Sequential Read After the 1st data word has been shifted out and CS remains asserted with the SK clock continuing to toggle, the CAT93C46R will automatically increment to the next address and shift out the next data word. As long as CS is continuously asserted and SK continues to toggle, the device will keep incrementing to the next address automatically until it reaches the end of the address space, then loops back to address 0. In the sequential Read mode, only the initial data word is preceeded by a dummy zero bit; all subsequent data words will follow without a dummy zero bit. #### Erase/Write Enable and Disable The CAT93C46R powers up in the write disable state. Any writing after power-up or after an EWDS (write disable) instruction must first be preceded by the EWEN (write enable) instruction. Once the write instruction is enabled, it will remain enabled until power to the device is removed, or the EWDS instruction is sent. The EWDS instruction can be used to disable all CAT93C46R write and erase instructions, and will prevent any accidental writing or clearing of the device. Data can be read normally from the device regardless of the write enable/disable status. Figure 2. Synchronous Data Timing Figure 3. Read Instruction Timing Figure 4. Sequential Read Instruction Timing Figure 5. EWEN/EWDS Instruction Timing #### Write After receiving a WRITE command, address and the data, the CS (Chip Select) pin must be deselected for a minimum of t_{CSMIN} (See **Design Note** for details). The falling edge of CS will start the self clocking clear and data store cycle of the memory location specified in the instruction. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAT93C46R can be determined by selecting the device and polling the DO pin. Since this device features Auto-Clear before write, it is NOT necessary to erase a memory location before it is written into. #### **Erase** Upon receiving an ERASE command and address, the CS (Chip Select) pin must be deasserted for a minimum of $t_{\rm CSMIN}$ after the proper number of clock pulses (See **Design Note**). The falling edge of CS will start the self clocking clear cycle of the selected memory location. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAT93C46R can be determined by selecting the device and polling the DO pin. Once cleared, the content of a cleared location returns to a logical "1" state. ## **Erase All** Upon receiving an ERAL command, the CS (Chip Select) pin must be deselected for a minimum of t_{CSMIN} . The falling edge of CS will start the self clocking clear cycle of all memory locations in the device. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAT93C46R can be determined by selecting the device and polling the DO pin. Once cleared, the contents of all memory bits return to a logical "1" state. #### Write All Upon receiving a WRAL command and data, the CS (Chip Select) pin must be deselected for a minimum of t_{CSMIN}. The falling edge of CS will start the self clocking data write to all memory locations in the device. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAT93C46R can be determined by selecting the device and polling the DO pin. It is not necessary for all memory locations to be cleared before the WRAL command is executed. ## **Design Note** With CAT93C46R, after the last data bit has been sampled, Chip Select (CS) must be brought Low before the next rising edge of the clock (SK) in order to start the self-timed high voltage cycle. This is important because if the CS is brought low before or after this specific frame window, the addressed location will not be programmed or erased. Figure 6. Write Instruction Timing Figure 7. Erase Instruction Timing **Figure 8. ERAL Instruction Timing** Figure 9. WRAL Instruction Timing # **PACKAGE DIMENSIONS** **PDIP-8, 300 mils** CASE 646AA-01 ISSUE A | SYMBOL | MIN | NOM | MAX | | |--------|----------|------|-------|--| | Α | | | 5.33 | | | A1 | 0.38 | | | | | A2 | 2.92 | 3.30 | 4.95 | | | b | 0.36 | 0.46 | 0.56 | | | b2 | 1.14 | 1.52 | 1.78 | | | С | 0.20 | 0.25 | 0.36 | | | D | 9.02 | 9.27 | 10.16 | | | Е | 7.62 | 7.87 | 8.25 | | | E1 | 6.10 | 6.35 | 7.11 | | | е | 2.54 BSC | | | | | eB | 7.87 | | 10.92 | | | L | 2.92 | 3.30 | 3.80 | | # **TOP VIEW** **END VIEW** SIDE VIEW - (1) All dimensions are in millimeters.(2) Complies with JEDEC MS-001. # **PACKAGE DIMENSIONS** **SOIC 8, 150 mils** CASE 751BD-01 ISSUE O | SYMBOL | MIN | NOM | MAX | |--------|------|----------|------| | А | 1.35 | | 1.75 | | A1 | 0.10 | | 0.25 | | b | 0.33 | | 0.51 | | С | 0.19 | | 0.25 | | D | 4.80 | | 5.00 | | Е | 5.80 | | 6.20 | | E1 | 3.80 | | 4.00 | | е | | 1.27 BSC | | | h | 0.25 | | 0.50 | | L | 0.40 | | 1.27 | | θ | 0° | | 8° | **TOP VIEW** SIDE VIEW # **END VIEW** - (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MS-012. # **PACKAGE DIMENSIONS** SOIC-8, 208 mils CASE 751BE-01 ISSUE O | SYMBOL | MIN | NOM | MAX | |--------|------|----------|------| | Α | | | 2.03 | | A1 | 0.05 | | 0.25 | | b | 0.36 | | 0.48 | | С | 0.19 | | 0.25 | | D | 5.13 | | 5.33 | | E | 7.75 | | 8.26 | | E1 | 5.13 | | 5.38 | | е | | 1.27 BSC | | | L | 0.51 | | 0.76 | | θ | 0° | | 8° | # **TOP VIEW** **END VIEW** - (1) All dimensions are in millimeters. Angles in degrees. - (2) Complies with EIAJ EDR-7320. # **PACKAGE DIMENSIONS** TSSOP8, 4.4x3 CASE 948AL-01 ISSUE O | SYMBOL | MIN | NOM | MAX | |--------|------|----------|------| | Α | | | 1.20 | | A1 | 0.05 | | 0.15 | | A2 | 0.80 | 0.90 | 1.05 | | b | 0.19 | | 0.30 | | С | 0.09 | | 0.20 | | D | 2.90 | 3.00 | 3.10 | | E | 6.30 | 6.40 | 6.50 | | E1 | 4.30 | 4.40 | 4.50 | | е | | 0.65 BSC | | | L | | 1.00 REF | | | L1 | 0.50 | 0.60 | 0.75 | | θ | 0° | | 8° | - (1) All dimensions are in millimeters. Angles in degrees.(2) Complies with JEDEC MO-153. # **PACKAGE DIMENSIONS** **TDFN8**, 2x3 CASE 511AK-01 ISSUE A **TOP VIEW** SIDE VIEW **BOTTOM VIEW** | SYMBOL | MIN | NOM | MAX | |--------|------|----------|------| | Α | 0.70 | 0.75 | 0.80 | | A1 | 0.00 | 0.02 | 0.05 | | A2 | 0.45 | 0.55 | 0.65 | | АЗ | | 0.20 REF | | | b | 0.20 | 0.25 | 0.30 | | D | 1.90 | 2.00 | 2.10 | | D2 | 1.30 | 1.40 | 1.50 | | E | 2.90 | 3.00 | 3.10 | | E2 | 1.20 | 1.30 | 1.40 | | е | | 0.50 TYP | | | L | 0.20 | 0.30 | 0.40 | **FRONT VIEW** - (1) All dimensions are in millimeters.(2) Complies with JEDEC MO-229. ## **Example of Ordering Information (Note 8)** #### ORDERING INFORMATION | Orderable Part Numbers | |----------------------------| | CAT93C46RLI-G | | CAT93C46RVI-GT3 | | CAT93C46RWI-GT3 | | CAT93C46RXI-T2 | | CAT93C46RYI-GT3 | | CAT93C46RVP2IGT3 (Note 13) | - 8. The device used in the above example is a CAT93C46RVI-GT3 (SOIC, Industrial Temperature, NiPdAu, Tape & Reel). - 9. All packages are RoHS-compliant (Lead-free, Halogen-free). - 10. The standard lead finish is NiPdAu. - 11. For SOIC, EIAJ (X) package the standard lead finish is Matte-Tin. This package is available in 2,000 pcs/reel, i.e. CAT93C46RXI-T2. - 12. For additional package and temperature options, please contact your nearest ON Semiconductor Sales office. - 13. Part number is not exactly the same as the "Example of Ordering Information" shown above. For this part number there is NO hyphen in the orderable part number. - 14. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 N. American Technical Support: 800-282-9855 Toll Free Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! # Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А