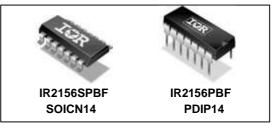
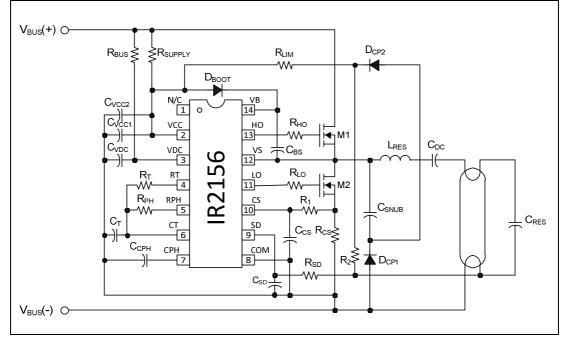
Features

- Ballast control and half bridge driver in one IC
- Programmable preheat frequency
- Programmable preheat time
- Internal ignition ramp
- Programmable over-current threshold
- Programmable run frequency


IR2156(S)PbF BALLAST CONTROL IC


- Programmable dead time
- DC bus under-voltage reset
- Shutdown pin with hysteresis
- Internal 15.6V zener clamp diode on Vcc
- Micropower startup (150 μA)
- Latch immunity and ESD protection

Description

The IR2156 incorporates a high voltage halfbridge gate driver with a programmable oscillator and state diagram to form a complete ballast control IC. The IR2156 features include programmable preheat and run frequencies, programmable preheat time, programmable dead-time, and programmable overcurrent protection. Comprehensive protection features such as protection from failure of a lamp to strike, filament failures, as well as an automatic restart function, have been included in the design.

Packages

Application Diagram

Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
VB	High side floating supply voltage	-0.3	625			
Vs	High side floating supply offset voltage		VB - 25	VB + 0.3	V	
VHO	High side floating output voltage	VS - 0.3	VB + 0.3	v		
VLO	Low side output voltage		-0.3	VCC + 0.3		
IOMAX	Maximum allowable output current (HO, LO) due to external power transistor miller effect		-500	500	mA	
VDC	VDC pin voltage		-0.3	VCC+0.3		
VCT	CT pin voltage		-0.3	VCC+0.3	V	
VCPH	CPH pin voltage		-0.3	VCC+0.3		
ICPH	CPH pin current	-5	5			
IRPH	RPH pin current	-5	5	mA		
VRPH	RPH pin voltage	-0.3	VCC+0.3	V		
IRT	RT pin current	-5	5	mA		
VRT	RT pin voltage	-0.3	VCC+0.3	V		
VCS	Current sense pin voltage	-0.3	5.5	v		
ICS	Current sense pin current	-5	5			
ISD	Shutdown pin current	-5	5	mA		
ICC	Supply current (Note 1)	-20	20			
dV/dt	Allowable offset voltage slew rate	-50	50	V/ns		
Do	Package power dissipation @ $T_A \le +25^{\circ}C$		1.80	14/		
PD	$PD = (T_{JMAX}-T_A)/R\theta JA $ (14-Pin SOIC)			1.40	W	
Bola	Thermal resistance, junction to ambient	(14-Pin DIP)		70	00044	
RθJA		(14-Pin SOIC)		82	°C/W	
ТJ	Junction temperature	-55	150			
TS	Storage temperature	-55	150	°C		
ΤL	Lead temperature (soldering, 10 seconds)		300			

Note 1: This IC contains a zener clamp structure between the chip VCC and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the VCLAMP specified in the Electrical Characteristics section.

Recommended Operating Conditions For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units	
VBS	High side floating supply voltage	VBSUV+	VCLAMP		
Vs	Steady state high side floating supply offset voltage	-1	600	V	
VCC	Supply voltage	VCCUV+	VCLAMP		
ICC	Supply current	Note 2	10	mA	
Ст	CT lead capacitance	220		pF	
ISD	Shutdown lead current	-1	1		
ICS	Current sense pin current	-1	1	mA	
TJ	Junction temperature	-25	125	°C	

Note 2: Enough current should be supplied into the VCC pin to keep the internal 15.6V zener clamp diode on this pin regulating at its voltage, V_{CLAMP}.

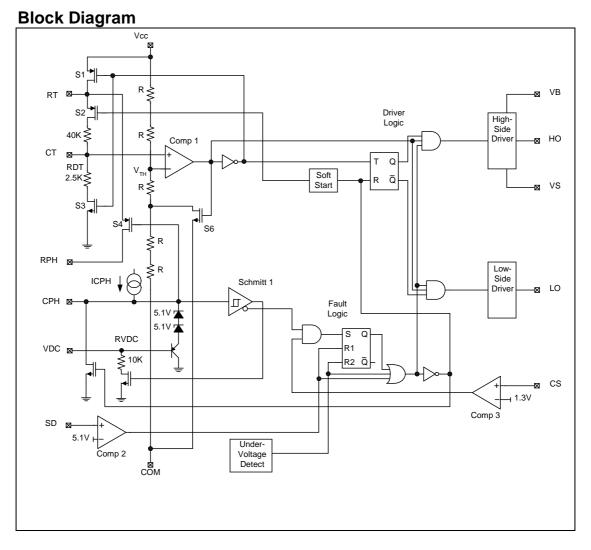
Electrical Characteristics

VCC = VBS = VBIAS = 14V +/- 0.25V, VVDC=Open, RT=40KΩ, RPH=100KΩ, CT=470 pF, VCPH=0.0V, VSD=0.0V, VCS=0.0V, CLO=CHO=1000 pF, TA=25C unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Supply Characteristics						
VCCUV+	VCC supply undervoltage positive going threshold	10.5	11.5	12.5		VCC rising from 0V
VCCUV-	VCC supply undervoltage negative going threshold	8.5	9.5	10.5	V	VCC falling from 14V
VUVHYS	VCC supply undervoltage lockout hysteresis	1.5	2.0	3.0		
IQCCUV	UVLO mode quiescent current	50	120	200		VCC=11V
IQCCFLT	Fault-mode quiescent current		200	470	μA	SD = 5.1V, or CS = 1.3V
IQCC	Quiescent VCC supply current		1.0	1.5	mA	CT connected to COM, VCC = 14V, RT = $15k\Omega$
ICC40k	VCC supply current, f = 40kHz	1.3	1.5	1.7	mA	VCPH=12V, VVDC=12V
VCLAMP	V _{CC} zener clamp voltage	14.5	15.6	16.5	V	ICC = 5mA
Floating	Supply Characteristics					
IQBS0	Quiescent VBS supply current	-5	0	5		V _{HO} = V _S (CT=0V)
IQBS1	Quiescent VBS supply current		30	50	μA	$V_{HO} = V_B (CT=14V)$
ILK	Offset supply leakage current			50	μA	VB = VS = 600V

Electrical Characteristics

VCC = VBS = VBIAS = 14V +/- 0.25V, VVDC=Open, RT=40KΩ, RPH=100KΩ, CT=470 pF, VCPH=0.0V, VSD=0.0V, VCS=0.0V, CLO=CHO=1000 pF, TA=25C unless otherwise specified.

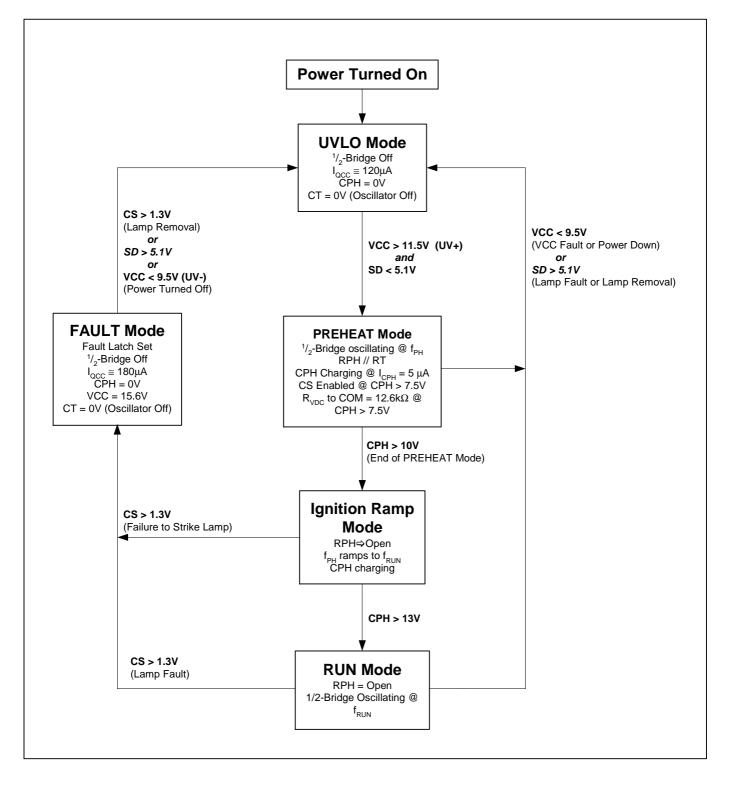

Oscillator, Ballast Control, I/O Characteristics f_{OSCRUN} Oscillator frequency during RUN mode 36.0 40.0 44.0 $_{HT}$ $_{VCP}^{=14V}$, $VCPH=Operf_{OSCPH}Oscillator frequency during PH mode49.055.060.0^{VC}^{VCDC^{=14V}},VCPH=COMdOscillator duty cycle50\%^{VC}VCT+Upper CT ramp voltage threshold8.3\gamma_VVC^{=14V}VCT-Lower CT ramp voltage threshold4.8\gamma_VVC^{=14V}VCT-Lower CT ramp voltage threshold0\gamma_VC^{=14V}VCT-Lower CT ramp voltage0\gamma_VC^{=14V}VCT-Lower CT ramp voltage0\gamma_VC^{=14V}VCT-Lower CT ramp voltage0\gamma_VC^{=14V}VCT-Lower CT ramp voltage0mVSD>5.1V orRPLPHLower CT ramp volt$	onditions
IOSCRUNOscillator frequency during RON mode36.0 40.0 44.0 KHz $VCPH=OperfOSCPHOscillator frequency during PH mode49.055.060.0KHzVCPH=OperdOscillator duty cycle50\%VCPH=COMVCT+Upper CT ramp voltage threshold8.3\%VCC=14VVCT-Lower CT ramp voltage threshold4.8VVCC=14VVCTFLTFault-mode CT pin voltage0SD>5.1V ortDLOLO output deadtime2.0\muSectDHOHO output deadtime resistor3k\OmegaPreheat CharacteristicsICPHCPH pin charging current3.64.35.2\muACT=10V, VEVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1\muACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1\muACT=10VVRTFLTFault-mode RT pin voltage0mVSD>5.1V orPrefection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1$	
fOSCPHOscillator frequency during PH mode49.055.060.0 $V_{VDC}=14V$, VCPH=COMdOscillator duty cycle50%VCT+Upper CT ramp voltage threshold8.3 V_{VC} VCT-Lower CT ramp voltage threshold4.8 V_{VC} VCTFLFault-mode CT pin voltage0 V_{CC} =14VVCTFLTFault-mode CT pin voltage0 V_{CC} =14VDLOLO output deadtime2.0 μ_{SC} TDHOHO output deadtime2.0 μ_{SC} RDTInternal deadtime resistor3 $k\Omega$ Preheat CharacteristicsICPHCPH pin charging current3.64.35.2 μ ACT=10V, VCVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1 μ ACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1 μ ACT=10VVRFHTFault-mode RT pin voltage0mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1 <t< td=""><td></td></t<>	
VCT+ Upper CT ramp voltage threshold 8.3 V VCT- Lower CT ramp voltage threshold 4.8 V VCTFLT Fault-mode CT pin voltage 0 SD>5.1V or tDLO LO output deadtime 2.0 µsec tDHO HO output deadtime 2.0 µsec RDT Internal deadtime resistor 3 kΩ Preheat Characteristics 0 mV SD>5.1V or VCPHFLT Fault-mode CPH pin voltage 3 kΩ VCPHFLT Fault-mode CPH pin voltage 0 mV SD>5.1V or RPH Characteristics IRPHLK Open circuit RPH pin leakage current 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0	
VCT- Lower CT ramp voltage threshold 4.8 V VCC=14V VCTFLT Fault-mode CT pin voltage 0 SD>5.1V or tDLO LO output deadtime 2.0 μsec tDHO HO output deadtime 2.0 μsec RDT Internal deadtime resistor 3 KΩ Preheat Characteristics ICPH CPH pin charging current 3.6 4.3 5.2 μA CT=10V, VD VCPHFLT Fault-mode CPH pin voltage 0 mV SD>5.1V or RPH Characteristics IRPHLK Open circuit RPH pin leakage current 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0	
VCT- Lower CT ramp voltage threshold 4.8 V VCTFLT Fault-mode CT pin voltage 0 SD>5.1V or tDLO LO output deadtime 2.0 µsec tDHO HO output deadtime 2.0 µsec RDT Internal deadtime resistor 3 kΩ Preheat Characteristics 3 kΩ ICPH CPH pin charging current 3.6 4.3 5.2 µA CT=10V, VC VCPHFLT Fault-mode CPH pin voltage 0 mV SD>5.1V or RPH Characteristics 0 mV SD>5.1V or IRPHLK Open circuit RPH pin leakage current 0 mV SD>5.1V or RT Characteristics 0 mV SD>5.1V or IRTLK Open circuit RT pin leakage current 0<	V _{CC} =14V
tDLOLO output deadtime2.0μsectDHOHO output deadtime2.0μsecRDTInternal deadtime resistor3kΩPreheat CharacteristicsICPHCPH pin charging current3.64.35.2μACT=10V, VCVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1mVSD>5.1V orRT CharacteristicsIRPHLKOpen circuit RPH pin leakage current0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1mVSD>5.1V orRTCharacteristicsIRTLKOpen circuit RT pin leakage current0mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage0mVSD>5.1V orVSDHYSSD pin Reset threshold voltage5.1VV	
LECHO and Hold eadtime2.0 μ secRDTInternal deadtime resistor3kΩPreheat CharacteristicsICPHCPH pin charging current3.64.35.2 μ ACT=10V, VE VCPH=0VVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0mVSD>5.1V orRT CharacteristicsIRPHETFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1mVSD>5.1V orProtection Circuit RT pin leakage current0.1mVSD>5.1V orProtection Circuit RT pin leakage current0mVSD>5.1V orProtection Circuit RT pin voltage0mVSD>5.1V orProtection Circuit RT pin voltage0WSD>5.1V orProtection Circuit RT pin voltage0mVSD>5.1V orVSDTH+Rising shutdown pin threshold voltage0mVVVSDHYSSD pin Reset threshold voltage450mV	or CS>1.3V
tDHOHO output deadtime2.0NRDTInternal deadtime resistor3 $k\Omega$ Preheat CharacteristicsICPHCPH pin charging current3.64.35.2 μ ACT=10V, VE VCPH=0VVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1 μ ACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1 μ ACT=10VVRTFLTFault-mode RT pin voltage0mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1VVSDHYSSD pin Reset threshold voltage450mV	
Preheat CharacteristicsICPHCPH pin charging current3.64.35.2μACT=10V, VDVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1μACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1μACT=10VVRTFLTFault-mode RT pin voltage0.1μACT=10VVRTFLTFault-mode RT pin voltage0mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1VVSDHYSSD pin Reset threshold voltage450mV	
ICPHCPH pin charging current3.64.35.2 μ ACT=10V, VDVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1 μ ACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1 μ ACT=10VVRTFLTFault-mode RPH pin voltage0.1mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1 μ ACT=10VVRTFLTFault-mode RT pin voltage0mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1VVSDHYSSD pin Reset threshold voltage450mV	
ICPHCPH pin charging current3.64.35.2μAVCPH=0VVCPHFLTFault-mode CPH pin voltage0mVSD>5.1V orRPH CharacteristicsIRPHLKOpen circuit RPH pin leakage current0.1μACT=10VVRPHFLTFault-mode RPH pin voltage0mVSD>5.1V orRT CharacteristicsIRTLKOpen circuit RT pin leakage current0.1μACT=10VVRTFLTFault-mode RT pin voltage0.1mVSD>5.1V orProtection Circuitry CharacteristicsVSDTH+Rising shutdown pin threshold voltage5.1VVSDHYSSD pin Reset threshold voltage450mV	
RPH Characteristics IRPHLK Open circuit RPH pin leakage current 0.1 μA CT=10V VRPHFLT Fault-mode RPH pin voltage 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0.1 mV SD>5.1V or Protection Circuit RT pin leakage current 0.1 mV SD>5.1V or Protection Circuitry Characteristics 0 mV SD>5.1V or VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	
IRPHLK Open circuit RPH pin leakage current 0.1 μA CT=10V VRPHFLT Fault-mode RPH pin voltage 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0 mV SD>5.1V or Protection Circuitry Characteristics VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	or CS>1.3V
VRPHFLT Fault-mode RPH pin voltage 0 mV SD>5.1V or RT Characteristics IRTLK Open circuit RT pin leakage current 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0 mV SD>5.1V or Protection Circuitry Characteristics 0 mV SD>5.1V or VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	
RT Characteristics IRTLK Open circuit RT pin leakage current 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0 mV SD>5.1V or Protection Circuitry Characteristics 5.1 V VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	
IRTLK Open circuit RT pin leakage current 0.1 μA CT=10V VRTFLT Fault-mode RT pin voltage 0 mV SD>5.1V or Protection Circuitry Characteristics V V V V VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	or CS>1.3V
VRTFLT Fault-mode RT pin voltage 0 mV SD>5.1V or Protection Circuitry Characteristics VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	
Protection Circuitry Characteristics VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	
VSDTH+ Rising shutdown pin threshold voltage 5.1 V VSDHYS SD pin Reset threshold voltage 450 mV	or CS>1.3V
VSDHYS SD pin Reset threshold voltage 450 mV	
VCSTH+ Over-current sense threshold voltage 1.1 1.25 1.44 V	
tCS Over-current sense propogation delay 160 Delay from C	
VCSPW Over-current sense minimum pulse width 135 Nsec VCS pulse a VCSTH + 10	100mV
RVDCDC bus sensing resistor7.510.014.0k Ω VCPH>12V, CT=0	/, VDC=7V,
VCPH-VDC CPH to VDC offset voltage 10.3 10.9 11.4 V VCPH open,	n, VDC=0V

Electrical Characteristics

 $V_{CC} = V_{BS} = V_{BIAS} = 14V +/- 0.25V, V_{VDC}=Open, RT=39K\Omega, RPH=100K\Omega, CT=470 pF, V_{CPH}=0.0V, V_{SD}=0.0V, V_{CS}=0.0V, CLO=CHO=1000 pF, T_{A}=25C unless otherwise specified.$

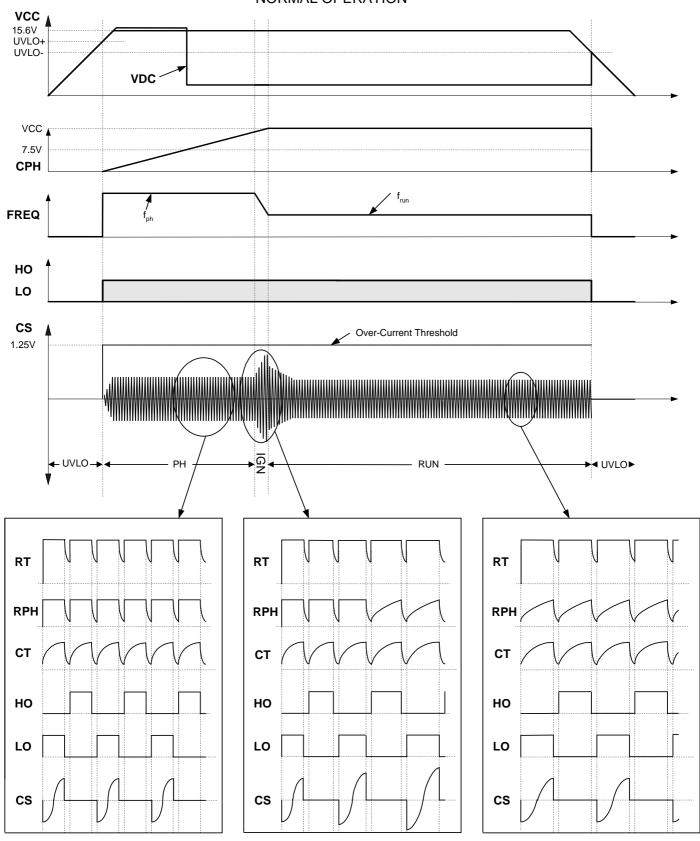
Symbol	Definition	Min	Тур	Мах	Units	Test Conditions
Gate Driv	er Output Characteristics					
VOL	Low-level output voltage		COM		V	IO = 0
VOH	High-level output voltage		VCC			IO = 0
t _r	Turn-on rise time		110	150		
t _f	Turn-off fall time		55	100	nsec	

IR2156(S)PbF

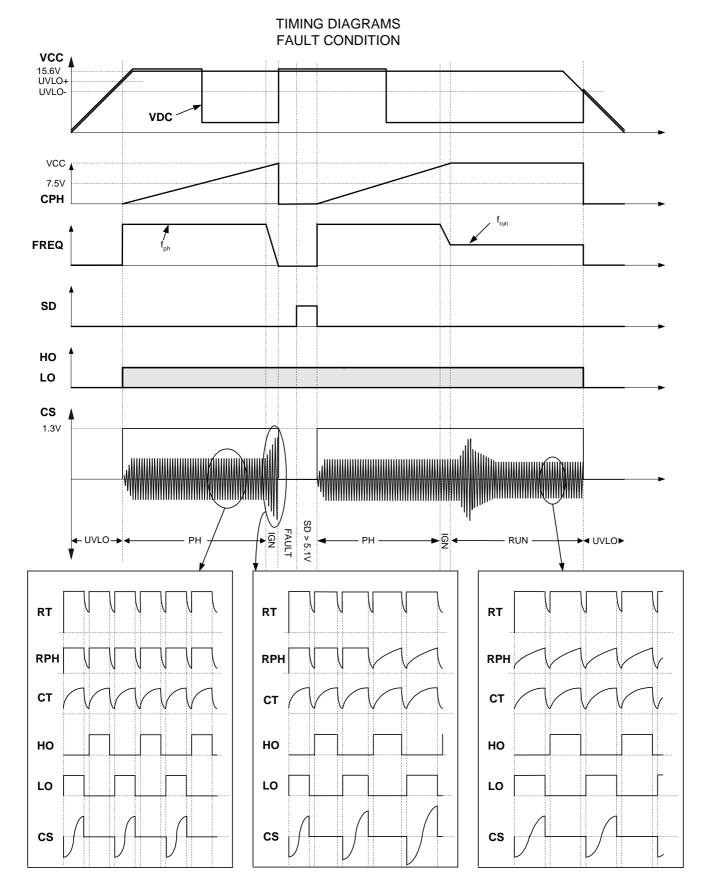


Pin Assignments & Definitions

Pin Assignme	ents	Pin #	Symbol	Description
	1	1	NC	No Connect
NC 1 0	14 VB	2	VCC	Logic & Low-Side Gate Driver Supply
		3	VDC	IC Start-up and DC Bus Sensing Input
VCC 2	<u>13</u> HO	4	RT	Minimum Frequency Timing Resistor
VDC 3	12 VS	5	RPH	Preheat Frequency Timing Resistor
		6	СТ	Oscillator Timing Capacitor
RT 4	11 LO	7	СРН	Preheat Timing Capacitor
		8	COM	IC Power & Signal Ground
	10 CS	9	SD	Shutdown Input
ст б	9 SD	10	CS	Current Sensing Input
		11	LO	Low-Side Gate Driver Output
CPH 7	8 COM	12	VS	High-Side Floating Return
	J	13	HO	High-Side Gate Driver Output
		14	VB	High-Side Gate Driver Floating Supply

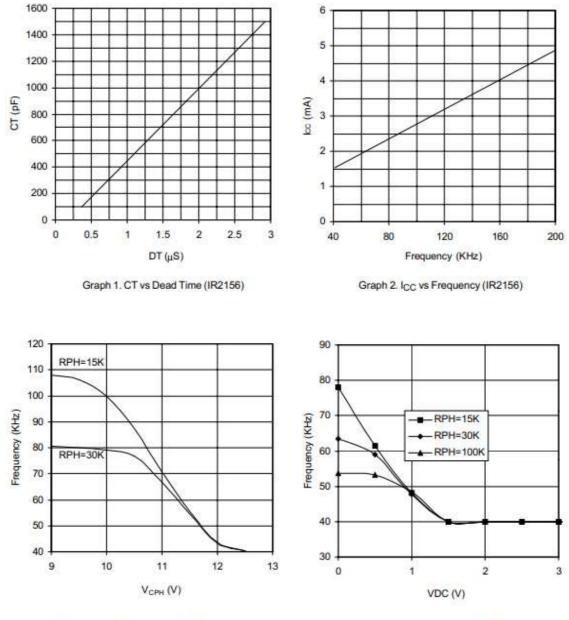

IR2156(S)PbF

State Diagram



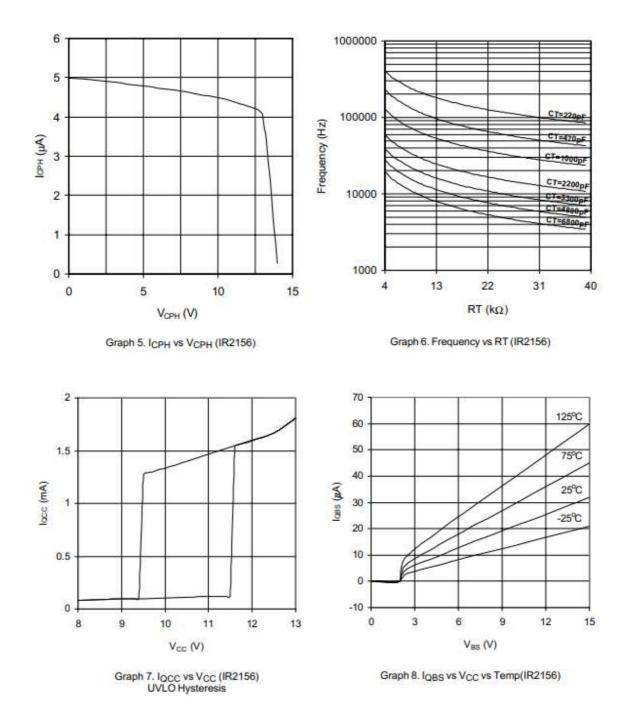
IR2156(S)PbF

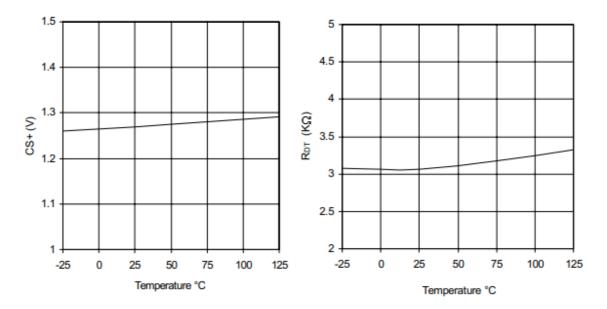
TIMING DIAGRAMS NORMAL OPERATION



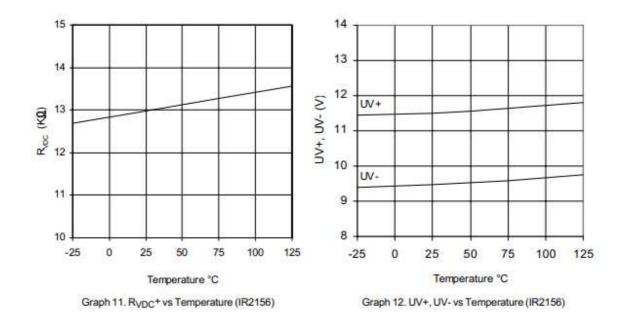


IR2156(S)PbF

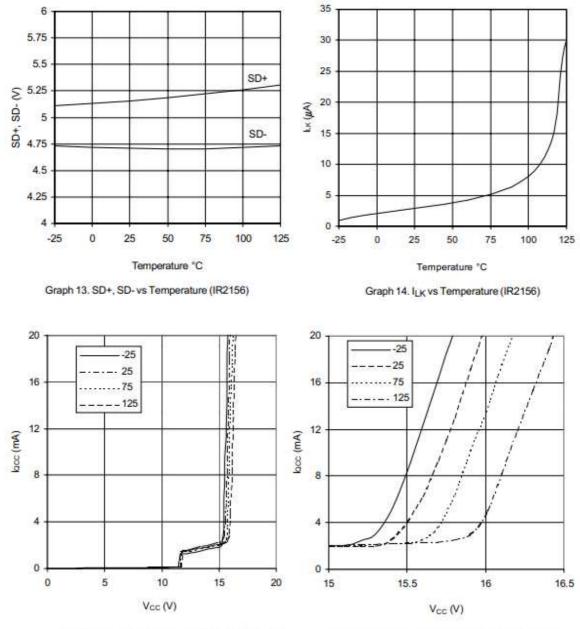

Characterization Data


Graph 4. Frequency vs VDC (IR2156)

IR2156(S)PbF

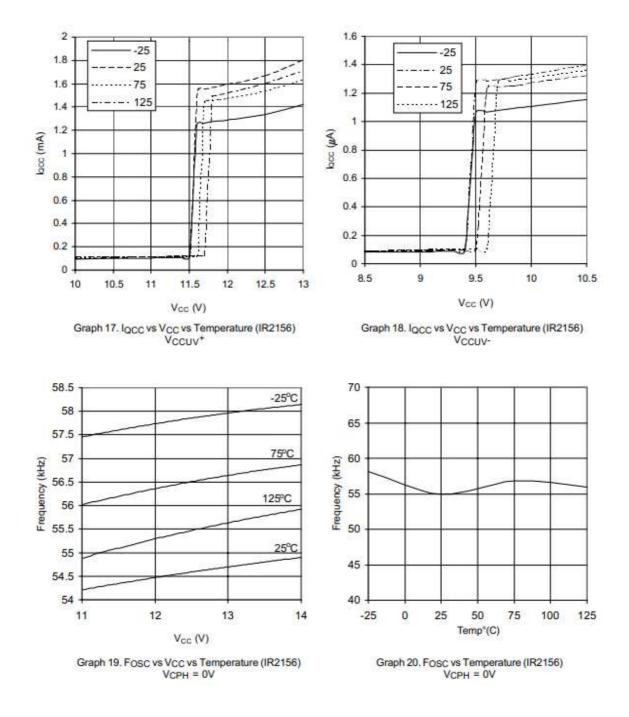

¹¹

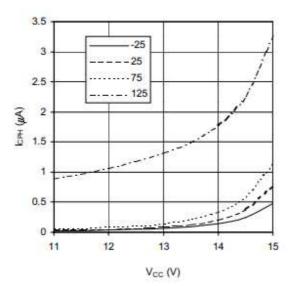
IR2156(S)PbF


Graph 9. V_{CSTH}+ vs Temperature (IR2156)

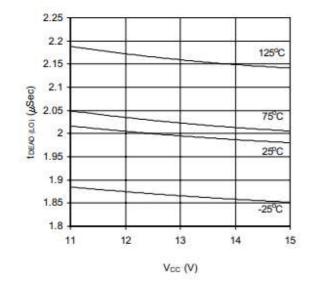
Graph 10. R_{DT} vs Temperature (IR2156)

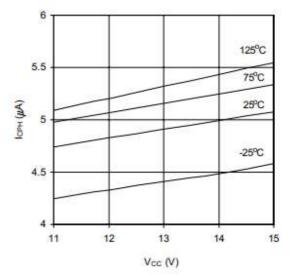
IR2156(S)PbF

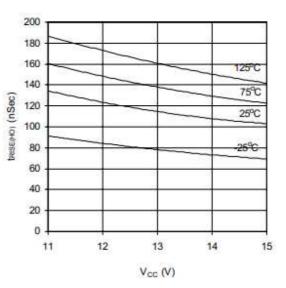

Characterization Data


Graph 15. IQCC vs VCC vs Temperature (IR2156)

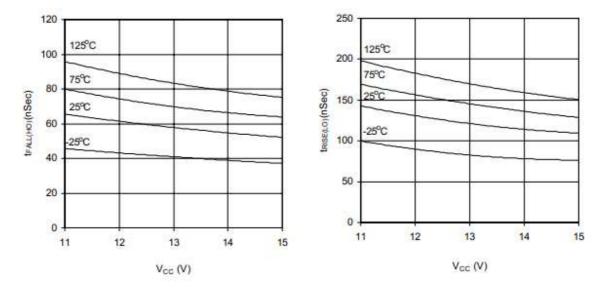
Graph 16. IQCC vs VCC vs Temperature (IR2156) Internal Zener Diode Curve


IR2156(S)PbF

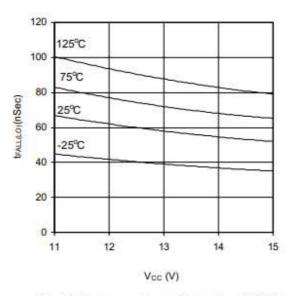

IR2156(S)PbF


Graph 21. I_{CPH} vs V_{CC} vs Temperature (IR2156) V_{CPH} = V_{CC}

Graph 23. tDEAD vs VCC vs Temperature (IR2156) CT = 1nF



Graph 22. I_{CPH} vs V_{CC} vs Temperature (IR2156) V_{CPH} = 0V


Graph 24. tRISE(HO) vs VCC vs Temperature (IR2156)

IR2156(S)PbF

Graph 25. tFALL(HO) vs VCC vs Temperature (IR2156)

Graph 26. tRISE(LO) vs VCC vs Temperature (IR2156)

Graph 27. tFALL(LO) vs VCC vs Temperature (IR2156)

Functional Description

Under-voltage Lock-out Mode (UVLO)

The under-voltage lock-out mode (UVLO) is defined as the state the IC is in when VCC is below the turn-on threshold of the IC. To identify the different modes of the IC, refer to the State Diagram shown on page 2 of this document. The IR2156 undervoltage lock-out is designed to maintain an ultra low supply current of less than 200uA, and to guarantee the IC is fully functional before the high and low side output drivers are activated. Figure 1 shows an efficient supply voltage using the start-up current of the IRS2156 together with a charge pump from the ballast output stage (R_{SUPPLY} , C_{VCC} , D_{CP1} and D_{Cr2}).

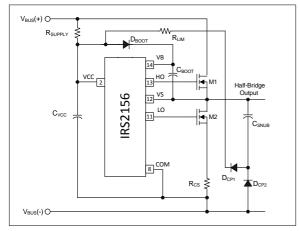
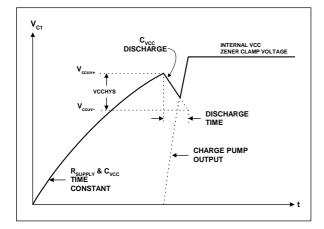
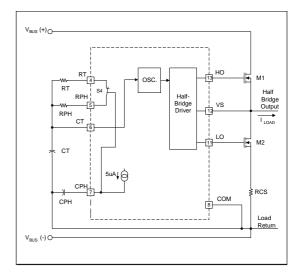


Figure 1, Start-up and supply circuitry.

The start-up capacitor (C_{VCC}) is charged by current through supply resistor (R_{SUPPLY}) minus the start-up current drawn by the IC. This resistor is chosen to provide 2X the maximum start-up current to guarantee ballast start-up at low line input voltage. Once the capacitor voltage on VCC reaches the start-up threshold VCCUV+, and the SD pin is below VSDTH-, the IC turns on and HO and LO begin to oscillate. The capacitor begins to discharge due to the increase in IC operating current (Figure 2).




Figure 2, Supply capacitor (C_{VCC}) voltage.

During the discharge cycle, the rectified current from the charge pump charges the capacitor above the IC turn-off threshold. The charge pump and the internal 15.6V zener clamp of the IC take over as the supply voltage. The start-up capacitor and snubber capacitor must be selected such that enough supply

current is available over all ballast operating conditions. An external bootstrap diode (D_{BOOT}) and the supply capacitor (C_{BOOT}) comprise the supply voltage for the high side driver circuitry. To guarantee that the high-side supply is charged up before the first pulse on pin HO, the first pulse from the output drivers comes from the LO pin. During undervoltage lock-out mode, the high-and low-side driver outputs HO and LO are both low, pin CT is connected internally to COM to disable the oscillator, and pin CPH is connected internally to COM for resetting the preheat time.

Preheat Mode (PH)

The preheat mode is defined as the state the IC is in when the lamp filaments are being heated to their correct emission temperature. This is necessary for maximizing lamp life and reducing the required ignition voltage. The IR2156 enters preheat mode when VCC exceeds the VCCUV+ positive-going threshold. HO and LO begin to oscillate at the preheat frequency with 50% duty cycle and with a dead-time which is set by the value of the external timing capacitor, CT, and internal deadtime resistor, RDT. Pin CPH is disconnected from COM and an internal 4uA current source (Figure 3) charges the external preheat timing capacitor on CPH linearly. The over-current protection on pin CS is disabled during preheat.

Figure 3, Preheat circuitry

The preheat frequency is determined by the parallel combination of resistors RT and RPH, together with timing capacitor CT. CT charges and discharges between 1/3 and 3/5 of VCC (see Timing Diagram, page 9). CT is charged exponentially through the parallel combination of RT and RPH connected internally to VCC through MOSFET S1. The charge time of CT from 1/3 to 3/5 VCC is the on-time of the respective output gate driver, HO or LO. Once CT exceeds 3/5 VCC, MOSFET S1 is turned off, disconnecting RT and RPH from VCC. CT is then discharged exponentially through an internal resistor, RDT, through MOSFET S3 to COM. The discharge time of CT from 3/5 to 1/3 VCC is the dead-time (both off) of the output gate drivers, HO and LO. The selected value of CT together with RDT therefore program the desired dead-time (see Design Equations, page 12, Equations 1 and 2). Once CT discharges below 1/3 VCC, MOSFET S3 is turned off, disconnecting RDT from COM, and MOSFET S1 is turned on, connecting RT and RPH again to VCC. The frequency remains at the preheat frequency until the voltage on pin CPH exceeds 13V and the IC enters Ignition Mode. During the preheat mode, both the over-current protection and the

IR2156(S)PbF

DC bus under-voltage reset are enabled when pin CPH exceeds 7.5V.

Ignition Mode (IGN)

The ignition mode is defined as the state the IC is in when a high voltage is being established across the lamp necessary for igniting the lamp. The IR2156 enters ignition mode when the voltage on pin CPH exceeds 13V.

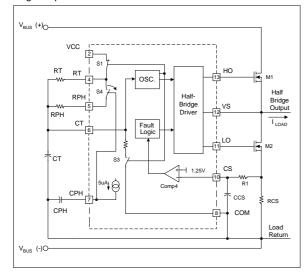


Figure 4, Ignition circuitry.

Pin CPH is connected internally to the gate of a p-channel MOSFET (S4) (see Figure 4) that connects pin RPH with pin RT. As pin CPH exceeds 13V, the gate-to-source voltage of MOSFET S4 begins to fall below the turn-on threshold of S4. As pin CPH continues to ramp towards VCC, switch S4 turns off slowly. This results in resistor RPH being disconnected smoothly from resistor RT, which causes the operating frequency to ramp smoothly from the preheat frequency, through the ignition frequency, to the final run frequency. The over-current threshold on pin CS will protect the ballast against a non-strike or open-filament lamp fault condition. The voltage on pin CS is defined by the lower halfbridge MOSFET current flowing through the external current sensing resistor RCS. The resistor RCS therefore programs the maximum allowable peak ignition current (and therefore peak ignition voltage) of the ballast output stage. The peak ignition current must not exceed the maximum allowable current ratings of the output stage MOSFETs. Should this voltage exceed the internal threshold of 1.3V, the IC will enter FAULT mode and both gate driver outputs HO and LO will be latched low.

Run Mode (RUN)

Once the lamp has successfully ignited, the ballast enters run mode. The run mode is defined as the state the IC is in when the lamp arc is established and the lamp is being driven to a given power level. The run mode oscillating frequency is determined by the timing resistor RT and timing capacitor CT (see Design Equations, page 12, Equations 3 and 4). Should hard-switching occur at the half-bridge at any time due to an open-filament or lamp removal, the voltage across the current sensing resistor, RCS, will exceed the internal threshold of 1.3 volts and the IC will enter FAULT mode. Both gate driver outputs, HO and LO, will be latched low.

DC Bus Under-voltage Reset

Should the DC bus decrease too low during a brown-out line condition or over-load condition, the resonant output stage to the lamp can shift near or below resonance. This can produce hard-switching at the half-bridge which can damage the halfbridge switches. To protect against this, pin VDC measures the DC bus voltage and pulls down on pin CPH linearly as the voltage on pin VDC decreases 10.9V below VCC. This causes the pchannel MOSFET S4 (Figure 4) to close as the DC bus decreases and the frequency to shift higher to a safe operating point above resonance. The DC bus level at which the frequency shifting occurs is set by the external RBUS resistor and internal RVDC resistor. By pulling down on pin CPH, the ignition ramp is also reset. Therefore, should the lamp extinguish due to very low DC bus levels, the lamp will be automatically ignited as the DC bus increases again. The internal RVDC resistor is connected between pin VDC and COM when CPH exceeds 7.5V (during preheat mode).

Fault Mode (FAULT)

Should the voltage at the current sensing pin, CS, exceed 1.3V at any time after the preheat mode, the IC enters fault mode and both gate driver outputs, HO and LO, are latched in the 'low' state. CPH is discharged to COM for resetting the preheat time, and CT is discharged to COM for disabling the oscillator. To exit fault mode, VCC must be recycled back below the UVLO negative-going turn-off threshold, or, the shutdown pin, SD, must be pulled above VSDTH+. Either of these will force the IC to enter UVLO mode (see State Diagram, page 2). Once VCC is above VCCUV+ and SD is below 4.5V, the IC will begin oscillating again in the preheat mode.

Design Equations

Note: The results from the following design equations can differ slightly from experimental measurements due to IC tolerances, component tolerances, and oscillator over- and under-shoot due to internal comparator response time.

For additional design support for different lamp types and AC line input configurations, including component calculations, schematics, bill of materials and inductor specifications, please download IR's Ballast Design Assistant (BDA) software at <u>www.irf.com</u>.

Step 1: Program Dead-time

The dead-time between the gate driver outputs HO and LO is programmed with timing capacitor CT and an internal dead-time resistor RDT. The dead-time is the discharge time of capacitor CT from 3/5VCC to 1/3VCC and is given as:

$$t_{DT} = C_T \cdot 2000 \qquad [Seconds] \qquad (1)$$

Or,

$$C_T = \frac{t_{DT}}{2000}$$
 [Farads] (2)

Step 2: Program Run Frequency

The final run frequency is programmed with timing resistor RT and timing capacitor CT. The charge time of capacitor CT from 1/3VCC to 3/5VCC determines the on-time of HO and LO gate driver outputs. The run frequency is therefore given as:

$$f_{RUN} = \frac{1}{2 \cdot C_T (0.6 \cdot R_T + 2000)}$$
 [Hertz] (3)

Or,

$$R_T = \frac{1}{1.12 \cdot C_T \cdot f_{RUN}} - 3333$$
 [Ohms] (4)

Step 3: Program Preheat Frequency

The preheat frequency is programmed with timing resistors RT and RPH, and timing capacitor CT. The timing resistors are

IR2156(S)PbF

connected in parallel internally for the duration of the preheat time. The preheat frequency is therefore given as:

$$f_{PH} = \frac{1}{2 \cdot C_T \cdot \left(\frac{0.51 \cdot R_T \cdot R_{PH}}{R_T + R_{PH}} + 2000\right)}$$
 [Hertz] (5)

Or,

$$R_{PH} = \frac{\left(\frac{1}{1.12 \cdot C_T \cdot f_{PH}} - 3333\right) \cdot R_T}{R_T - \left(\frac{1}{1.12 \cdot C_T \cdot f_{PH}} - 3333\right)} \quad \text{[Ohms]} \quad (6)$$

Step 4: Program Preheat Time

The preheat time is defined by the time it takes for the capacitor on pin CPH to charge up to 13 volts. An internal current source of 5uA flows out of pin CPH. The preheat time is therefore given as:

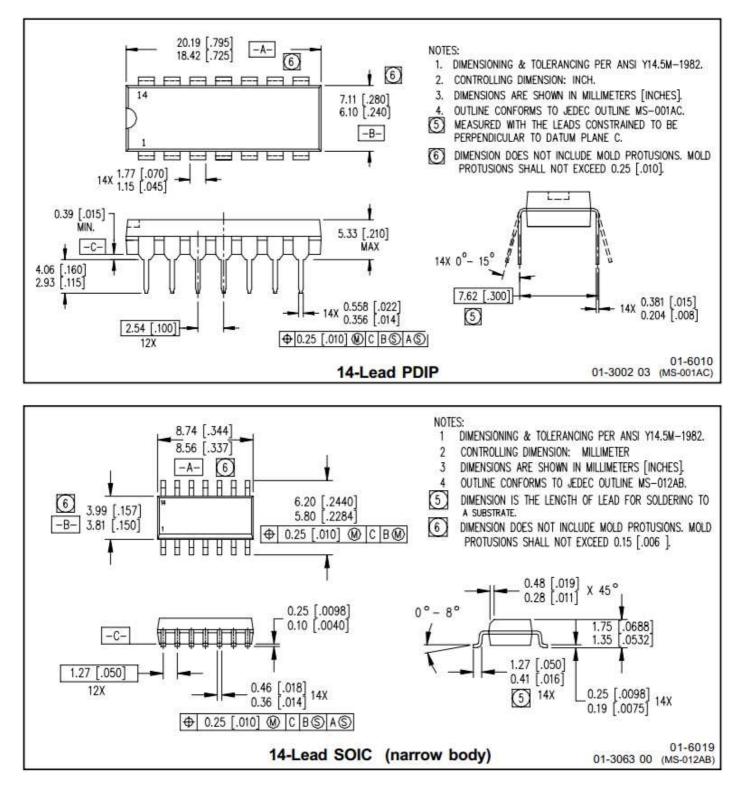
$$t_{PH} = C_{PH} \cdot 3.02e6 \qquad [Seconds] \qquad (7)$$

Or,

$$C_{PH} = t_{PH} \cdot 0.33e - 6 \qquad [Farads] \qquad (8)$$

Step 5: Program Maximum Ignition Current

The maximum ignition current is programmed with the external resistor RCS and an internal threshold of 1.25 volts (VCSTH+). This threshold determines the over-current limit of the ballast, which can be exceeded when the frequency ramps down towards resonance during ignition and the lamp does not ignite. The maximum ignition current is given as:


$$I_{IGN} = \frac{1.25}{R_{CS}}$$
 [Amps Peak] (9)

Or,

$$R_{CS} = \frac{1.25}{I_{IGN}}$$
 [Ohms] (10)

IR2156(S)PbF

Case Outline

IR2156(S)PbF

Qualification: Lead-free MSL3, industrial

http://www.irf.com

Data and specifications subject to change without notice. Sales Offices, Agents and Distributors in Major Cities Throughout the World. © 2012 International Rectifier Printed in U.S.A

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А