

TDA7381

4 x 25 W quad bridge car radio amplifier

Datasheet - production data

Features

- High output power capability:
 - 4 x 30 W/4 Ω max.
 - 4 x 25 W/4 Ω EIAJ
 - 4 x 18 W/4 Ω @ 14.4 V, 1 kHz, 10 %
 - 4 x 15 W/4 Ω @ 13.2 V, 1 kHz, 10 %
- Clipping detector
- Low distortion
- Low output noise
- Standby function
- Mute function
- Automute at min. supply voltage detection
- Diagnostics facility for:
 - Clipping
 - Out to GND short
 - Out to V_S short
 - Thermal shutdown
- Low external component count:
 - Internally fixed gain (26 dB)
 - No external compensation
 - No bootstrap capacitors
- Protections:
 - Output short circuit to GND, to V_S, across the load
 - Very inductive loads
 - Overrating chip temperature with soft thermal limiter

Table 1. **Device summary**

- Load dump voltage
- Fortuitous open GND
- Reversed battery
- ESD protection

Description

The TDA7381 is a class AB audio power amplifier in Flexiwatt25 package designed for car radio applications. Thanks to the fully complementary PNP/NPN output configuration the TDA7381 allows a rail to rail output voltage swing with no need of bootstrap capacitors ..

The extremely reduced components count allows very compact sets. The on-board clipping detector simplifies gain compression operations. The fault diagnostics makes it possible to detect mistakes during car-radio assembly and wiring in the car.

Contents

1	Block	ck / application diagram and pins connection diagram		
2	Electi	rical specifications		
	2.1	Absolute maximum ratings 6		
	2.2	Thermal data		
	2.3	Electrical characteristcs 6		
	2.4	Printed circuit board and component layout 8		
3	Appli	cation hints		
	3.1	Biasing and SVR		
	3.2	Input stage		
	3.3	Standby and muting		
	3.4	Diagnostics facility 10		
	3.5	Stability and layout considerations 12		
4	Packa	ge information		
5	Revis	ion history		

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	6
Table 3.	Thermal data	6
Table 4.	Electrical characteristcs	6
Table 5.	Document revision history	4

List of figures

Figure 1.	Block and application diagram	5
Figure 2.	Pins connection diagram (top view)	5
Figure 3.	Standard test and application circuit	7
Figure 4.	Components and top copper layer	8
Figure 5.	Bottom copper layer	8
Figure 6.	Input/output biasing	10
Figure 7.	Diagnostics circuit	10
Figure 8.	Clipping detection waveforms 1	11
Figure 9.	Diagnostics waveforms1	11
Figure 10.	An example of circuit able to distinguish between the two occurrences	12
Figure 11.	Flexiwatt25 mechanical data and package dimensions 1	13

1 Block / application diagram and pins connection diagram

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Operating supply voltage	18	V
V _{CC (DC})	DC supply voltage	28	V
V _{CC (pk)}	Peak supply voltage (t = 50 ms)	50	V
Ι _Ο	Output peak current: Repetitive (duty cycle 10 % at f = 10 Hz) Non repetitive (t = 100 μ s)	3 4	A A
P _{tot}	Power dissipation, (T _{case} = 70 °C)	80	W
Тj	Junction temperature	150	°C
T _{stg}	Storage temperature	-40 to 150	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction to case max.	1	°C/W

2.3 Electrical characteristcs

 $V_{S} = 14.4 \text{ V}; \text{ f} = 1 \text{ kHz}; \text{ R}_{g} = 600 \text{ }\Omega; \text{ R}_{L} = 4 \text{ }\Omega; \text{ T}_{amb} = 25 \text{ }^{\circ}\text{C};$

Refer to the test and application circuit (Figure 3), unless otherwise specified.

Table 4.Electrical characteristcs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I _{q1}	Quiescent current	-	-	180	300	mA
V _{OS}	Output offset voltage	-	-	-	100	mV
Gv	Voltage gain	-	25	26	27	dB
	Output power	THD = 10 %	16.5	18	-	W
Po		THD = 1 %	13	14	-	W
		THD = 10 %; V _S = 13.2 V	13.5	15	-	W
		THD = 1 %; V _S = 13.2 V	11	12	-	W
P _{o EIAJ}	EIAJ output power ⁽¹⁾	EIAJ (V _S = 13.7 V)	23	25	-	W
P _{o max}	Max. output power (1)	V _S = 13.7 V	28	30	-	W

Table 4. Electrical characteristes (continued)					
Parameter	Test Condition	Min.	Тур.	Max.	Unit
Distortion	$P_0 = 4 W$	-	0.04	0.3	%
Output noise	"A" Weighted	-	50	-	μV
	Bw = 20 Hz to 20 kHz	-	65	150	μV
Supply voltage rejection	f = 100 Hz	50	65	-	dB
Low cut-off frequency	-	-	20	-	Hz
High cut-off frequency	-	75	-	-	KHz
Input impedance	-	70	100	-	KΩ
Cross talk	f = 1KHz	50	70	-	dB
St-by current consumption	St-by = LOW	-	-	100	μA
St-by out threshold voltage	(Amp: ON)	3.5	-	-	V
St-by in threshold voltage	(Amp: OFF)	-	-	1.5	V
Mute attenuation	V _O = 1 Vrms	80	90	-	dB
Mute out threshold voltage	(Amp: play)	3.5	-	-	V
Mute in threshold voltage	(Amp: mute)	-	-	1.5	V
Muting pin current	V _{MUTE} = 1.5 V; (source current)	5	10	16	μA
Clipping detector "OFF" output average current	THD = 1 % ⁽²⁾	-	100	-	μA
Clipping Detector "ON" Output Average Current	THD = 10 % ⁽²⁾	100	240	350	μA
	ParameterDistortionOutput noiseSupply voltage rejectionLow cut-off frequencyHigh cut-off frequencyInput impedanceCross talkSt-by current consumptionSt-by out threshold voltageSt-by in threshold voltageMute attenuationMute out threshold voltageMute in threshold voltageMute jin currentClipping detector "OFF"output average currentClipping Detector "ON"	ParameterTest ConditionDistortion $P_o = 4 W$ Output noise"A" WeightedBw = 20 Hz to 20 kHzSupply voltage rejection $f = 100 Hz$ Low cut-off frequency-High cut-off frequency-Input impedance-Cross talk $f = 1KHz$ St-by current consumptionSt-by = LOWSt-by out threshold voltage(Amp: ON)St-by in threshold voltage(Amp: OFF)Mute attenuation $V_O = 1 Vrms$ Mute out threshold voltage(Amp: mute)Muting pin current $V_{MUTE} = 1.5 V$; (source current)Clipping detector "OFF" output average currentTHD = $1 \%^{(2)}$	ParameterTest ConditionMin.Distortion $P_0 = 4 W$ -Output noise"A" Weighted-Bw = 20 Hz to 20 kHz-Supply voltage rejectionf = 100 Hz50Low cut-off frequencyHigh cut-off frequency-75Input impedance-70Cross talkf = 1KHz50St-by current consumptionSt-by = LOW-St-by out threshold voltage(Amp: ON)3.5St-by in threshold voltage(Amp: OFF)-Mute attenuation $V_0 = 1 Vrms$ 80Mute in threshold voltage(Amp: mute)-Muting pin current $V_{MUTE} = 1.5 V$; (source current)5Clipping detector "OFF" output average currentTHD = 1 % (2)100	ParameterTest ConditionMin.Typ.Distortion $P_o = 4 W$ -0.04Output noise"A" Weighted-50Bw = 20 Hz to 20 kHz-65Supply voltage rejectionf = 100 Hz5065Low cut-off frequency20High cut-off frequency-75-Input impedance-70100Cross talkf = 1KHz5070St-by out threshold voltage(Amp: ON)3.5-St-by out threshold voltage(Amp: OFF)Mute attenuation $V_0 = 1 Vrms$ 8090Mute in threshold voltage(Amp: mute)Muting pin current $V_{MUTE} = 1.5 V$; (source current)510Clipping Detector "OFF"THD = 1 % (2)100240	Parameter Test Condition Min. Typ. Max. Distortion $P_0 = 4 W$ - 0.04 0.3 Output noise "A" Weighted - 50 - Bw = 20 Hz to 20 kHz - 65 150 Supply voltage rejection f = 100 Hz 50 65 - Low cut-off frequency - - 20 - High cut-off frequency - 75 - - Input impedance - 70 100 - Cross talk f = 1KHz 50 70 - St-by current consumption St-by = LOW - - 100 St-by out threshold voltage (Amp: ON) 3.5 - - Mute attenuation V ₀ = 1 Vrms 80 90 - Mute out threshold voltage (Amp: mute) - - 1.5 Mute attenuation V ₀ = 1 Vrms 80 90 - Mute in threshold voltage (Amp: mute)

 Table 4.
 Electrical characteristcs (continued)

1. Saturated square wave output.

2. Diagnostics output pulled-up to 5 V with 10 $k\Omega$ series resistor.

Figure 3. Standard test and application circuit

2.4 Printed circuit board and component layout

Referred to Figure 3: Standard test and application circuit.

Figure 4. Components and top copper layer

Figure 5. Bottom copper layer

3 Application hints

3.1 Biasing and SVR

As shown by *Figure 6*, all the TDA7381's main sections, such as Inputs, Outputs and AC-GND (pin 16) are internally biased at half supply voltage level (Vs/2), which is derived from the supply voltage rejection (SVR) block. In this way no current flows through the internal feedback network.

The AC-GND is common to all the 4 amplifiers and represents the connection point of all the inverting inputs. Both individual inputs and AC-GND are connected to Vs/2 (SVR) by means of 100 k Ω resistors.

To ensure proper operation and high supply voltage rejection, it is of fundamental importance to provide a good impedance matching between INPUTS and AC-GROUND terminations.

This implies that C_1 , C_2 , C_3 , C_4 , C_5 capacitors have to carry the same nominal value and their tolerance should never exceed ±10 %.

Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, **its minimum recommended value is 10** μ F.

3.2 Input stage

The TDA7381's inputs are ground-compatible and can stand very high input signals (± 8 Vpk) without any performances degradation. If the standard value for the input capacitors (0.1 μ F) is adopted, the low frequency cut-off will amount to 16 Hz.

3.3 Standby and muting

Standby and muting facilities are both CMOS-compatible. If unused, a straight connection to Vs of their respective pins would be admissible.

Conventional low-power transistors can be employed to drive muting and standby pins in absence of true CMOS ports or microprocessors. R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises. Since a DC current of about 10 μ A normally flows out of pin 22, the maximum allowable muting-series resistance (R₂) is 70 kΩ, which is sufficiently high to permit a muting capacitor reasonably small (about 1 μ F). If R₂ is higher than recommended, the involved risk will be that the voltage at pin 22 may rise to above the 1.5 V threshold voltage and the device will consequently fail to turn OFF when the mute line is brought down.

About the standby, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms.

3.4 Diagnostics facility

The TDA7381 is equipped with a diagnostics circuitry able to detect the following events:

- Clipping in the output stage
- Overheating (thermal shut-down proximity)
- Output misconnections (OUT-GND and OUT-Vs shorts)

Diagnostics information is available across an open collector output located at pin 25 (fig. 8) through a current sinking whenever at least one of the above events is recognized.

Among them, the **Clipping detector** acts in a way to output a signal as soon as one or more power transistors start being saturated.

As a result, the clipping-related signal at pin 25 takes the form of pulses, which are perfectly syncronized with each single clipping event in the music program and reflect the same duration time (*Figure 8*).

Applications making use of this facility usually operate a filtering/integration of the pulses train through passive R-C networks and realize a volume (or tone bass) stepping down in association with microprocessor-driven audioprocessors.

The maximum load that pin 25 can sustain is 1 k Ω . Due to its operating principles, the clipping detector has to be viewed mainly as a power-dependent feature rather than frequency-dependent. This means that clipping state will be immediately signaled out whenever a fixed power level is reached, regardless of the audio frequency.

Figure 7. Diagnostics circuit

Figure 8. Clipping detection waveforms.

In other words, this feature offers the means to counteract the extremely sound-damaging effects of clipping, caused by a sudden increase of odd order harmonics and appearance of serious intermodulation phenomena. Another possible kind of distortion control could be the setting of a maximum allowable THD limit (e.g. 0.5%) over the entire audio frequency range. Besides offering no practical advantages, this procedure cannot be much accurate, as the non-clipping distortion is likely to vary over frequency.

In case of **overheating**, pin 25 will signal out the junction temperature proximity to the thermal shut-down threshold. This will typically start about 2°C before the thermal shutdown threshold is reached.

As various kind of diagnostics information is available at pin 25 (clipping, shorts and overheating), it may be necessary to operate some distinctions on order to treat each event separately.

This could be achieved by taking into account the intrinsically different timing of the diagnostics output under each circumstance. In fact, clipping will produce pulses normally much shorter than those present under faulty conditions.

An example of circuit able to distinguish between the two occurrences is shown by Figure 10.

Figure 9. **Diagnostics waveforms**

3.5 Stability and layout considerations

If properly layouted and hooked to standard carradio speakers, the TDA7381 will be intrinsically stable with no need of external compensations such as output R-C cells. Due to the high number of channels involved, this translates into a very remarkable components saving if compared to similar devices on the market.

To simplify pc-board layout designs, each amplifier stage has its own power ground externally accessible (pins 2,8,18,24) and one supply voltage pin for each couple of them.

Even more important, this makes it possible to achieve the highest possible degree of separation among the channels, with remarkable benefits in terms of cross-talk and distortion features.

About the layout grounding, it is particularly important to connect the AC-GND capacitor (C_5) to the signal GND, as close as possible to the audio inputs ground: this will guarantee high rejection of any common mode spurious signals.

The SVR capacitor (C_6) has also to be connected to the signal GND. Supply filtering elements (C_7 , C_8) have naturally to be connected to the power-ground and located as close as possible to the Vs pins.

Pin 1, which is mechanically attached to the device's tab, needs to be tied to the cleanest power ground point in the pc-board, which is generally near the supply filtering capacitors.

VREF

VREF2

T2

TDA7385

VREF ≥ VREF1 >> VREF2

T1 << T2

COMPRESSOR/ TONE CONTROL)

FAULT, THERMAL SHUTDOWN (TO POWER SUPPLY

SECTION, μP VOLTAGE REGULATOR, FLASHING SYSTEM)

Figure 10. An example of circuit able to distinguish between the two occurrences

GAPGPS0127

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*.

 $ECOPACK^{\mathbb{R}}$ is an ST trademark.

5 Revision history

Table 5.	Document revision history
----------	----------------------------------

Date	Revision	Changes
12-Oct-1999	5	Initial release.
27-Jun-2008	6	Document reformatted. Document promoted from preliminary data to datasheet. Added <i>Table 1: Device summary</i> . Added ECOPACK description in <i>Section 4: Package information</i> .
26-Jul-2012	7	Updated Figure 9: Diagnostics waveforms on page 11.
16-Sep-2013	8	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 4947 Rev 8

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А