Data Sheet

FEATURES

18-bit resolution with no missing codes
Throughput: 1 MSPS
Low power dissipation
4 mW at 1 MSPS (VDD only)
7 mW at 1 MSPS (total)
$70 \mu \mathrm{~W}$ at 10 kSPS
INL: ± 1 LSB typical, ± 2 LSB maximum
Dynamic range: 99 dB typical
True differential analog input range: $\pm V_{\text {REF }}$
0 V to $\mathrm{V}_{\text {Ref }}$ with $\mathrm{V}_{\text {Ref }}$ between 2.5 V to 5.0 V
Allows use of any input range
Easy to drive with the ADA4941-1 or ADA4940-1
No pipeline delay
Single-supply 2.5 V operation with $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V logic interface
Proprietary serial interface SPI-/QSPIT/ MICROWIRE ${ }^{\text {TM }}$-/ DSP-compatible ${ }^{1}$
Ability to daisy-chain multiple ADCs and busy indicator 10-Lead MSOP and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 10-Lead LFCSP

APPLICATIONS

Battery-powered equipment
Data acquisition systems
Medical instruments
Seismic data acquisition systems

[^0]Rev. D
Document Feedback responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Technical Support ©2007-2017 Analog Devices, Inc. All rights reserved
${ }^{1}$ True differential
${ }^{2}$ Pseudo differential.

Table 1. MSOP and LFCSP 14-/16-/18-Bit PulSAR ${ }^{\circledR}$ ADCs

Bits	100 kSPS	250 kSPS	$\begin{aligned} & 400 \mathrm{kSPS} \\ & \text { to } 500 \mathrm{kSPS} \end{aligned}$	≥ 1000 kSPS
18^{1}	AD7989-1	AD7691	AD7690	AD7982
			AD7989-5	AD7984
16^{1}	AD7684	AD7687	AD7688	AD7915
			AD7693	
			AD7916	
16^{2}	AD7680	AD7685	AD7686	AD7980
	AD7683	AD7694	AD7988-5	AD7983
	AD7988-1			
14^{2}	AD7940	AD7942	AD7946	

GENERAL DESCRIPTION

The AD7982 is an 18-bit, successive approximation, analog-todigital converter (ADC) that operates from a single power supply, VDD. The AD7982 contains a low power, high speed, 18-bit sampling ADC and a versatile serial interface port. On the CNV rising edge, the AD7982 samples the voltage difference between the IN+ and IN- pins. The voltages on these pins usually swing in opposite phases between 0 V and $\mathrm{V}_{\text {ref. }}$. The reference voltage, $\mathrm{V}_{\text {ref }}$, is applied externally and can be set independent of the supply voltage, VDD. Its power scales linearly with throughput.
The serial peripheral interface (SPI)-compatible serial interface also features the ability, using the SDI input, to daisy-chain several ADCs on a single 3 -wire bus and provides an optional busy indicator. The AD7982 is compatible with $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$, and 5 V logic, using the separate VIO supply.

The AD7982 is available in a 10 -lead MSOP or a 10 -lead LFCSP with operation specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 5
Absolute Maximum Ratings 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics 9
Terminology 12
Theory of Operation 13
Circuit Information 13
Converter Operation 13
Typical Connection Diagram 14
Analog Inputs 15
REVISION HISTORY
1/2017—Rev. C to Rev. D
Deleted QFN Throughout
Changes to Features Section, Figure 1, and Table 1 1
Changed to $\mathrm{VIO}=2.3 \mathrm{~V}$ to 5.5 V to $\mathrm{VIO}=1.71 \mathrm{~V}$ to 5.5 V 3
Changes to Table 2 3
Deleted VIO Range Parameter, Table 3 4
Changed to VIO $=2.3 \mathrm{~V}$ to 5.5 V to $\mathrm{VIO}=1.71 \mathrm{~V}$ to 5.5 V 4
Changes to VIO Parameter, Table 3 4
Changes to Table 4 5
Added Table 5; Renumbered Sequentially6
Changes to Figure 5 and Table 7 8
Moved Typical Performance Characteristics Section 9
Changes to Figure 9 9
Changes to Figure 23 14
Changes to Analog Inputs Section and Table 9 15
Change to Single-Ended to Differential Driver Section Title 16
Changes to Power Supply Section 16
Changes to Figure 30 18
Changes to Figure 32. 19
Changes to Figure 34 20
Changes to Figure 36 21
Changes to Chain Mode with Busy Indicator 23
Changes to Applications Information Section 24
Changes to Ordering Guide 25
6/2014—Rev. B to Rev. C
Driver Amplifier Choice 15
Single-Ended to Differential Driver. 16
Voltage Reference Input 16
Power Supply 16
Digital Interface 17
$\overline{\mathrm{CS}}$ Mode, 3-Wire Without Busy Indicator 18
$\overline{\mathrm{CS}}$ Mode, 3-Wire with Busy Indicator 19
$\overline{\mathrm{CS}}$ Mode, 4-Wire Without Busy Indicator 20
$\overline{\mathrm{CS}}$ Mode, 4-Wire with Busy Indicator 21
Chain Mode Without Busy Indicator 22
Chain Mode with Busy Indicator 23
Applications Information 24
Layout 24
Evaluating the Performance of the AD7982. 24
Outline Dimensions 25
Ordering Guide 25
Added Patent Footnote 1
7/2013-Rev. A to Rev. B
Added Low Power Dissipation of 4 mW at 1 MSPS (VDD only)to Features Section 1
Changes to Power Dissipation; Table 3 4
Added EPAD Notation to Figure 5 and Table 6 7
Updated Outline Dimensions 24
Changes to Ordering Guide 24
10/2007—Rev. 0 to Rev. A
Changes to Table 1 and Layout 1
Changes to Table 2 3
Changes to Layout 5
Changes to Layout 6
Changes to Figure 5. 7
Changes to Figure 18 and Figure 20 11
Changes to Figure 23 13
Changers to Figure 26 15
Changes to Digital Interface Section 16
Changes to Figure 38 21
Changes to Figure 40 22
Updated Outline Dimensions 24
Changes to Ordering Guide 24
3/2007—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VIO}=1.71 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RESOLUTION		18			Bits
ANALOG INPUT Voltage Range Absolute Input Voltage Common-Mode Input Range Analog Input Common Mode Rejection Ratio (CMRR) Leakage Current at $25^{\circ} \mathrm{C}$ Input Impedance	$\begin{aligned} & \mathrm{IN}+-\mathrm{IN}- \\ & \mathrm{IN}+\text { and } \mathrm{IN}- \\ & \mathrm{IN}+\text { and } \mathrm{IN}- \\ & \mathrm{fiN}=450 \mathrm{kHz} \end{aligned}$ Acquisition phase	$\begin{aligned} & -V_{\text {REF }} \\ & -0.1 \\ & V_{\text {REF }} \times 0.475 \end{aligned}$ See	$V_{\text {REF }} \times 0.5$ 67 200 Analog Inp	$\begin{aligned} & +V_{\text {REF }} \\ & V_{\text {REF }}+0.1 \\ & V_{\text {REF }} \times 0.525 \end{aligned}$	
ACCURACY No Missing Codes Differential Linearity Error (DNL) Integral Linearity Error (INL) Transition Noise Gain Error, $\mathrm{T}_{\text {min }}$ to Tmax^{2} Gain Error Temperature Drift Zero Error, $\mathrm{T}_{\text {min }}$ to Tmax^{2} Zero Temperature Drift Power Supply Rejection Ratio (PSRR)	$V_{\text {ReF }}=5 \mathrm{~V}$ $\mathrm{VDD}=2.5 \mathrm{~V} \pm 5 \%$	$\begin{aligned} & 18 \\ & -0.85 \\ & -2 \\ & \\ & -0.023 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & 1.05 \\ & +0.004 \\ & \pm 1 \\ & \pm 100 \\ & 0.5 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +2 \\ & +0.023 \\ & +700 \end{aligned}$	Bits LSB ${ }^{1}$ LSB ${ }^{1}$ LSB ${ }^{1}$ \% of FS ppm $/{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ dB
THROUGHPUT Conversion Rate Transient Response	$\begin{aligned} & \mathrm{VIO} \geq 2.3 \mathrm{~V} \\ & \mathrm{VIO} \geq 1.71 \mathrm{~V} \\ & \text { Full-scale step } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1 \\ & 800 \\ & 290 \\ & \hline \end{aligned}$	MSPS kSPS ns
AC ACCURACY Dynamic Range Oversampled Dynamic Range ${ }^{4}$ Signal-to-Noise Ratio (SNR) Spurious-Free Dynamic Range (SFDR) Total Harmonic Distortion ${ }^{5}$ (THD) Signal-to-Noise-and-Distortion (SINAD)		97 95.5	$\begin{aligned} & 99 \\ & 93 \\ & 129 \\ & 98 \\ & 92.5 \\ & -115 \\ & -120 \\ & 97 \end{aligned}$		$\begin{aligned} & \mathrm{dB}^{3} \\ & \mathrm{~dB}^{3} \end{aligned}$

[^1]$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VIO}=1.71 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
REFERENCE Voltage Range Load Current	$1 \mathrm{MSPS}, \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	2.4	350	5.1	$\begin{aligned} & V \\ & \mu \mathrm{~A} \end{aligned}$
SAMPLING DYNAMICS -3 dB Input Bandwidth Aperture Delay	$\mathrm{VDD}=2.5 \mathrm{~V}$		$\begin{aligned} & 10 \\ & 2 \end{aligned}$		MHz ns
DIGITAL INPUTS Logic Levels VIL V_{IH} V_{IL} $\mathrm{V}_{\text {IH }}$ IIL I_{H}	$\begin{aligned} & \mathrm{VIO}>3 \mathrm{~V} \\ & \mathrm{VIO}>3 \mathrm{~V} \\ & \mathrm{VIO} \leq 3 \mathrm{~V} \\ & \mathrm{VIO} \leq 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.3 \\ & 0.7 \times \mathrm{VIO} \\ & -0.3 \\ & 0.9 \times \mathrm{VIO} \\ & -1 \\ & -1 \end{aligned}$		$\begin{aligned} & +0.3 \times \mathrm{VIO} \\ & \mathrm{VIO}+0.3 \\ & +0.1 \times \mathrm{VIO} \\ & \mathrm{VIO}+0.3 \\ & +1 \\ & +1 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \\ & \mu A \end{aligned}$ $\mu \mathrm{A}$
DIGITAL OUTPUTS Data Format Pipeline Delay Vol Voн	$\begin{aligned} & I_{\text {SINK }}=+500 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=-500 \mu \mathrm{~A} \end{aligned}$	Serial 18 bits, twos complement Conversion results available immediately after completed conversion 0.4 VIO - 0.3			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLIES VDD VIO Standby Current ${ }^{1,2}$ Power Dissipation Total VDD Only REF Only VIO Only Energy per Conversion	$\begin{aligned} & \mathrm{VDD} \text { and } \mathrm{VIO}=2.5 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=2.625 \mathrm{~V}, \mathrm{~V} \text { REF }=5 \mathrm{~V}, \mathrm{VIO}=3 \mathrm{~V} \\ & 10 \mathrm{kSPS} \text { throughput } \\ & 1 \mathrm{MSPS} \text { throughput } \end{aligned}$	$\begin{aligned} & 2.375 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.35 \\ & 70 \\ & 7 \\ & 4 \\ & 1.7 \\ & 1.3 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.625 \\ & 5.5 \\ & \\ & 86 \\ & 8.6 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{W}$ mW mW mW mW $\mathrm{nJ} /$ sample
TEMPERATURE RANGE ${ }^{3}$ Specified Performance	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-40		+85	${ }^{\circ} \mathrm{C}$

[^2]
Data Sheet

TIMING SPECIFICATIONS

$\mathrm{VDD}=2.37 \mathrm{~V}$ to $2.63 \mathrm{~V}, \mathrm{VIO}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. ${ }^{1}$
Table 4.

Parameter	Symbol	Min	Typ	Max	Unit
CONVERSION AND ACQUISTION TIMES Conversion Time: CNV Rising Edge to Data Available Acquisition Time Time Between Conversions	tconv $t_{\text {ACQ }}$ tcyc	$\begin{aligned} & 500 \\ & 290 \\ & 1000 \end{aligned}$		710	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
CNV PULSE WIDTH ('Сऽ MODE)	tcnve	10			ns
SCK SCK Period ($\overline{C S}$ Mode) VIO Above 4.5 V VIO Above 3 V VIO Above 2.7 V VIO Above 2.3 V SCK Period (Chain Mode) VIO Above 4.5 V VIO Above 3 V VIO Above 2.7 V VIO Above 2.3 V SCK Low Time SCK High Time SCK Falling Edge to Data Remains Valid SCK Falling Edge to Data Valid Delay VIO Above 4.5 V VIO Above 3 V VIO Above 2.7 V VIO Above 2.3 V	$\mathrm{t}_{\mathrm{sck}}$ $\mathrm{t}_{\mathrm{sck}}$ $\mathrm{t}_{\mathrm{SCKL}}$ tsckh thSDO tDSDo	10.5 12 13 15 11.5 13 14 16 4.5 4.5 3		$\begin{aligned} & 9.5 \\ & 11 \\ & 12 \\ & 14 \end{aligned}$	
$\overline{\overline{C S}}$ MODE CNV or SDI Low to SDO D17 MSB Valid VIO Above 3 V VIO Above 2.3 V CNV or SDI High or Last SCK Falling Edge to SDO High Impedance SDI Valid Setup Time from CNV Rising Edge SDI Valid Hold Time from CNV Rising Edge	ten tDIS tssoicnv thsolicnv			$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
CHAIN MODE SDI Valid Hold Time from CNV Rising Edge SCK Valid Setup Time from CNV Rising Edge SCK Valid Hold Time from CNV Rising Edge SDI Valid Setup Time from SCK Falling Edge SDI Valid Hold Time from SCK Falling Edge SDI High to SDO High (Chain Mode with Busy Indicator)	thsdicnv tssckcnv thsckcnv tssdisck thsdisck tbsbosdI	$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & 2 \\ & 3 \end{aligned}$		15	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ ns

[^3]
AD7982

$\mathrm{VDD}=2.37 \mathrm{~V}$ to $2.63 \mathrm{~V}, \mathrm{VIO}=1.71 \mathrm{~V}$ to $2.3 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated. ${ }^{1}$
Table 5.

Parameter	Symbol	Min	Typ	Max	Unit
THROUGHPUT RATE				800	kSPS
CONVERSION AND AQUISITION TIMES Conversion Time: CNV Rising Edge to Data Available Acquisition Time Time Between Conversions	tconv $t_{\text {ACQ }}$ tcyc	$\begin{aligned} & 500 \\ & 290 \\ & 1.25 \end{aligned}$		800	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ $\mu \mathrm{s}$
CNV PULSE WIDTH ('Сऽ MODE)	$\mathrm{t}_{\text {cNve }}$	10			ns
SCK SCK Period ($\overline{C S}$ Mode) SCK Period (Chain Mode) SCK Low Time SCK High Time SCK Falling Edge to Data Remains Valid SCK Falling Edge to Data Valid Delay	$\mathrm{t}_{\mathrm{sck}}$ $\mathrm{t}_{\mathrm{sck}}$ tsckl tscKH thsDO tDSDO	$\begin{aligned} & 22 \\ & 23 \\ & 6 \\ & 6 \\ & 3 \end{aligned}$	14	21	
$\overline{\overline{C S}}$ MODE CNV or SDI Low to SDO D17 MSB Valid CNV or SDI High or Last SCK Falling Edge to SDO High Impedance SDI Valid Setup Time from CNV Rising Edge SDI Valid Hold Time from CNV Rising Edge	$t_{\text {EN }}$ tDIS tssdicnv thsdicnv	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	18	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
CHAIN MODE SDI Valid Hold Time from CNV Rising Edge SCK Valid Setup Time from CNV Rising Edge SCK Valid Hold Time from CNV Rising Edge SDI Valid Setup Time from SCK Falling Edge SDI Valid Hold Time from SCK Falling Edge SDI High to SDO High (Chain Mode with Busy Indicator)	thsdicnv tssckcnv thsckenv tssdisck thsdisck tbsbosdI	$\begin{aligned} & 0 \\ & 5 \\ & 5 \\ & 2 \end{aligned}$		22	

${ }^{1}$ See Figure 2 and Figure 3 for load conditions.

Figure 2. Load Circuit for Digital Interface Timing

${ }^{1}$ FOR VIO $\leq 3.0 \mathrm{~V}, \mathrm{X}=90$, AND $Y=10$; FOR VIO > 3.0V, $X=70$, AND $Y=30$.
${ }^{2}$ MINIMUM $V_{I H}$ AND MAXIMUM $V_{I L}$ USED. SEE DIGITAL INPUTS SPECIFICATIONS IN TABLE 3.

Figure 3. Voltage Levels for Timing

AD7982

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Analog Inputs	
$\mathrm{IN}+$, IN- to GND ${ }^{1}$	$\begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\text {ReF }}+0.3 \mathrm{~V} \\ & \text { or } \pm 130 \mathrm{~mA} \end{aligned}$
Supply Voltage	
REF, VIO to GND	-0.3 V to +6.0 V
VDD to GND	-0.3 V to +3.0 V
VDD to VIO	+3 V to -6 V
Digital Inputs to GND	-0.3 V to $\mathrm{VIO}+0.3 \mathrm{~V}$
Digital Outputs to GND	-0.3 V to $\mathrm{VIO}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
10-Lead MSOP	$200^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead LFCSP	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ıc }}$ Thermal Impedance	
10-Lead MSOP	$44^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead LFCSP	$2.96{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperatures	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. 10-Lead MSOP Pin Configuration

Figure 5. 10-Lead LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
1	REF	AI	Reference Input Voltage. The REF range is 2.4 V to 5.1 V . This pin is referred to the GND pin and must be decoupled closely to the GND pin with a $10 \mu \mathrm{~F}$ capacitor.
2	VDD	P	Power Supply.
3	IN+	AI	Differential Positive Analog Input.
4	IN -	AI	Differential Negative Analog Input.
5	GND	P	Power Supply Ground.
6	CNV	DI	Convert Input. This input has multiple functions. On its leading edge, it initiates the conversions and selects the interface mode of the device: chain mode or $\overline{\overline{C S}}$ mode. In $\overline{C S}$ mode, the SDO pin is enabled when CNV is low. In chain mode, the data must be read when CNV is high.
7	SDO	DO	Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.
8	SCK	DI	Serial Data Clock Input. When the device is selected, the conversion result is shifted out by this clock.
9	SDI	DI	Serial Data Input. This input provides multiple features. It selects the interface mode of the ADC as follows: Chain mode is selected if SDI is low during the CNV rising edge. In this mode, SDI is a data input that daisy-chains the conversion results of two or more ADCs onto a single SDO line. The digital data level on SDI is the output on SDO with a delay of 18 SCK cycles. $\overline{\mathrm{CS}}$ mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable the serial output signals when low. If SDI or CNV is low when the conversion is complete, the busy indicator feature is enabled.
10	VIO EPAD	P	Input/Output Interface Digital Power. Nominally at the same supply as the host interface ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$, or 5 V). Exposed Pad. For the lead frame chip scale package (LFCSP), the exposed pad must be connected to GND. This connection is not required to meet the electrical performances.

[^5]
TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=5.0 \mathrm{~V}, \mathrm{VIO}=3.3 \mathrm{~V}$.

Figure 6. INL vs. Code

Figure 7. Histogram of a DC Input at the Code Center

Figure 8. Fast Fourier Transform (FFT) Plot

Figure 9. DNL vs. Code

Figure 10. Histogram of a DC Input at the Code Transition

Figure 11. SNR vs. Input Level

Figure 12. SNR, SINAD, and ENOB vs. Reference Voltage

Figure 13. SNR vs. Temperature

Figure 14. SINAD vs. Frequency

Figure 15. THD and SFDR vs. Reference Voltage

Figure 16. THD vs. Temperature

Figure 17. THD vs. Frequency

Figure 18. Operating Currents vs. Supply Voltage

Figure 19. Power-Down Currents vs. Temperature

Figure 20. Operating Currents vs. Temperature

TERMINOLOGY

Integral Nonlinearity Error (INL)

INL refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs $1 / 2$ LSB before the first code transition. Positive full scale is defined as a level $11 / 2$ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line (see Figure 22).

Differential Nonlinearity Error (DNL)

In an ideal ADC, code transitions are 1 LSB apart. DNL is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

Zero Error

Zero error is the difference between the ideal midscale voltage, that is, 0 V , from the actual voltage producing the midscale output code, that is, 0 LSB.

Gain Error

The first code transition (from $100 \ldots 00$ to $100 \ldots 01$) must occur at a level $1 / 2$ LSB above nominal negative full scale (-4.999981 V for the $\pm 5 \mathrm{~V}$ range). The last transition (from 011 ... 10 to $011 \ldots$ 11) must occur for an analog voltage $1 \frac{1}{2}$ LSB below the nominal full scale (+4.999943 V for the $\pm 5 \mathrm{~V}$ range). The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition from the difference between the ideal levels.

Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude of the input signal and the peak spurious signal.

Effective Number of Bits (ENOB)

ENOB is a measurement of the resolution with a sine wave input. It is related to SINAD as follows:
$E N O B=\left(S I N A D_{d B}-1.76\right) / 6.02$
and is expressed in bits.

Noise Free Code Resolution

Noise free code resolution is the number of bits beyond which it is impossible to distinctly resolve individual codes. It is calculated as

Noise Free Code Resolution $=\log _{2}\left(2^{N} /\right.$ Peak-to-Peak Noise $)$
and is expressed in bits.

Effective Resolution

Effective resolution is calculated as
Effective Resolution $=\log _{2}\left(2^{N} /\right.$ RMS Input Noise $)$
and is expressed in bits.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in decibels.

Dynamic Range

Dynamic range is the ratio of the rms value of the full scale to the total rms noise measured with the inputs shorted together. The value for dynamic range is expressed in decibels. It is measured with a signal at -60 dB so it includes all noise sources and DNL artifacts.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in decibels.

Signal-to-Noise-and-Distortion Ratio (SINAD)

SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components that are less than the Nyquist frequency, including harmonics but excluding dc. The value of SINAD is expressed in decibels.

Aperture Delay

Aperture delay is the measure of the acquisition performance and is the time between the rising edge of the CNV input and when the input signal is held for a conversion.

Transient Response

Transient response is the time required for the ADC to accurately acquire its input after a full-scale step function is applied.

THEORY OF OPERATION

CIRCUIT INFORMATION

The AD7982 is a fast, low power, single-supply, precise 18-bit ADC using a successive approximation architecture.

The AD7982 is capable of converting $1,000,000$ samples per second (1 MSPS) and powers down between conversions. When operating at 10 kSPS , for example, it typically consumes $70 \mu \mathrm{~W}$, making it ideal for battery-powered applications.

The AD7982 provides the user with an on-chip track-and-hold and does not exhibit any pipeline delay or latency, making it ideal for multiple multiplexed channel applications.

The AD7982 can interface to any 1.8 V to 5 V digital logic family. It is available in a 10 -lead MSOP or a tiny 10 -lead LFCSP that allows space savings and flexible configurations.
It is pin for pin compatible with the 16 -bit AD7980.

CONVERTER OPERATION

The AD7982 is a successive approximation ADC based on a charge redistribution DAC. Figure 21 shows the simplified schematic of the ADC. The capacitive DAC consists of two identical arrays of 18 binary weighted capacitors, which are connected to the two comparator inputs.

During the acquisition phase, terminals of the array tied to the input of the comparator are connected to GND via Switch SW+ and Switch SW-. All independent switches are connected to the analog inputs. Therefore, the capacitor arrays are used as sampling capacitors and acquire the analog signal on the IN+ input and the IN -input. When the acquisition phase completes and the CNV input goes high, a conversion phase initiates. When the conversion phase begins, SW+ and SW- open first. The two capacitor arrays then disconnect from the inputs and connect to the GND input. Therefore, the differential voltage between the $\mathrm{IN}+$ and IN - inputs captured at the end of the acquisition phase applies to the comparator inputs, causing the comparator to become unbalanced. By switching each element of the capacitor array between GND and REF, the comparator input varies by binary weighted voltage steps ($\mathrm{V}_{\mathrm{REF}} / 2, \mathrm{~V}_{\mathrm{REF}} / 4 \ldots \mathrm{~V}_{\mathrm{REF}} / 262,144$). The control logic toggles these switches, starting with the MSB, to bring the comparator back into a balanced condition. After the completion of the conversion phase process, the device returns to the acquisition phase and the control logic generates the ADC output code and a busy signal indicator.
Because the AD7982 has an on-board conversion clock, the serial clock, SCK, is not required for the conversion process.

Transfer Functions

The ideal transfer characteristic for the AD7982 is shown in Figure 22 and Table 8.

Figure 22. ADC Ideal Transfer Function Characteristic

Table 8. Output Codes and Ideal Input Voltages

Description	Analog Input $\mathbf{V}_{\text {REF }}=\mathbf{5}$ V	Digital Output Code (Hex)
FSR -1 LSB	+4.999962 V	$0 \times 1 \mathrm{FFFF}^{1}$
Midscale + 1 LSB	$+38.15 \mu \mathrm{~V}$	0×00001
Midscale	0 V	0×00000
Midscale -1 LSB	$-38.15 \mu \mathrm{~V}$	$0 \times 3 \mathrm{FFFF}$
- FSR + 1 LSB	-4.999962 V	0×20001
- FSR	-5 V	0×20000^{2}

${ }^{1}$ This is also the code for an overranged analog input $\left(V_{\mathbb{I N}_{+}}-\mathrm{V}_{\mathbb{N}-}\right.$ above $\left.\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {GND }}\right)$.
${ }^{2}$ This is also the code for an underranged analog input $\left(\mathrm{V}_{\mathbb{I N}_{+}}-\mathrm{V}_{\mathbb{I N}-}\right.$ below $\left.\mathrm{V}_{G N D}\right)$.

TYPICAL CONNECTION DIAGRAM

Figure 23 shows an example of the recommended connection diagram for the AD7982 when multiple supplies are available.

NOTES
1SEE VOLTAGE REFERENCE INPUT SECTION FOR REFERENCE SELECTION.
${ }^{2} \mathrm{C}_{\text {REF }}$ IS USUALLY A $10 \mu \mathrm{~F}$ CERAMIC CAPACITOR (X5R).
SEE RECOMMENDED LAYOUT FIGURE 41 AND FIGURE 42.
${ }^{3}$ SEE DRIVER AMPLIFIER CHOICE SECTION.
${ }^{4}$ OPTIONAL FILTER. SEE ANALOG INPUT SECTION.
Figure 23. Typical Application Diagram with Multiple Supplies

ANALOG INPUTS

Figure 24 shows an equivalent circuit of the input structure of the AD7982.

The two diodes, D1 and D2, provide electrostatic discharge (ESD) protection for the IN+ analog input and the IN - analog input. Take care to ensure the analog input signal does not exceed the reference input voltage (REF) by more than 0.3 V . If the analog input signal exceeds the 0.3 V level, the diodes become forward-biased and begin conducting current. These diodes can handle a forward-biased current of 130 mA maximum. However, if the supplies of the input buffer (for example, the supplies of the ADA4807-1 in Figure 23) are different from those of the REF, the analog input signal can eventually exceed the supply rails by more than 0.3 V . In such a case (for example, an input buffer with a short-circuit), the current limitation can protect the device.

Figure 24. Equivalent Analog Input Circuit
The analog input structure allows the sampling of the true differential signal between $\mathrm{IN}+$ and $\mathrm{IN}-$. By using these differential inputs, signals common to both inputs are rejected.

Figure 25. Analog Input CMRR vs. Frequency
During the acquisition phase, the impedance of the analog inputs (IN+ or IN-) can be modeled as a parallel combination of Capacitor Cpin and the network formed by the series connection of $\mathrm{R}_{\mathbb{N}}$ and $\mathrm{C}_{\mathbb{I N}}$. CPIN is primarily the pin capacitance. $\mathrm{R}_{\mathbb{N}}$ is typically 400Ω and is a lumped component composed of serial resistors and the on resistance of the switches. C_{IN} is typically 30 pF and is mainly the ADC sampling capacitor.
During the sampling phase where the switches are closed, the input impedance is limited to $\mathrm{C}_{\text {PIN. }} \mathrm{R}_{\mathbb{I N}}$ and $\mathrm{C}_{\text {IN }}$ make a 1-pole, low-pass filter that reduces undesirable aliasing effects and limits noise.

When the source impedance of the driving circuit is low, the AD7982 can be driven directly. Large source impedances significantly affect the ac performance, especially THD. The dc performances are less sensitive to the input impedance. The maximum source impedance depends on the amount of THD that can be tolerated. The THD degrades as a function of the source impedance and the maximum input frequency.

DRIVER AMPLIFIER CHOICE

Although the AD7982 is easy to drive, the driver amplifier must meet the following requirements:

- The noise generated by the driver amplifier must be kept as low as possible to preserve the SNR and transition noise performance of the AD7982. The noise from the driver is filtered by the analog input circuit of the AD7982 1-pole, low-pass filter made by R_{IN} and C_{IN}, or by the external filter, if one is used. Because the typical noise of the AD7982 is $40 \mu \mathrm{~V} \mathrm{rms}$, the SNR degradation due to the amplifier is
$S N R_{\text {LOSS }}=20 \log \left(\frac{40}{\sqrt{40^{2}+\frac{\pi}{2} f_{-3 d B}\left(N e_{N}\right)^{2}}}\right)$
where:
$f_{-3 d B}$ is the input bandwidth, in megahertz, of the AD7982
(10 MHz) or the cutoff frequency of the input filter, if one is used.
N is the noise gain of the amplifier (for example, 1 in buffer configuration).
e_{N} is the equivalent input noise voltage of the op amp in $\mathrm{nV} / \sqrt{\mathrm{Hz}}$.
- For ac applications, the driver must have a THD performance commensurate with the AD7982.
- For multichannel, multiplexed applications, the driver amplifier and the AD7982 analog input circuit must settle for a full-scale step onto the capacitor array at an 18-bit level ($0.0004 \%, 4 \mathrm{ppm})$. In the data sheet of the amplifier, settling at 0.1% to 0.01% is more typically specified. Settling time can differ significantly from the settling time at an 18-bit level and must be verified prior to driver selection.

Table 9. Recommended Driver Amplifiers

Amplifier	Typical Application
ADA4941-1	Very low noise, low power, single to differential
ADA4940-1	Very low noise, low power, single to differential
ADA4807-2	Very low noise and low power
ADA4627-1	Precision, low noise and low input bias ADA4522-2Precision, zero drift, and electromagnetic interference (EMI) enhanced
ADA4500-2	Precision, rail-to-rail input and output (RRIO), and zero input crossover distortion

SINGLE-ENDED TO DIFFERENTIAL DRIVER

For applications using a single-ended analog signal, either bipolar or unipolar, the ADA4941-1 single-ended to differential driver allows a differential input to the device. The circuit diagram is shown in Figure 26.
R 1 and R2 set the attenuation ratio between the input range and the ADC voltage range ($\mathrm{V}_{\mathrm{REF}}$). R1, R 2 , and C_{F} are chosen depending on the desired input resistance, signal bandwidth, antialiasing, and noise contribution. For example, for the $\pm 10 \mathrm{~V}$ range with a $4 \mathrm{k} \Omega$ impedance, $\mathrm{R} 2=1 \mathrm{k} \Omega$ and $\mathrm{R} 1=4 \mathrm{k} \Omega$.
R3 and R4 set the common mode on the IN-input, and R5 and R6 set the common mode on the $\mathrm{IN}+$ input of the ADC. Ensure the common mode is close to $\mathrm{V}_{\mathrm{ReF}} / 2$. For example, for the $\pm 10 \mathrm{~V}$ range with a single supply, $\mathrm{R} 3=8.45 \mathrm{k} \Omega, \mathrm{R} 4=11.8 \mathrm{k} \Omega, \mathrm{R} 5=$ $10.5 \mathrm{k} \Omega$, and R6 $=9.76 \mathrm{k} \Omega$.

Figure 26. Single-Ended to Differential Driver Circuit

VOLTAGE REFERENCE INPUT

The AD7982 voltage reference input, REF, has a dynamic input impedance and must be driven by a low impedance source with efficient decoupling between the REF and GND pins, as explained in the Layout section.
When REF is driven by a very low impedance source (for example, a reference buffer using the AD8031 or the ADA4807-1), a $10 \mu \mathrm{~F}$ (X5R, 0805 size) ceramic chip capacitor is appropriate for optimum performance.
If using an unbuffered reference voltage, the decoupling value depends on the reference used. For instance, a $22 \mu \mathrm{~F}$ (X5R, 1206 size) ceramic chip capacitor is appropriate for optimum performance using a low temperature drift ADR435 reference.
If desired, use a reference decoupling capacitor with values as small as $2.2 \mu \mathrm{~F}$ with a minimal impact on performance, especially DNL.
Regardless, there is no need for an additional lower value ceramic decoupling capacitor (for example, 100 nF) between the REF and GND pins.

POWER SUPPLY

The AD7982 uses two power supply pins: a core supply (VDD) and a digital input/output interface supply (VIO). VIO allows direct interface with any logic between 1.8 V and 5.5 V . To reduce the number of supplies needed, tie VIO and VDD together. The AD7982 is independent of power supply sequencing between VIO and VDD. Additionally, it is very insensitive to power supply variations over a wide frequency range, as shown in Figure 27.

The AD7982 powers down automatically at the end of each conversion phase; therefore, the power scales linearly with the sampling rate. The power scaling linearly with throughput makes the device ideal for low sampling rates (even of a few hertz) and low battery-powered applications.

Figure 28. Operating Currents vs. Sampling Rate

Data Sheet

DIGITAL INTERFACE

Although the AD7982 has a reduced number of pins, it offers flexibility in its serial interface modes.
When in $\overline{\mathrm{CS}}$ mode, the AD7982 is compatible with SPI, QSPI, digital hosts, and digital signal processors (DSPs). In $\overline{\mathrm{CS}}$ mode, the AD7982 can use either a 3-wire or 4-wire interface. A 3wire interface using the CNV, SCK, and SDO signals minimizes wiring connections useful, for instance, in isolated applications. A 4-wire interface using the SDI, CNV, SCK, and SDO signals allows CNV, which initiates the conversions, to be independent of the readback timing (SDI). The 4 -wire interface is useful in low jitter sampling or simultaneous sampling applications.
When in chain mode, the AD7982 provides a daisy-chain feature using the SDI input for cascading multiple ADCs on a single data line similar to a shift register.

The mode in which the device operates depends on the SDI level when the CNV rising edge occurs. The $\overline{\mathrm{CS}}$ mode is selected if SDI is high, and the chain mode is selected if SDI is low. The SDI hold time is such that when SDI and CNV are connected together, the chain mode is always selected.
In either mode, the AD7982 offers the option of forcing a start bit in front of the data bits. The start bit can be used as a busy signal indicator to interrupt the digital host and trigger the data reading. Otherwise, without a busy indicator, the user must timeout the maximum conversion time prior to readback.
The busy indicator feature is enabled

- In the $\overline{\mathrm{CS}}$ mode if CNV or SDI is low when the ADC conversion ends (see Figure 32 and Figure 36).
- In the chain mode if SCK is high during the CNV rising edge (see Figure 40).

$\overline{C S}$ MODE, 3-WIRE WITHOUT BUSY INDICATOR

$\overline{\mathrm{CS}}$ mode, 3 -wire without busy indicator is usually used when a single AD7982 is connected to an SPI-compatible digital host. The connection diagram is shown in Figure 29, and the corresponding timing is given in Figure 30 .
With SDI tied to VIO, a rising edge on CNV initiates a conversion, selects the $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. After a conversion is initiated, it continues until completion irrespective of the state of CNV. This feature can be useful, for instance, to bring CNV low to select other SPI devices, such as analog multiplexers; however, CNV must be returned high before the minimum conversion time elapses and then held high for the maximum possible conversion time to avoid the generation of the busy signal indicator.

When the conversion completes, the AD7982 enters the acquisition phase and powers down. When CNV goes low, the MSB is output onto SDO. The remaining data bits are clocked by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the $18{ }^{\mathrm{h}}$ SCK falling edge or when CNV goes high (whichever occurs first), SDO returns to high impedance.

Figure 29. $\overline{C S}$ Mode, 3-Wire Without Busy Indicator Connection Diagram (SDI High)

Figure 30. $\overline{C S}$ Mode, 3-Wire Without Busy Indicator Serial Interface Timing (SDI High)

$\overline{C S}$ MODE, 3 -WIRE WITH BUSY INDICATOR

$\overline{\mathrm{CS}}$ mode, 3-wire with busy indicator is usually used when a single AD7982 is connected to an SPI-compatible digital host having an interrupt input.

The connection diagram is shown in Figure 31, and the corresponding timing is given in Figure 32.
With SDI tied to VIO, a rising edge on CNV initiates a conversion, selects the $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. SDO is maintained in high impedance until the completion of the conversion irrespective of the state of CNV. Prior to the minimum conversion time, CNV can be used to select other SPI devices, such as analog multiplexers, but CNV must be returned low before the minimum conversion time elapses and then held low for the maximum possible conversion time to guarantee the generation of the busy signal indicator.

When the conversion completes, SDO goes from high impedance to low impedance. With a pull-up resistor on the SDO line, the high impedance to low impedance transition can be used as an interrupt signal to initiate the data reading controlled by the digital host. The AD7982 then enters the acquisition phase and powers down. The data bits are then clocked out, MSB first, by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the optional 19th SCK falling edge or when CNV goes high (whichever occurs first), SDO returns to high impedance.
If multiple AD7982 devices are selected at the same time, the SDO output pin handles this contention without damage or induced latch-up. Meanwhile, it is recommended to keep this contention as short as possible to limit extra power dissipation.

Figure 31. $\overline{C S}$ Mode, 3-Wire with Busy Indicator Connection Diagram (SDI High)

Figure 32. $\overline{C S}$ Mode, 3-Wire with Busy Indicator Serial Interface Timing (SDI High)

$\overline{C S}$ MODE, 4-WIRE WITHOUT BUSY INDICATOR

$\overline{\mathrm{CS}}$ mode, 4 -wire without busy indicator is usually used when multiple AD7982 devices are connected to an SPI-compatible digital host.
A connection diagram example using two AD7982 devices is shown in Figure 33, and the corresponding timing is given in Figure 34.
With SDI high, a rising edge on CNV initiates a conversion, selects the $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. In this mode, CNV must be held high during the conversion phase and the subsequent data readback. If SDI and CNV are low, SDO is driven low. Prior to the minimum conversion time, SDI can select other SPI devices, such as analog multiplexers, but SDI must be returned high before the minimum conversion time elapses and then held high for the maximum possible conversion time to avoid the generation of the busy signal indicator.

When the conversion completes, the AD7982 enters the acquisition phase and powers down. Each ADC result can be read by bringing its SDI input low, which consequently outputs the MSB onto SDO. The remaining data bits are then clocked by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the $18^{\text {th }}$ SCK falling edge or when SDI goes high (whichever occurs first), SDO returns to high impedance and another AD7982 can be read.

Figure 33. $\overline{C S}$ Mode, 4-Wire Without Busy Indicator Connection Diagram

Figure 34. $\overline{C S}$ Mode, 4-Wire Without Busy Indicator Serial Interface Timing

CS MODE, 4-WIRE WITH BUSY INDICATOR

$\overline{\mathrm{CS}}$ mode, 4-wire with busy indictor is usually used when a single AD7982 is connected to an SPI-compatible digital host with an interrupt input and when it is desired to keep CNV, which samples the analog input, independent of the signal used to select the data reading. This independence is particularly important in applications where low jitter on CNV is desired.

The connection diagram is shown in Figure 35, and the corresponding timing is given in Figure 36.
With SDI high, a rising edge on CNV initiates a conversion, selects the $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. In this mode, CNV must be held high during the conversion phase and the subsequent data readback. If SDI and CNV are low, SDO is driven low.

Prior to the minimum conversion time, SDI can select other SPI devices, such as analog multiplexers, but SDI must be returned low before the minimum conversion time elapses and then held low for the maximum possible conversion time to guarantee the generation of the busy signal indicator.
When the conversion is complete, SDO goes from high impedance to low impedance. With a pull-up on the SDO line, the high impedance to low impedance transition can be used as an interrupt signal to initiate the data readback controlled by the digital host. The AD7982 then enters the acquisition phase and powers down. The data bits then clock out, MSB first, by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the optional $19^{\text {th }}$ SCK falling edge or SDI going high (whichever occurs first), SDO returns to high impedance.

Figure 35. $\overline{C S}$ Mode, 4-Wire with Busy Indicator Connection Diagram

Figure 36. $\overline{C S}$ Mode, 4-Wire with Busy Indicator Serial Interface Timing

CHAIN MODE WITHOUT BUSY INDICATOR

Chain mode without busy indicator can be used to daisy-chain multiple AD7982 devices on a 3-wire serial interface. The chain mode without busy indicator feature reduces component count and wiring connections, for example, in isolated multiconverter applications or for systems with a limited interfacing capacity. Data readback is analogous to clocking a shift register.

Figure 37 shows a connection diagram example using two AD7982 devices, and Figure 38 shows the corresponding timing.
When SDI and CNV are low, SDO is driven low. With SCK low, a rising edge on CNV initiates a conversion, selects the chain mode, and disables the busy indicator.

In this mode, CNV is held high during the conversion phase and the subsequent data readback.

When the conversion completes, the MSB is output onto SDO and the AD7982 enters the acquisition phase and powers down. The remaining data bits stored in the internal shift register are clocked by subsequent SCK falling edges. For each ADC, SDI feeds the input of the internal shift register and is clocked by the SCK falling edge. Each ADC in the chain outputs its data MSB first, and $18 \times \mathrm{N}$ clocks are required to read back the N ADCs. The data is valid on both SCK edges. Although the rising edge can capture the data, a digital host using the SCK falling edge allows a faster reading rate and consequently more AD7982 devices in the chain, provided the digital host has an acceptable hold time. The maximum conversion rate can be reduced due to the total readback time.

Figure 37. Chain Mode Without Busy Indicator Connection Diagram

Figure 38. Chain Mode Without Busy Indicator Serial Interface Timing

CHAIN MODE WITH BUSY INDICATOR

Chain mode with busy indicator can also daisy-chain multiple AD7982 devices on a 3-wire serial interface while providing a busy indicator. This chain mode with busy indicator feature reduces component count and wiring connections, for example, in isolated multiconverter applications or for systems with a limited interfacing capacity. Data readback is analogous to clocking a shift register.

Figure 39 shows a connection diagram example using three AD7982 devices, and Figure 40 shows the corresponding timing.

When SDI and CNV are low, SDO is driven low. With SCK high, a rising edge on CNV initiates a conversion, selects the chain mode, and enables the busy indicator feature.

In this mode, CNV is held high during the conversion phase and the subsequent data readback. When all ADCs in the chain have completed their conversions, the SDO pin of the ADC closest to the digital host (see the AD7982 ADC labeled C in Figure 39) is driven high. The transition of driving the SDO pin of the ADC to high can be used as a busy indicator to trigger the data readback controlled by the digital host. The AD7982 then enters the acquisition phase and powers down. The data bits stored in the internal shift register are clocked out, MSB first, by subsequent SCK falling edges. For each ADC, SDI feeds the input of the internal shift register and is clocked by the SCK falling edge. Each ADC in the chain outputs its data MSB first, and $18 \times \mathrm{N}+1$ clocks are required to read back the N ADCs. Although the rising edge can capture the data, a digital host using the SCK falling edge allows a faster reading rate and consequently more AD7982 devices in the chain, provided the digital host has an acceptable hold time.

Figure 40. Chain Mode with Busy Indicator Serial Interface Timing

APPLICATIONS INFORMATION

LAYOUT

The printed circuit board (PCB) that houses the AD7982 must be designed so the analog and digital sections are separated and confined to certain areas of the PCB. The pin configuration of the AD7982, with its analog signals on the left side and its digital signals on the right side, eases the task of separating the analog and digital circuitry on a PCB.
Avoid running digital lines under the device; these couple noise onto the die, unless a ground plane under the AD7982 is used as a shield. Fast switching signals, such as CNV or clocks, must not run near analog signal paths. Crossover of digital and analog signals must be avoided.

It is recommended to use at least one ground plane. It can be common or split between the digital and analog sections. In the latter case, the planes must be joined underneath the AD7982 devices.

The AD7982 voltage reference input REF has a dynamic input impedance and must be decoupled with minimal parasitic inductances. Decoupling is done by placing the reference decoupling ceramic capacitor close to, ideally right up against, the REF and GND pins and connecting them with wide, low impedance traces.
Finally, decouple the power supplies of the AD7982, VDD and VIO, with ceramic capacitors, typically 100 nF , placed close to the AD7982 and connected using short, wide traces to provide low impedance paths and to reduce the effect of glitches on the power supply lines.

An example of layout following these rules is shown in Figure 41 and Figure 42.
EVALUATING THE PERFORMANCE OF THE AD7982
Other recommended layouts for the AD7982 are outlined in the UG-340 user guide for the EVAL-AD7982SDZ. The evaluation board package includes a fully assembled and tested evaluation board, the user guide, and software for controlling the evaluation board from a PC via the EVAL-SDP-CB1Z.

Figure 41. Example Layout of the AD7982 (Top Layer)

Figure 42. Example Layout of the AD7982 (Bottom Layer)

OUTLINE DIMENSIONS

Figure 44. 10-Lead Lead Frame Chip Scale Package [LFCSP] $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin, Dual Lead (CP-10-9)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1,2,3}$	Temperature Range	Package Description	Package Option	Branding	Ordering Quantity
AD7982BRMZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead MSOP, Tube	RM-10	C5F	50
AD7982BRMZRL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead MSOP, 7"Reel	RM-10	C5F	1,000
AD7982BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead LFCSP, 7"Reel	CP-10-9	C5F	1,500
AD7982BCPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10-L e a d$ LFCSP, 13"Reel	CP-10-9	C5F	5,000
EVAL-AD7982SDZ		Evaluation Board			
EVAL-SDP-CB1Z		Controller Board			

${ }^{1} \mathrm{Z}=$ RoHS compliant part.
${ }^{2}$ The EVAL-AD7982SDZ board can be used as a standalone evaluation board or in conjunction with the EVAL-SDP-CB1Z for evaluation/demonstration purposes.
${ }^{3}$ The EVAL-SDP-CB1Z board allows a PC to control and communicate with all Analog Devices evaluation boards ending in the SDZ designator.

OCEAN CHIPS
 Океан Электроники
 Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». JONHON
«JONHON» (основан в 1970 г.)
Разъемы специального, военного и аэрокосмического назначения:
(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)
«FORSTAR» (основан в 1998 г.)
ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:
(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

[^0]: ${ }^{1}$ Protected by U.S. Patent 6,703,961.

[^1]: ${ }^{1}$ LSB means least significant bit. With the $\pm 5 \mathrm{~V}$ input range, 1 LSB is $38.15 \mu \mathrm{~V}$.
 ${ }^{2}$ See Terminology section. These specifications include full temperature range variation but not the error contribution from the external reference.
 ${ }^{3}$ All specifications expressed in decibels are referred to a full-scale input range (FSR) and tested with an input signal at 0.5 dB below full scale, unless otherwise specified.
 ${ }^{4}$ Dynamic range is obtained by oversampling the ADC running at a throughput F_{s} of 1 MSPS followed by postdigital filtering with an output word rate of F_{0}.
 ${ }^{5}$ Tested fully in production at $\mathrm{fin}_{\mathrm{in}}=1 \mathrm{kHz}$.

[^2]: ${ }^{\top}$ With all digital inputs forced to VIO or GND as required.
 ${ }^{2}$ During acquisition phase.
 ${ }^{3}$ Contact an Analog Devices, Inc., sales representative for the extended temperature range.

[^3]: ${ }^{1}$ See Figure 2 and Figure 3 for load conditions.

[^4]: ${ }^{1}$ See the Analog Inputs section for an explanation of $\mathrm{IN}+$ and $\mathrm{IN}-$.

[^5]: ${ }^{1}$ Al means analog input, DI means digital input, DO means digital output, and P means power.

