19-3404; Rev 1; 10/06

EVALUATION KIT

AVAILABLE LF-to-2.5GHz Dual Logarithmic Detector/ **Controller for Power, Gain, and VSWR Measurements**

General Description

The MAX2016 dual logarithmic detector/controller is a fully integrated system designed for measuring and comparing power, gain/loss, and voltage standing-wave ratio (VSWR) of two incoming RF signals. An internal broadband impedance match on the two differential RF input ports allows for the simultaneous monitoring of signals ranging from low frequency to 2.5GHz.

The MAX2016 uses a pair of logarithmic amplifiers to detect and compare the power levels of two RF input signals. The device internally subtracts one power level from the other to provide a DC output voltage that is proportional to the power difference (gain). The MAX2016 can also measure the return loss/VSWR of an RF signal by monitoring the incident and reflected power levels associated with any given load. A window detector is easily implemented by using the on-chip comparators, OR gate, and 2V reference. This combination of circuitry provides an automatic indication of when the measured gain is outside a programmable range. Alarm monitoring can thus be implemented for detecting high-VSWR states (such as open or shorted loads).

The MAX2016 operates from a single +2.7V to +5.25V* power supply and is specified over the extended -40°C to +85°C temperature range. The MAX2016 is available in a space-saving, 5mm x 5mm, 28-pin thin QFN.

Applications

Return Loss/VSWR Measurements

Dual-Channel RF Power Measurements

Dual-Channel Precision AGC/RF Power Control

Log Ratio Function for RF Signals

Remote System Monitoring and Diagnostics

Cellular Base Station, Microwave Link, Radar, and other Military Applications

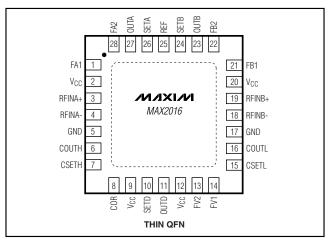
RF/IF Power Amplifier (PA) Linearization

Features

- **Complete Gain and VSWR Detector/Controller**
- Dual-Channel RF Power Detector/Controller
- Low-Frequency to 2.5GHz Frequency Range
- Exceptional Accuracy Over Temperature
- High 80dB Dynamic Range
- 2.7V to 5.25V Supply Voltage Range*
- Internal 2V Reference
- Scaling Stable Over Supply and Temperature Variations
- Controller Mode with Error Output
- Available in 5mm x 5mm, 28-Pin Thin QFN Package

*See Power-Supply Connection section.

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2016ETI	-40°C to +85°C	28 Thin QFN-EP*, bulk	T2855-3
MAX2016ETI-T	-40°C to +85°C	28 Thin QFN-EP*, T/R	T2855-3
MAX2016ETI+D	-40°C to +85°C	28 Thin QFN-EP*, lead free, bulk	T2855-3
MAX2016ETI+TD	-40°C to +85°C	28 Thin QFN-EP*, lead free, T/R	T2855-3

*EP = Exposed pad.

+Indicates lead-free package.

D = Dry pack.

Pin Configuration

Typical Application Circuit appears at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX2016

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +5.25V
Input Power Differential (RFIN_+, RFIN)	+23dBm
Input Power Single Ended (RFIN_+ or RFIN))+19dBm
All Other Pins to GND0.3	V to (V _{CC} + 0.3V)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
28-Pin, 5mm x 5mm Thin QFN (derate 35.7)	mW/°C
above +70°C)	2.8W

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +3.6V, R_1 = R_2 = R_3 = 0\Omega, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V, CSETL = CSETH = V_{CC}, 50\Omega \text{ RF system}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY						
	VS	$R_6 = 0\Omega$	2.7	3.3	3.6	
Supply Voltage	VS	$R_6 = 37.4\Omega$	4.75	5	5.25	V
Total Supply Current	Icc			43	55	mA
		Measured in each pin 2 and pin 20		16		
Supply Current		Measured in pin 9		2		mA
		Measured in pin 12		9		
INPUT INTERFACE						
Input Impedance		Differential impedance at RFINA and RFINB		50		Ω
Innut Decistores	R	Resistance at SETD		20		L.O.
Input Resistance	R	Resistance at SETA and SETB		40		kΩ
DETECTOR OUTPUT						
Source Current		Measured at OUTA, OUTB, and OUTD		4		mA
Sink Current		Measured at OUTA, OUTB, and OUTD		0.45		mA
Minimum Output Voltage		Measured at OUTA, OUTB, and OUTD		0.5		V
Maximum Output Voltage		Measured at OUTA, OUTB, and OUTD		1.8		V
Difference Output VOUTD		$P_{RFINA} = P_{RFINB} = -30 dBm$		1		V
OUTD Accuracy				±12		mV
COMPARATORS						
Output High Voltage	V _{OH}	$R_{LOAD} \ge 10k\Omega$		V _{CC} - 10mV		V
Output Low Voltage	V _{OL}	$R_{LOAD} \ge 10k\Omega$		10		mV
Input Voltage		Measured at CSETL and CSETH		GND to V _{CC}		V
Input Bias Current		CSETL and CSETH		1		nA
REFERENCE						
Output Voltage on Pin 25		$R_{LOAD} \ge 2k\Omega$		2		V
Load Regulation		Source 2mA		-5		mV

AC ELECTRICAL CHARACTERISTICS—OUTA AND OUTB

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	МАХ	UNITS
RF Input Frequency Range	fRF	AC-coupled input				2.5	GHz
Return Loss	S ₁₁	0.1GHz to 3GHz			20		dB
Large-Signal Response Time		P _{RFIN} = no signal to accuracy	0dBm, ±0.5dB settling		100		ns
RSSI MODE—0.1GHz							
RF Input Power Range		(Note 2)			-70 to +10		dBm
±3dB Dynamic Range		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)		80		dB
Range Center					-32		dBm
Tomporatura Consitivity		PRFINA = PRFINB =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$		+0.0083		
Temperature Sensitivity		-32dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$		-0.0083		dB/°C
Slope		(Note 4)			19		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			-4		µV/°C
Intercept		(Note 5)			-100		dBm
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			0.03		dBm/°C
RSSI MODE—0.9GHz							
RF Input Power Range		(Note 2)			-70 to +10		dBm
±3dB Dynamic Range		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)		80		dB
Range Center					-30		dBm
Temperature Sensitivity		PRFINA = PRFINB = -30dBm	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +25^{\circ}C \text{ to } -20^{\circ}C$		+0.0083		dB/°C
Slope		(Note 4)	1A - 120 0 to 20 0		18.1		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			-4		µV/°C
Intercept		(Note 5)			-97		dBm
Typical Intercept Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			0.02		dBm/°C
RSSI MODE—1.9GHz							
RF Input Power Range		(Note 2)			-55 to +12		dBm
±3dB Dynamic Range		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)		67		dB
Range Center					-27		dBm
Torrestore Or it it		Prfina = Prfinb =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$		+0.0125		
Temperature Sensitivity		-27dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$		-0.0125		dB/°C
Slope		(Note 4)			18		mV/dB
Typical Slope Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			-4.8		µV/°C
Intercept		(Note 5)			-88		dBm
Typical Intercept Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			0.03		dBm/°C

AC ELECTRICAL CHARACTERISTICS—OUTA AND OUTB (continued)

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONE	DITIONS	MIN TYP	MAX	UNITS
RSSI MODE—2.17GHz	÷					
RF Input Power Range		(Note 2)		-52 to +12		dBm
±3dB Dynamic Range		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)	64		dB
Range Center				-25		dBm
Tomporatura Consitivity		PRFINA = PRFINB =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	+0.0135		
Temperature Sensitivity		-25dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$	-0.0135		dB/°C
Slope		(Note 4)		17.8		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		-8		µV/°C
Intercept		(Note 5)		-81		dBm
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		0.03		dBm/°C
RSSI MODE—2.5GHz						
RF Input Power Range		(Note 2)		-45 to +7		dBm
±3dB Dynamic Range		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)	52		dB
Range Center				-23		dBm
Temperature Sensitivity		P _{RFINA} = P _{RFINB} = -23dBm	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +25^{\circ}C \text{ to } -20^{\circ}C$	+0.0167 -0.0167		dB/°C
Slope		(Note 4)		17.8		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		-8		μV/°C
Intercept		(Note 5)		-80		dBm
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		0.03		dBm/°C

AC ELECTRICAL CHARACTERISTICS—OUTD

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
OUTD Center Point		Prfina = Prfinb		1		V
Small-Signal Envelope Bandwidth		No external capacitor on pins FV1 and FV2		22		MHz
Small-Signal Settling Time		Any 8dB change on the inputs, no external capacitor on FV1 and FV2, settling accuracy is ±0.5dB		150		ns
Large-Signal Settling Time		Any 30dB change on the inputs, no external capacitor on pins FV1 and FV2, settling accuracy is ±0.5dB		300		ns
Small-Signal Rise and Fall Time		Any 8dB step, no external capacitor on pins FV1 and FV2		15		ns

M/IXI/M

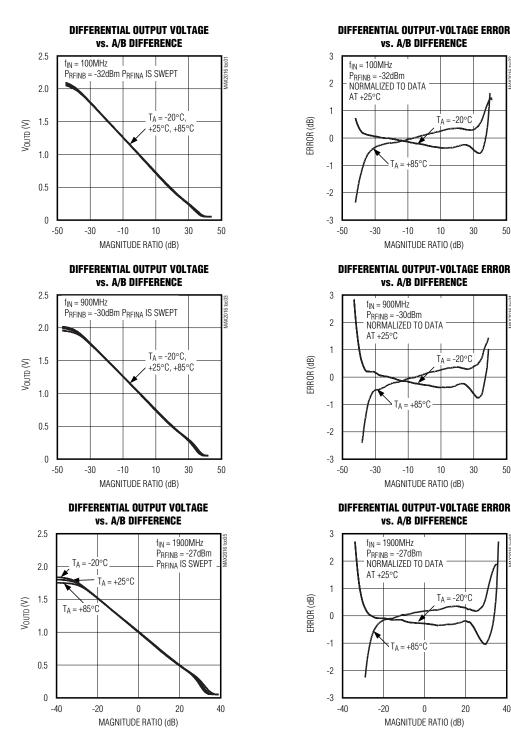
AC ELECTRICAL CHARACTERISTICS—OUTD (continued)

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	МАХ	UNITS
Large-Signal Rise and Fall Time		Any 30dB step, no pins FV1 and FV2	external capacitor on		35		ns
		0.1GHz	$P_{RFINB} = -32dBm$		80		
		0.9GHz	$P_{RFINB} = -30 dBm$		75		
±1dB Dynamic Range		1.9GHz	$P_{RFINB} = -27 dBm$		60		dB
		2.17GHz	$P_{RFINB} = -25 dBm$		55		
		2.5GHz	$P_{RFINB} = -23 dBm$		50		
Slope		$f_{RF} = 0.1 GHz$ to 2.5	iGHz (A-B)		-25		mV/dB
OUTD Voltage Deviation		$P_{RFINA} = P_{RFINB} =$ -20°C to +85°C	-30dBm, T _A =		±0.25		dB
			0.1GHz, P _{RFINB} = -32dBm		80		
			0.9GHz, P _{RFINB} = -30dBm		70		
±1dB Dynamic Range over Temperature Relative to Best-Fit Curve at +25°C		P _{RFINA} is swept ; T _A = -20°C to +85°C	1.9GHz, P _{RFINB} = -27dBm		55		dB
			2.17GHz, P _{RFINB} = -25dBm		50		
			2.5GHz, P _{RFINB} = -23dBm		45		
Gain Measurement Balance		P _{RFINB} = P _{RFINB} = 1.9GHz	-50dBm to -5dBm, f _{RF} =		0.2		dB
		0.9GHz			90		
Channel Isolation		1.9GHz			65		dB
		2.5GHz			55]

al values **MAX2016** ns dB

Note 1: The MAX2016 is tested at $T_A = +25^{\circ}C$ and is guaranteed by design for $T_A = -40^{\circ}C$ to $+85^{\circ}C$.


Note 2: Typical minimum and maximum range of the detector at the stated frequency.

Note 3: Dynamic range refers to the range over which the error remains within the ±3dB range.

Note 4: The slope is the variation of the output voltage per change in input power. It is calculated by fitting a root-mean-square straight line to the data indicated by the RF input power range.

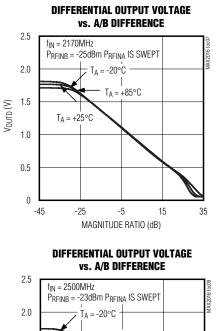
Note 5: The intercept is an extrapolated value that corresponds to the output power for which the output voltage is zero. It is calculated by fitting a root-mean-square straight line to the data.

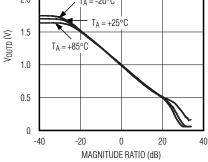
MAX2016

Typical Operating Characteristics

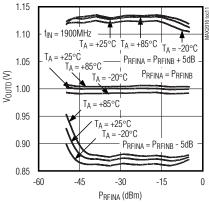
50

50

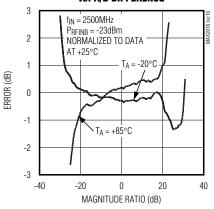

40


(MAX2016 EV kit, V_{CC} = 3.3V, $R_1 = R_2 = R_3 = 0\Omega$, CSETL = CSETH = V_{CC} , T_A = +25°C, unless otherwise noted.)

MIXIM


Typical Operating Characteristics (continued)

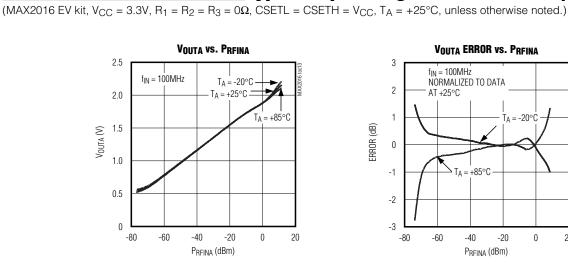

(MAX2016 EV kit, $V_{CC} = 3.3V$, $R_1 = R_2 = R_3 = 0\Omega$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}$ C, unless otherwise noted.)

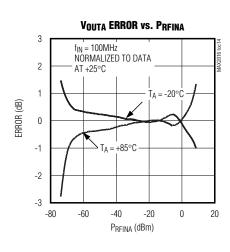


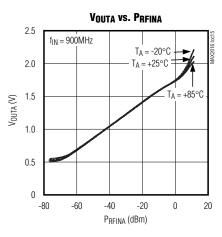
DIFFERENTIAL OUTPUT-VOLTAGE BALANCE

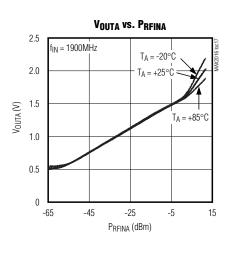


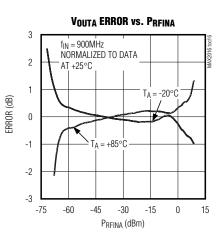
DIFFERENTIAL OUTPUT-VOLTAGE ERROR vs. A/B DIFFERENCE

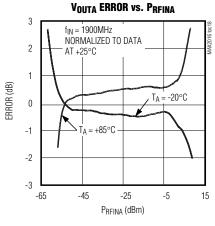




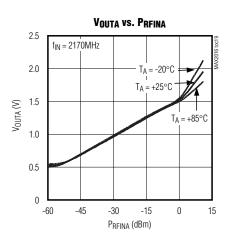

MAX2016

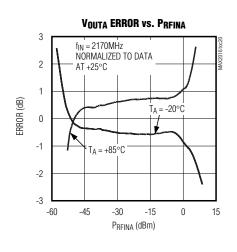


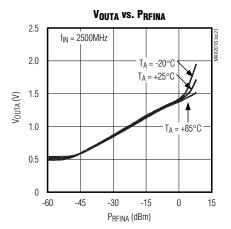




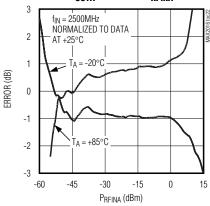
Typical Operating Characteristics (continued)







Typical Operating Characteristics (continued)


(MAX2016 EV kit, $V_{CC} = 3.3V$, $R_1 = R_2 = R_3 = 0\Omega$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}$ C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 28	FA1, FA2	External Capacitor Input. Connecting a capacitor between FA1 and FA2 sets the highpass cutoff frequency corner for detector A (see the <i>Input Highpass Filter</i> section).
2, 9, 12, 20	V _{CC}	Supply Voltage. Bypass with capacitors as specified in the <i>Typical Application Circuit</i> . Place capacitors as close to each V_{CC} as possible (see the <i>Power-Supply Connections</i> section).
3, 4	RFINA+, RFINA-	Differential RF Inputs for Detector A. Requires external DC-blocking capacitors.
5, 17	GND	Ground. Connect to the PCB ground plane.
6	COUTH	High-Comparator Output
7	CSETH	Threshold Input on High Comparator
8	COR	Comparator OR Logic Output. Output of COUTH ORed with COUTL.
10	SETD	Set-Point Input for Gain Detector
11	OUTD	DC Output Voltage Representing P _{RFINA} - P _{RFINB} . This output provides a DC voltage proportional to the difference of the input RF powers on RFINA and RFINB.
13, 14	FV2, FV1	Video-Filter Capacitor Inputs for OUTD
15	CSETL	Threshold Set Input on Low Comparator
16	COUTL	Low-Comparator Output
18, 19	RFINB-, RFINB+	Differential RF Inputs for Detector B. Requires external DC-blocking capacitors.
21, 22	FB1, FB2	External Capacitor Input. Connecting a capacitor between FB1 and FB2 sets the highpass cutoff frequency corner for detector B (see the <i>Input Highpass Filter</i> section).
23	OUTB	Detector B Output. This output provides a voltage proportional to the log of the input power on differential inputs RFINB+ and RFINB- (RFINB).
24	SETB	Set-Point Input for Detector B
25	REF	2V Reference Output
26	SETA	Set-Point Input for Detector A
27	OUTA	Detector A Output. This output provides a voltage proportional to the log of the input power on differential inputs RFINA+ and RFINA- (RFINA).
EP	GND	Exposed Paddle. EP must connect to the PCB ground plane.

Detailed Description

The MAX2016 dual logarithmic amplifier is designed for a multitude of applications including dual-channel RF power measurements, AGC control, gain/loss detection, and VSWR monitoring. This device measures RF signals ranging from low frequency to 2.5GHz, and operates from a single 2.7V to 5.25V (using series resistor, R6) power supply. As with its single-channel counterpart (MAX2015), the MAX2016 provides unparalleled performance with a high 80dB dynamic range at 100MHz and exceptional accuracy over the extended temperature and supply voltage ranges.

The MAX2016 uses a pair of logarithmic amplifiers to detect and compare the power levels of two RF input signals. The device subtracts one power level from the other to provide a DC output voltage that is proportional

to the power difference (gain). The MAX2016 can also measure the return loss/VSWR of an RF signal by monitoring the incident and reflected power levels associated with any given load.

A window detector is easily implemented by using the on-chip comparators, OR gate, and 2V reference. This combination of circuitry provides an automatic indication of when the measured gain is outside a programmable range. Alarm monitoring can thus be implemented for detecting high-VSWR states (such as open or shorted loads).

RF Inputs (RFINA and RFINB)

The MAX2016 has two differential RF inputs. The input to detector A (RFINA) uses the two input ports RFINA+ and RFINA-, and the input to detector B (RFINB) uses the two input ports RFINB+ and RFINB-.

MAX2016

The differential RF inputs allow for the measurement of broadband signals ranging from low frequency to 2.5GHz. For single-ended signals, RFINA- and RFINB- are AC-coupled to ground. The RF inputs are internally biased and need to be AC-coupled. Using 680pF capacitors, as shown in the *Typical Application Circuit*, results in a 10MHz highpass corner frequency. An internal 50 Ω resistor between RFINA+ and RFINA- (as well as RFINB+ and RFINB-) produces a good low-frequency to 3.0GHz match.

SETA, SETB, and SETD Inputs

The SET_ inputs are used for loop control when the device is in controller mode. Likewise, these same SET_ inputs are used to set the slope of the output signal (mV/dB) when the MAX2016 is in detector mode. The center node of the internal resistor-divider is fed to the negative input of the power detector's internal output op amp.

Reference The MAX2016 has an on-chip 2V voltage reference. The internal reference output is connected to REF. The output can be used as a reference voltage source for the comparators or other components and can source up to 2mA.

OUTA and OUTB

Each OUT_ is a DC voltage proportional to the RF input power level. The change of OUT_ with respect to the power input is approximately 18mV/dB (R₁ = R₂ = 0 Ω).

The input power level can be determined by the following equation:

$$P_{RFIN_} = \frac{V_{OUT_}}{SLOPE} + P_{INT}$$

where PINT is the extrapolated intercept point of where the output voltage intersects the horizontal axis.

OUTD is a DC voltage proportional to the difference of the input RF power levels. The change of the OUTD with respect to the power difference is -25mV/dB (R3 = 0Ω). The difference of the input power levels (gain) can be determined by the following equation:

$$P_{RFINA} - P_{RFINB} = \frac{(V_{OUTD} - V_{CENTER})}{SLOPE}$$

where V_{CENTER} is the output voltage, typically 1V, when $P_{RFINA} = P_{RFINB}$.

Applications Information

Monitoring VSWR and Return Loss

The MAX2016 can be used to measure the VSWR of an RF signal, which is useful for detecting the presence or absence of a properly loaded termination, such as an antenna (see Figure 1). The transmitted wave from the power amplifier is coupled to RFINA and to the antenna. The reflected wave from the antenna is connected to RFINB through a circulator. When the antenna is missing or damaged, a mismatch in the nominal load

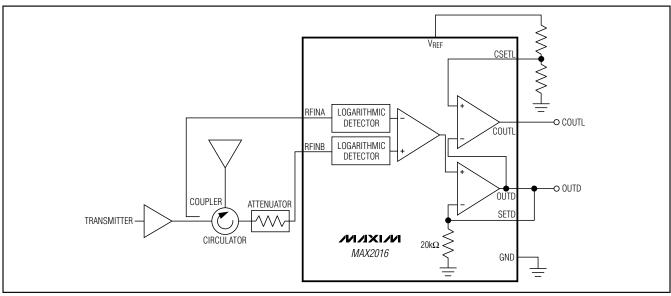


Figure 1. VSWR Monitoring Configuation

MAX2016

impedance results, leading to an increase in reflected power and subsequent change in the transmission line's VSWR. This increase in reflected power is manifested by an increase in the voltage at OUTD. An alarm condition can be set by using the low comparator output (COUTL) as shown in Figure 1. The comparator automatically senses the change in VSWR, yielding a logic 0 as it compares OUTD to a low DC voltage at CSETL. CSETL, in turn, is set by using the internal reference voltage and an external resistor-divider network.

For accurate measurement of signals carrying significant amplitude modulation, limit the bandwidth of the difference amplifier to be less than the lowest modulation frequency. This will minimize the ripple in the OUTD waveform. This is particularly appropriate if the system-level time delay between the two sense points is significant with respect to the period of modulation.

Figure 1 illustrates a simple level detector. For windowdetector implementation, see the *Comparator/Window Detector* section.

Measuring VSWR and Return Loss

In Figure 2, the two logarithmic amplifiers measure the incident and the reflected power levels to produce two proportional output voltages at OUTA and OUTB. Since OUTD is a DC voltage proportional to the difference of OUTA and OUTB, return loss (RL) and VSWR can be easily calculated within a microprocessor using the following relationships:

$$RL = P_{RFINA} - P_{RFINB} = \frac{(V_{OUTD} - V_{CENTER})}{SLOPE}$$

where return loss (RL) is expressed in decibels, VCENTER is the output voltage (typically 1V) when PRFINA = PRFINB, and SLOPE is typically equal to -25mV/dB (for R3 = 0 Ω).

VSWR can similarly be calculated through the following relationship:

VSWR =
$$\frac{1+10^{-(\frac{RL}{20})}}{1-10^{-(\frac{RL}{20})}}$$

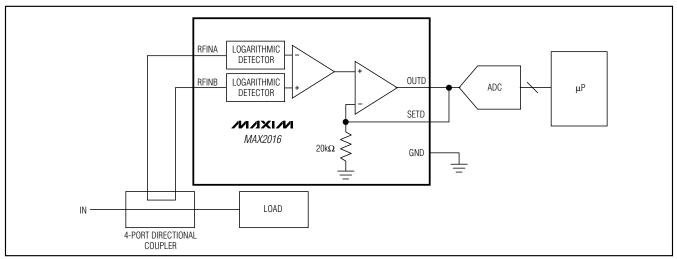


Figure 2. Measuring Return Loss and VSWR of a Given Load

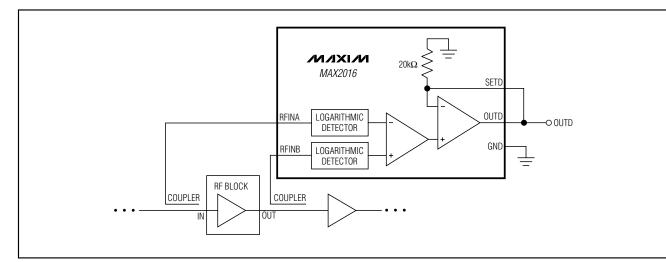


Figure 3. Gain Measurement Configuration

Measuring Gain

The MAX2016 can be used to measure the gain of an RF block (or combination of blocks) through the implementation outlined in Figure 3. As shown, a coupled signal from the input of the block is fed into RFINA, while the coupled output is connected to RFINB. The DC output voltage at OUTD is proportional to the power difference (i.e., gain).

The gain of a complete receiver or transmitter lineup can likewise be measured since the MAX2016 accepts RF signals that range from low frequency to 2.5GHz; see Figure 4. The MAX2016 accurately measures the gain, regardless of the different frequencies present within superheterodyne architectures.

For accurate measurement of signals carrying significant amplitude modulation, limit the bandwidth of the difference amplifier to be less than the lowest modulation frequency. This will minimize the ripple in the OUTD waveform. This is particularly appropriate if the system-level time delay between the two sense points is significant with respect to the period of modulation.

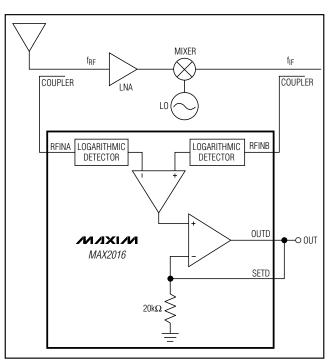


Figure 4. Conversion Gain Measurement Configuration

MAX2016

Measuring Power (RSSI Detector Mode)

In detector mode, the MAX2016 acts like a receive-signal-strength indicator (RSSI), which provides an output voltage proportional to the input power. This is accomplished by providing a feedback path from OUTA (OUTB) to SETA (SETB) (R1/R2 = 0Ω ; see Figure 5).

By connecting SET_ directly to OUT_, the op-amp gain is set to 2V/V due to two internal 20k Ω feedback resistors. This provides a detector slope of approximately 18mV/dB with a 0.5V to 1.8V output range.

Gain-Controller Mode

The MAX2016 can be used as a gain controller within an automatic gain-control (AGC) loop. As shown in Figure 6, RFINA and RFINB monitor the VGA's input and output power levels, respectively. The MAX2016

DETECTORS OUTA ⊷ OUTA RFIN+A R1/R2 $20k\Omega$ SETA RFIN-A ≶ $20k\Omega$ GND ///XI/// MAX2016 DETECTORS OUTB -O OLITE RFIN+B R1/R2 $20k\Omega$ SETB Λ FIN-B $20k\Omega$

Figure 5. In Detector Mode (RSSI), OUTA/OUTB is a DC Voltage Proportional to the Input Power

produces a DC voltage at OUTD that is proportional to the difference in these two RF input power levels. An internal op amp compares the DC voltage with a reference voltage at SETD. The op amp increases or decreases the voltage at OUTD until OUTD equals SETD. Thus, the MAX2016 adjusts the gain of the VGA to a level determined by the voltage applied to SETD.

Place the nominal signal levels of RFINA and RFINB near the middle of their respective dynamic ranges to accommodate the largest range of gain compensation. This is nominally -25dBm to -30dBm. If so selected, the nominal voltage applied to SETD will be approximately 1.0V. Operate the SETD voltage within the range of 0.5V to 1.5V for the greatest accuracy of gain control.

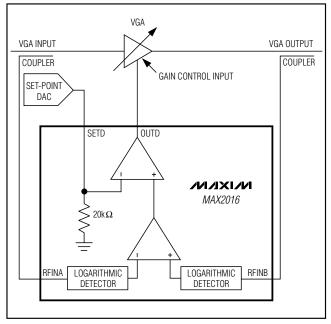


Figure 6. In Gain-Controller Mode, the OUTD Maintains the Gain of the VGA

Power-Controller Mode

The MAX2016 can also be used as a power detector/ controller within an AGC loop. Figure 7 depicts a scenario where the MAX2016 is employed as the AGC circuit. As shown in the figure, the MAX2016 monitors the output of the PA through a directional coupler. An internal differencing amplifier (Figure 5) compares the detected signal with a reference voltage determined by VSET_. The differencing amplifier increases or decreases the voltage at OUT_, according to how closely the detected signal level matches the V_{SET}_ reference. The MAX2016 maintains the power of the PA to a level determined by the voltage applied to SET_.

Since the logarithmic detector responds to any amplitude modulation being carried by the carrier signal, it may be necessary to insert an external lowpass filter between the differencing amplifier output (OUTA/OUTB) and the gain-control element to remove this modulation signal.

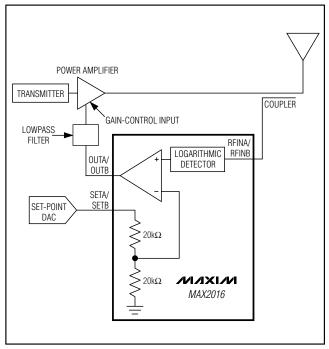


Figure 7. In Power-Controller Mode, the DC Voltage at OUTA or OUTB Controls the Gain of the PA, Leading to a Constant Output Power Level (**Note:** Only one controller channel is shown within the figure. Since the MAX2016 is a dual controller/detector, the second channel can be easily implemented by using the adjacent set of input and output connections.)

OUTA and OUTB Slope Adjustment

The transfer slope function of OUTA and OUTB can be increased from its nominal value by varying resistors R1 and R2 (see the *Typical Application Circuit*). The equation controlling the slope is:

SLOPE OUTA OR OUTB =
$$\left(9\frac{\text{mV}}{\text{dB}}\right)\left[\frac{(\text{R1 or R2}) + 40\text{k}}{20\text{k}}\right]$$

OUTD Slope Adjustment

The transfer slope function of OUTD can be increased from its nominal value by varying resistor R3 (see the *Typical Application Circuit*). The equation controlling the slope is:

SLOPE OUTD =
$$\left(-25\frac{\text{mV}}{\text{dB}}\right)\left(\frac{\text{R3}+20\text{k}}{20\text{k}}\right)$$

Input Highpass Filters

The MAX2016 integrates a programmable highpass filter on each RF input. The lower cutoff frequency of the MAX2016 can be decreased by increasing the external capacitor value between FA1 and FA2 or FB1 and FB2. By default, with no capacitor connecting FA1 and FA2 or FB1 and FB2, the lower cutoff frequency is 20MHz. Using the following equation determines the lowest operating frequency:

frequency =
$$\frac{1}{2\pi RC}$$

where $R = 2\Omega$.

Differential Output Video Filter

The bandwidth and response time difference of the output amplifier can be controlled with the external capacitor, C_{15} , connected between FV1 and FV2. With no external capacitor, the bandwidth is greater than 20MHz. The following equation determines the bandwidth of the amplifier difference:

frequency =
$$\frac{1}{2\pi RC}$$

where $R = 1.8k\Omega$.

Use a video bandwidth lower than the anticipated lowest amplitude-modulation frequency range to yield the greatest accuracy in tracking the average carrier power for high peak-to-average ratio waveforms.

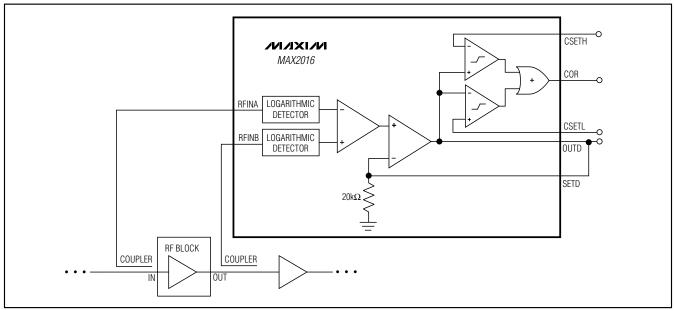


Figure 8. Window Comparators Monitoring Mode. COR goes high if OUTD drops below CSETL or rises above CSETH.

Comparators/Window Detectors

The MAX2016 integrates two comparators for use in monitoring the difference in power levels (gain) of RFINA and RFINB. The thresholds of the two comparators are set to the voltage applied to the CSETL and CSETH pins. The output of each comparator can be monitored independently or from the COR output that ORs the outputs of the individual comparators. This can be used for a window-detector function.

These comparators can be used to trigger hardware interrupts, allowing rapid detection of over-range conditions. These comparators are high-speed devices. Connect high-value bypass capacitors (0.1 μ F) between each comparator threshold input (CSETL and CSETH) to ground to provide a solid threshold voltage at high switching speeds.

Some applications may benefit from the use of hysteresis in the comparator response. This can be useful for prevention of false triggering in the presence of small noise perturbations in the signal levels, or with signals with large amplitude modulation. To introduce hysteresis into the comparator output, connect a feedback resistor from COUTL to CSTEL. Select the value of this resistor, in combination with the resistive-divider values used to set threshold-level CSETL, to set the amount of hysteresis. Set the parallel combination of resistors connected to CSETL to be less than $10k\Omega$ for best performance.

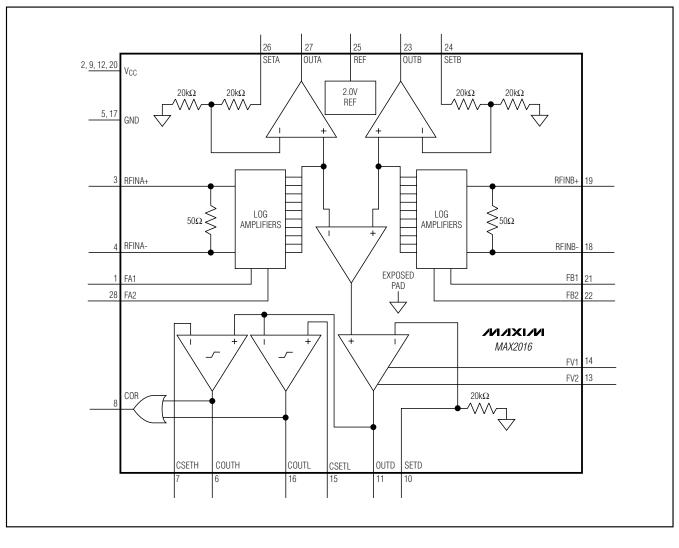
Figure 8 illustrates the use of these comparators in a gain-monitoring application. The low comparator has its threshold (CSETL) set at a low-gain trip point. If the gain drops below this trip point, the COUTL output goes from a logic 0 to a logic 1. The high comparator has its threshold (CSETH) set at a high trip point. If the gain exceeds this trip point, the COUTH output goes from logic 0 to logic 1. The window comparator output (COR) rests a logic 0 if the gain is in the acceptable range, between CSETL and CSETH. It goes to a logic 1 if the gain is either above or below these limits.

Power-Supply Connection

The MAX2016 is designed to operate from a single +2.7V to +3.6V supply. To operate under a higher supply voltage range, a resistor must be connected in series with the power supply and V_{CC} to reduce the voltage delivered to the chip. For a +4.75V to +5.25V supply, use a 37.4 Ω (±1%) resistor in series with the supply.

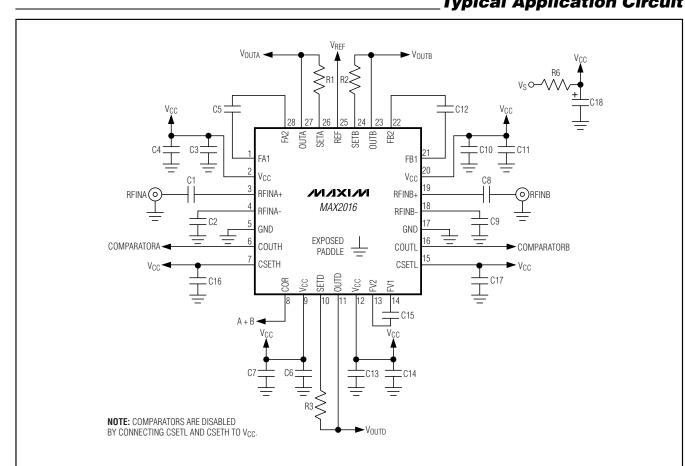
Layout Considerations

A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad **MUST** be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground


planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX2016 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for high-frequency circuit stability. Bypass each V_{CC} pin with a capacitor as close to the pin as possible (*Typical Application Circuit*).


Exposed Pad RF/Thermal Considerations

The exposed paddle (EP) of the MAX2016's 28-pin thin QFN-EP package provides two functions. One is a low thermal-resistance path to the die; the second is a low-RF impedance ground connection. The EP **MUST** be soldered to a ground plane on the PCB, either directly or through an array of plated via holes (minimum of four holes to provide ground integrity).

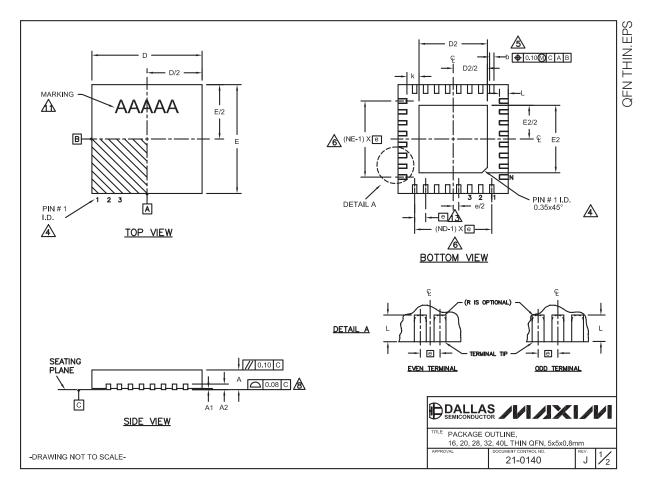
Functional Diagram

MAX2016

Typical Application Circuit

Table 1. Component Values Used in the Typical Application Circuit

DESIGNATION	VALUE	DESCRIPTION
C1, C2, C8, C9	680pF	Microwave capacitors (0402)
C3, C6, C10, C13	33pF	Microwave capacitors (0402)
C4, C7, C11, C14	0.1µF	Microwave capacitors (0603)
C5, C12, C15, C16, C17	Not used	Capacitors are optional for frequency compensation, bypass
C18	10µF	Tantalum capacitor (C case)
R1, R2, R3	0Ω	Resistors (0402)
De	0Ω	Resistor (1206) for $V_S = 2.7V$ to 3.6V
R6	37.4Ω	\pm 1% resistor (1206) for V _S = 4.75V to 5.25V


Chip Information

PROCESS: BICMOS

MAX2016

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

			С	OMM	ON DI	MEN	SIONS	6										EX	POSE	D PAD) VARI	10ITAI	NS			
PKG.	1	6L 5x	5	2	0L 5x	:5	2	8L 5x	5	3	32L 5:	< 5	4	0L 5×	<5	ľ	PKG.	1	D2		T	E2				
SYMBOL	. MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM	MAX.	MIN.	NOM.	MAX.		CODES	MIN.	NOM	. MAX	MIN.	. NOM	1. M/	AX.		
A		0.75		0.70												1	T1655-2	3.00	3.10	3.20	3.00	3.10) 3.2	20		
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	İ	T1655-3	3.00	3.10	3.20	3.00	_		.20		
A2		20 RE			20 RE			20 RE			20 RE			20 RE		1	T1655N-1	3.00	3.10	3.20	3.00	3.10) 3.	.20		
b		0.30														1	T2055-3	3.00	3.10	3.20	3.00	3.10	1 3.	.20		
D		5.00										5.10				ľ	T2055-4	3.00	3.10	3.20	3.00	3.10	1 3.	.20		
E		5.00		_		_		_	_	_		-				ł	T2055-5	3.15	3.25	3.35	3.15	3.25	3.	.35		
e k	0.25	.80 BS	ю.	0.25	.65 BS		0.25	50 BS		0.25	.50 B		0.25	40 BS	50.	ł	T2855-3	3.15						.35		
<u>к</u> Г			-		0.55			_							0.50		T2855-4	2.60	2.70	2.80	2.60	2.70) 2.	.80		
N	0.30	16	0.00	0.40	20	0.00	0.40	28	0.00	0.50	32	0.00	0.50	40	0.00		T2855-5	2.60		2.80						
ND		4			5			7			8			10	-+	1	T2855-6	3.15	3.25	3.35	3.15	3.25	5 3.	.35		
NE		4			5			7			8			10		1	T2855-7	2.60	2.70	2.80	2.60	2.70) 2.	.80		
JEDEC		WHHE	;	1	WHHC	2	V	VHHD	-1	V	VHHE	9-2				ľ	T2855-8	3.15	3.25	3.35	3.15	3.25	5 3.	.35		
																ľ	T2855N-1	3.15	3.25	3.35	3.15	3.25	5 3.	.35		
																[T3255-3	3.00	3.10	3.20	3.00	3.10) 3.	.20		
OTES:																	T3255-4	3.00						.20		
1. DIM	IENSIC) N I NG	& TC			c co																				
						600	NFUR	MITO	ASM	E Y14	.5M-1	994.					T3255-5	_		3.20		3.10				
2. ALL	DIME	NSIO	IS AF														T3255N-1	3.00	3.10	3.20	3.00	3.10) 3.	.20		
2. ALL 3. NIS				REIN	MILLIN	IETE	RS. AI										T3255N-1 T4055-1	3.00 3.40	3.10 3.50) 3.20) 3.60	3.00 3.40	3.10 3.50) 3.:) 3.	.20 .60		
	S THE	τοτα		RE IN //BER	MILLIN OF TE	ERMIN	RS. AI	GLE	S ARI	E IN D	EGRI	EES.	TION	SHALI	L		T3255N-1	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS THE COL OP	S THE E TERI NFOR	TOTA MINAL M TO , L, BU	_ NUI #1 IE JESD 7 MUS	RE IN MBER DENTI 95-1 ST BE	OF TE FIER A SPP-0 LOCA	METE ERMIN AND T 12. D ATED	RS. AN NALS. ERMI ETAIL WITHI	NGLES NAL N .S OF N THE		E IN D ERINA AINAL	G CO #1 IE	EES.	FIER /	ARE	L VAL #1		T3255N-1 T4055-1	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS COL OP IDE	S THE E TERI NFORI TIONA	TOTA MINAL M TO . L, BU ER MA ON b A	- NUI #1 IE JESD F MUS Y BE	RE IN MBER 95-1 95-1 EITHI EITHI ES TO	MILLIN OF TE FIER / SPP-0 LOCA ER A N	METE ERMIN 12. D ATED MOLD ALLIZ	RS. AN IALS. ERMI ETAIL WITHI OR M ED TE	NAL N .S OF N THE IARKE		E IN D ERIN MINAL NE INI ATUR	G CO #1 II DICAT	EES. NVEN DENTII ED. T	FIER / HE TE	ARE ERMIN	VAL #1		T3255N-1 T4055-1	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS COL OP IDE	5 THE E TERI NFORI TIONA NTIFIE IENSIO 5 mm /	TOTA MINAL M TO . L, BU ER MA ER MA ON b A AND 0	_ NUI #1 IC JESD T MUS Y BE PPLI .30 m	RE IN MBER DENTI 95-1 95-1 8T BE EITHI ES TO m FRO	MILLIN OF TE FIER A SPP-0 LOCA ER A M O META	METE ERMIN 12. D 12. D MOLD ALLIZ ERMIN	RS. AN IALS. ERMI ETAIL WITHI OR M ED TE	NGLES NAL N S OF N THE IARKE ERMIN	S ARE TERI E ZON D FE	E IN D ERIN MINAL ME INE ATUR ND IS	G CO #1 IE DICAT RE. MEA	EES. NVEN DENTII ED. T SURE	FIER / HE TE D BE1	ARE ERMIN WEEI	JAL #1 N	TIVE	T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS COL COL OP ⁻ IDE 0.25	S THE E TERI NFOR TIONA SNTIFIE MENSIO 5 mm / AND 1	TOTA MINAL M TO . L, BU ⁻ ER MA ER MA ON b A AND 0 NE RE	_ NUI #1 IE JESD F MUS Y BE .PPLI .30 m FER ⁻	RE IN MBER 95-1 95-1 EITHI ES TC m FR(TO TH	MILLIN OF TE FIER A SPP-0 LOCA ER A M D META D META D META	METEI ERMIN 12. D ATED MOLD ALLIZ ERMIN MBER	RS. AN JALS. ERMI ETAIL WITHI OR M ED TE JAL TH	NGLES NAL N S OF N THE IARKE ERMIN	S ARE TERI E ZON D FE IAL A	E IN D ERING MINAL NE INE ATUR ND IS ON E	G CO #1 IE DICAT RE. MEA	EES. NVEN DENTII ED. T SURE	FIER / HE TE D BE1	ARE ERMIN WEEI	JAL #1 N	TIVE	T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS THE COI OP IDE DIM 0.29 ND	S THE E TERI NFOR TIONA NTIFIE MENSIO 5 mm / AND N POPUI	TOTA MINAL M TO , L, BU ER MA ON 6 A AND 0 NE RE LATIO	_ NUI JESD MUS Y BE PPLI 30 m FER	RE IN MBER DENTI 95-1 ST BE EITHI ES TO m FRO TO TH	MILLIN OF TE FIER A SPP-0 LOCA ER A M D MET D M TE E NUM BLE IN	METE ERMIN AND T 12. C ATED MOLD ALLIZ ERMIN MBER N A S	RS. AN NALS. ERMI ETAIL WITHI OR M ED TE NAL TH OF T YMME	NGLES NAL N S OF N THE IARKE ERMIN D ERMIN TRIC/	S ARE IUMB TERI Z ZON D FE IAL A NALS AL FA	E IN D ERING MINAL E INE ATUR ND IS ON E SHIO	G CO #1 II DICAT RE. MEA	EES. NVEN DENTII TED. T SURE D ANE	FIER / HE TE D BET	ARE ERMIN WEEI DE RE	NAL #1 N ESPEC		T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS A THE COI OP IDE DIM 0.29 A DIM 0.29 A DIM 7. DEF A COI 9. DR/	S THE E TERI NFOR TIONA SINTIFIE MENSIO 5 mm / AND M POPUI PLAN/	TOTA MINAL M TO , L, BU ⁻ ER MA ON 6 A AND 0 VE RE AND 0 VE RE ATIO ARITY G CON	- NUI JESD MUS Y BE PPLI 30 m FER N IS F APPL FORI	RE IN I MBER 95-1 ST BE EITHI ES TC m FR FO TH POSSI JES T MS TC	MILLIN OF TE FIER / SPP-0 LOCA ER A N D MET, D MET,	METE ERMIN 12. D ATED MOLD ALLIZ ERMIN MBER N A S' E EXP	RS. AN NALS. ERMI ETAIL WITHI OR M ED TE NAL TH OF T YMME OSED	NGLES NAL N S OF N THE IARKE RMIN CRMIN CRMIN CRMIN	S ARE TERI E ZON D FE IAL A NALS AL FA T SIN	E IN D ERING MINAL JE INI ATUR ND IS ON E SHIO K SLU	G CO #1 IE DICAT RE. MEA ACH N. JG AS	EES. NVEN DENTII ED. T SURE D ANE	FIER / HE TE D BET D E SI	ARE ERMIN WEEI DE RE	N N ESPEC ERMIN		T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50) 3.20) 3.60) 3.60	3.00 3.40 3.40	3.10 3.50 3.50) 3.) 3.) 3.	.20 .60 .60		
3. N IS A THE COI OP IDE DIM 0.29 A DIM 0.29 A DIM 7. DEF A COI 9. DR/	S THE E TERI NFOR TIONA SINTIFIE MENSIO 5 mm / AND P POPUI PLAN/ AWINO 355-3 /	TOTA MINAL M TO , L, BU ER MA ON b A AND 0 NE RE _ATIO ARITY G CON	- NUI #1 IE JESD MUS Y BE PPLI 30 m FER N IS F APPL APPL 2855-	RE IN I 95-1 95-1 EITHI ES TO M FRO FO TH POSSI IES T MS TO 3.	MILLIN OF TE FIER A SPP-0 LOCA ER A N D META DM TE E NUM BLE IN O THE D JEDE	METEI ERMIN 12. D MOLD ALLIZ ERMIN MBER N A S' E EXP EC MC	RS. AI JALS. ERMI ETAIL WITHI OR M ED TE IAL TII OF T YMME OSED D220, I	NGLES NAL N S OF N THE IARKE RMIN CRMIN CRMIN CRMIN	S ARE TERI E ZON D FE IAL A NALS AL FA T SIN	E IN D ERING MINAL JE INI ATUR ND IS ON E SHIO K SLU	G CO #1 IE DICAT RE. MEA ACH N. JG AS	EES. NVEN DENTII ED. T SURE D ANE	FIER / HE TE D BET D E SI	ARE ERMIN WEEI DE RE	N N ESPEC ERMIN		T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50 *SEE () 3.20 3.60 3.60 0.3.60 COMMO	3.00 3.40 3.40	3.10 3.50 3.50 NSIONS) 3.) 3.) 3.) 3.) 3.] S TAB	20 .60 .60 3LE		
3. N IS ▲ THE OP IDE ▲ DIM 0.29 ▲ ND 7. DEF ▲ COI 9. DR/ 128	S THE E TER NFOR TIONA SINTIFIE MENSIO 5 mm / AND M POPUI PLAN/ AWING 355-3 / RPAG	TOTA MINAL M TO , ER MA ON 6 A AND 0 VE RE LATIO ARITY G CON AND T E SHA	- NUI #1 IE JESD MUS Y BE .PPLI .30 m FER N IS F APPL FORI 2855-1	RE IN I MBER DENTI 95-1: 3T BE EITHI ES TC M FRO TO TH POSSI .IES T MS TC 3. DT EX	MILLIN OF TE FIER / SPP-0 LOCA ER A N D MET, D MET,	METEI ERMIN AND T 12. D ATED MOLD ALLIZ ERMIN MBER N A S' E EXP EC MC	RS. AI JALS. ERMI ETAIL WITHI OR M ED TE JAL TH OF T YMME OSED D220, I mm.	NGLES NAL N S OF N THE IARKE RMIN C RMIN C RMIN TRICA	NUMB TERI ZON ED FE IAL A NALS AL FA T SIN PT E	E IN D ERING MINAL NE INE ATUR ND IS ON E SHIO K SLU KPOS	G CO #1 II DICAT RE. MEA ACH N. JG AS ED P,	EES. NVEN DENTII ED. T SURE D ANE	FIER / HE TE D BET D E SI	ARE ERMIN WEEI DE RE	N N ESPEC ERMIN		T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50 *SEE () 3.20 3.60 3.60 0.3.60	3.00 3.40 3.40	3.10 3.50 3.50 NSIONS) 3.) 3.) 3.) 3.) 3.] S TAB	20 .60 .60 3LE		
3. N IS A THE OP IDE DIN 0.25 A ND 7. DEF A COI 9. DR T28 A WA	S THE E TERI NFOR TIONA NTIFIE NTIFIE NTIFIE AND N POPUI PLAN/ AWING 355-3 / RPAG RKING	TOTA MINAL M TO J ER MA DN 6 A AND 0 NE RE LATIO ARITY G CON ARITY G CON AND T E SHA G IS FC	- NUI #1 IE JESD T MUS Y BE PPLI 30 m FER FORI FORI 2855- LL NO R PA	RE IN MBER PENTI 95-1 : 95-1 : 95-1 : 95-1 : 95-1 : Possi EITHI ES TC TO TH POSSI IES T MS TC 3. DT EX CCKAG	MILLIN OF TE FIER / SPP-0 LOCA ER A N D MET, D MET,	METEI ERMIN AND T 112. D MOLD ALLIZ ERMIN MBER N A S' E EXP EC MC 0 0.10 IENT/	RS. AI JALS. ERMI ETAIL WITHI OR M ED TEI AL TII OF T YMME OSEC D220, I MM.	NGLES NAL N S OF N THE IARKE RMIN C ERMIN TRICA D HEAT EXCE	S ARI NUMB TERI 2 ZOM 20 FE NALS AL FA NALS AL FA T SIN PT E 2	E IN D ERINI MINAL IE INI ATUF ND IS ON E SHIO K SLL KPOS	G CO #1 II DICAT RE. MEA ACH N. JG AS ED P,	EES. NVEN DENTII ED. T SURE D ANE	FIER / HE TE D BET D E SI	ARE ERMIN WEEI DE RE	N N ESPEC ERMIN		T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50 *SEE () 3.20) 3.60) 3.60 COMMO	3.00 3.40 3.40 3.40 N DIME	3.10 3.50 3.50 NSIONS) 3.) 3.) 3.) 3.) 3.) 3.) 3.) 3.	20 .60 .60 3LE	X	
3. N IS A THE COI OP IDE DIM 0.22 A ND 7. DEF A COI 9. DR/ T28 MAI 11. MAF 12. NUN	S THE E TERI NFOR TIONA SINTIFIE MENSIO 5 mm / AND M POPUI PLAN/ AWING 355-3 / RPAG RFAG KING	TOTAI MINAL MITO , L, BUT ER MA DN 6 A AND 0 VE RE LATIOI ARITY G CON AND T E SHA S IS FC OF LE	- NUI JESD MUS Y BE PPLI 30 m FER FORI 2855- LL NO IR PA	RE IN I MBER DENTI 95-1 1: 95-1 1: 95-1 1: 95-1 1: 95-1 1: ESTC FO TH POSSI MS TCC 3. DT EX CKAG SHOV	MILLIN OF TE FIER / SPP-0 LOCA ER A N D MET/ DM TE E NUN BLE IN O THE CEED GE OR CEED GE OR	METEI ERMIN AND T 112. D NTED MOLD ALLIZ ERMIN MBER N A S' E EXP EC MC 0 0.10 IENT/ E FO	RS. AI WALS. ERMI ETAIL WITHI OR M ED TE HAL TII OF T YMME OSEC D220, 1 Mm. ATION R REF	NGLES NAL N S OF N THE ARKE ERMIN TRIC/ D HEA EXCE REFE EREN	S ARI NUMB TERI 2 ZON ED FE IAL A NALS AL FA T SIN PT E EREN NCE C	E IN D ERINI MINAL IE INI ATUF ND IS ON E SHIO K SLU KPOS CE OI	G CO #1 II DICAT RE. MEA ACH N. JG AS ED P/	EES. NVENTI DENTII TED. T SURE D AND AND DIM	FIER / HE TE D BET D E SI L AS ⁻ MENS	ARE ERMIN DE RE THE TI	N N ESPEC ERMIN	ALS.	T3255N-1 T4055-1 T4055-2	3.00 3.40 3.40	3.10 3.50 3.50 *SEE (0 3.20 0 3.60 0 3.60	3.00 3.40 3.40 3.40 N DIMEI	3.10 3.50 3.50 NSIONS) 3.3) 3.1) 3.1] 3.1	20 60 60 3LE	×1	

Revision History

Pages changed at Rev 1: 1, 5, 10-20

MAX2016

Γ

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20

is a registered trademark of Maxim Integrated Products, Inc.

٦

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А