
March 2015
IPUG67_1.8

Scatter-Gather Direct Memory Access Controller IP Core User Guide

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG67_1.8, March 2015 2 Scatter-Gather DMAC User Guide

Chapter 1. Introduction .. 4
Quick Facts ... 4

Features... 4
Chapter 2. Functional Description .. 5

Key Concepts.. 5
Block Diagram.. 6
WISHBONE Interfaces... 6
Control and Status ... 6
Channel Arbiter .. 7
BDRAM Interface ... 7
PBUFF Interface .. 7
DMA Engine... 7
Buffer Status Mode .. 8
AUXCTRL and AUXSTAT.. 9
Primary I/O ... 9
System Configurations ... 11
Interface Descriptions .. 13
Registers and Memory ... 15
Transaction Scenarios ... 18
Requirements and Guidelines.. 20

Chapter 3. Parameter Settings .. 22
User Parameters Tab.. 23

Buses ... 23
Address Decoding.. 24
Channels .. 24
Memory Interfaces ... 25
Generation Options .. 25

Synthesis Optimizations Tab... 25
Transfer Settings.. 26

Chapter 4. IP Core Generation... 28
IP Core Generation in IPexpress .. 28

Licensing the IP Core... 28
Getting Started... 28
IPexpress-Created Files and Top Level Directory Structure.. 30
Simulation Evaluation... 31
Implementation Evaluation... 32
SGDMAC Core Implementation ... 32
IP Core Implementation ... 33
Hardware Evaluation.. 34
Updating/Regenerating the IP Core ... 34

IP Core Generation in Clarity Designer... 35
Getting Started... 35
Clarity Designer Created Files and Top Level Directory Structure .. 39
Simulation Evaluation... 39
IP Core Implementation ... 40

Regenerating/Recreating the IP Core ... 41
Regenerating an IP Core in Clarity Designer Tool ... 41
Recreating an IP Core in Clarity Designer Tool ... 41

Table of Contents

Table of Contents

IPUG67_1.8, March 2015 3 Scatter-Gather DMAC User Guide

Chapter 5. Support Resources .. 42
Lattice Technical Support.. 42

E-mail Support ... 42
Local Support ... 42
Internet ... 42

References.. 42
LatticeXP2.. 42
LatticeECP3 ... 42
ECP5.. 42

Revision History .. 43
Appendix A. Resource Utilization ... 44

LatticeECP3 FPGAs.. 44
Ordering Part Number.. 44

LatticeXP2 FPGAs .. 44
Ordering Part Number.. 44

ECP5 LFE5U FPGAs .. 44
Ordering Part Number.. 44

ECP5 LFE5UM FPGAs ... 45
Ordering Part Number.. 45

IPUG67_1.8, March 2015 4 Scatter-Gather DMAC User Guide

This user guide describes the Scatter-Gather Direct Memory Access Controller (SGDMAC) IP core for the ECP5™,
LatticeECP3™ and LatticeXP2™ families of devices. The Lattice SGDMAC core implements a configurable, multi-
channel, WISHBONE-compliant DMA controller with scatter-gather capability. Directions for specifying the IP
core’s configuration, including it in a user’s design, and directions for simulation and synthesis are provided in this
user’s guide.

Quick Facts
Table 1-1 gives quick facts about the Scatter-Gather DMA Controller IP core.

Features

• Supports up to 16 physical channels

• Up to 8 sub-channels per physical channel

• Four priority levels using round-robin arbitration (weighted or simple)

• WISHBONE bus widths from 8 to 128 bits

• Simple DMA, split transfers, scatter-gather

• Direct interface to external RAM for packet buffering

• Autonomous and hardware-directed retry

• Supports WISHBONE burst and classic-cycle transfers

• Supports centralized and distributed DMA control architectures

Table 1-1. Scatter-Gather DMA Controller IP Core Quick Facts

SGDMAC IP Configuration

16 Channel,
Dual-bus

4 channel,
Dual-bus

8 channel,
Dual-bus

4 channel,
Dual-bus

Core
Requirements

FPGA Families
Supported LatticeECP3, LatticeXP2, ECP5

Resource
Utilization

Targeted Device LFE3-95EA-7FN672C LFXP2-40E-6F672C LFE5U-85F-8BG756C LFE5UM-85F-8BG756C

Data Path Width 32 32 32/64 32/8

LUTs 4311 3443 4049 3222

Slices 2670 2139 2570 1998

Registers 1932 1355 1637 1265

FMAX (MHz) 145 120 160 165

Design Tool
Support

Lattice Implementation Lattice Diamond® 3.4

Synthesis
Synopsys® Synplify Pro® for Lattice J-2014.09L

Mentor Graphics® Precision® RTL

Simulation
Aldec® Active-HDL™ 9.3 SPI Lattice Edition

Mentor Graphics® ModelSim® SE 6.6e or later

Chapter 1:

Introduction

at: www.latticesemi.com/software.

IPUG67_1.8, March 2015 5 Scatter-Gather DMAC User Guide

This chapter provides a functional description of the Scatter-Gather DMA Controller core.

Key Concepts
Direct Memory Access (DMA) is a technique for transferring blocks of data between system memory and periph-
erals without a processor (e.g., system CPU) having to be involved in each transfer. DMA not only offloads a sys-
tem’s processing elements, but can transfer data at much higher rates than processor reads and writes.

Scatter-Gather DMA provides data transfers from one non-contiguous block of memory to another by means of a
series of smaller contiguous-block transfers.

Buffer Descriptors hold the necessary control information for data transfers:

• Source and destination buses and addresses

• Amount of data to be transferred and maximum burst size

• Addressing modes, bus sizes, transaction types, retry options, etc.

Buffer descriptors may be chained together to provide scatter-gather capability.

A DMA Channel consists of:

• A set of Buffer Descriptors describing the transfers associated with the channel

• Control and status registers for initiating/observing the transfer process

• An interface to allow the DMA engine access to the channel control and status

• An optional external DMA request/acknowledge signal pair for hardware initiated transfers

• A signal for indicating a pending DMA request to the DMA controller’s arbiter and engine

The SGDMAC core provides DMA transfers of data between WISHBONE bus slaves for up to 16 physical DMA
channels.

Chapter 2:

Functional Description

at: www.latticesemi.com/software.

Functional Description

IPUG67_1.8, March 2015 6 Scatter-Gather DMAC User Guide

Block Diagram
The high-level architecture of the Scatter-Gather DMA Controller is shown in Figure 2-1.

Figure 2-1. SGDMAC Block Diagram

WISHBONE Interfaces
The SGDMAC core provides a single WISHBONE slave for accessing registers and memory within the core itself.
The slave does full or partial address decoding depending on the FULL_ADDR_SIZE parameter. If greater than
zero, the upper FULL_ADDR_SIZE bits must match the FULL_ADDR parameter value. If FULL_ADDR_SIZE is
zero, the slave address range is being decoding externally, and an active-high scyc input indicates a valid cycle.

The core may be configured with either one or two WISHBONE masters. The bus masters are controlled by the
DMA Engine. Each master is capable of interacting with both burst-capable and non-burst slaves. Full or partial
width bus interactions are allowed (configured in the buffer descriptor).

Control and Status
Channel control and status registers are accessible through the WISHBONE slave. The registers contain control
and current state information for each channel (up to 16 channels). Register details are provided in the Registers
and Memory section of this document. Only the registers required for NUM_CHAN channels are implemented in
the core.

The control and status block also handles external DMA request and acknowledge signals. Each channel control
and status register is connected to a single pair of request/acknowledge signals. DMA requests may be generated
by hardware via the request signal or by writing the request bit in the channel control and status register.

The control and status block also contains two interrupt registers per channel: one for event interrupts (such as
transfer complete notification), the other for errors. Interrupt source registers hold the event until cleared through
the slave interface.

channel 0

channel 1

channel N-1

DMA
Engine

WISHBONE
Slave

WISHBONE
Master A

BDRAM
Interface

PBUFF
Interface

Control/
Status

D
M

A
 R

eq
ue

st
/

A
ck

no
w

le
dg

e

C
ha

nn
el

 A
rb

ite
r

EVENT
ERROR WISHBONE

Master B

Buffer
Description

RAM

Packet
Buffer

Functional Description

IPUG67_1.8, March 2015 7 Scatter-Gather DMAC User Guide

Channel Arbiter
The channel arbiter determines which channel DMA request will be serviced next. For weighted round-robin arbi-
tration, the arbiter consists of four round-robin arbiters, one for each of four priority levels. Each DMA channel
makes an appearance on one of the round-robin arbiters as determined by a “priority group” field in its control reg-
ister. Each of the four round-robin arbiters will handle NUM_CHAN channels.

The four round-robin arbiters feed a fifth weighted-share arbiter. Each priority group receives a share of the arbi-
ter’s attention that is proportional to the value (0 is lowest, 15 is highest) entered in its “share” control register field.
The weights correspond to numbers of transactions without regard to the total amount of data transferred.

Simple round-robin arbitration employs a single NUM_CHAN-wide round-robin arbiter.

Once the transaction on the active channel is under way, the arbiter is released to choose the next active channel.
This arbiter look-ahead feature minimizes the transaction startup latency.

The Global Arbiter control register provides the ability to mask a channel from vying for active channel status.
Masking a channel, in effect, freezes a channel in its current state.

BDRAM Interface
Buffer descriptors are held in an external dual port RAM. The BDRAM interface provides independent read and
write access. Reads require a data valid signal to be returned from the BD memory, since the read latency is
unknown. Writes require no acknowledgement. The BDRAM is read-write accessible via the WISHBONE slave.

Each channel buffer descriptor head pointer is set in the channel control and status register. Buffer descriptor integ-
rity is the responsibility of the software; the hardware does no checking.

PBUFF Interface
The SGDMAC core optionally provides an interface to an external packet buffer. The interface is a simple memory
interface with separate address and data buses for reads and writes. The Packet Buffer may serve as the source or
destination for DMA transactions. The contents of Packet Buffer memory are accessible through DMA transfers, not
directly accessible through the SGDMAC WISHBONE slave interface.

DMA Engine
The DMA Engine uses information stored in the channel buffer descriptors and channel control registers to control
the operation of the WISHBONE bus masters. The DMA engine supports the following transactions:

Simple DMA
Simple DMA transfers are block copies of data from the source address to the destination address. These may be
intra- or inter-bus transfers. The active channel remains the active channel until the entire transfer is complete.

Multi-Burst Transfers
Large blocks of data may have to be split into bursts to avoid bus-hogging by individual channels or priority groups.
The maximum burst size is specified by a field in the buffer descriptor. The DMA engine transfers the burst, then
tells the channel and channel arbiter that the burst has been transferred. The channel then must compete for atten-
tion according to the usual arbitration scheme. When all bursts have been transferred, the channel and channel
arbiter are notified, and normal operation resumes. Inter-bus bursts are always locked.

Multi-Descriptor Transfers
Scatter-Gather operation is implemented using multi-descriptor transfers. A bit in the buffer descriptor tells the
DMA engine whether the descriptor is the last in a series. Each descriptor has its own transfer size, burst size,
source and destination addresses. When the current burst is complete, the DMA engine fetches the next buffer
descriptor, if there is one. The arbiter’s look-ahead feature minimizes the time required between descriptors.

Split Transactions

Functional Description

IPUG67_1.8, March 2015 8 Scatter-Gather DMAC User Guide

Any of the transaction types discussed above may be implemented as split transactions. Split transaction bursts
occur in two steps: source to packet buffer, and packet buffer to destination. The advantage offered by split transac-
tions is that each step only occupies one bus. The channel logic maintains the to-packet-buffer/from-packet-buffer
sequence. The software subsystem is responsible for ensuring buffer offsets and burst sizes are set appropriately
to prevent channel data overlap.

Direct Packet Buffer Transactions
The Packet Buffer may be selected as the source or destination for simple DMA transactions by setting the
SRC_BUS or DST_BUS field in the buffer descriptor. When the packet buffer is the source (or destination), the cor-
responding address in the buffer descriptor is ignored; the channel packet buffer offset is used instead.

Delayed Transactions
Delayed transactions occur when a source or destination WISHBONE slave signals a retry in response to the
access request from the SGDMAC. Depending on the state of the RETRY bit in the buffer descriptor, the SGDMAC
either: if RETRY is set, relinquishes control and re-attempts to become the active channel; or, relinquishes control,
clears its DMA_REQUEST bit, and waits for the delayed peripheral to activate the channel’s dma request input. It’s
the responsibility of the peripheral to activate the request only when it can respond without retry. The number of
retries is determined by the NUM_RETRY field in the channel control and status register. Exceeding NUM_RETRY
results in an error. See the sections on Autonomous Retry and Hardware Retry below.

EOD Transactions
For some transactions, the data source may not have available the number of bytes designated by the buffer
descriptor. The SGDMAC core uses a WISHBONE data tag (user-defined set of signals synchronous with the
WISHBONE slave output data) to signal EOD to the master requesting the data. In response to the EOD tag, the
WISHBONE master terminates the cycle and signals the DMA engine. The DMA engine signals transfer complete
to the channel logic and arbiter.

Errored Transactions
The scope of error checking by the SGDMAC core is limited to its field of view. For example, address values, trans-
fer sizes, buffer descriptor memory allocation and alignment, and packet buffer overlap are conditions that the core
(by design) lacks the information to detect and address. It is the responsibility of the configuration software to
ensure control information integrity.

The core is able to detect bus errors and retry errors. Transactions that encounter errors freeze the active channel
state. The channel will not vie to become the active channel again until the errors have been cleared and the chan-
nel reset (by disabling and enabling it).

Freezing Channels
Channels may be prevented from vying for active channel status by way of the GARBITER.CHARBMSK bits. A
channel with its corresponding CHARBMSK bit set has its arbiter request bit masked. Because the channel never
becomes the active channel, it remains in its current state. Note that this differs from disabling a channel, which
returns the channel logic to its initialization state.

Bus Locking
Setting the LOCK bit in the buffer descriptor causes the WISHBONE master to request a locked transfer. Inter-bus,
non-split transfers are always locked. Intra-bus and split transfers are locked only if LOCK is set.

Buffer Status Mode
Setting the BUFFER_STATUS user parameter to ‘1’ provides logic for checking and updating buffer availability. In
this mode, the CONFIG0.BD_STATUS_EN bit enables status checking. If ‘1’, the DMA engine checks
CONFIG0.BD_STATUS. A ‘1’ indicates that the requested buffer is available: the transfer proceeds as usual, and
the dma_engine clears CONFIG0.BD_STATUS upon completion of the transfer. If CONFIG0.BD_STATUS is ‘0’, the
requested buffer is unavailable, the channel’s buffer descriptor error bit is set, and the transfer is terminated. If
CONFIG0.BD_STATUS_EN is ‘0’, the buffer status check is skipped, and the transfer proceeds as usual.

Functional Description

IPUG67_1.8, March 2015 9 Scatter-Gather DMAC User Guide

AUXCTRL and AUXSTAT
The optional auxctrl and auxstat ports provide auxiliary read (auxstat) and write (auxctrl) capability. The read-only
auxstat port operates in pass-through mode - that is, there are no registers associated with the port. The write-only
auxctl port is only active during a slave write, zeros otherwise.

Memory Interfaces: The “Number of Buffer Descriptors” option configures the size of the BD (buffer descriptor)
memory read and write address buses. There are four 32-bit words per buffer descriptor. 256 is the maximum num-
ber of descriptors allowed. The “Packet Buffer Size” option is the number of bytes in the external packet buffer. This
item sets the packet buffer address bus sizes. The data bus is always the size of the largest WISHBONE bus.

Primary I/O
The top-level interface diagram is shown in Figure 2-2 and a brief description of the signals is given in Table 2-1.

Figure 2-2. SGDMAC Core Primary I/O

SGDMAC

clk
rstn

a_addr[]
a_w

dat[]
a_rdat[]
a_sel[]

a_w
e

a_cyc

a_stb
a_ack
a_err

a_retry

saddr[]
sw

dat[]
srdat[]
ssel[]

sw
e

scyc
sstb
sack
serr

sretry

b_addr[]
b_w

dat[]
b_rdat[]
b_sel[]
b_w

e
b_cyc
b_lock
b_stb
b_ack
b_err

b_eod
b_retry

MASTER A SLAVE

MASTER B

pb_w
rite

pb_w
dat[]

pb_w
addr[]

PB INTF

pb_raddr[]
pb_rdat[]

d_w
addr[]

bd_w
dat[]

bd_w
e

BD INTF

bd_raddr[]

dm
a_req[]

dm
a_ack[]

event[]
error[]

bd_rdat[]
bd_rval

auxctrl[]
auxstat[]

subchan[]

a_eod

a_lock

actchan[]

Functional Description

IPUG67_1.8, March 2015 10 Scatter-Gather DMAC User Guide

Table 2-1. Top-Level Port Definitions

Port Size I/O Description

Global Signals

clk 1 I System clock

rstn 1 I System wide asynchronous active-low reset signal.

A-Bus Master Signals

a_addr AWIDTH O A-Bus master address output

a_wdat DWIDTHA O A-Bus master write data

a_rdat DWIDTHA I A-Bus master read data

a_sel DWIDTHA/8 O A-Bus master byte selects, active high

a_we 1 O A-Bus master write enable output, active high

a_cyc 1 O A-Bus master valid transfer cycle output, active high

a_lock 1 O A-Bus master lock request to bus arbiter

a_stb 1 O A-Bus master data strobe output, active high

a_cti 3 O A-Bus master cycle type identifier, active high

a_ack 1 I A-Bus master acknowledge, active high

a_err 1 I A-Bus master error acknowledge, active high

a_retry 1 I A-Bus master retry, active high

a_eod 1 I A-Bus master end-of-data flag

B-Bus Master Signals

b_addr AWIDTH O B-Bus master address output

b_wdat DWIDTHB O B-Bus master write data

b_rdat DWIDTHB I B-Bus master read data

b_sel DWIDTHB/8 O B-Bus master byte selects, active high

b_we 1 O B-Bus master write enable output, active high

b_cyc 1 O B-Bus master valid transfer cycle output, active high

b_lock 1 O B-Bus master lock request to bus arbiter

b_stb 1 O B-Bus master data strobe output, active high

b_cti 3 O B-Bus master cycle type identifier, active high

b_ack 1 I B-Bus master acknowledge, active high

b_err 1 I B-Bus master error acknowledge, active high

b_retry 1 I B-Bus master retry, active high

b_eod 1 I B-Bus master end-of-data flag

Slave Signals

saddr AWIDTH I Slave address input

swdat 32 I Slave write data

srdat 32 O Slave read data

ssel 4 I Slave byte selects, active high

swe 1 I Slave write enable input, active high

scyc 1 I Slave valid transfer cycle input, active high

sstb 1 I Slave data strobe input, active high

sack 1 O Slave acknowledge, active high

serr 1 O Slave error acknowledge, active high

sretry 1 O Slave retry, active high

Buffer Descriptor Memory Interface

bd_waddr BD_AWIDTH O Buffer descriptor write address

Functional Description

IPUG67_1.8, March 2015 11 Scatter-Gather DMAC User Guide

System Configurations
Single-WISHBONE
A typical single-WISHBONE configuration is illustrated in Figure 2-3.

Figure 2-3. SGDMAC in a Single-WISHBONE System

The SGDMAC core Master and Slave interfaces are connected to the WISHBONE bus. The SLAVE data width is
always 32 bits. The MASTER data width should be the full width of the bus. Single-bus configurations require a

bd_wdat 32 O Buffer descriptor write data

bd_we 1 O Buffer descriptor write enable, active high

bd_re 1 O Buffer descriptor read request, active high

bd_raddr BD_AWIDTH O Buffer descriptor read address

bd_rdat 32 I Buffer descriptor read data

bd_rval 1 I Buffer descriptor read data valid

bd_err 1 O Buffer status check error

Packet Buffer Interface

pb_write 1 O Packet buffer write enable, active high

pb_wdat DWIDTHA O Packet buffer write data

pb_waddr PB_AWIDTH O Packet buffer write address

pb_raddr PB_AWIDTH O Packet buffer read request, active high

pb_rdat DWIDTHA I Packet buffer read data

pb_rval 1 I Packet buffer read data valid

Interrupt and Control

dma_req[] NUM_CHAN I DMA requests, active high

dma_ack[] NUM_CHAN O DMA acknowledge, active high

event[] NUM_CHAN O Event interrupts

error[] NUM_CHAN O Error interrupts

actchan[] CWIDTH O Active channel number

subchan[] SUBWIDTH O Sub-channel value

auxctrl[] 16 O Auxiliary control outputs

auxstat[] 16 I Auxiliary control inputs

Table 2-1. Top-Level Port Definitions (Continued)

Port Size I/O Description

 SGDMAC

BD
RAM

SLAVE MASTER

PACKET
BUFFER

BD_IF PB_IF

REQ/ACK

WISHBONE BUS

PERIPHERAL

WISHBONE

INTERFACE

LOCALBUS/WISHBONE

BRIDGE

PERIPHERAL

WISHBONE

INTERFACE

MEMORY

INTERFACE SLAVE MASTER

Functional Description

IPUG67_1.8, March 2015 12 Scatter-Gather DMAC User Guide

Packet Buffer, since all intra-bus transfers are implemented as split transactions. The SGDMAC Master competes
with other bus masters for bus ownership. Peripherals are connected to the WISHBONE bus by their slave (and
perhaps master) interfaces, and may also have request/acknowledge connections to the SGDMAC to allow periph-
eral-initiated transfers.

Peripherals need not occupy the full bus width; if not, they should be connected to the low-order WISHBONE data
signals for both Big- and Little-Endian systems (for example, an eight-bit port would connect to D0-D7). Transfers
between slaves with dissimilar port widths are handled by the SGDMAC core. For example, for a data transfer from
an 8-bit peripheral to a 32-bit peripheral, the read portion of the transfer would occur 8 bits at a time, the write por-
tion 32 bits at a time. Transfers to and from WISHBONE slaves should always utilize their full bus widths, both to
achieve the greatest throughput and to avoid confusion about which portion of the bus should be active (especially
in Big-Endian systems).

Dual-WISHBONE
A typical dual-WISHBONE configuration is illustrated in Figure 2-4.

Figure 2-4. SGDMAC in a Dual-WISHBONE System

Higher throughput may be achieved by adding a second WISHBONE bus. A dual-bus SGDMAC core performs
both intra- and inter-bus transfers. The same bus-width considerations apply for dual-bus configurations as for sin-
gle-bus. The two WISHBONE buses need not be of the same topology; for example, one may be a shared bus and
the other a crossbar switch. They do, however, need to have the same Endian-ness.

Inter-bus transfers do not require split transactions. Unlike intra-bus transfers, inter-bus transfers do not use Packet
Buffer resources (in fact, the Packet Buffer is optional if only inter-bus transfers are required). A small FIFO in the
SGDMAC core provides temporary storage for assembly/disassembly of data transferred from bus to bus. For non-
split transfers, both buses are owned by the SGDMAC for the duration of each burst. Split transactions, on the other
hand, transfer a full burst of data from the source bus to the Packet buffer, then from the Packet Buffer to the desti-
nation bus, and only occupy one bus at a time. Bus traffic characteristics will determine whether split or non-split
transactions provide the greatest overall throughput.

Distributed DMA
The single- and dual-bus configurations above are examples of centralized DMA control: a single controller handles
the DMA transfers for a set of WISHBONE peripherals. For some systems, a better solution might be to distribute
the DMA function to the bus clients themselves, allowing them to initiate and accept transfers to and from other cli-
ents. This approach offers the following advantages:

 SGDMAC

BD
RAM

SLAVE MASTER_A

PACKET
BUFFER

BD_IF PB_IF

REQ/ACK

WISHBONE BUS A

PERIPHERAL

WISHBONE
INTERFACE

LOCALBUS/WISHBONE

BRIDGE

SLAVE MASTER

PERIPHERAL

WISHBONE
INTERFACE

MEMORY
INTERFACE

WISHBONE BUS B

MASTER_B

Functional Description

IPUG67_1.8, March 2015 13 Scatter-Gather DMAC User Guide

• Reduces bus traffic. In a centralized DMA system, two bus transactions are required for each datum moved. With
distributed DMA, most data transfers require only one bus transaction.

• The number of available DMA channels grows with the addition of each DMA-capable peripheral.

• Supports full-interconnect bus topologies (crossbar switch, for example) for higher throughput. Multiple bus mas-
ter-slave pairs can exchange data simultaneously.

The SGDMAC core provides an easy way to add DMA capability to peripheral devices by using the Packet Buffer
interface and the request/acknowledge ports. A possible implementation of a DMA-enabled peripheral is illustrated
in Figure 2-5.

Figure 2-5. DMA-Capable Peripheral with SGDMAC Core

The SGDMAC core in this example is used in single-bus mode, although dual-bus mode would also work (the
peripheral could transfer data between itself and either bus). A small buffer descriptor RAM provides only those
descriptors needed by the peripheral. A dual-port RAM attached to the core’s Packet Buffer interface provides the
data path, and the request/acknowledge signals allow the peripheral to initiate transfers and recognize transfer
completion. The core’s slave interface may be connected to the wishbone bus for channel and buffer descriptor
setup or, for smart peripherals, there might be a direct connection between the peripheral and the core’s slave port.

Interface Descriptions
WISHBONE Interfaces
All WISHBONE interfaces are compliant with WISHBONE Specification B.3. The Cycle Indicator tags are used for
burst transactions. They are sourced by the WISHBONE masters and valid when the strobe signal (stb) is active.
The SGDMAC WISHBONE master interfaces also support an End-Of-Data tag. Buffer Descriptor Interface. The
eod signal may be returned by bus slaves and is valid when the acknowledge (ack) signal is active.

Buffer Descriptor Memory Interface
The interface to the buffer descriptor RAM uses a simple synchronous handshake for reads and writes, as shown in
Figure 2-6.

 SGDMAC

BD
RAM

SLAVE MASTER

DUAL PORT
RAM

BD_IF PB_IF

REQ/ACK

WISHBONE BUS

PERIPHERAL

PERIPHERAL

WISHBONE

INTERFACE

SLAVE

Functional Description

IPUG67_1.8, March 2015 14 Scatter-Gather DMAC User Guide

Figure 2-6. Buffer Descriptor Interface Timing

The SGDMAC core fetches a sequence of four 32-bit words from the user-provided Buffer Descriptor memory
using a four clock-cycle burst. The active-high bd_re signal, accompanied by a read address on bd_raddr, signals
the read request. The BD memory responds with an active-high bd_rval, accompanied by buffer descriptor data.
The request-to-valid-data interval is under the control of the BD memory. WISHBONE slave initiated reads are pre-
sented to the Buffer Descriptor memory as active high bd_re and bd_raddr, both of which are held until the BD
memory responds with an active-high bd_rval and corresponding data. BD memory writes are presented as a sin-
gle clock-cycle assertion of bd_we accompanied by write address bd_waddr and write data bd_wdat. The SGD-
MAC core assumes that the BD memory accepts the write, so no acknowledge signal is required.

Packet Buffer Interface
The interface to the external Packet Buffer memory also uses a simple handshake to transfer data, as shown in
Figure 2-7.

Figure 2-7. Packet Buffer Interface Timing

The pb_read signal is asserted along with the read address. The PB memory responds some number of clock-
cycles later with pb_rval and the read data.

Note: Because the PB memory’s read latency is unknown to the core, the SGDMAC may perform more reads than
necessary to complete the burst. The data from these superfluous reads are unused, and the next burst will begin
at the appropriate PB read address. This should note pose a problem for Packet Buffers implemented as normal
RAMs, but prevents the use of Packet Buffers implemented as FIFOs.

For packet buffer writes, the pb_write signal is asserted with the write address and data. The SGDMAC core
assumes that the PB memory can accept the write, so no acknowledge signal is required.

clk

bd_raddr[]

bd_re

bd_rdat[]

bd_rval

BDr

A0

BD0 BD1 BD2 BD3

A1 A2 A3 Ar

bd_waddr[]

bd_we

bd_wdat[]

Aw

BDw

A0 A1 A2 A3

A0 A1 A2 A3

D0 D1 D2 D3

D0 D1 D2 D3

clk

pb_raddr[]

pb_read

pb_rdat[]

pb_rval

pb_waddr[]

pb_write

pb_wdat[]

Packet Buffer Read

Packet Buffer Write

Functional Description

IPUG67_1.8, March 2015 15 Scatter-Gather DMAC User Guide

Registers and Memory
Table 2-2. Registers and Memory

Global Registers

Table 2-3. IPID - IP Identification Register (address = 0)

Table 2-4. IPVER - IP Version Register (address = 4)

Name Addr (hex) Width Access Description

Global Registers

IPID 0 32 R IP identification register

IPVER 4 32 R IP version register

GCONTROL 8 32 RW Global control register

GSTATUS c 32 RW Global status register

GEVENT 10 32 RC1 Global channel event register and mask

GERROR 14 32 RW Global channel error register and mask

GARBITER 18 32 RW Global arbiter control register

GAUX 1c 32 RW Auxiliary inputs and outputs

Channel N Registers

CONTROLN N<<5 + 200 32 RW Control register

STATUSN N<<5 + 204 32 RW Status register

CURSRCN N<<5 + 208 32 R Current source register

CURDSTN N<<5 + 20c 32 R Current destination register

CURXFERCNT N<<5 + 210 32 R Current transfer count

PBOFFSETN N<<5 + 214 32 RW Packet buffer start address

Buffer Descriptor X

CONFIG0X X<<4 + 400 32 RW Control register

CONFIG1X X<<4 + 404 32 RW Status register

SRC_ADDRX X<<4 + 408 32 RW Source address

DST_ADDRX X<<4 + 40c 32 RW Destination address

Field Name Bits Access Description

VENDORID 31:16 R Vendor ID (1204)

IPNUM 15:0 R IP number (TBD)

Field Name Bits Access Description

MAJOR 31:24 R Major version number

MINOR 23:16 R Minor version number

NUMCHAN 15:12 R Number of channels supported by this configuration

unused 11

NUMSUB 10:8 R Number of sub-channels supported by this configuration

CAPABLE 7:0 R

Capability bits
0: B-Bus present (0-no, 1-yes)
1: Packet Buffer present (0-no, 1-yes)
2: Endian-ness (1-Big, 2-Little)

Functional Description

IPUG67_1.8, March 2015 16 Scatter-Gather DMAC User Guide

Table 2-5. GCONTROL - Global Control Register (address = 8)

Table 2-6. GSTATUS - Global Status Register (address = c)

Table 2-7. GEVENT - Global Event Register (address = 10)

Table 2-8. GERROR - Global Error Summary and Mask (address = 14)

Table 2-9. GARBITER - Global Arbiter Control (address = 18)

Table 2-10. GAUX - Global Auxiliary Control and Status Register (address = 1c)

Per Channel Registers

Table 2-11. CONTROLx - Channel Control Register (address = channel<<5 + 200)

Field Name Bits Access Description

CHENABLE 15:0 RW Channel enable bits

CHMASK 31:16 RW Channel request mask - ‘1’ masks channel’s DMA request input

Field Name Bits Access Description

CHACTIVE 15:0 R Each bit is a copy of the corresponding channel’s REQUEST bit

AENABLE 29 RW ‘1’ enables A-Bus Master operation, ‘0’ resets

BENABLE 30 RW ‘1’ enables B-Bus Master operation, ‘0’ resets

GENABLE 31 RW ‘0’ holds all SGDMAC machines in their initialization state; ‘1’ enables
normal operation.

Field Name Bits Access Description

CHEVENT 15:0 R Each bit is a copy of the corresponding channel’s XFERCOMP bit

CHEVMSK 31:16 RW Masks the channels’ event outputs

Field Name Bits Access Description

CHERR 15:0 R Summary error bits for each channel. Clears when channel errors are
cleared (or masked)

CHERRMSK 31:16 RW Masks the channels’ summary error bit outputs

Field Name Bits Access Description

SHARE0 3:0 RW Priority group 0 fair share value (0-15)

SHARE1 7:4 RW Priority group 1 fair share value

SHARE2 11:8 RW Priority group 2 fair share value

SHARE3 15:12 RW Priority group 3 fair share value

CHARBMSK 31:16 RW Masks channel logic requests for service to arbiter

Field Name Bits Access Description

AUXCTRL 15:0 W Drives auxctrl outputs during slave write only, ‘0’s otherwise.

AUXSTAT 31:16 R Reflects value of auxstat inputs

Field Name Bits Access Description

PRIGRP 7:6 RW Priority group

ERRMASK 15:8 RW Error mask - '1' masks error output, error still registered

BDBASE 31:16 RW Buffer descriptor base index

Functional Description

IPUG67_1.8, March 2015 17 Scatter-Gather DMAC User Guide

Table 2-12. Channel Status Register (address = channel<<5 +204)

Table 2-13. CURSRCx - Current Source Address (address = channel<<5 + 208)

Table 2-14. CURDSTx - Current Destination Address (address = channel<<5 + 20c)

Table 2-15. CURXFERCNTx - Current Transfer Count (address = channel<<5 + 210)

Table 2-16. PBOFFSETx - Packet Buffer Offset for Channel x (address = channel<<5 + 214)

Buffer Descriptors

Field Name Bits Access Description

ENABLED 0 R Copy of channel enable in global control register

REQUEST 1 RW DMA request active on this channel. Set by external DMA request sig-
nal or SW set on write to 1. Cleared by channel when transfer complete.

XFERCOMP 2 R ‘1’ indicates current transfer complete

EOD 3 R ‘1’ indicates End-Of-Data condition encountered

CLRCOMP 4 W ‘1’ clears XFERCOMP and EOD

unused 6:5

RTRYCNT 11:7 R Retry count

STATE 15:12 R Channel logic machine’s current state (values TBD)

ERRORS 23:16 RC1 Channel errors (clear on write to 1) 16: bus error 17: local address out
of range 18: timeout error 19: illegal retry

Field Name Bits Access Description

SRCADDR 31:0 R Current source address

Field Name Bits Access Description

DSTADDR 31:0 R Current destination address

Field Name Bits Access Description

CNT 15:0 R Number of bytes transferred so far

CURR_BD 31:16 R Current BD pointer

Field Name Bits Access Description

OFFSET 31:0 RW Packet Buffer start address

Table 2-17. CONFIG0 - Buffer Descriptor Configuration 0 (address = bd<<4 + 400)

Field Name Bits Access Description

EOL 0 RW End of BD sequence

SPLIT 1 RW Split transaction

LOCK 2 RW Bus locking

AUTORETRY 3 RW Channel does autonomous retry

RETRYTHRESH 7:4 RW Retry threshold for this transaction

SRC_BUS 9:8 RW Source bus (00=A, 01=B, 10=PB)

SRCBUS_SIZE 12:10 RW Source bus transaction data width (log2(number_of_bytes))

SRCINCR 14:13 RW Source address increment mode (00-none, 01-linear, 10-loop)

unused 15

DST_BUS 17:16 RW Destination bus (00=A, 01=B, 10=PB)

DSTBUS_SIZE 20:18 RW Destination bus transaction data width (log2(number_of_bytes))

Functional Description

IPUG67_1.8, March 2015 18 Scatter-Gather DMAC User Guide

Table 2-18. CONFIG1 - Buffer Descriptor Configuration 1 (address = bd<<4 +404)

Table 2-19. SRC_ADDRESS - Source Address (address = bd<<4 + 408)

Table 2-20. DST_ADDRESS - Buffer Descriptor Configuration 0 (address = bd<<4 + 40c)

Transaction Scenarios
Initialization
Channel Initialization: Channel initialization occurs when a channel is disabled. A disabled channel has its STA-
TUS register’s REQUEST, XFERCOMP, and ERRORS fields cleared. CONTROL register fields PRIGRP and
BDBASE retain their current values, and ERRMASK is set to all ‘1’s. Before enabling a channel, its PRIGRP and
BDBASE fields must be set to valid values.

To reinitialize a channel, simply disable it via its corresponding CHENABLE bit in the Global Control Register
(GCONTROL), set its control fields to their appropriate values, then enable it.

Global Initialization: Power-up and GSR resets have the following effect on the global registers:

• IP identification and version registers have fixed logic values and are unaffected by reset.

• In GCONTROL, CHENABLE is all zeros, disabling all channels, and CHMASK is all ‘1’s, masking all request
inputs.

• Since all channels are disabled, the CHACTIVE bits in GSTATUS will be ‘0’. AENABLE, BENABLE, and GEN-
ABLE initialize to ‘0’.

• Since all channels are disabled, the CHEVENT bits in GEVENT will be ‘0’. The CHEVMSK bits will all be ‘1’,
masking the event outputs.

• Since all channels are disabled, the CHERR bits in GERROR will be ‘0’. The CHERRMSK bits initialize to ‘1’,
masking the error outputs.

• In GARBITER, all SHAREx fields initialize to zero. All CHARBMSK bits init to zero (allows all channels’ requests
to arbiter).

DSTINCR 22:21 RW Destination address increment mode (00-none, 01-linear, 10-loop)

unused 23

SUBCHAN 26:24 RW Sub-channel value

unused 28:27

BD_NEXT 29 RW If ‘1’, start next transaction at next BD, otherwise BDBASE.

BD_STATUS 30 RW BD status – ‘1’ means buffer available.

BD_STATUS_EN 31 RW ‘1’ enables buffer status behavior for this BD.

Field Name Bits Access Description

XFER_SIZE 15:0 RW Total transfer size in bytes

BURST_SIZE 31:16 RW Maximum burst size in bytes

Field Name Bits Access Description

SRC 31:0 RW Source address

Field Name Bits Access Description

DST 31:0 RW Destination address

Table 2-17. CONFIG0 - Buffer Descriptor Configuration 0 (address = bd<<4 + 400) (Continued)

Field Name Bits Access Description

Functional Description

IPUG67_1.8, March 2015 19 Scatter-Gather DMAC User Guide

The Overall Initialization Sequence

• Set up channel control for channels to be enabled, including buffer descriptors.

• Set up arbiter properties.

• Enable WISHBONE masters.

• Enable SGDMAC core.

• Enable channels.

Simple DMA

• Set the channel’s head buffer descriptor values with EOL bit set to ‘1’, BURST_SIZE >= XFER_SIZE.

• Set the STATUSx.REQUEST bit to ‘1’. (Alternatively, the DMA request input may be unmasked and the transac-
tion initiated by a ‘1’ on the request input.)

• DMA engine signals WISHBONE master(s) to request bus access. Masters have bus control until transfer com-
plete.

• Upon completion, channel logic clears STATUSx.REQUEST, sets STATUSx.XFERCOMP, and signals DMA
acknowledge to the requesting peripheral.

• Transfer completion handling may be: fire-and-forget; poll STATUSx.XFERCOMP for a ‘1’, then write CON-
TROLx.CLRCOMP to ‘1’ to clear STATUSx.XFERCOMP; or respond to channel event interrupt by writing CON-
TROLx.CLRCOMP to ‘1’ to clear STATUSx.XFERCOMP. Hardware initiated requests are terminated by
dma_ack[x]. Withdrawing dma_req[x] clears both STATUSx.XFERCOMP and dma_ack[x].

Multi-Burst Transfers

• Same as simple DMA, except BURST_SIZE < XFER_SIZE in head buffer descriptor.

• DMA engine transfers BURST_SIZE data, then signals channel that burst is complete. Channel requests servic-
ing for bursts until XFER_SIZE has been transferred.

• Transfer completion is the same as simple DMA

Multiple-Descriptor Transfers

• Same as simple DMA, except multiple buffer descriptors are set up in sequence. Only final descriptor has EOL
set to ‘1’. Each buffer descriptor has its own XFER_SIZE and BURST_SIZE.

• DMA engine completes each transfer as in multi-burst case. Channel logic increments STATUSx.CURR_BD.

• Transfer completion is the same.

Split Transactions

• Same as any of the above, except SPLIT bit in descriptor is set.

• DMA engine signals source WISHBONE master only, data for first burst is transferred to packet buffer.

• DMA engine signals burst complete to arbiter, which reselects active channel.

• When split transaction channel is serviced again, DMA engine signals destination WISHBONE master only, data
for first burst is transferred from packet buffer. Burst complete sent to arbiter.

• Repeat sequence for all bursts until destination half of final burst is complete.

• Transfer completion as usual

Functional Description

IPUG67_1.8, March 2015 20 Scatter-Gather DMAC User Guide

Packet Buffer as Source or Destination

• Set channel packet buffer offsets so that channel space is large enough to hold XFER_SIZE

• Same as any other non-split transaction, but set SRC_BUS (or DST_BUS) field in buffer descriptor to select
Packet Buffer.

Autonomous Retry

• During any burst transfer, a WISHBONE master may receive a retry indication during bus arbitration. If AUTORE-
TRY is set in descriptor, follow this sequence.

• DMA engine signals retry to channel and arbiter. Arbiter moves to next active channel. Channel logic increments
retry count.

• When retry channel is again serviced, proceed as before. If retry count exceeds RETRYTHRESH (in descriptor),
signal error and freeze channel logic.

• Otherwise, continue until no retry occurs.

Hardware Retry

• If AUTORETRY is not set, channel responds to retry signal from DMA engine by deactivating its STA-
TUSx.REQUEST bit.

• ‘1’ on DMA request input for this channel starts the process beginning with this burst.

• Continue as before.

EOD

• During any burst in a transaction, the source bus WISHBONE master receives an End-Of-Data flag. The WISH-
BONE master relinquishes control of the bus and signals EOD to the DMA engine.

• The DMA engine terminates the entire transaction as usual, even in the middle of a sequence of bursts, and sets
the STATUSx.EOD to a ‘1’, in addition to setting STATUSx.XFERCOMP.

• When CONTROLx.CLRCOMP is written to ‘1’, STATUSx.EOD is cleared along with STATUSx.XFERCOMP.

Buffer Status Checking

• In Buffer Status mode, if status checking is enabled for the requested buffer (CONFIG0.BD_STATUS_EN is ‘1’)
and the buffer is marked as unavailable (CONFIG0.BD_STATUS is ‘0’), the DMA engine immediately terminates
the transfer by setting STATUSx.XFERCOMP and clearing STATUSx.REQUEST. STATUSx.ERRORs[4] is set,
indicating a buffer descriptor error.

• The SGDMAC core takes no autonomous action to recover from a buffer descriptor error.

Requirements and Guidelines
Transfer and Burst Sizes

• Both transfer and burst sizes must be integer multiples of the largest bus size. (Reason: the internal FIFO is the
width of the largest bus, and it is read and written with full-width data words only.)

• For multiple buffer descriptor transfers (scatter-gather mode), each descriptor has its own transfer and burst
sizes. The SGDMAC core has no information about the total transfer size for multi-descriptor transactions.

• Internal address, transfer, and burst counters only increment in their lower 16 bits. This imposes two restrictions:
(a) Transfer and burst sizes are limited to 64K bytes; (b) in address auto-increment mode, the address must not
cross a 64K boundary.

Functional Description

IPUG67_1.8, March 2015 21 Scatter-Gather DMAC User Guide

• For transfers to/from the packet buffer, transfer size must be less than or equal to the space allocated for the
channel in packet buffer memory.

• For split transactions and intra-bus transfers, burst size must be less than or equal to the space allocated for the
channel in packet buffer memory.

WISHBONE Connections

• The SGDMAC WISHBONE master ports should occupy the full width of the buses to which they’re attached.

• WISHBONE bus slaves may have narrower data ports than the bus to which they are attached. In this case, they
must be connected to the lower bus data bits for both Big- and Little-Endian systems.

Sources and Destinations

• Intra-bus transfers are always implemented as split transactions. This is done autonomously by the core, so set-
ting the split bit in the buffer descriptor is not required.

• Do not do split transactions with the Packet Buffer as source or destination (one of the transfer steps will be PB-
to-PB).

• Packet buffer source and destination addresses always start at the channel’s packet buffer offset. The source (or
destination) address in the buffer descriptor is ignored.

Channels and Sub-Channels

• The actchan and subchan output ports of the SGDMAC core carry the active channel number and sub-channel
number for the duration of each burst, and may be useful for interfaces outside the scope of the standard WISH-
BONE/SGDMAC interaction. For example, they could be used as WISHBONE data tags. Or, the sub-channel
value could be used to form part of the address into Packet Buffer memory to provide sub-channel granularity.

IPUG67_1.8, March 2015 22 Scatter-Gather DMAC User Guide

The IPexpress™ tool is used to create IP and architectural modules in the Diamond software for the LatticeECP3
and LatticeXP2 device families. Refer to the IP Core Generation section for a description on how to generate the IP.
Clarity Designer tool is used to create IP in the Diamond software for the ECP5 device family. Refer to IP Core
Generation section for more information.

Table 3-1 provides the list of user configurable parameters for the SGDMAC IP core. The parameter settings are
specified using the SGDMAC IP core Configuration GUI in IPexpress or Clarity Designer.

Table 3-1. SGDMAC Parameters

Parameters Range/Options Default Value

Buses

Bus A Data Width 8, 16, 32, 64, 128 32

Bus B Data Width 0, 8, 16, 32, 64, 128 32

Address Width 16-32 32

Byte Order 0 or 1 Little Endian

Add Auxiliary Ports auxstat and ausctl 0=Unselected 1=Selected Not selected

Address Decoding

Address Decode Size 0 to 24 0

Address Match Value 0 to FFFFFFFF 0

Channels

Number of Channels 1 to 16 16

Number of Sub-CHannels 0 to 8 4

Arbiter Type 0 or 1 Simple Round-robin
(value: 0)

Enable Buffer Status Check/Update 0 = Disabled
1 = Enabled Disabled

Memory Interfaces

Number of Buffer Descriptions 1 to 65536 256

Packet Buffer SIze 0 to 65536 4096

Generation Options

Clock Frequency (MHz) 150

Behavioral Model Enabled

Netlist (.ngo) Enabled

Evaluation Directory Enabled

Transfer Settings

Source Bus
A=0
B=1
C=2

From Buffer Descriptor

Source Bus Size 8, 16, 32,
64, 128 From Buffer Descriptor

Source Address 0 to FFFFFFFF From Buffer Descriptor

Destination Bus
A=0
B=1
C=2

From Buffer Descriptor

Destination Bus Size 8, 16, 32,
64, 128 From Buffer Descriptor

Destination Address 0 to FFFFFFFF From Buffer Descriptor

Chapter 3:

Parameter Settings

http://www.latticesemi.com/documents/ipug80.pdf
http://www.latticesemi.com/documents/ipug80.pdf
at: www.latticesemi.com/software.

 Parameter Settings

IPUG67_1.8, March 2015 23 Scatter-Gather DMAC User Guide

User Parameters Tab
Figure 3-1 shows the contents of the User Parameters tab.

Figure 3-1. User Parameters Tab

Buses
This section sets the data widths for the A and B buses and the common address width. Setting “Bus B Data Width”
to zero results in a single-bus configuration. “Byte Order” applies to both buses. Checking the “Add Auxiliary Ports
auxstat and auxctl” box adds the auxiliary ports to the core.

LOCK Value 0=off
1=on From Buffer Descriptor

AUTORETRY Value 0=off
1=on From Buffer Descriptor

AutoRetry Threshold 0 to 15 From Buffer Descriptor

Table 3-1. SGDMAC Parameters (Continued)

Parameters Range/Options Default Value

 Parameter Settings

IPUG67_1.8, March 2015 24 Scatter-Gather DMAC User Guide

Bus A Data Width
This option sets the Bus A data width.

Bus B Data Width
This option sets the Bus B data width. 0 = single-bus configuration.

Address Width
This option sets the Address width.

Byte Order
This option sets the Byte order.

• 0=Little Endian

• 1=Big Endian

Note: This parameter applies to both buses.

Add Auxiliary Ports auxstat and auxctl
When checked, this options adds the auxiliary ports to the core.

Address Decoding
“Address Decode Size” sets the number of high-order address bits the WISHBONE slave will use for partial
address decoding. “Address Match Value” sets the value the bits will be compared against. An “Address Decode
Size” of zero means the WISHBONE bus is doing full address decoding and no address matching by the core.

Address Decode Size
This option sets the full address decode size.

Note: a value of 0 means the WISHBONE bus is doing full addressing (no address matching is done by the core).

Address Match Value
This option sets the full address decode match value.

Channels
The Channels section sets the number of channels and sub-channels (per channel). The Arbiter type choices are
weighted and simple round-robin. Choose simple round-robin for a much more compact, higher performance arbi-
tration module. The Enable Buffer Status Check/Update option provides the ability to provide circuitry for buffer sta-
tus handling. The check/update is enabled/disabled per buffer descriptor).

Number of Channels
This option sets the number of DMA channels.

Number of Sub-Channels
This option sets the number of DMA sub-channels.

Arbiter Type
This option sets the determines weighted or simple round-robin arbitration:

• 0 = Round-robin is selected

• 1 = Weighted is selected

Enable Buffer Status Check/Update
This option provides circuitry for buffer status handling:

• 0 = Unselected

• 1 = Selected

 Parameter Settings

IPUG67_1.8, March 2015 25 Scatter-Gather DMAC User Guide

Memory Interfaces
The “Number of Buffer Descriptors” option configures the size of the BD (buffer descriptor) memory read and write
address buses. There are four 32-bit words per buffer descriptor. 65536 is the maximum number of descriptors
allowed. The “Packet Buffer Size” option is the number of bytes in the external packet buffer. This item sets the
packet buffer address bus sizes. The data bus is always the size of the largest WISHBONE bus.

Number of Buffer Descriptions
This option sets the number of buffer descriptors.

Packet Buffer SIze
This option sets the number of bytes in the external packet buffer.

Generation Options
Clock Frequency (MHz)
This option sets the fMAX setting for core synthesis and eval implementation map, place, and route (more on eval
later).

Behavioral Model
This option generates a configuration-specific non-synthesizeable behavioral model for the core.

Netlist
This option synthesizes the user-specified core configuration in .ngo format.

Evaluation Directory
This option creates a configuration-specific implementation directory where the user may map, place, and route the
core to obtain performance and utilization results.

Synthesis Optimizations Tab
Every data transfer performed by the SGDMAC is controlled by values normally held in a 4-word section of memory
called a buffer descriptor. When a channel is chosen by the arbiter to be the active channel, the dma engine fetches
these control values (also known as transaction parameters) from buffer descriptor memory.

Several of the buffer descriptor transaction parameters may be fixed values for some applications. Substantial logic
savings are possible by setting these values at synthesis time rather than retrieving them from the buffer descriptor
memory. Source and Destination address maybe set to hexadecimal values via their respective text entry field. An
entry field is provided for retry threshold.

Figure 3-2 shows the contents of the Synthesis Optimization tab.

Figure 3-2. Synthesis Optimization Tab

 Parameter Settings

IPUG67_1.8, March 2015 26 Scatter-Gather DMAC User Guide

Transfer Settings
Source Bus
This option sets the source bus of the DMA transaction:

• A: Static, BusA

• B: Static, BusB

• PB: Packet Buffer

• From BD: Dynamic, refer to the BD register.

Source Bus Size
This option sets the source bus transaction data width:

• 8/16/32/64/128: Static, will be converted to log2(number_of_bytes) as 0/1/2/3/4

• From BD: Dynamic, refer to BD register

Destination Bus Size
This option sets the destination bus transaction data width:

• 8/16/32/64/128: Static, will be converted to log2(number_of_bytes) as 0/1/2/3/4

• From BD: Dynamic, refer to BD register

Source Address
This option sets the source starting address.

Destination Bus
This option sets the destination bus of the DMA transaction:

• A: Static, BusA

• B: Static, BusB

• PB: Static, Packet Buffer

• From BD: Dynamic, refer to the BD register.

Destination Bus Size
This option sets the destination bus transaction data width:

• 8/16/32/64/128: Static, will be converted to log2(number_of_bytes) as 0/1/2/3/4

• From BD: Dynamic, refer to BD register

Destination Address
This option sets the destination starting address.

LOCK Value
This option sets bus locking:

• 0: Static, Always off;

• 1: Static, Always on;

• From BD: Dynamic, refer to BD register

 Parameter Settings

IPUG67_1.8, March 2015 27 Scatter-Gather DMAC User Guide

AUTORETRY Value
This option sets the channel to do autonomous retry:

• 0: Static, Always off;

• 1: Static, Always on;

• From BD: Dynamic, refer to BD register

AutoRetry Threshold
This option sets the number of autonomous retries.

IPUG67_1.8, March 2015 28 Scatter-Gather DMAC User Guide

IP Core Generation in IPexpress
This chapter provides information on how to generate the Lattice SGDMAC IP core using the Diamond software
IPexpress tool, and how to include the core in a top-level design.

Licensing the IP Core
An IP core- and device-specific license is required to enable full, unrestricted use of the SGDMAC IP core in a com-
plete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are given at:

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the SGDMAC IP core and fully evaluate the core through functional simulation
and implementation (synthesis, map, place and route) without an IP license. The SGDMAC IP core also supports
Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in
hardware for a limited time (approximately four hours) without requiring an IP license. See the Hardware Evaluation
section for further details. However, a license is required to enable timing simulation, to open the design in the Dia-
mond EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation.

Getting Started
The SGDMAC IP core is available for download from the Lattice IP Server using the IPexpress tool. The IP files are
automatically installed using ispUPDATE technology in any customer-specified directory. After the IP core has
been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The IPexpress tool GUI dialog box for the SGDMAC IP core is shown in Figure 4-1. To generate a specific IP core
configuration the user specifies:

• Project Path – Path to the directory where the generated IP files will be located.

• File Name – “username” designation given to the generated IP core and corresponding folders and files.

• (Diamond) Module Output – Verilog or VHDL.

• Device Family – Device family to which IP is to be targeted (e.g. LatticeXP2, LatticeECP3, etc.). Only families
that support the particular IP core are listed.

• Part Name – Specific targeted part within the selected device family..

Chapter 4:

IP Core Generation

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm
at: www.latticesemi.com/software.

 IP Core Generation

IPUG67_1.8, March 2015 29 Scatter-Gather DMAC User Guide

Figure 4-1. IPexpress Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output, Device Family
and Part Name default to the specified project parameters. Refer to the IPexpress tool online help for further infor-
mation.

To create a custom configuration:

1. Click the Customize button in the IPexpress tool dialog box to display the SGDMAC IP core Configuration GUI,
as shown in Figure 4-2.

2. Select the IP parameter options specific to your application. Refer to the Parameter Settings section for more
information on the SGDMAC IP core parameter settings.

 IP Core Generation

IPUG67_1.8, March 2015 30 Scatter-Gather DMAC User Guide

Figure 4-2. Configuration GUI (Diamond Version)

IPexpress-Created Files and Top Level Directory Structure
When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are
generated in the specified “Project Path” directory. The directory structure of the generated files is shown in
Figure 4-3.

Figure 4-3. LatticeECP3 SGDMAC IP Core Directory Structure

 IP Core Generation

IPUG67_1.8, March 2015 31 Scatter-Gather DMAC User Guide

The design flow for IP created with the IPexpress tool uses a post-synthesized module (NGO) for synthesis and a
protected model for simulation. The post-synthesized module is customized and created during the IPexpress tool
generation.

Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPex-
press tool creates several files that are used throughout the design cycle. The names of most of the created files
are customized to the user’s module name specified in the IPexpress tool.

Simulation Evaluation
The sgdmac_eval directory produced by the SGDMAC generator contains two simulation (Aldec and ModelSim)
subdirectories containing SGDMAC configuration and testbench files. The two directories are sim/aldec and
sim/modelsim. The contents of the simulation evaluation subdirectories are as follows:

• sgdmac_eval.do – Simulation execution script

• transfer_tests.v – Test sequence commands in Verilog format

• modelsim.ini, modelsim.tcl – ModelSim only - execution support files

• wave.do – Waveform setup script

To run an Aldec Active-HDL simulation:

1. Invoke Active-HDL.

2. In Active-HDL, select Tools->Execute macro.

3. Browse to sgdmac_eval\sim\aldec.

4. Select sgdmac_eval.do.

Table 4-1. File List

File Description

<username>.v This file provides the SGDMAC core wrapper.

<username>_core.v This file provides the SGDMAC core for simulation.

<username>_beh.v This file provides a behavioral simulation model for the SGDMAC core.

<username>_core_bb.v This file provides the synthesis black box for the user’s synthesis.

<username>_core.ngo The ngo files provide the synthesized IP core.

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the
IPexpress tool.

<username>.ipx

The IPX file holds references to all of the elements of an IP or Module after it is generated
from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate
files during the design implementation and analysis. It is also used to re-load parameter
settings into the IP/Module generation GUI when an IP/Module is being re-generated.

<username>_top.[v,vhd]
This file provides a module which instantiates the SGDMAC core. This file can be easily
modified for the user's instance of the SGDMAC core. This file is located in the
sgdmac_eval/<username>/src directory.

generate_core.tcl This file is created when GUI “Generate” button is clicked. This file may be run from the
command line.

<username>_generate.log This is the IPexpress scripts log file.

<username>_gen.log This is the IPexpress IP generation log file

 IP Core Generation

IPUG67_1.8, March 2015 32 Scatter-Gather DMAC User Guide

To run a ModelSim simulation:

1. Invoke ModelSim.

2. In ModelSim, select File -> Change Directory.

3. Browse to sgdmac_eval\sim\modelsim.

4. Select Tools -> TCL -> Execute Macro.

5. Select sgdmac_eval.do.

Implementation Evaluation
The SGDMAC IPexpress Generator optionally creates an implementation evaluation directory
<project_directory>/sgdmac_eval/module_name/impl. The module_name_eval file is a Diamond proj-
ect file that will synthesize, map-place-and-route, and run timing analysis on the specified configuration of the
SGDMAC core with dummy WISHBONE terminations to minimize I/O timing effects (in most applications the SGD-
MAC core will not interface directly with device I/O). The purpose of this evaluation directory is to provide users an
estimate of area and maximum clock frequency for the specified configuration. Actual results in a user application
will vary based primarily on routing constraints.

SGDMAC Core Implementation
Functional Simulation
The SGDMAC core generator produces a cycle-accurate Verilog behavioral model of the user-specified configura-
tion of the SGDMAC core, module_name_beh.v. The generated module_name_inst.v file provides a template for
instantiating the module in a Verilog netlist. The port connection list uses the port name as the default for the con-
nection name. The size of the connection is provided. Users should edit these to connect the wires in their netlists.
Only the ports that are valid for this specification configuration are included in the port list (all possible ports are
listed in the example). An example of the module_name_inst.v file is shown below:

//===
// Verilog module generated by IPExpress 05/22/2007 10:14:24
// Filename: sgdmac_0_inst.v
// Copyright(c) 2005 Lattice Semiconductor Corporation. All rights reserved.
//===

//--
// sgdmac_0 instance template
//--

sgdmac_0 sgdmac_0_inst (
 .clk(clk),
 .rstn(rstn),
 .a_addr(sga_addr[31:0]),
 .a_wdat(sga_wdat[31:0]),
 .a_rdat(sga_rdat[31:0]),
 .a_sel(sga_sel[3:0]),
 .a_we(sga_we),
 .a_cyc(sga_cyc),
 .a_stb(sga_stb),
 .a_lock(sga_lock),
 .a_cti(sga_cti[2:0]),
 .a_ack(sga_ack),s
 .a_err(sga_err),
 .a_retry(sga_retry),
 .a_eod(sga_eod),
 .b_addr(sgb_addr[31:0]),
 .b_wdat(sgb_wdat[31:0]),
 .b_rdat(sgb_rdat[31:0]),
 .b_sel(sgb_sel[3:0]),

 IP Core Generation

IPUG67_1.8, March 2015 33 Scatter-Gather DMAC User Guide

 .b_we(sgb_we),
 .b_cyc(sgb_cyc),
 .b_stb(sgb_stb),
 .b_lock(sgb_lock),
 .b_cti(sgb_cti[2:0]),
 .b_ack(sgb_ack),
 .b_err(sgb_err),
 .b_retry(sgb_retry),
 .b_eod(sgb_eod),
 .saddr(sgs_addr[31:0]),
 .swdat(sgs_wdat[31:0]),
 .srdat(sgs_rdat[31:0]),
 .scyc(sgs_cyc),
 .sstb(sgs_stb),
 .ssel(sgs_sel[3:0]),
 .swe(sgs_we),
 .sack(sgs_ack),
 .serr(sgs_err),
 .bd_waddr(bd_waddr[9:0]),
 .bd_raddr(bd_raddr[9:0]),
 .bd_wdat(bd_wdat[31:0]),
 .bd_rdat(bd_rdat[31:0]),
 .bd_we(bd_we),
 .bd_re(bd_re),
 .bd_rval(bd_rval),

.bd_err(bd_err),
 .pb_waddr(pb_waddr[11:0]),
 .pb_raddr(pb_raddr[11:0]),
 .pb_wdat(pb_wdat[31:0]),
 .pb_rdat(pb_rdat[31:0]),
 .pb_write(pb_write),
 .pb_read(pb_read),
 .pb_rval(pb_rval),
 .dma_req(dma_req[15:0]),
 .dma_ack(dma_ack[15:0]),
 .eventx(eventx[15:0]),
 .errorx(errorx[15:0]),
 .actchan(actchan[3:0]),
 .subchan(subchan[2:0]),
 .auxctl(auxctl[15:0]),
 .auxstat(auxstat[15:0]
);

IP Core Implementation
The generated SGDMAC IP core is in a Lattice proprietary .ngo format, which is independent of the HDL used to
capture the rest of the user’s design. Instance templates and component (black box) definitions are generated in
both Verilog and VHDL. The following steps are used in the implementation phase of the design process:

• Copy and paste the instance template (module_name_inst.v[hd]) into the user netlist where the SGDMAC IP
core resides (not limited to user’s top level).

• Edit the connection list as necessary to connect the SGDMAC IP core to the rest of the user design. (Tip: If the
wire names in the user design match the port names of the SGDMAC IP core, no editing is required. The file con-
tents could be included in the design as is.)

• Run the synthesis tool, making sure the blackbox definition file (module_name_bb.v or module_name_pkg.vhd)
is included in the list of files to be compiled. The resulting netlist will contain a blackbox instantiation of the SGD-
MAC IP core.

 IP Core Generation

IPUG67_1.8, March 2015 34 Scatter-Gather DMAC User Guide

• When running map, place, and route, make sure the module_name.ngo and the pmi_*.ngo files created by the
generation process can be found by the Diamond software. This is accomplished either by copying the .ngo
file(s) to the place-and-route working directory, or pointing to the directory where it resides (-p option if running
ngdbuild from a script). In Diamond, set the directory where the module_name.ngo file resides by using one of
the following methods:

– In Diamond, set the Macro Search Path property under Project > Active Strategy > Translate Design
Settings.

• If multiple identical IP cores are required in a single design, simply instantiate the same module multiple times
with different connections. If multiple dissimilar IP cores are required, generate a different IP core for each type
required using different module names, then instantiate each module type as required.

Things to consider:

No timing model exists for the SGDMAC IP core, so the synthesis tool will be unable to analyze the paths in and out
of the core. The SGDMAC IP core generator provides registers on all its outputs and assumes that its inputs are
driven by registers clocked with the SGDMAC IP core clock (clk).

The SGDMAC IP core netlist is not “lint-free” for all configurations, so warnings may be generated by the synthesis
and map-place-route tools.

Hardware Evaluation
The SGDMAC IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create ver-
sions of the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring
the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs.

Enabling Hardware Evaluation in Diamond
Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be
enabled/disabled in the Strategy dialog box. It is enabled by default.

Updating/Regenerating the IP Core
By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design
entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP
core or to create a new but similar one.

Regenerating an IP Core in Diamond
To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-
get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The
base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-
sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the
About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As
the options change, the schematic diagram of the module changes to show the I/O and the device resources
the module will need.

 IP Core Generation

IPUG67_1.8, March 2015 35 Scatter-Gather DMAC User Guide

7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not
available in stand-alone mode).

8. Click Generate.

9. Check the Generate Log tab to check for warnings and error messages.

10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP
core required to support simulation, synthesis and implementation. The IP core may be included in a user's design
by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is
already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the
module’s dialog box showing the current option settings. Then go to step 6 above.

IP Core Generation in Clarity Designer
Getting Started
The first step in generating an IP Core in Clarity Designer is to start a project in Diamond software with the ECP5
device. Clicking the Clarity Designer button opens the Clarity Designer tool.

Figure 4-4. Starting a Project in Clarity Designer

As shown in Figure 4-4, you can create a new design or open an existed one. Specify the Design Location, Design
Name and HDL Output format. Click Create to open the Clarity Designer main GUI window.

 IP Core Generation

IPUG67_1.8, March 2015 36 Scatter-Gather DMAC User Guide

The SGDMAC IP core is available for download from the Lattice IP Server using the Clarity Designer tool. The IP
files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP core
has been installed, the IP core will be available in the Clarity Designer GUI Catalog window as shown in Figure 4-5.

Figure 4-5. Clarity Designer Catalog Window

Double-click the IP name to open a dialog box where you can choose configuration options, as shown in Figure 4-
6.

 IP Core Generation

IPUG67_1.8, March 2015 37 Scatter-Gather DMAC User Guide

Figure 4-6. Clarity Designer Dialog Box

To generate a specific IP core configuration the user specifies:

• Instance Path – Path to the directory where the generated IP files will be located.

• Instance Name – “username” designation given to the generated IP core and corresponding folders and files.

• Module Output – Verilog or VHDL.

• Module Output – Verilog HDL or VHDL.

• Device Family – Device family to which IP is to be targeted.

• Part Name – Specific targeted part within the selected device family.

Note that because the Clarity Designer tool must be called from within an existing project path, Module Output,
Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool online help for
further information.

To create a custom configuration:

1. Click the Customize button in the Clarity Designer dialog box to display the SGDMAC IP core Configuration
GUI, as shown in Figure 4-2.

2. Select the IP parameter options specific to your application. Refer to the Parameter Settings section for more
information on the SGDMAC IP core parameter settings.

3. After setting the parameters, click Configure.

4. A dialog box, shown in Figure 4-7, displays logs, errors and warnings. Click Close.

 IP Core Generation

IPUG67_1.8, March 2015 38 Scatter-Gather DMAC User Guide

Figure 4-7. Clarity Designer Generate Log Tab

5. The Clarity Designer Builder tab, shown in Figure 4-8, opens.

Figure 4-8. Clarity Designer Builder Tab

 IP Core Generation

IPUG67_1.8, March 2015 39 Scatter-Gather DMAC User Guide

Clarity Designer Created Files and Top Level Directory Structure
The directory structure of the generated files is shown in Figure 4-9.

Figure 4-9. ECP5 SGDMAC IP Core Directory Structure

The design flow for IP created with the Clarity Designer tool uses post-synthesized modules (NGO) for synthesis
and a protected model for simulation. The post-synthesized module are customized and created during the Clarity
Designer tool generation.

Table 4-2 provides a list of key files and directories created by the Clarity Designer tool and how they are used. The
Clarity Designer tool creates several files that are used throughout the design cycle. The names of most of the cre-
ated files are customized to the user’s module name specified in the Clarity Designer tool.

Table 4-2. File List

Simulation Evaluation
Please refer to the Simulation Evaluation section for details.

File Description

<username>.v This file provides the SGDMAC core wrapper.

<username>_core.v This file provides the SGDMAC core for simulation.

<username>_beh.v This file provides a behavioral simulation model for the SGDMAC core.

<username>_core_bb.v This file provides the synthesis black box for the user’s synthesis.

<username>_core.ngo The ngo files provide the synthesized IP core.

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the
IPexpress tool.

<username>.ipx

The IPX file holds references to all of the elements of an IP or Module after it is generated
from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate
files during the design implementation and analysis. It is also used to re-load parameter
settings into the IP/Module generation GUI when an IP/Module is being re-generated.

<username>_top.[v,vhd]
This file provides a module which instantiates the SGDMAC core. This file can be easily
modified for the user's instance of the SGDMAC core. This file is located in the
sgdmac_eval/<username>/src directory.

generate_core.tcl This file is created when GUI “Generate” button is pushed. This file may be run from com-
mand line.

<username>_generate.log This is the IPexpress scripts log file.

<username>_gen.log This is the IPexpress IP generation log file

 IP Core Generation

IPUG67_1.8, March 2015 40 Scatter-Gather DMAC User Guide

IP Core Implementation
After completing the Configuration step, click the Generate button, shown in Figure 4-8, to generate the Clarity
Designer file (.sbx).

Clarity Designer (.sbx) files can be used in design projects such as an HDL file or an IPexpress generated (.ipx)
file. A key difference between IPexpress generated files and Clarity Designer generated files is that the latter may
contain not only a single block but multiple modules or IP blocks and may represent a subsystem. In IPexpress, the
process generates a single module or IP. This is a one step process since an IPexpress file can only contain one
module or IP. In Clarity Designer, saving a file is a separate step. Modules or IP are configured and multiple mod-
ules or IP can optionally be added within the same file. Additionally, since building and planning can also be done,
saving the file and generating the blocks may be performed later.

After the Generate step is completed, the “.sbx” file is automatically added to current Diamond Project Input Files
list as shown in Figure 4-10.

Figure 4-10. File List in Report Dialog Box

After this step, click Process at the bottom of window, then double-click Place & Route Design to Start PAR. This
is similar to a standard Diamond PAR flow.

 IP Core Generation

IPUG67_1.8, March 2015 41 Scatter-Gather DMAC User Guide

Regenerating/Recreating the IP Core
By regenerating an IP core with the Clarity Designer tool, you can modify any of the options specific to an existing
IP instance. By recreating an IP core with Clarity Designer tool, you can create (and modify if needed) a new IP
instance with an existing LPC/IPX configuration file.

Regenerating an IP Core in Clarity Designer Tool
To regenerate an IP core in Clarity Designer:

1. In the Clarity Designer Builder tab, right-click on the existing IP instance and choose Config.

2. In the module dialog box, choose the desired options.

For more information about the options, click Help. You may also click the About tab in the Clarity Designer win-
dow for links to technical notes and user guides. The IP may come with additional information. As the options
change, the schematic diagram of the module changes to show the I/O and the device resources the module
will need.

3. Click Configure.

Recreating an IP Core in Clarity Designer Tool
To recreate an IP core in Clarity Designer:

1. In Clarity Designer click the Catalog tab.

2. Click the Import IP tab (at the bottom of the view).

3. Click Browse.

4. In the Open IPX File dialog box, browse to the .ipx or .lpc file of the module. Use the .ipx if it is available.

5. Click Open.

6. Type in a name for Target Instance. Note that this instance name should not be the same as any of the existing
IP instances in the current Clarity Designer project.

7. Click Import. The module's dialog box opens.

8. In the dialog box, choose desired options.

For more information about the options, click Help. You may also check the About tab in the Clarity Designer
window for links to technical notes and user guides. The IP may come with additional information.

As the options change, the schematic diagram of the module changes to show the ports and the device
resources the module needs.

9. Click Configure.

IPUG67_1.8, March 2015 42 Scatter-Gather DMAC User Guide

This chapter contains information about Lattice Technical Support, additional references, and document revision
history.

Lattice Technical Support
There are a number of ways to receive technical support.

E-mail Support
techsupport@latticesemi.com

Local Support
Contact your nearest Lattice sales office.

Internet
www.latticesemi.com

References
LatticeXP2

• HB1004, LatticeXP2 Family Handbook

LatticeECP3

• HB1009, LatticeECP3 Family Handbook

ECP5

• HB1012, ECP5 Family Handbook

Chapter 5:

Support Resources

at: www.latticesemi.com/software.
http://www.latticesemi.com/documents/TN1114.pdf
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
mailto: techsupport@latticesemi.com
http://www.latticesemi.com/documents/tn1196.pdf
http://www.latticesemi.com/view_document?document_id=24315
http://www.latticesemi.com
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001

 Support Resources

IPUG67_1.8, March 2015 43 Scatter-Gather DMAC User Guide

Revision History

Updated Quick Facts section. Revised data in Table 1-1, Scat-
ter-Gather DMA Controller IP Core Quick Facts.

Updated IP Core Generation in Clarity Designer section.
Changed “Customize” to “Configure” in the procedure for cre-
ating a custom configuration.

Updated LatticeECP3 FPGAs, LatticeXP2 FPGAs, ECP5
LFE5U FPGAs and ECP5 LFE5UM FPGAs sections.
— Revised data in Performance and Resource Utilization
tables.
— In Ordering Part Number, changed “ECP5U” and
“ECP5UM” to “LFE5U” and “LFE5UM”.

Added support for Diamond 3.2.

Added support for ECP5 device family.

Removed references to LatticeECP2MTM and LatticeSCTM

device families.

Updated corporate logo.

Updated Technical Support information.

Added support for Diamond software throughout.

Divided document into chapters. Added table of contents.

Added Quick Facts table in Chapter 1, “Introduction.”

Added new content in Chapter 4, “IP Core Generation.”

Updated for ispLEVER 8.0.

Updated for SGDMAC core version 2.1, including revisions for
LatticeECP3 support, addition of Buffer Status feature, Next
BD feature, support for 64K buffer descriptors, and new optimi-
zation parameters.

Updated IPexpress graphics and descriptions of GUI options.

Added information to simulate with Aldec Active-HDL.

Added information for licensing and purchase.

Updated LatticeSC/M appendix and Parameter Settings for
Standard Configurations table.

Added support for LatticeECP2, LatticeECP2M/S and
LatticeXP2 FPGA families.

June 2007 Initial release.

Date
Document

Version
IP

Version Change Summary

March 2015 1.8 3.0

April 2014 01.7 3.0asr

October 2010 01.6 2.5

July 2010 01.5 2.4

November 2009 01.4 2.4

July 2009 01.3 2.1

December 2008 01.2 2.0

July 2007 01.1 1.1

01.0 1.0

IPUG67_1.8, March 2015 44 Scatter-Gather DMAC User Guide

This appendix gives resource utilization information for Lattice FPGAs using the SGDMAC IP Core.

IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond design tools.
Details regarding the usage of IPexpress can be found in the IPexpress and Diamond help system. For more infor-
mation on the Diamond or ispLEVER design tools, visit the Lattice web site at:
www.latticesemi.com/software.

LatticeECP3 FPGAs
LatticeECP3 utilization data is shown in Table A-1. Table 1-1 lists the parameter settings used in deriving the utili-
zation data shown from Table A-1 to Table A-4.

Table A-1. Performance and Resource Utilization1

Ordering Part Number
The OPN for all configurations of the Scatter-Gather DMA targeting LatticeECP3 devices is DMA-SG-E3-U1.

LatticeXP2 FPGAs
LatticeXP2 utilization data is shown in Table A-2.

Table A-2. Performance and Resource Utilization1

Ordering Part Number
The OPN for all configurations of the Scatter-Gather DMA targeting LatticeXP2 devices is DMA-SG-X2-U1.

ECP5 LFE5U FPGAs
LFE5U utilization data is shown in Table A-3.

Table A-3. Performance and Resource Utilization1

Ordering Part Number
The OPN for all configurations of the Scatter-Gather DMA targeting LFE5U devices is DMA-SG-E5-U/DMA-SG-E5-
UT.

Core Configuration Device Slices LUTs Registers fMAX (MHz)

Config1 LFE3-95EA-7FN672C 2670 4311 1932 145

1. Performance and utilization data are generated using an LFE3-95EA-7FN672C device with Lattice Diamond 3.4 software using Synopsys
Synplify Pro for Lattice J-2014.09L. Performance may vary when using a different software version or targeting a different device density or
speed grade within the LatticeECP3 family.

Core Configuration Device Slices LUTs Registers fMAX (MHz)

Config2 LFXP2-40E-6F672C 2139 3443 1355 120

1. Performance and utilization data are generated using an LFXP2-40E-6F672C device with Lattice Diamond 3.4 software using Synopsys
Synplify Pro for Lattice J-2014.09L. Performance may vary when using a different software version or targeting a different device density or
speed grade within the LatticeXP2 family.

Core Configuration Device Slices LUTs Registers fMAX (MHz)

Config3 LFE5U-85F-8BG756C 2570 4049 1637 160

1. Performance and utilization data are generated using anLFE5U-85F-8MG756C device with Lattice Diamond 3.4 software using Synopsys
Synplify Pro for Lattice J-2014.09L. Performance may vary when using a different software version or targeting a different device density or
speed grade within the ECP device family.

Appendix A:

Resource Utilization

at: www.latticesemi.com/software.
http://www.latticesemi.com/products/designsoftware/index.cfm

Resource Utilization

IPUG67_1.8, March 2015 45 Scatter-Gather DMAC User Guide

ECP5 LFE5UM FPGAs
LFE5UM utilization data is shown in Table A-4.

Table A-4. Performance and Resource Utilization1

Ordering Part Number
The OPN for all configurations of the Scatter-Gather DMA targeting LFE5UM devices is DMA-SG-E5-U/DMA-SG-
E5-UT.

Core Configuration Device Slices LUTs Registers fMAX (MHz)

Config4 LFE5UM-85F-8BG756C 1998 3222 1265 165

1. Performance and utilization data are generated using an LFE5UM-85F-8BG756C device with Lattice Diamond 3.4 software using Synopsys
Synplify Pro for Lattice J-2014.09L. Performance may vary when using a different software version or targeting a different device density or
speed grade within the ECP5 device family.

Океан Электроники
Поставка электронных компонентов

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при

поставках импортных электронных компонентов на взаимовыгодных условиях!

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным
представителем в России одного из крупнейших производителей разъемов военного и
аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и
эксклюзивным представителем в России производителя высокотехнологичных и надежных
решений для передачи СВЧ сигналов «FORSTAR».

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки,
Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более
30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит
испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества
(Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer,
Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,
General Dynamics и др.);

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического
назначения:
(Применяются в военной, авиационной, аэрокосмической,
морской, железнодорожной, горно- и нефтедобывающей
отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели,
кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и
специального назначения, в средствах связи, РЛС, а так же
военной, авиационной и аэрокосмической отраслях
промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)
Факс: 8 (812) 320-03-32
Электронная почта: ocean@oceanchips.ru
Web: http://oceanchips.ru/
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А

