# Delphi Series V48SC, 1/16th Brick 100W DC/DC Power Modules: 48V in, 12V, 8.3A out The Delphi Series V48SC, 1/16<sup>th</sup> Brick, 48V input, single output, isolated DC/DC converters, are the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. This product family provides up to 100 watts of power or 30A of output current in the 1/16<sup>th</sup> brick form factor (1.3"x0.90") and pinout. With creative design technology and optimization of component placement, these converters possess outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. Typical efficiency of the 12V/8.3A module is greater than 92.0%. All modules are protected from abnormal input/output voltage, current, and temperature conditions. For lower power needs, but in a similar small form factor, please check out Delta V36SE (50W), S48SP (36W or 10A) and S36SE (17W or 5A) series standard DC/DC modules. #### **FEATURES** - High efficiency: 92.0% @ 12V/8.3A - Size: - Without heat spreader: - 33.0x22.8x9.5mm (1.30"x0.90"x0.37") - With heat spreader - 33.0x22.8x12.7mm (1.30"x0.90"x0.50") - Industry standard footprint and pinout - Fixed frequency operation - SMD or through-hole versions - Input UVLO - OTP and output OCP, OVP - Output voltage trim: -20%, +10% - Monotonic startup into normal and pre-biased loads - 1500V isolation and basic insulation - No minimum load required - No negative current during power or enable on/off - ISO 9001, TL 9000, ISO 14001, QS 9000, OHSAS18001 certified manufacturing facility #### **OPTIONS** - SMD pins - Short pin lengths available - Positive remote On/Off - Open frame with heat-spreader #### **APPLICATIONS** - Optical Transport - Data Networking - Communications - Servers **TECHNICAL SPECIFICATIONS**(T<sub>A</sub>=25°C, airflow rate=300 LFM, V<sub>in</sub>=48Vdc, nominal Vout unless otherwise noted.) | Γ <sub>A</sub> =25°C, airflow rate=300 LFM, V <sub>in</sub> =48Vdc, nominal<br><b>PARAMETER</b> | NOTES and CONDITIONS | V48SC12008 (Standard) | | | | | |-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--------------|------------------|--| | | | Min. | Тур. | Max. | Units | | | ABSOLUTE MAXIMUM RATINGS | | | | | | | | Input Voltage Continuous | | | | 80 | Vdc | | | Transient (100ms) | 100ms | | | 100 | Vdc | | | Operating Ambient Temperature | | -40 | | 85 | °C | | | Storage Temperature | | -55 | | 125 | °C | | | Input/Output Isolation Voltage INPUT CHARACTERISTICS | | | | 1500 | Vdc | | | Operating Input Voltage | | 36 | 48 | 75 | Vdc | | | Input Under-Voltage Lockout | | | | | | | | Turn-On Voltage Threshold Turn-Off Voltage Threshold | | 32.5<br>29.5 | 34.5<br>31.5 | 35.5<br>33.5 | Vdc<br>Vdc | | | Lockout Hysteresis Voltage | | 1.5 | 3 | 4 | Vdc | | | Maximum Input Current | 100% Load, 36Vin | | | 4 | Α | | | No-Load Input Current | | | 60 | 10 | mA | | | Off Converter Input Current | | | 8 | 12 | mA | | | Inrush Current (I <sup>2</sup> t) | With 100uF external input capacitor | | | 1 | A <sup>2</sup> s | | | Input Reflected-Ripple Current Input Voltage Ripple Rejection | P-P thru 12µH inductor, 5Hz to 20MHz | | -60 | 20 | mA<br>dB | | | OUTPUT CHARACTERISTICS | 120 HZ | | -60 | | UB | | | Output Voltage Set Point | Vin=48V, Io=Io.max, Tc=25°C | 11.82 | 12 | 12.18 | Vdc | | | Output Voltage Regulation | | | | | | | | Over Line Over Line | lo=lo, min to lo, max Vin=36V to 75V | | ±5<br>±5 | ±12<br>±12 | mV<br>mV | | | Over Temperature | Tc=-40°C to125°C | | ±3<br>±180 | ±1Ζ | mV | | | Total Output Voltage Range | Over sample load, line and temperature | 11.64 | | 12.36 | V | | | Output Voltage Ripple and Noise | 5Hz to 20MHz bandwidth | | | | | | | Peak-to-Peak | max load on output, 20MHz bandwidth 10uF tantalum + 1uF ceramic capacitor max load on output, 20MHz bandwidth | | 100 | | mV | | | RMS Operating Output Current Renge | 10uF tantalum + 1uF ceramic capacitor | 0 | 30 | 0.2 | mV | | | Operating Output Current Range Output Over Current Protection | Output Voltage 10% Low | 0<br>110 | | 8.3<br>140 | A<br>% | | | DYNAMIC CHARACTERISTICS | Output Voltage 1070 EOW | 110 | | 140 | 70 | | | Output Voltage Current Transient | load capacitor10uF tantalum + 1u ceramic 0.1A/uS<br>Frequency= 250Hz | | | | | | | Positive Step Change in Output Current | 50% lo.max to 75% lo.max | | 300 | | mV | | | Negative Step Change in Output Current | 75% lo.max to 50% lo.max | | 300 | | mV | | | Settling Time (within 1% Vout nominal) Turn-On Transient | | | 200 | | us | | | Start-Up Delay Time, From On/Off Control or Input | From On/Off Control or Input to 10%Vo | | | 15 | ms | | | Start-Up Rise Time, From On/Off Control or Input | From 10%Vo to 90% Vo | | | 40 | ms | | | Maximum Output Capacitance EFFICIENCY | Full load; 5% overshoot of Vout at startup; | 0 | | 3300 | μF | | | 100% Load | Vin=48V | | 92.0 | | % | | | 60% Load | Vin=48V | | 92.0 | | % | | | ISOLATION CHARACTERISTICS | | | | | | | | Input to Output Isolation Resistance | | 10 | | 1500 | Vdc<br>MΩ | | | Isolation Capacitance | | 10 | 1000 | | pF | | | FEATURE CHARACTERISTICS | | | | | | | | Switching Frequency | | | 420 | | kHz | | | ON/OFF Control, Negative Remote On/Off logic Logic Low (Module On) | Von/off | 0 | | 0.7 | V | | | Logic High (Module Off) | Von/off | 2.4 | | 5 | V | | | ON/OFF Control, Positive Remote On/Off logic | | | | | | | | Logic Low (Module Off) | Von/off<br>Von/off | 0 | | 0.7 | V | | | Logic High (Module On) ON/OFF Current (for both remote on/off logic) | Ion/off at Von/off=0.0V | 2.4 | | 5<br>1 | mA | | | ON/OFF Current (for both remote on/off logic) | Ion/off at Von/off=2.4V | | | ı | uA | | | Leakage Current (for both remote on/off logic) | Logic High, Von/off=5V | | | | uA | | | Output Voltage Trim Range | Max rated current guaranteed at full trim range | -20 | | 10 | % | | | Output Voltage Remote Sense Range | Max rated current guaranteed at full remote sense range | | | 10 | % | | | Output Over-Voltage Protection GENERAL SPECIFICATIONS | Over full temp range; % of nominal Vout | 110 | | 140 | % | | | MTBF | Per Telecordia SR-332, 80% load, 25°C, 48Vin, 300LFM | | 4.9 | | M hou | | | Weight | Open frame | | 15 | | gram | | | weight | With heat-spreader | | 24 | | grams | | | | Refer to Figure 22 for Hot spot location | | 400 | | 00 | | | Over-Temperature Shutdown (Hot Spot) | (48Vin,80%lo, 200LFM,Airflow from Vout+ to Vin+) | | 132 | | °C | | # **ELECTRICAL CHARACTERISTICS CURVES** 12 POWER DISSIPATION(W) 8 6 Vin=75V 2 Vin=36V Vin 48V 0 2.49 4.15 4.98 5.81 7.47 8.3 0.83 1.66 6.64 OUTPUT CURRENT(A) **Figure 1:** Efficiency vs. load current for minimum, nominal, and maximum input voltage at 25°C Figure 2: Power dissipation vs. load current for minimum, nominal, and maximum input voltage at 25°C. Figure 3: Typical full load input characteristics at room temperature ## **ELECTRICAL CHARACTERISTICS CURVES** #### For Negative Remote On/Off Start up **Figure 4:** Turn-on transient at full rated load current (10 ms/div). Vin=48V. Top Trace: Vout, 5.0V/div; Bottom Trace: ON/OFF input, 5V/div Figure 5: Turn-on transient at zero load current (10 ms/div). Vin=48V. Top Trace: Vout: 5.0V/div, Bottom Trace: ON/OFF input, 5V/div #### For Input Voltage Start up **Figure 6:** Turn-on transient at full rated load current (10 ms/div). Vin=48V. Top Trace: Vout, 5.0V/div; Bottom Trace: Vin, 50V/div **Figure 7:** Turn-on transient at zero load current (10 ms/div). Vin=48V. Top Trace: Vout, 5.0V/div; Bottom Trace: Vin, 50V/div **Figure 8:** Output voltage response to step-change in load current (75%-50%-75% of lo, max; di/dt = 0.1A/ $\mu$ s). Load cap: $10\mu$ F tantalum capacitor and $1\mu$ F ceramic capacitor. Top Trace: Vout (0.15V/div, 200us/div), Bottom Trace: lout (5A/div). Scope measurement should be made using a BNC cable (length shorter than 20 inches). Position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module ## **ELECTRICAL CHARACTERISTICS CURVES** **Figure 9:** Test set-up diagram showing measurement points for Input Terminal Ripple Current and Input Reflected Ripple Current. Note: Measured input reflected-ripple current with a simulated source Inductance ( $L_{TEST}$ ) of 12 $\mu$ H. Capacitor Cs offset possible battery impedance. Measure current as shown above **Figure 11:** Input reflected ripple current, $i_s$ , through a 12 $\mu$ H source inductor at nominal input voltage and rated load current (20 mA/div, 2us/div) Figure 13: Output voltage ripple at nominal input voltage and rated load current (lo=7.5A)(50 mV/div, 1us/div) Load capacitance: 1μF ceramic capacitor and 10μF tantalum capacitor. Bandwidth: 20 MHz. Scope measurements should be made using a BNC cable (length shorter than 20 inches). Position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module. Figure 10: Input Terminal Ripple Current, ic, at full rated output current and nominal input voltage with 12µH source impedance and 33µF electrolytic capacitor (200 mA/div, 1us/div) Figure 12: Output voltage noise and ripple measurement test setup #### **DESIGN CONSIDERATIONS** #### **Input Source Impedance** The impedance of the input source connecting to the DC/DC power modules will interact with the modules and affect the stability. A low ac-impedance input source is recommended. If the source inductance is more than a few $\mu H,$ we advise adding a 100 $\mu F$ electrolytic capacitor (ESR < 0.7 $\Omega$ at 100 kHz) mounted close to the input of the module to improve the stability. #### **Layout and EMC Considerations** Delta's DC/DC power modules are designed to operate in a wide variety of systems and applications. For design assistance with EMC compliance and related PWB layout issues, please contact Delta's technical support team. An external input filter module is available for easier EMC compliance design. Below is the reference design for an input filter tested with V48SC120XXX to meet EN55022 (VDE0878) class A(both q. peak and average) #### **Schematic and Components List** Figure 14 - EMI test schematic C1= 3.3uF/100 V C2= 47uF/100 V C3= 47uF/100 V C4=C5=1nF/250Volt T1=1mH, type P53910(Pulse) #### **Test Result:** At $T = +25^{\circ}C$ . Vin = 48 V and full load. Yellow line is quasi peak mode: Blue line is average mode. Figure 15 - EMI test negative line Figure 16 - EMI test positive line #### **Safety Considerations** The power module must be installed in compliance with the spacing and separation requirements of the end-user's safety agency standard, i.e., UL60950-1, CSA C22.2 NO. 60950-1 2nd and IEC 60950-1 2nd : 2005 and EN 60950-1 2nd: 2006+A11+A1: 2010, if the system in which the power module is to be used must meet safety agency requirements. Basic insulation based on 75 Vdc input is provided between the input and output of the module for the purpose of applying insulation requirements when the input to this DC-to-DC converter is identified as TNV-2 or SELV. An additional evaluation is needed if the source is other than TNV-2 or SELV. When the input source is SELV circuit, the power module meets SELV (safety extra-low voltage) requirements. If the input source is a hazardous voltage which is greater than 60 Vdc and less than or equal to 75 Vdc, for the module's output to meet SELV requirements, all of the following must be met: - The input source must be insulated from the ac mains by reinforced or double insulation. - The input terminals of the module are not operator accessible. - A SELV reliability test is conducted on the system where the module is used, in combination with the module, to ensure that under a single fault, hazardous voltage does not appear at the module's output. When installed into a Class II equipment (without grounding), spacing consideration should be given to the end-use installation, as the spacing between the module and mounting surface have not been evaluated. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. This power module is not internally fused. To achieve optimum safety and system protection, an input line fuse is highly recommended. The safety agencies require a Fast-acting fuse with 20A maximum rating to be installed in the ungrounded lead. A lower rated fuse can be used based on the maximum inrush transient energy and maximum input current. #### **Soldering and Cleaning Considerations** Post solder cleaning is usually the final board assembly process before the board or system undergoes electrical testing. Inadequate cleaning and/or drying may lower the reliability of a power module and severely affect the finished circuit board assembly test. Adequate cleaning and/or drying is especially important for un-encapsulated and/or open frame type power modules. For assistance on appropriate soldering and cleaning procedures, please contact Delta's technical support team. #### **Over-Current Protection** The modules include an internal output over-current protection circuit, which will endure current limiting for an unlimited duration during output overload. If the output current exceeds the OCP set point, the modules will automatically shut down, and enter hiccup mode or latch mode, which is optional, the default is hiccup mode. For hiccup mode, the module will try to restart after shutdown. If the over current condition still exists, the module will shut down again. This restart trial will continue until the over-current condition is corrected. #### **Over-Voltage Protection** The modules include an internal output over-voltage protection circuit, which monitors the voltage on the output terminals. If this voltage exceeds the over-voltage set point, the module will shut down, and enter in hiccup mode or latch mode, which is optional, the default is hiccup mode. For hiccup mode, the module will try to restart after shutdown. If the over voltage condition still exists, the module will shut down again. This restart trial will continue until the over-voltage condition is corrected. For latch mode, the module will latch off once it shutdown. The latch is reset by either cycling the input power or by toggling the on/off signal for one second. #### **Over-Temperature Protection** The over-temperature protection consists of circuitry that provides protection from thermal damage. If the temperature exceeds the over-temperature threshold the module will shut down, and enter in auto-restart mode or latch mode, which is optional, the default is auto-restart mode. For auto-restart mode, the module will monitor the module temperature after shutdown. Once the temperature is dropped and within the specification, the module will be auto-restart. #### Remote On/Off The remote on/off feature on the module can be either negative or positive logic. Negative logic turns the module on during a logic low and off during a logic high. Positive logic turns the modules on during a logic high and off during a logic low. Remote on/off can be controlled by an external switch between the on/off terminal and the Vi(-) terminal. The switch can be an open collector or open drain. For negative logic if the remote on/off feature is not used, please short the on/off pin to Vi(-). For positive logic if the remote on/off feature is not used, please leave the on/off pin floating. Figure 17: Remote on/off implementation #### **Remote Sense** Remote sense compensates for voltage drops on the output by sensing the actual output voltage at the point of load. The voltage between the remote sense pins and the output terminals must not exceed the output voltage sense range given here: $$[Vo(+) - Vo(-)] - [SENSE(+) - SENSE(-)] \le 10\% \times Vout$$ This limit includes any increase in voltage due to remote sense compensation and output voltage set point adjustment (trim). # FEATURES DESCRIPTIONS (CON.) Figure 18: Effective circuit configuration for remote sense operation If the remote sense feature is not used to regulate the output at the point of load, please connect SENSE(+) to Vo(+) and SENSE(-) to Vo(-) at the module. The output voltage can be increased by both the remote sense and the trim; however, the maximum increase is the larger of either the remote sense or the trim, not the sum of both. When using remote sense and trim, the output voltage of the module is usually increased, which increases the power output of the module with the same output current. Max rated current is guaranteed at full output voltage remote sense range. #### **Output Voltage Adjustment (TRIM)** To increase or decrease the output voltage set point, connect an external resistor between the TRIM pin and SENSE(+) or SENSE(-). The TRIM pin should be left open if this feature is not used. Figure 19: Circuit configuration for trim-down (decrease output voltage) If the external resistor is connected between the TRIM and SENSE (-) pins, the output voltage set point decreases (Fig. 19). The external resistor value required to obtain a percentage of output voltage change $\triangle$ % is defined as: $$Rtrim - down = \left\lceil \frac{511}{\Delta} - 10.22 \right\rceil (K\Omega)$$ Ex. When Trim-down -10% (12Vx0.9=10.8V) $$Rtrim - down = \left\lceil \frac{511}{10} - 10.22 \right\rceil (K\Omega) = 40.88 (K\Omega)$$ Figure 20: Circuit configuration for trim-up (increase output voltage) If the external resistor is connected between the TRIM and SENSE (+) the output voltage set point increases (Fig. 20). The external resistor value required to obtain a percentage output voltage change $\triangle\%$ is defined as: $$Rtrim - up = \frac{5.11\text{Vo}(100 + \Delta)}{1.225\Delta} - \frac{511}{\Delta} - 10.22(K\Omega)$$ Ex. When Trim-up +10% (12Vx1.1=13.2V) $$Rtrim - up = \frac{5.11 \times 12 \times (100 + 10)}{1.225 \times 10} - \frac{511}{10} - 10.22 = 489.31 (K\Omega)$$ Trim resistor can also be connected to Vo+ or Vo- but it would introduce a small error voltage than the desired value. The output voltage can be increased by both the remote sense and the trim, however the maximum increase is the larger of either the remote sense or the trim, not the sum of both. #### THERMAL CONSIDERATIONS Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer. Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel. #### **Thermal Testing Setup** Delta's DC/DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted. The following figure shows the wind tunnel characterization setup. The power module is mounted on a test PWB and is vertically positioned within the wind tunnel. The space between the neighboring PWB and the top of the power module is constantly kept at 6.35mm (0.25"). Note: Wind Tunnel Test Setup Figure Dimensions are in millimeters and (Inches) Figure 21: Wind tunnel test setup #### **Thermal Derating** Heat can be removed by increasing airflow over the module. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected. #### THERMAL CURVES **Figure 22:** \* Hot spot& NTC resistor temperature measurement location. The allowed maximum hot spot temperature is defined at 120 $\sim$ Figure 23: Output Power vs. Ambient Temperature and Air Velocity @ Vin=48V (Either Orientation) #### PICK AND PLACE LOCATION # **RECOMMENDED PAD LAYOUT (SMD)** NOTES: ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) RECOMENDED P.W.B. PAD LAYOUT NOTES: DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) #### **SURFACE-MOUNT TAPE & REEL** # LEADED (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE Note: The temperature refers to the pin of V48SC, measured on the pin +Vout joint. # LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE Note: The temperature refers to the pin of V48SC, measured on the pin +Vout joint. #### MECHANICAL DRAWING #### Surface-mount module # 33.0(1.30") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1.100") 27.94(1. # Through-hole module TOP VIEW TOP VIEW NOTES: DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) #### Through-hole module with heat spreader For modules with through-hole pins and the optional heatspreader, they are intended for wave soldering assembly onto system boards; please do not subject such modules through reflow temperature profile. All pins are copper alloy with Matte tin over Ni plated. # RECOMMENDED PCB HOLE LAYOUT #### NOTES: DIMENSIONS ARE IN MILLIMETERS AND (INCHES) TOLERANCES: X.Xmm±0.5mm(X.XX in.±0.02 in.) X.XXmm±0.25mm(X.XXX in.±0.010 in.) #### PART NUMBERING SYSTEM | V | 48 | S | С | 120 | 80 | N | R | F | Α | |--------------------|------------------|----------------------|--------------------|-------------------|-------------------|----------------------------|---------------------------------------------------|----------------|--------------------------------------------------| | Type of<br>Product | Input<br>Voltage | Number of<br>Outputs | Product<br>Series | Output<br>Voltage | Output<br>Current | ON/OFF<br>Logic | Pin<br>Length/Type | | Option Code | | V - 1/16<br>Brick | 48-<br>36V~75V | S - Single | C-Serial<br>number | 120 – 12V | 08 – 8.3A | N- Negative<br>P- Positive | R - 0.170"<br>N - 0.145"<br>K - 0.110"<br>M – SMD | 1 - 1(0113 0/0 | A - Standard Functions<br>H – With heat spreader | #### **MODEL LIST** | MODEL NAME | INPUT | | OUT | PUT | EFF @ 100% LOAD | | | |----------------|--------|----|-----|------|-----------------|--|--| | V48SC12008NRFA | 36~75V | 4A | 12V | 8.3A | 92% | | | Default remote on/off logic is negative and pin length is 0.170" For different remote on/off logic and pin length, please refer to part numbering system above or contact your local sales office. #### CONTACT: www.deltaww.com/dcdc USA: Telephone: East Coast: 978-656-3993 West Coast: 510-668-5100 Fax: (978) 656 3964 Email: DCDC@delta-corp.com Europe: Phone: +31 (0)20 655 09 67 Fax: +31 (0)20 655 09 99 Email: DCDC@delta-es.com Asia & the rest of world: Telephone: +886 3 4526107 Ext 6220~6224 Fax: +886 3 4513485 Email: DCDC@delta.com.tw #### WARRANTY Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta. Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice. Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира; - Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований); - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Помощь Конструкторского Отдела и консультации квалифицированных инженеров; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Поставка электронных компонентов под контролем ВП; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001; - При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком); - Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR». **«JONHON»** (основан в 1970 г.) Разъемы специального, военного и аэрокосмического назначения: (Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности) «**FORSTAR**» (основан в 1998 г.) ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты: (Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности). Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А