

General Description

The MAX1190 is a 3.3V, dual 10-bit analog-to-digital converter (ADC) featuring fully differential wideband trackand-hold (T/H) inputs, driving two ADCs. The MAX1190 is optimized for low power, small size, and high-dynamic performance for applications in imaging, instrumentation, and digital communications. This ADC operates from a single 3.1V to 3.6V supply, consuming only 492mW while delivering a typical signal-to-noise and distortion (SINAD) of 57dB at an input frequency of 60MHz and a sampling rate of 120Msps. The T/H driven input stages incorporate 400MHz (-3dB) input amplifiers. The converters can also be operated with single-ended inputs. In addition to low operating power, the MAX1190 features a 3mA sleep mode, as well as a 1µA power-down mode to conserve power during idle periods.

An internal 2.048V precision bandgap reference sets the full-scale range of the ADC. A flexible reference structure allows the use of this internal or an externally applied reference, if desired, for applications requiring increased accuracy or a different input voltage range.

The MAX1190 features parallel, CMOS-compatible threestate outputs. The digital output format can be set to two's complement or straight offset binary through a single control pin. The device provides for a separate output power supply of 1.7V to 3.6V for flexible interfacing with various logic families. The MAX1190 is available in a 7mm x 7mm, 48-pin TQFP-EP package, and is specified for the extended industrial (-40°C to +85°C) temperature range.

Pin-compatible lower speed versions of the MAX1190 are also available. Refer to the MAX1180-MAX1184 data sheets for 105Msps/80Msps/65Msps/40Msps. In addition to these speed grades, this family includes two multiplexed output versions (MAX1185/MAX1186 for 20Msps/40Msps), for which digital data is presented timeinterleaved and on a single, parallel 10-bit output port.

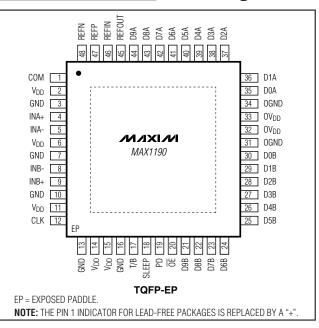
For lower speed, pin-compatible, 8-bit versions of the MAX1190, refer to the MAX1195-MAX1198 data sheets.

Applications

Baseband I/Q Sampling Multichannel IF Sampling Ultrasound and Medical Imaging Battery-Powered Instrumentation WLAN, WWAN, WLL, MMDS Modems **Set-Top Boxes VSAT Terminals**

Functional Diagram appears at end of data sheet.

Features


- ♦ Single 3.3V Operation
- **♦ Excellent Dynamic Performance** 57dB SINAD at f_{IN} = 60MHz 64dBc SFDR at f_{IN} = 60MHz
- ♦ -71dBc Interchannel Crosstalk at f_{IN} = 60MHz
- **♦ Low Power** 492mW (Normal Operation) 10mW (Sleep Mode) 3.3µW (Shutdown Mode)
- ♦ 0.08dB Gain and 0.8° Phase Matching
- ♦ Wide ±1Vp-p Differential Analog Input Voltage Range
- ♦ 400MHz -3dB Input Bandwidth
- ♦ On-Chip 2.048V Precision Bandgap Reference
- ♦ User-Selectable Output Format—Two's Complement or Offset Binary
- ♦ Pin-Compatible, Lower-Speed, 10-Bit and 8-Bit Versions Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX1190ECM	-40°C to +85°C	48 TQFP-EP*	C48E-7
MAX1190ECM+	-40°C to +85°C	48 TQFP-EP*	C48E-7

^{*}EP = Exposed paddle.

Pin Configuration

⁺Denotes lead-free package.

ABSOLUTE MAXIMUM RATINGS

V _{DD} , OV _{DD} to GNDOGND to GND		Continuous Powe 48-Pin TQFP-E
INA+, INA-, INB+, INB- to GND	0.3V to V _{DD}	Operating Temper
REFIN, REFOUT, REFP, REFN, COM,		Junction Temper
CLK to GND	0.3V to $(V_{DD} + 0.3V)$	Storage Tempera
OE, PD, SLEEP, T/B,		Lead Temperatur
D9A-D0A, D9B-D0B to OGND	0.3V to $(OV_{DD} + 0.3V)$	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
48-Pin TQFP-EP (derate 30.4mW/°C above	+70°C)2430mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	60°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=3.3V;\ OV_{DD}=2V;\ 0.1\mu F$ and $1.0\mu F$ capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a $10k\Omega$ resistor; $V_{REFIN}=2.048V;\ V_{IN}=2V_{P-P}$ (differential with respect to COM); $C_L=10pF$ at digital outputs; $f_{CLK}=120MHz;\ T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted; $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization; typical values are at $T_A=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC ACCURACY	•	•	•			•	
Resolution			10			Bits	
Integral Nonlinearity	INL	$f_{IN} = 7.47MHz$		±0.75	±3	LSB	
Differential Nonlinearity	DNL	f _{IN} = 7.47MHz, no missing codes guaranteed	-1.0	±0.4	+1.5	LSB	
Offset Error				< ±1	±1.8	%FS	
Gain Error				0	±2	%FS	
ANALOG INPUT							
Differential Input Voltage Range	VDIFF	Differential or single-ended inputs		±1.0		V	
Common-Mode Input Voltage Range	V _{CM}			V _{DD} / 2 ± 0.5		V	
Input Resistance	R _{IN}	Switched capacitor load		20		kΩ	
Input Capacitance	put Capacitance C _{IN} 5		5		рF		
CONVERSION RATE							
Maximum Clock Frequency	fCLK		120			MHz	
Data Latency				5		Clock Cycles	
DYNAMIC CHARACTERISTICS							
Oissand to Maine Datie	SNR	$f_{INA \text{ or } B} = 20.01 \text{MHz at -0.5dBFS},$ $T_A = +25^{\circ}\text{C}$	55	58.5		-10	
Signal-to-Noise Ratio		f _{INA or B} = 30.09MHz at -0.5dBFS		58.2		dB	
		f _{INA or B} = 59.74MHz at -0.5dBFS		58			
Circulate Naise and Distortion	CINIAD	$f_{INA \text{ or } B} = 20.01 \text{MHz at -0.5dBFS},$ $T_A = +25^{\circ}\text{C}$	54.5	57.5		4D	
Signal-to-Noise and Distortion	SINAD	f _{INA or B} = 30.09MHz at -0.5dBFS		57		dB	
		f _{INA or B} = 59.74MHz at -0.5dBFS		57			
	1					1	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=3.3V; OV_{DD}=2V; 0.1\mu F$ and $1.0\mu F$ capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a $10k\Omega$ resistor; $V_{REFIN}=2.048V; V_{IN}=2V_{P-P}$ (differential with respect to COM); $C_{L}=10pF$ at digital outputs; $f_{CLK}=120MHz; T_{A}=T_{MIN}$ to T_{MAX} , unless otherwise noted; $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization; typical values are at $T_{A}=+25^{\circ}C$.)

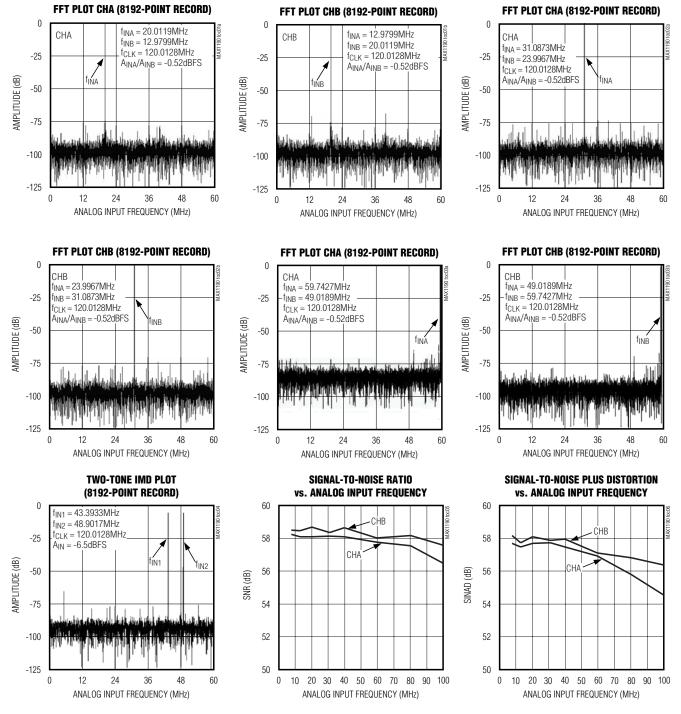
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Constitute Free Demonstra Boundary	OFFID	f _{INA or B} = 20.01MHz at -0.5dBFS, T _A = +25°C	58	67		- dBc	
Spurious-Free Dynamic Range	SFDR	f _{INA or B} = 30.09MHz at -0.5dBFS		67			
		f _{INA or B} = 59.74MHz at -0.5dBFS		64			
Third-Harmonic		f _{INA or B} = 20.01MHz at -0.5dBFS, T _A = +25°C		-67			
Distortion	HD3	f _{INA or B} = 30.09MHz at -0.5dBFS		-67		dBc	
		f _{INA or B} = 59.74MHz at -0.5dBFS		-64			
Intermodulation Distortion (First Five Odd-Order IMDs)	IMD	f _{IN1(A or B)} = 43.393MHz at -6.5dBFS, f _{IN2(A or B)} = 48.9017MHz at -6.5dBFS (Note 1)		-73		dBc	
Third-Order Intermodulation Distortion	IM3	f _{IN1(A or B)} = 43.393MHz at -6.5dBFS, f _{IN2(A or B)} = 48.9017MHz at -6.5dBFS (Note 1)		-83		dBc	
Total Harmonic Distortion	TUD	$f_{INA \text{ or B}} = 20.01 \text{MHz at -0.5dBFS},$ $T_A = +25^{\circ}\text{C}$		-65	-58	alD a	
(First Four Harmonics)	THD	f _{INA or B} = 30.09MHz at -0.5dBFS		-65		dBc	
		f _{INA or B} = 59.74MHz at -0.5dBFS		-63			
Small-Signal Bandwidth		Input at -20dBFS, differential inputs		500		MHz	
Full-Power Bandwidth	FPBW	Input at -0.5dBFS, differential inputs		400		MHz	
Aperture Delay	t _{AD}			1		ns	
Aperture Jitter	er t _{AJ} 2			psrms			
Overdrive Recovery Time		For 1.5× full-scale input		2		ns	
INTERNAL REFERENCE							
Reference Output Voltage	VREFOUT			2.048 ±3%		V	
Load Regulation				1.25		mV/mA	
Reference Temperature Coefficient	TC _{REF}			60		ppm/°C	
BUFFERED EXTERNAL REFERENCE (V _{REFIN} = 2.048V)							
Positive Reference Output Voltage	VREFP	(Note 2)		2.162		V	
Negative Reference Output Voltage	VREFN	(Note 2)		1.138		V	
Common-Mode Level	Vcom	(Note 2)		1.651		V	
Differential Reference Output Voltage Range	· I (V/DEE L/(V/DEE - V/DEEN 1 1195 1112/1 11191		1.09	V			
REFIN Resistance RREFIN			> 50		МΩ		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=3.3V;\ OV_{DD}=2V;\ 0.1\mu F$ and $1.0\mu F$ capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a $10k\Omega$ resistor; $V_{REFIN}=2.048V;\ V_{IN}=2V_{P-P}$ (differential with respect to COM); $C_L=10pF$ at digital outputs; $f_{CLK}=120MHz;\ T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted; $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization; typical values are at $T_A=+25^{\circ}C$.)

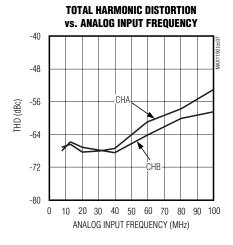
Maximum REFP, COM Sink Current ISOURCE Source Source	
Current ISINK 250 Maximum REFN Source Current ISONCE 250 Maximum REFN Sink Current ISINK -5 UNBUFFERED EXTERNAL REFERENCE (VRETIN = AGND, reference voltage applied to REFP, REFN, and COM) REFP, REFN Input Resistance RREFP, RREFN Measured between REFP and COM, and REFN and COM 3.4 Differential Reference Input Voltage Range AVREF AVREF = VREFP - VREFN 1.024 ±10% COM Input Voltage Range VCOM VDD / 2 ± 10% VDD / 2 ± 10% REFP Input Voltage VREFP VCOM + AVREF / 2 VCOM + AVREF / 2 REFN Input Voltage VREFN VCOM + AVREF / 2 VCOM + AVREF / 2 DIGITAL INPUTS (CLK, PD, OE, SEEP, T/B) CLK 0.8 × VDD Input High Threshold VIL PD, OE, SLEEP, T/B 0.8 × OVD Input Low Threshold VIL VIL PD, OE, SLEEP, T/B 0.2 × OVD Input Hysteresis VHYST CLK 0.1 ±5 Input Leakage VIL VIL = OVDD (PD, OE, SLEEP, T/B) ±5 Input Capacitance CIN VIL = OVDD (PD, OE, SLEEP, T/	mA
Maximum REFN Sink Current ISINIX -5 UNBUFFERED EXTERNAL REFERENCE (VREFIN = AGND, reference voltage applied to REFP, REFN, and COM) REFP, REFN Input Resistance RREFP, REFN and COM 3.4 Differential Reference Input Voltage Range ΔVREF ΔVREF = VREFP - VREFN 1.024 ±10% COM Input Voltage Range VCOM VDD / 2 ± 10% VDD / 2 ± 10% REFP Input Voltage VREFP VCOM + ΔVREF / 2 VCOM + ΔVREF / 2 REFN Input Voltage VREFN VCOM + ΔVREF / 2 VCOM + ΔVREF / 2 DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B) CLK 0.8 × VDD PD, OE, SLEEP, T/B 0.8 × OVDD LIPUT Low Threshold VIL VLK 0.2 × OVDD LIPUT Low Threshold VIL VLK 0.2 × OVDD Input Low Threshold VHYST CLK 0.2 × OVDD Input Hysteresis VHYST VIH = VDD (CLK) ±5 Input Leakage IIL VIH = OVDD (PD, OE, SLEEP, T/B) ±5 Input Capacitance CIN 5 DIGITAL OUTPUTS (D9A-DOA, D9B-DOB)	μA
UNBUFFERED EXTERNAL REFERNCE (VREFIN = AGND), reference voltage applied to REFP, REFN, and COM) REFP, REFN Input Resistance RREFP, RREFN RREFN RREFN RREFN RREFN RREFN RREFN AND COM 3.4 Differential Reference Input Voltage Range ΔVREF ΔVREF = VREFP - VREFN 1.024 ±10% COM Input Voltage Range VCOM VDD / 2±10% VDD / 2±10% REFP Input Voltage VREFP VCOM + ΔVREF / 2 VCOM + ΔVREF / 2 DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B) VLK VDD VDD Input High Threshold VIL PD, OE, SLEEP, T/B 0.8 × VDD Input Low Threshold VIL CLK 0.2 × VDD Input Hysteresis VHYST CLK 0.2 × VDD Input Leakage IIH VIH = VDD (CLK) ±5 Input Capacitance CIN VIL = 0 ±5 Input Capacitance CIN 5 DIGITAL OUTPUTS (D9A-DOA, D9B-D0B) VOL ISINK = -200µA 0.2	μΑ
REFP, REFN Input ResistanceRREFP, REFN REFN REFN REFN REFN REFN And COMMeasured between REFP and COM, and REFN and COM3.4Differential Reference Input Voltage Range ΔV_{REF} $\Delta V_{REF} = V_{REFP} - V_{REFN}$ $1.024 \pm 10\%$ COM Input Voltage RangeVCOM $V_{DD} / 2 \pm 10\%$ REFP Input VoltageVREFP $V_{COM} + \Delta V_{REF} / 2$ REFN Input VoltageVREFN $V_{COM} + \Delta V_{REF} / 2$ DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B $V_{COM} - \Delta V_{REF} / 2$ Input High ThresholdVIH V_{IL} $0.8 \times V_{DD}$ Input Low Threshold V_{IL} V_{IL} $0.8 \times V_{DD}$ Input Hysteresis V_{HYST} V_{IL} $0.2 \times V_{DD}$ Input Leakage V_{IL} $V_{IL} = V_{DD} (CLK)$ 0.1 Input Capacitance V_{IL} $V_{IL} = V_{DD} (D_{IL})$ 0.1 DIGITAL OUTPUTS (D9A-DOA, D9B-DOB) V_{OL} V_{OL} $0.2 \times V_{OD}$ Output-Voltage Low V_{OL} V_{OL} $0.2 \times V_{OD}$	mA
REFP, HEFN input Resistance RREFN REFN and COM 3.4 Differential Reference Input Voltage Range ΔVREF ΔVREF = VREFP - VREFN 1.024 ±10% COM Input Voltage Range VCOM VDD / 2 ± 10% VDD / 2 ± 10% REFP Input Voltage VREFP VCOM + ΔVREF / 2 VCOM + ΔVREF / 2 Input High Threshold VIH CLK 0.8 × VDD Input Low Threshold VIH CLK 0.8 × VDD Input Low Threshold VIL PD, OE, SLEEP, T/B 0.8 × OVDD Input Hysteresis VHYST CLK 0.2 × OVD Input Leakage VIH = VDD (CLK) ±5 Input Capacitance CIN VIH = OVDD (PD, OE, SLEEP, T/B) ±5 Input Capacitance CIN 5 DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) VOL ISINK = -200µA 0.2	
Voltage Range ΔV_{REF} $\Delta V_{REF} = V_{REFP} - V_{REFN}$ $\pm 10\%$ COM Input Voltage Range V_{COM} $V_{DD} / 2 \pm 10\%$ REFP Input Voltage V_{REFP} $V_{COM} + \Delta V_{REF} / 2$ REFN Input Voltage V_{REFN} $V_{COM} - \Delta V_{REF} / 2$ DIGITAL INPUTS (CLK, PD, \overline{OE} , SLEEP, T/B $V_{COM} - \Delta V_{REF} / 2$ V_{ID} V_{ID} $0.8 \times V_{DD}$ V_{ID} V_{ID}	kΩ
REFP Input Voltage VREFP VCOM + ΔVREF / 2 REFN Input Voltage VREFN VCOM - ΔVREF / 2 DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B) CLK 0.8 × VDD PD, OE, SLEEP, T/B 0.8 × OVDD PD, OE, SLEEP, T/B 0.8 × OVDD CLK 0.8 × OVDD PD, OE, SLEEP, T/B 0.2 × OVDD PD, OE, SLEEP, T/B 0.2 × OVDD PD, OE, SLEEP, T/B 0.1 Input Hysteresis VHYST 0.1 Input Leakage VIH = VDD (CLK) ±5 Input Leakage IIL VIL = 0 ±5 Input Capacitance CIN 5 DIGITAL OUTPUTS (D9A-DOA, D9B-DOB) Output-Voltage Low VOL ISINK = -200µA 0.2	V
REFN Input Voltage VREFN VCOM - ΔVREF / 2 DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B) Input High Threshold VIH CLK 0.8 × VDD Input Low Threshold VIL CLK 0.8 × OVDD Input Low Threshold VIL CLK 0.2 × VDD Input Hysteresis VHYST CLK 0.2 × OVD Input Leakage VHYST VIH = VDD (CLK) ±5 VIH = OVDD (PD, OE, SLEEP, T/B) ±5 1 Input Capacitance CIN VIL = 0 ±5 DIGITAL OUTPUTS (D9A-DOA, D9B-DOB) VOL ISINK = -200µA 0.2	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V
Input High Threshold VIH CLK 0.8 × VDD PD, OE, SLEEP, T/B 0.8 × OVDD Input Low Threshold VIL CLK 0.2 × VDD PD, OE, SLEEP, T/B 0.2 × OVDD Input Hysteresis VHYST 0.1 Input Leakage IIH VIH = VDD (CLK) ±5 VIH = OVDD (PD, OE, SLEEP, T/B) ±5 Input Capacitance CIN ±5 DIGITAL OUTPUTS (D9A-DOA, D9B-D0B) 5 Output-Voltage Low Vol. ISINK = -200µA 0.2	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Input Low Threshold V _{IL} CLK V _{DD} PD, OE, SLEEP, T/B 0.2 × OV _{DI} Input Hysteresis V _{HYST} 0.1 Input Leakage I _{IH} V _{IH} = V _{DD} (CLK) ±5 V _{IH} = OV _{DD} (PD, OE, SLEEP, T/B) ±5 Input Capacitance C _{IN} 5 DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) V _{OL} I _{SINK} = -200μA 0.2	V
PD, OE, SLEEP, T/B	
$ \begin{array}{c} I_{\text{IH}} & V_{\text{IH}} = V_{\text{DD}} (\text{CLK}) & \pm 5 \\ \hline V_{\text{IH}} = OV_{\text{DD}} (\text{PD}, \overline{\text{OE}}, \text{SLEEP}, \text{T/B}) & \pm 5 \\ \hline I_{\text{IL}} & V_{\text{IL}} = 0 & \pm 5 \\ \hline \text{Input Capacitance} & C_{\text{IN}} & 5 \\ \hline \textbf{DIGITAL OUTPUTS (D9A-D0A, D9B-D0B)} \\ \hline Output-Voltage Low & V_{\text{OL}} & I_{\text{SINK}} = -200 \mu \text{A} & 0.2 \\ \hline \end{array} $	
Input Leakage VIH = OVDD (PD, OE, SLEEP, T/B) ±5 IµL VIL = 0 ±5 Input Capacitance CIN 5 DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) Output-Voltage Low VOL ISINK = -200μA 0.2	V
Input Leakage $V_{IH} = OV_{DD}$ (PD, OE, SLEEP, I/B) ± 5 Input Capacitance C_{IN} 5 DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) Output-Voltage Low V_{OL} $I_{SINK} = -200\mu A$ 0.2	
Input Capacitance C IN 5 DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) VOL ISINK = -200μA 0.2	μΑ
DIGITAL OUTPUTS (D9A-D0A, D9B-D0B) Output-Voltage Low V _{OL} I _{SINK} = -200μA 0.2	
Output-Voltage Low V _{OL} I _{SINK} = -200μA 0.2	pF
OVen -	V
Output-Voltage High VoH ISOURCE = 200µA 0.2	V
Three-State Leakage Current I_{LEAK} $\overline{OE} = OV_{DD}$ ± 10	μΑ
Three-State Output Capacitance C _{OUT} $\overline{\text{OE}} = \text{OV}_{\text{DD}}$ 5	pF
POWER REQUIREMENTS	
Analog Supply Voltage Range V _{DD} 3.1 3.3 3.6	V
Output Supply Voltage Range OV _{DD} 1.7 2.5 3.6	V

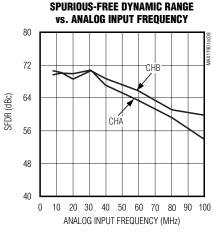
ELECTRICAL CHARACTERISTICS (continued)

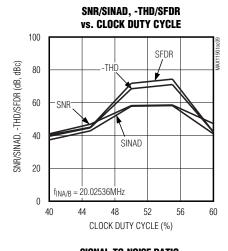

 $(V_{DD}=3.3V;\ OV_{DD}=2V;\ 0.1\mu F$ and $1.0\mu F$ capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a $10k\Omega$ resistor; $V_{REFIN}=2.048V;\ V_{IN}=2V_{P-P}$ (differential with respect to COM); $C_{L}=10pF$ at digital outputs; $f_{CLK}=120MHz;\ T_{A}=T_{MIN}$ to T_{MAX} , unless otherwise noted; $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization; typical values are at $T_{A}=+25^{\circ}C$.)

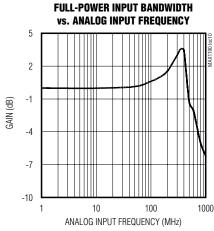
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		Operating, f _{INA and B} = 20.01MHz at -0.5dBFS		149	r		
Analog Supply Current	lvdd	Sleep mode	3				
		Shutdown, clock idle, $PD = \overline{OE} = OV_{DD}$		1	15	μΑ	
Output Supply Current	lovdd	Operating, f _{INA and B} = 20.01MHz at -0.5dBFS; see <i>Typical Operating Characteristics</i> section, Digital Supply Current vs. Analog Input Frequency		16		mA	
		Sleep mode		100			
		Shutdown, clock idle, $PD = \overline{OE} = OV_{DD}$		2	10	μΑ	
	DDIOO	Operating, f _{INA and B} = 20.01MHz at -0.5dBFS		492	611	mW	
Analog Power Dissipation	PDISS	Sleep mode		10			
		Shutdown, clock idle, $PD = \overline{OE} = OV_{DD}$		3.3	50	μW	
Power-Supply Rejection Ratio	PSRR	Offset, V _{DD} ±5%		±3.4		mV/V	
Tower-Supply Rejection Ratio		Gain, V _{DD} ±5%		±0.81		%/V	
TIMING CHARACTERISTICS							
CLK Rise to Output Data Valid Time	t _{DO}	C _L = 20pF (Note 3)		4.8	7.4	ns	
OE Fall to Output Enable Time	tenable			4.7		ns	
OE Rise to Output Disable Time tdisable				1.2		ns	
CLK Pulse-Width High	tCH	Clock period: 8.34ns; see <i>Typical Operating Characteristics</i> section, AC Performance vs. Clock Duty Cycle		4.17		ns	
CLK Pulse-Width Low	tCL	Clock period: 8.34ns; see <i>Typical Operating Characteristics</i> section, AC Performance vs. Clock Duty Cycle		4.17		ns	
Moke He Time		Wake up from sleep mode (Note 4)		0.65		μs	
Wake-Up Time	twake	Wake up from shutdown mode (Note 4)		1.2			
CHANNEL-TO-CHANNEL MATCHING							
Crosstalk fina or B = 20		f _{INA or B} = 20.01MHz at -0.5dBFS		-71		dBc	
Gain Matching $f_{INA \text{ or B}} = 20.01 \text{MHz at -0.5dBFS (Note 5)}$			0.08	±0.2	dB		
Phase Matching	Phase Matching $f_{INA \text{ or B}} = 20.01 \text{MHz at -0.5dBFS (Note 6)}$			0.8		Degrees	

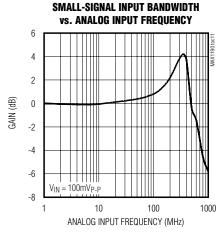
- Note 1: Intermodulation distortion is the total power of the intermodulation products relative to the total input power.
- Note 2: REFP, REFN, and COM should be bypassed to GND with a 0.1µF (min) or 1µF (typ) capacitor.
- Note 3: Digital outputs settle to VIH, VIL. Parameter guaranteed by design.
- Note 4: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.
- Note 5: Amplitude matching is measured by applying the same signal to each channel and comparing the magnitude of the fundamental of the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.
- **Note 6:** Phase matching is measured by applying the same signal to each channel and comparing the phase of the fundamental of the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.

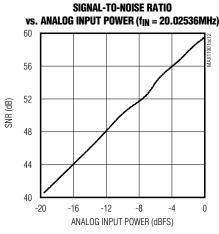

Typical Operating Characteristics

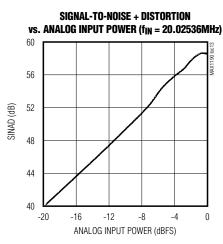

 $(V_{DD} = 3.3V, OV_{DD} = 2.5V, V_{REFIN} = 2.048V,$ differential input at -0.5dBFS, $f_{CLK} = 120MHz,$ $C_{L} \approx 10pF,$ $T_{A} = +25^{\circ}C,$ unless otherwise noted.)

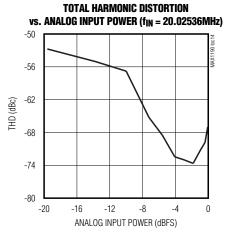


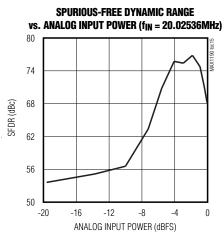

Typical Operating Characteristics (continued)

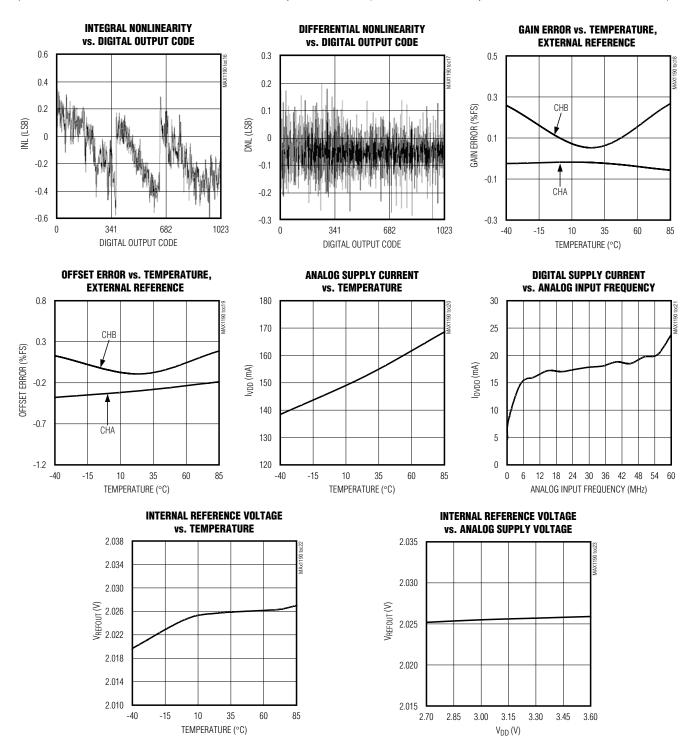

 $(V_{DD} = 3.3V, OV_{DD} = 2.5V, V_{REFIN} = 2.048V, differential input at -0.5dBFS, f_{CLK} = 120MHz, C_L \approx 10pF, T_A = +25^{\circ}C, unless otherwise noted.)$

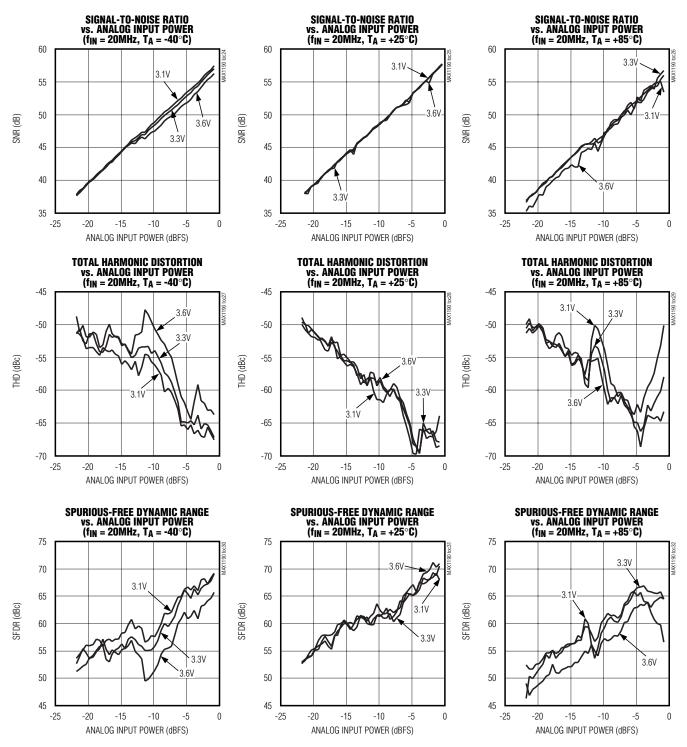











Typical Operating Characteristics (continued)

 $(V_{DD} = 3.3V, OV_{DD} = 2.5V, V_{REFIN} = 2.048V, differential input at -0.5dBFS, f_{CLK} = 120MHz, C_{L} \approx 10pF, T_{A} = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

(Vpp = 3.3V, OVpp = 2.5V, Vpefin = 2.048V, differential input at -0.5dBFS, fcLK = 120MHz, CL ≈ 10pF, TA = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION		
1	COM	Common-Mode Voltage I/O. Bypass to GND with a ≥ 0.1µF capacitor.		
2, 6, 11, 14, 15	V _{DD}	Analog Supply Voltage. Bypass each supply pin to GND with a 0.1µF capacitor. Analog supply accepts a 3.1V to 3.6V input range.		
3, 7, 10, 13, 16	GND	Analog Ground		
4	INA+	Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.		
5	INA-	Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.		
8	INB-	Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.		
9	INB+	Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.		
12	CLK	Converter Clock Input		
17	T/B	T/B selects the ADC Digital Output Format: High: Two's complement Low: Straight offset binary		
18	SLEEP	Sleep-Mode Input: High: Disables both quantizers, but leaves the reference bias circuit active Low: Normal operation		
19	PD	High-Active Power-Down Input: High: Power-down mode Low: Normal operation		
20	ŌĒ	Low-Active Output Enable Input: High: Digital outputs disabled Low: Digital outputs enabled		
21	D9B	Three-State Digital Output, Bit 9 (MSB), Channel B		
22	D8B	Three-State Digital Output, Bit 8, Channel B		
23	D7B	Three-State Digital Output, Bit 7, Channel B		
24	D6B	Three-State Digital Output, Bit 6, Channel B		
25	D5B	Three-State Digital Output, Bit 5, Channel B		
26	D4B	Three-State Digital Output, Bit 4, Channel B		
27	D3B	Three-State Digital Output, Bit 3, Channel B		
28	D2B	Three-State Digital Output, Bit 2, Channel B		
29	D1B	Three-State Digital Output, Bit 1, Channel B		
30	D0B	Three-State Digital Output, Bit 0, Channel B		
31, 34	OGND	Output Driver Ground		
32, 33	OV _{DD}	Output Driver Supply Voltage. Bypass each supply pin to OGND with a 0.1µF capacitor. Output driver supply accepts a 1.7V to 3.6V input range.		
35	D0A	Three-State Digital Output, Bit 0, Channel A		
36	D1A	Three-State Digital Output, Bit 1, Channel A		
37	D2A			
38	D3A	Three-State Digital Output, Bit 3, Channel A		
39	D4A	Three-State Digital Output, Bit 4, Channel A		

Pin Description (continued)

PIN	NAME	FUNCTION
40	D5A	Three-State Digital Output, Bit 5, Channel A
41	D6A	Three-State Digital Output, Bit 6, Channel A
42	D7A	Three-State Digital Output, Bit 7, Channel A
43	D8A	Three-State Digital Output, Bit 8, Channel A
44	D9A	Three-State Digital Output, Bit 9 (MSB), Channel A
45	REFOUT	Internal Reference Voltage Output. Can be connected to REFIN through a resistor or a resistor-divider.
46	REFIN	Reference Input. V _{REFIN} = 2 × (V _{REFP} - V _{REFN}). Bypass to GND with a > 0.1µF capacitor.
47	REFP	Positive Reference I/O. Conversion range is ±(V _{REFP} - V _{REFN}). Bypass to GND with a > 0.1µF capacitor.
48	REFN	Negative Reference I/O. Conversion range is ±(V _{REFP} - V _{REFN}). Bypass to GND with a > 0.1µF capacitor.
_	EP	Exposed Paddle. Connect to analog ground.

Detailed Description

The MAX1190 uses a nine-stage, fully differential, pipelined architecture (Figure 1) that allows for high-speed conversion while minimizing power consumption. Samples taken at the inputs move progressively through the pipeline stages every half-clock cycle. Including the delay through the output latch, the total clock-cycle latency is five clock cycles.

Flash ADCs convert the held input voltages into a digital code. Internal MDACs convert the digitized results back into analog voltages, which are then subtracted from the original held input signals. The resulting error signals are then multiplied by 2, and the residues are passed along to the next pipeline stages, where the process is repeated until the signals have been processed by all nine stages.

Input Track-and-Hold Circuits

Figure 2 displays a simplified functional diagram of the input T/H circuits in both track and hold mode. In track mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b are closed. The fully differential circuits sample the input signals onto the two capacitors (C2a and C2b) through switches S4a and S4b. S2a and S2b set the common mode for the amplifier input, and open simultaneously with S1, sampling the input waveform. Switches S4a, S4b, S5a, and S5b are then opened before switches S3a and S3b connect capacitors C1a and C1b to the output of the amplifier and switch S4c is closed. The resulting differential voltages are held on capacitors C2a and C2b. The amplifiers are used to charge capacitors C1a and C1b to the same values originally held on C2a and C2b.

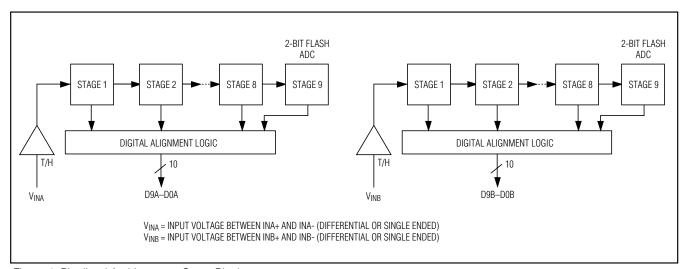


Figure 1. Pipelined Architecture—Stage Blocks

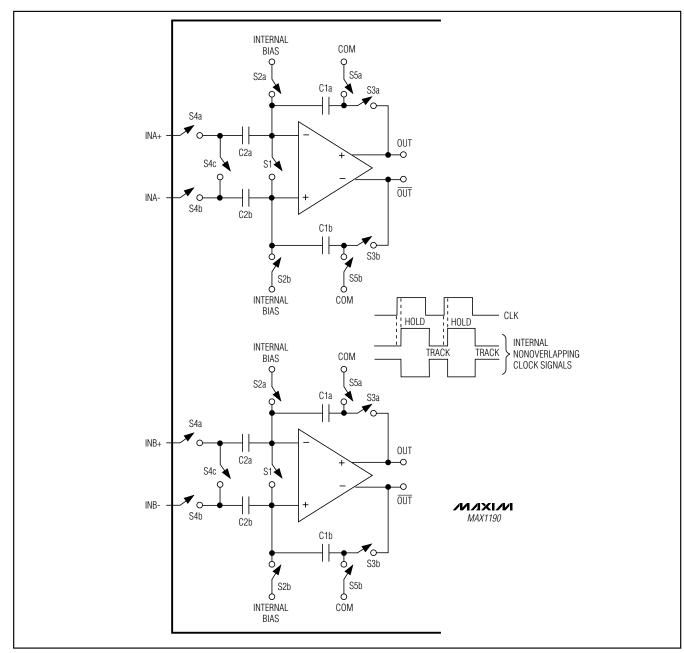


Figure 2. MAX1190 T/H Amplifiers

These values are then presented to the first-stage quantizers and isolate the pipelines from the fast-changing inputs. The wide input bandwidth T/H amplifiers allow the MAX1190 to track and sample/hold analog inputs of high frequencies (> Nyquist). Both ADC inputs (INA+, INB+,

INA- and INB-) can be driven either differentially or single ended. Match the impedance of INA+ and INA-, as well as INB+ and INB-, and set the common-mode voltage to midsupply (VDD / 2) for optimum performance.

Analog Inputs and Reference Configurations

The full-scale range of the MAX1190 is determined by the internally generated voltage difference between REFP (VDD / 2 + VREFIN / 4) and REFN (VDD / 2 - VREFIN / 4). The full-scale range for both on-chip ADCs is adjustable through the REFIN pin, which is provided for this purpose.

The MAX1190 provides three modes of reference operation:

- Internal reference mode
- Buffered external reference mode
- Unbuffered external reference mode

In internal reference mode, connect the internal reference output REFOUT to REFIN through a resistor (e.g., $10k\Omega$) or resistor-divider, if an application requires a reduced full-scale range. For stability and noise filtering purposes, bypass REFIN with a > 10nF capacitor to GND. In internal reference mode, REFOUT, COM, REFP, and REFN become low-impedance outputs.

In buffered external reference mode, adjust the reference voltage levels externally by applying a stable and accurate voltage at REFIN. In this mode, COM, REFP, and REFN are outputs. REFOUT can be left open or connected to REFIN through a > $10k\Omega$ resistor.

In unbuffered external reference mode, connect REFIN to GND. This deactivates the on-chip reference buffers for REFP, COM, and REFN. With their buffers shut down,

these nodes become high-impedance inputs and can be driven through separate, external reference sources.

For detailed circuit suggestions and how to drive this dual ADC in buffered/unbuffered external reference mode, see the *Applications Information* section.

Clock Input (CLK)

The MAX1190's CLK input accepts a CMOS-compatible clock signal. Since the interstage conversion of the device depends on the repeatability of the rising and falling edges of the external clock, use a clock with low jitter and fast rise and fall times (< 2ns). In particular, sampling occurs on the rising edge of the clock signal, requiring this edge to provide the lowest possible jitter. Any significant aperture jitter would limit the SNR performance of the on-chip ADCs as follows:

$$SNR = 20 \times log \left(\frac{1}{2 \times \pi \times f_{IN} \times t_{AJ}} \right)$$

where f_{IN} represents the analog input frequency and t_{AJ} is the time of the aperture jitter. Clock jitter is especially critical for undersampling applications. The clock input should always be considered as an analog input and routed away from any analog input or other digital signal lines. The MAX1190 clock input operates with a voltage threshold set to V_{DD} / 2. Clock inputs with a duty cycle other than 50%, must meet the specifications for high and low periods as stated in the *Electrical Characteristics*.

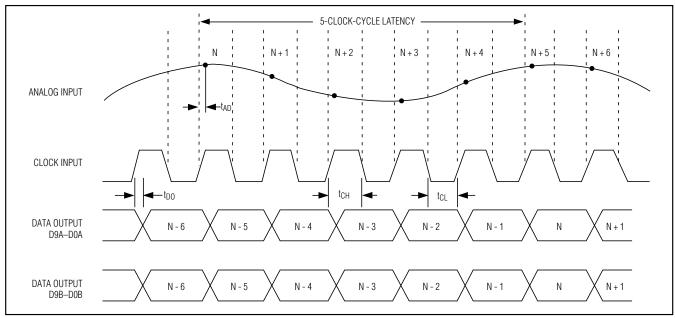


Figure 3. System Timing Diagram

System Timing Requirements

Figure 3 depicts the relationship between the clock input, analog input, and data output. The MAX1190 samples at the rising edge of the input clock. Output data for channels A and B is valid on the next rising edge of the input clock. The output data has an internal latency of five clock cycles. Figure 3 also determines the relationship between the input clock parameters and the valid output data on channels A and B.

Digital Output Data (D0A/B-D9A/B), Output Data Format Selection (T/B), Output Enable (OE)

All digital outputs, D0A-D9A (channel A) and D0B-D9B (channel B), are TTL/CMOS-logic compatible. There is a five-clock-cycle latency between any particular sample and its corresponding output data. The output coding can be chosen to be either straight offset binary or two's complement (Table 1) controlled by a single pin (T/B). Pull T/B low to select offset binary and high to activate two's complement output coding. The capacitive load on digital outputs D0A-D9A and D0B-D9B should be kept as low as possible (< 15pF) to avoid large digital currents that could feed back into the analog portion of the MAX1190, thereby degrading its dynamic performance. Using buffers on the digital outputs of the ADCs can further isolate the digital outputs from heavy capacitive loads. To further improve the dynamic performance of the MAX1190, small series resistors (e.g., 100Ω) can be added to the digital output paths, close to the MAX1190.

Figure 4 displays the timing relationship between output enable and data output valid, as well as power-down/wakeup and data output valid.

Power-Down (PD) and Sleep (SLEEP) Modes

The MAX1190 offers two power-save modes—sleep mode and full power-down mode. In sleep mode

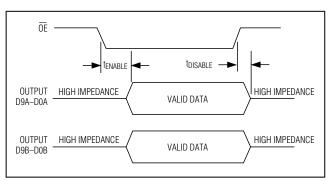


Figure 4. Output Timing Diagram

(SLEEP = 1), only the reference bias circuit is active (both ADCs are disabled), and current consumption is reduced to 3mA.

To enter full power-down mode, pull PD high. With \overline{OE} simultaneously low, all outputs are latched at the last value prior to the power down. Pulling \overline{OE} high forces the digital outputs into a high-impedance state.

Applications Information

Figure 5 depicts a typical application circuit containing two single-ended to differential converters. The internal reference provides a VDD / 2 output voltage for level-shifting purposes. The input is buffered and then split to a voltage follower and inverter. One lowpass filter per amplifier suppresses some of the wideband noise associated with high-speed operational amplifiers. The user can select the RISO and CIN values to optimize the filter performance to suit a particular application. For the application in Figure 5, a RISO of 50Ω is placed before the capacitive load to prevent ringing and oscillation. The 22pF CIN capacitor acts as a small filter capacitor.

Table 1. MAX1190 Output Codes For Differential Inputs

DIFFERENTIAL INPUT VOLTAGE*	DIFFERENTIAL INPLIT		TWO'S COMPLEMENT T/B = 1
V _{REF} × 512/512	+FULL SCALE - 1 LSB	11 1111 1111	01 1111 1111
V _{REF} × 1/512	+1 LSB	10 0000 0001	00 0000 0001
0	Bipolar Zero	10 0000 0000	00 0000 0000
-V _{REF} × 1/512	-1 LSB	01 1111 1111	11 1111 1111
-V _{REF} × 511/512	-FULL SCALE + 1 LSB	00 0000 0001	10 0000 0001
-V _{REF} × 512/512	-FULL SCALE	00 0000 0000	10 0000 0000

^{*}VREF = VREFP - VREFN

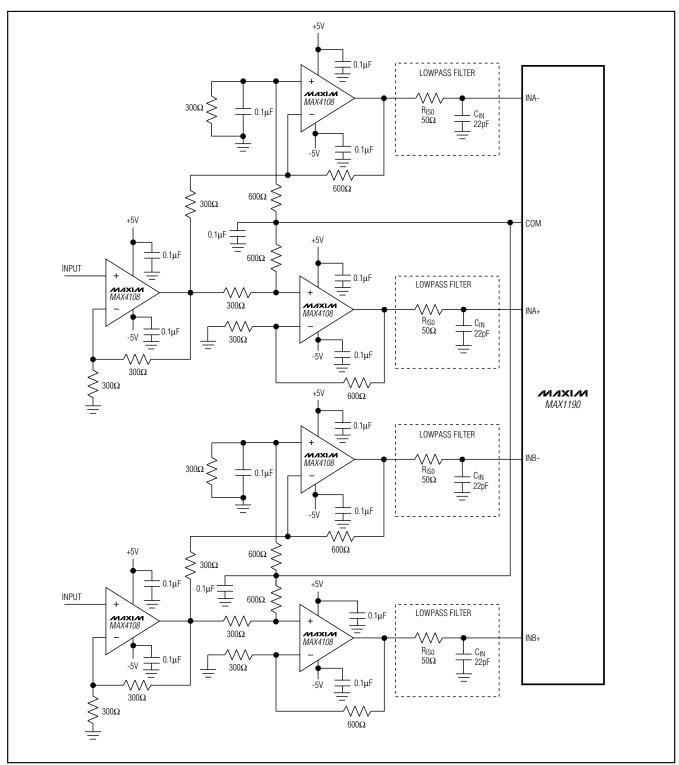


Figure 5. Typical Application for Single-Ended-to-Differential Conversion

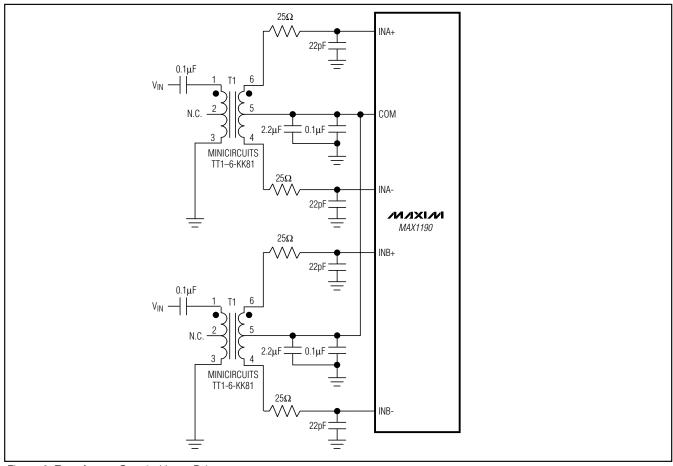


Figure 6. Transformer-Coupled Input Drive

Using Transformer Coupling

An RF transformer (Figure 6) provides an excellent solution to convert a single-ended source signal to a fully differential signal, required by the MAX1190 for optimum performance. Connecting the center tap of the transformer to COM provides a V_{DD} / 2 DC level shift to the input. Although a 1:1 transformer is shown, a step-up transformer can be selected to reduce the drive requirements. A reduced signal swing from the input driver, such as an op amp, can also improve the overall distortion.

In general, the MAX1190 provides better SFDR and THD with fully differential input signals than single-ended drive, especially for very high input frequencies. In differential input mode, even-order harmonics are lower as both inputs (INA+, INA- and/or INB+, INB-) are balanced, and each of the ADC inputs only requires half the signal swing compared to single-ended mode.

Single-Ended AC-Coupled Input Signal

Figure 7 shows an AC-coupled, single-ended application. Amplifiers like the MAX4108 provide high speed, high bandwidth, low noise, and low distortion to maintain the integrity of the input signal.

Buffered External Reference Drives Multiple ADCs

Multiple-converter systems based on the MAX1190 are well suited for use with a common reference voltage. The REFIN pin of those converters can be connected directly to an external reference source.

A precision bandgap reference like the MAX6062 generates an external DC level of 2.048V (Figure 8), and exhibits a noise voltage density of 150nV/\Hz. Its output passes through a 1-pole lowpass filter (with 10Hz cutoff frequency) to the MAX4250, which buffers the reference before its output is applied to a second 10Hz lowpass filter. The MAX4250 provides a low offset voltage (for

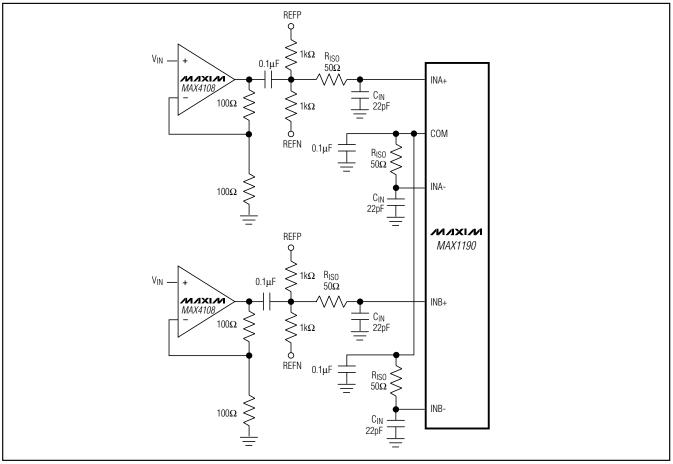


Figure 7. Using an Op Amp for Single-Ended, AC-Coupled Input Drive

high-gain accuracy) and a low noise level. The passive 10Hz filter following the buffer attenuates noise produced in the voltage reference and buffer stages. This filtered noise density, which decreases for higher frequencies, meets the noise levels specified for precision-ADC operation.

Unbuffered External Reference Drives Multiple ADCs

Connecting each REFIN to analog ground disables the internal reference of each device, allowing the internal reference ladders to be driven directly by a set of external reference sources. Followed by a 10Hz lowpass filter and precision voltage-divider, the MAX6066 generates a DC level of 2.500V. The buffered outputs of this divider are set to 2.0V, 1.5V, and 1.0V, with an accuracy that depends on the tolerance of the divider resistors (Figure 9).

Those three voltages are buffered by the MAX4252, which provides low noise and low DC offset. The individual voltage followers are connected to 10Hz lowpass filters, which filter both the reference voltage and amplifier noise to a level of 3nV/Hz. The 2.0V and 1.0V reference voltages set the differential full-scale range of the associated ADCs at 2VP-P. The 2.0V and 1.0V buffers drive the ADCs' internal ladder resistances between them. Note that the common power supply for all active components removes any concern regarding power-supply sequencing when powering up or down.

With the outputs of the MAX4252 matching better than 0.1%, the buffers and subsequent lowpass filters can be replicated to support as many as 32 ADCs. For applications that require more than 32 matched ADCs, a voltage reference and divider string common to all converters is highly recommended.

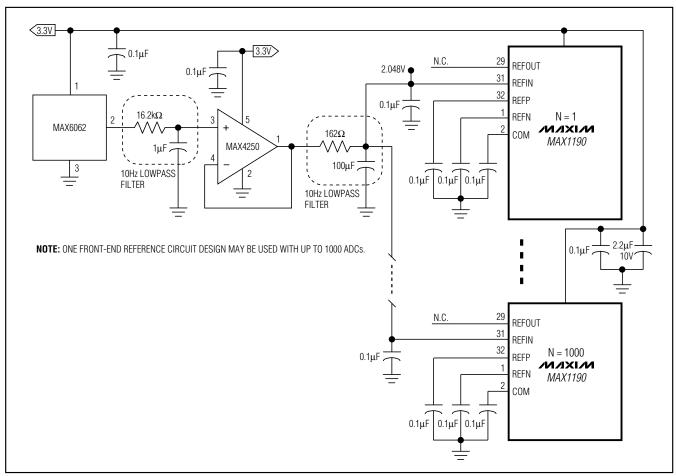


Figure 8. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference

Typical QAM Demodulation Application

A frequently used modulation technique in digital communications applications is quadrature amplitude modulation (QAM). Typically found in spread-spectrum-based systems, a QAM signal represents a carrier frequency modulated in both amplitude and phase. At the transmitter, modulating the baseband signal with quadrature outputs, a local oscillator followed by subsequent upconversion can generate the QAM signal. The result is an in-phase (I) and a quadrature (Q) carrier component, where the Q component is 90° phase shifted with respect to the in-phase component. At the receiver, the

QAM signal is divided down into its I and Q components, essentially representing the modulation process reversed. Figure 10 displays the demodulation process performed in the analog domain, using the dual-matched 3.3V, 10-bit ADC MAX1190 and the MAX2451 quadrature demodulator to recover and digitize the I and Q baseband signals. Before being digitized by the MAX1190, the mixed-down signal components can be filtered by matched analog filters, such as Nyquist or pulse-shaping filters, which remove unwanted images from the mixing process, thereby enhancing the overall SNR performance and minimizing intersymbol interference.

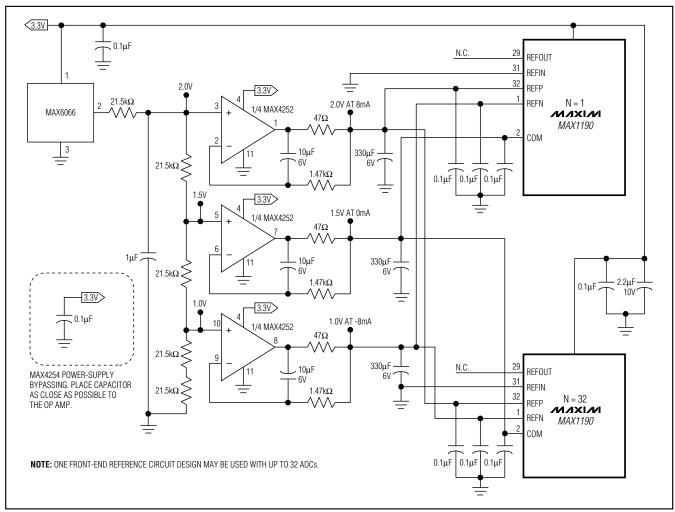


Figure 9. External Unbuffered Reference Drive with MAX4252 and MAX6066

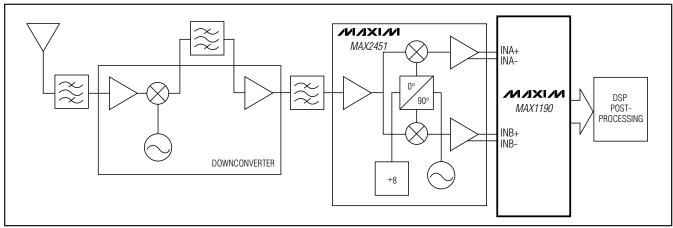


Figure 10. Typical QAM Application Using the MAX1190

Grounding, Bypassing, and Board Lavout

The MAX1190 requires high-speed board layout design techniques. Locate all bypass capacitors as close to the device as possible, preferably on the same side as the ADC, using surface-mount devices for minimum inductance. Bypass VDD, REFP, REFN, and COM with two parallel 0.1µF ceramic capacitors and a 2.2µF bipolar capacitor to GND. Follow the same rules to bypass the digital supply (OVDD) to OGND. Multilayer boards with separated ground and power planes produce the highest level of signal integrity. Consider the use of a split ground plane arranged to match the physical location of the analog ground (GND) and the digital output driver ground (OGND) on the ADC's package. The two ground planes should be joined at a single point such that the noisy digital ground currents do not interfere with the analog ground plane. The ideal location of this connection can be determined experimentally at a point along the gap between the two ground planes, which produces optimum results. Make this connection with a low-value, surface-mount resistor (1Ω to 5Ω), a ferrite bead, or a direct short. Alternatively, all ground pins could share the same ground plane if the ground plane is sufficiently isolated from any noisy, digital systems ground plane (e.g., downstream output buffer or DSP ground plane). Route high-speed digital signal traces away from the sensitive analog traces of either channel. Make sure to isolate the analog input lines to each respective converter to minimize channel-to-channel crosstalk. Keep all signal lines short and free of 90° turns.

Static Parameter Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. This straight

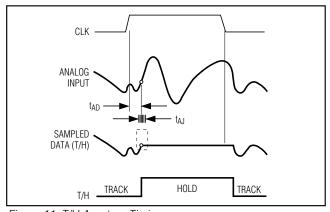


Figure 11. T/H Aperture Timing

line can be either a best-straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1190 are measured using the best-straight-line fit method.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function.

Dynamic Parameter Definitions

Aperture Jitter

Figure 11 depicts the aperture jitter (t_{AJ}), which is the sample-to-sample variation in the aperture delay.

Aperture Delay

Aperture delay (t_{AD}) is the time defined between the falling edge of the sampling clock and the instant when an actual sample is taken (Figure 11).

Signal-to-Noise Ratio (SNR)

For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[max]} = 6.02_{dB} \times N + 1.76_{dB}$$

In reality, there are other noise sources besides quantization noise: thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion (SINAD)

SINAD is computed by taking the ratio of the RMS signal to all spectral components minus the fundamental and the DC offset.

Effective Number of Bits (ENOB)

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. ENOB for a full-scale sinusoidal input waveform is computed from:

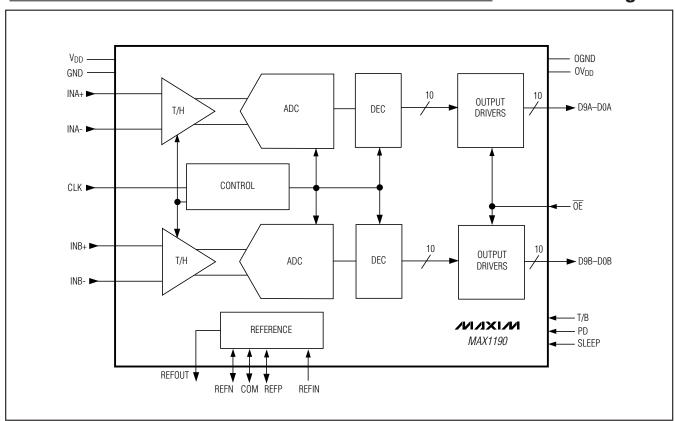
$$ENOB = \left(\frac{SINAD - 1.76}{6.02}\right)$$

Total Harmonic Distortion (THD)

THD is typically the ratio of the RMS sum of the first four harmonics of the input signal to the fundamental itself. This is expressed as:

THD =
$$20 \times log \left(\frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}}{V_1} \right)$$

where V_1 is the fundamental amplitude, and V_2 through V_5 are the amplitudes of the 2nd- through 5th-order harmonics.

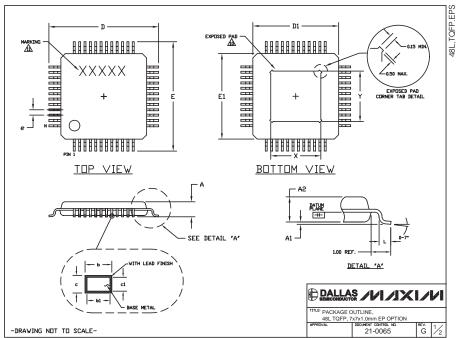

Spurious-Free Dynamic Range (SFDR)

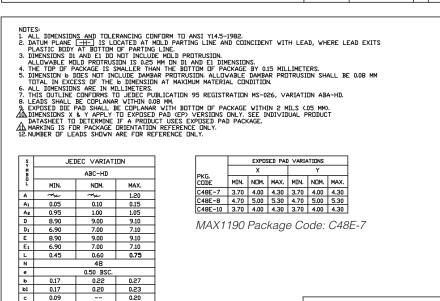
SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest spurious component, excluding DC offset.

Intermodulation Distortion (IMD)

The two-tone IMD is the ratio expressed in decibels of either input tone to the worst 3rd-order (or higher) intermodulation products. The individual input tone levels are at -6.5dB full scale and their envelope is at -0.5dB full scale.

Functional Diagram




Revision History

Pages changed at Rev 1: 1-15, 17, 19, 20, 21.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

22 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

-DRAWING NOT TO SCALE-

DALLAS ///X///

21-0065

"Ğ 2/2

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А