

DESIGN KITWE-PD2 SMD Power Inductor

SIZE:

7850 / 1045

TECHNICAL DATA:

L: $10 \sim 820 \, \mu\text{H}$ R_{DC} : $28 \sim 1420 \, \text{m}\Omega$ I_{R} : $0.32 \sim 2.98 \, \text{A}$ I_{LL} : $0.38 \sim 3.24 \, \text{A}$

Order Code 744 775 Version 1.0

WE-PD2

744 7	775 10		744 77	5 112		744 77	75 115		744 77	5 118	
L:	10	μН	L:	12	μН	L:	15	μН	L:	18	μН
R _{DC} :	44	mΩ		42			44		R _{DC} :	53	mΩ
	2.3	Α	I _R :	2.18	Α	I _R :	1.93	Α	I _R :	1.89	Α
	2.95			2.2			2.23	А		2.14	
744 7	775 147		744 77	'5 156		744 77	75 168		744 77	5 182	
L:	47	μН	L:	56	μН	L:	68	μН	L:	82	μН
	134		R _{nc} :	189	mΩ		218			248	
	1.17			1.04			0.99	Α		0.9	
I _{sat} :	1.24	А		1.14			1.05	А		0.95	
744 7	75 222		744 77	5 227		744 77	75 233		744 77	5 247	
L:	220	μН	L:	270	μН	L:	330	μН	L:	470	μН
	614			699			810			1370	
	0.51		I _R :				0.43		I _R :		
	0.56		I _{sat} :	0.51	А	I _{sat} :	0.48	A	I _{sat} :	0.38	Α
744 7	76 127		744 77	6 133		744 77	76 147		744 77	6 168	
L:	27	μН	L:	33	μН	L:	47	μН	L:	68	μН
	63			83			95			136	
	1.95			1.78			1.45		I _R :		
I _{sat} :	1.98	А		1.89		I _{sat} :	1.62	А		1.49	Α
744 7	76 215		744 77	6 218		744 77	76 222		744 77	6 233	
L:	150	μН	L:	180	μН		220			330	μН
	300			320			451			750	

744 77	'5 122	
L:	22	μН
R _{DC} :	65	mΩ
I _R :	1.76	Α
I _{sat} :	1.81	А

1 775 20	744 7	75 215
1.81 A	l _{sat} :	1.62
1.76 A	I _R :	1.48
65 mΩ	R _{DC} :	74
22 μΗ	L:	27

744

775 127		[744 7	75 133	
27	μН	I	L:	33	μΗ
74	mΩ		R _{oc} :	130	$m\Omega$
1.48	Α		l _R :	1.35	Α
1.62	Α		sat*	1.47	Α

	744	775 20		
	L:	100	μΗ	
	R _{DC} :	208	mΩ	
, 왕	I _R :	0.77	Α	
2	I _{sat} :	0.86	Α	

744 77	'5 215		
L:	150	μΗ	
R _{DC} :	467	$m\Omega$	
I _R :	0.6	Α	
I _{sat} :	0.71	Α	

744 7	75 218		
L:	180	μΗ	
R _{DC} :	574	$m\Omega$	
I _R :	0.55	Α	
I _{sat} :	0.57	Α	

744 7	76 10		
L:	10	μΗ	
R _{DC} :	28	$m\Omega$	
I _R :	2.98	Α	
I _{sat} :	3.24	Α	

744 77	6 118		
L:	18	μΗ	
R _{DC} :	43	mΩ	
I _R :	2.36	Α	
I _{sat} :	2.43	Α	

744 77	6 122		
L:	22	μΗ	
R _{DC} :	51	$m\Omega$	
I _R :	2.04	Α	
I _{sat} :	2.07	Α	

744 776	182		
L:	82	μΗ	
R _{DC} :	150	$m\Omega$	
I _R :	1.11	Α	
I _{sat} :	1.17	Α	

744 77	6 20	
L:	100	μΗ
R _{DC} :	200	$m\Omega$
I _R :	1.02	Α
I _{sat} :	1.1	Α

744 776 212				
L:	120	μΗ		
R _{DC} :	243	$m\Omega$		
I _R :	0.94	Α		
I _{sat} :	0.99	Α		

	470	
L:	470	μΗ
R_{D}	c: 969	$m\Omega$
945 I ^s :	0.44	Α
- I _{sat}	: 0.5	Α

744 776 268					
L:	680	μΗ			
R _{DC} :	1245	mΩ			
I _R :	0.36	Α			
I _{sat} :	0.43	Α			

744 776 282			
L:	820	μΗ	
R _{DC} :	1420	mΩ	
I _R :	0.32	Α	
I _{sat} :	0.41	Α	

EMC COMPONENTS | INDUCTORS | TRANSFORMERS | RF COMPONENTS | CIRCUIT PROTECTION | EMC SHIELDING MATERIAL | CONNECTORS | SWITCHES | ASSEMBLY TECHNIQUE | POWER ELEMENTS

0.52 A

0.59 A

Important information: Würth Elektronik's design kits contain reference components. These components correspond with the current product development status on the day of supply. Exchange of the reference components with up-to-date product development status is not carried out automatically. No liability is taken for the use of these reference components. Therefore, please request new samples prior to releases for series production and product release.

0.67 A

0.77 A

Please check datasheets on www.we-online.com for specifications. Würth Elektronik eiSos GmbH & Co. KG, EMC & Inductive Solutions. © 2011

0.76 A

0.78 A

All products in stock!

0.81 A

0.9 A

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А