

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

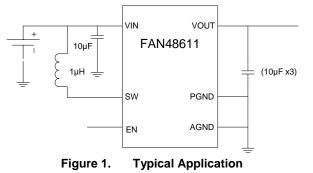
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2017

FAN48611 2.5 MHz, Fixed-Output, Synchronous Tiny Boost® Regulator

Features

- Input Voltage Range: 2.7 V to 4.8 V
- Output Voltage: 5.25 V
- 350 mA Maximum Output Current
- Internal Synchronous Rectification
- True Load Disconnect
- Short-Circuit Protection
- 9-Bump, 1.215 mm x 1.215 mm, 0.4 mm Pitch, WLCSP
- Three External Components: 2012 1 µH Inductor, 0402 Case Size Input / Output Capacitors


Applications

- Class-D Audio Amplifier and USB OTG Supply
- Boost for Low-Voltage Li-Ion Batteries
- Smart Phones, Tablets, Portable Devices, and Wearables

Description

The FAN48611 is a low-power boost regulator designed to provide a minimum voltage regulated rail from a standard single-cell Li-lon battery and advanced battery chemistries. Even below the minimum system battery voltage, the device maintains output voltage regulation. The combination of built-in power transistors, synchronous rectification, and low supply current suit the FAN48611 for battery-powered applications.

The FAN48611 is available in a 9-bump, 0.4 mm pitch, Wafer-Level Chip-Scale Package (WLCSP).

Ordering Information

Part Number	V _{OUT}	Operating Temperature Range	Package	Packing Method	Device Marking
FAN48611UC53X	5.25 V	-40°C to 85°C	9-Bump, 0.4 mm Pitch, Wafer- Level Chip-Scale Package (WLCSP)	Tape and Reel ⁽¹⁾	КН

Note:

1. Tape and reel specifications are available on <u>www.onsemi.com</u>.

SW Q2B Q2A VOUT Q2 VIN C_{OUT} Σ O. CIN Synchronous Rectifier Control PGND MODULATOR ΕN \gg LOGIC AGND AND CONTROL

Figure 2. IC Block Diagram

Table 1. Recommended Components

Component	Description	Vendor	Parameter	Тур.	Unit
1.1	2012 1 0 A 0 6 mm May Height	PIXC20120F1R0MDR	L	1	μH
L1	2012, 1.9 A, 0.6 mm Max. Height	PIAC20120F1R0MDR	DCR (Series R)	175	mΩ
CIN	20%, 6.3 V, X5R, 0402	C1005X5R0J106M050BC TDK	С	10	μF
Соит	20%, 6.3 V, X5R, 0402	C1005X5R0J106M050BC TDK	С	10	μF

Pin Configuration

Block Diagram

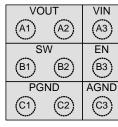


Figure 3. Top View

 \rightarrow

Figure 4. Bottom View

Pin Definitions

Pin #	Name	Description			
A1, A2	VOUT	Output Voltage. This pin is the output voltage terminal; connect directly to COUT.			
A3	VIN	Input Voltage . Connect to the Li-Ion battery input power source and the bias supply for the gate drivers.			
B1, B2	SW	Switching Node. Connect to inductor.			
B3	EN	Enable . When this pin is HIGH, the circuit is enabled. Connection to a logic voltage of 1.8 V and delivery voltage after UVLO typical voltage of 2.2 V is recommended.			
C1, C2	PGND	Power Ground . This is the power return for the IC. C_{OUT} capacitor should be returned with the shortest path possible to these pins.			
C3	AGND	Analog Ground . This is the signal ground reference for the IC. All voltage levels are measured with respect to this pin. Connect to PGND at a single point.			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
VIN	Voltage on VIN Pin		-0.3	6.0	V
V _{OUT}	Voltage on VOUT Pin			6.0	V
M		DC	-0.3	6.0	V
Vsw	Voltage on SW Node	Transient: 10 ns, 3 MHz	-1.0	8.0	V
Vcc	Voltage on Other Pins	·	-0.3	6.0(2)	V
FOD	Electrostatio Discharge Dratestion Laug	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012		2	
ESD	Electrostatic Discharge Protection Level Charged Device Model per JESD22-C101		2		kV
TJ	Junction Temperature	·	-40	+150	°C
TSTG	Storage Temperature		-65	+150	°C
ΤL	Lead Soldering Temperature, 10 Seconds			+260	°C

Note:

2. Lesser of 6.0 V or V_{IN} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

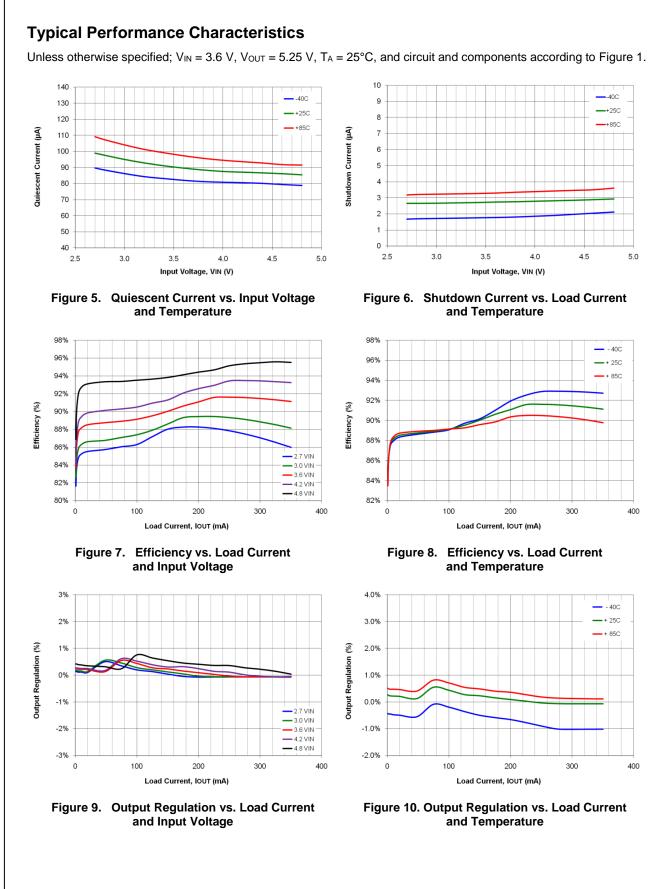
Symbol	Parameter		Max.	Unit
V _{IN}	Supply Voltage	2.7	4.8	V
Іоит	Maximum Output Current	350		mA
TA	Ambient Temperature	-40	+85	°C
TJ	Junction Temperature	-40	+125	°C

Thermal Properties

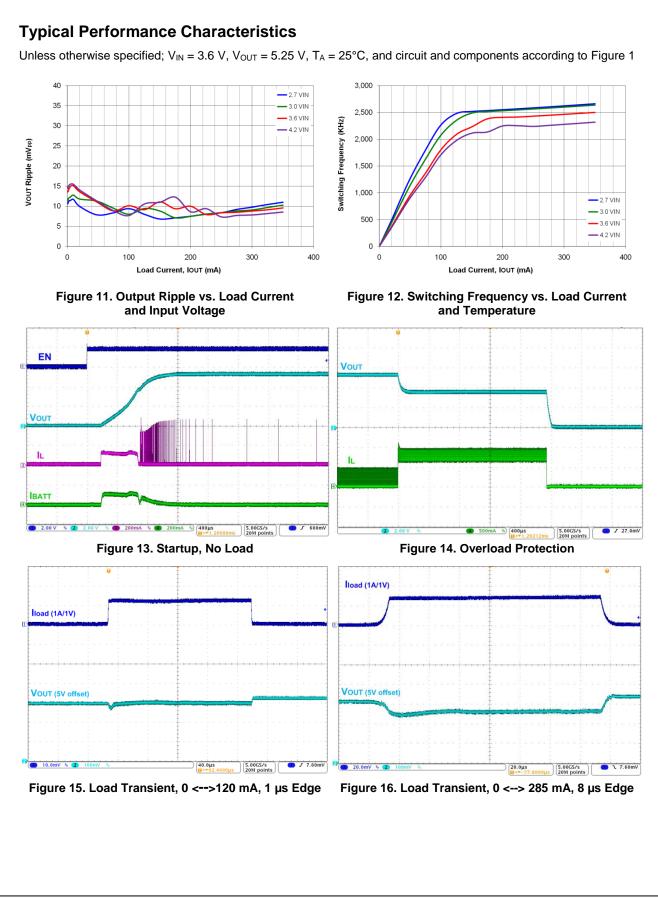
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with fourlayer 2s2p boards with vias in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature, $T_{J(max)}$, at a given ambient temperature, T_A .

Symbol	Parameter	Typical	Unit
θја	Junction-to-Ambient Thermal Resistance	50	°C/W

Electrical Specifications


Recommended operating conditions, unless otherwise noted, circuit per Figure 1, V_{OUT} = 5.25 V, V_{IN} = 2.7 V to 4.8 V, and T_A = -40°C to 85°C. Typical values are given V_{IN} = 3.7 V and T_A = 25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Power Su	pply		I	1	1	
		V _{IN} =3.7 V, I _{OUT} =0, EN=V _{IN}		90	140	
lα	V _{IN} Quiescent Current	Shutdown: EN=0, V _{IN} =3.7 V, V _{OUT} =0 V		2.7	10.0	μA
V _{UVLO}	Under-Voltage Lockout	V _{IN} Rising		2.2	2.3	V
VUVLO_HYS	Under-Voltage Lockout Hysteresis			150		mV
Inputs						
VIH	Enable HIGH Voltage		1.2			V
VIL	Enable LOW Voltage				0.4	V
I PD	Current Sink Pull-Down	EN Pin, Logic HIGH		100		nA
RLOW	Low-State Active Pull-Down	EN Pin, Logic LOW	200	300	400	kΩ
Outputs	•		1			
Vreg	Output Voltage Accuracy DC ⁽³⁾	Referred to VOUT	-2		4	%
ILK_OUT	VIN-to-VOUT Leakage Current	Vout=0, EN=0, Vin=2.7 V			1	μA
ILK	VOUT-to-VIN Reverse Leakage Current	Vout=5.3 V, EN=0, Vin=2.7 V			3.5	μA
VRIPPLE	Output Ripple ⁽⁴⁾	0 mA to 300 mA		30		mV
Vtrload		I _{LOAD} =0 mA <> 120 mA, t _R =t _F =1 μs		±30		
	Load Transient ⁽⁴⁾	I _{LOAD} =0 mA <> 285 mA, t _R =t _F =8 μs		±90		mV
VTRLINE	Line Transient ⁽⁴⁾	V _{IN} =3.2 V <> 3.9 V, I _{LOAD} =120 mA t _R =t _F =7 µs		±50		mV
		V _{IN} =3 V, I _{LOAD} =5 mA		85		
		V _{IN} =3 V, I _{LOAD} =200 mA		90		0/
η	Efficiency ⁽⁴⁾	V _{IN} =3.6 V, I _{LOAD} =200 mA		91		%
		V _{IN} =3.6 V, I _{LOAD} =300 mA		92		
Timing	•		1			
fsw	Switching Frequency	V _{IN} =3.6 V, V _{OUT} =5.25 V, I _{LOAD} =300 mA	2.0	2.5	3.0	MH
tss	Soft-Start EN HIGH to Regulation ⁽⁴⁾	V _{IN} =3.0 V, V _{OUT} =5.25 V, I _{LOAD} =0 mA, C _{OUT} =3 x 10 μF		1000		μs
lss	Input Peak Current			90	200	mA
trst	FAULT Restart Timer ⁽⁴⁾			20		ms
Power Sta	age	•	•	•	•	
R _{DS(ON)N}	N-Channel Boost Switch RDS(ON)	VIN=3.6 V, Vout=5.25 V		80	130	mΩ
R _{DS(ON)P}	P-Channel Sync. Rectifier R _{DS(ON)}	V _{IN} =3.6 V, V _{OUT} =5.25 V		65	115	mΩ
Iv_LIM	Boost Valley Current Limit	Vout=5.25 V		750		mA
$I_{V_LIM_SS}$	Boost Soft-Start Valley Current Limit	VIN <vout <="" td="" vout_target<=""><td></td><td>375</td><td></td><td>Α</td></vout>		375		Α
T 150T	Over-Temperature Protection (OTP)			150		°C
T _{150H}	OTP Hysteresis			20		°C


Notes:

^{3.} DC I_{LOAD} from 0 to 0.35 A. V_{OUT} measured from mid-point of output voltage ripple. Effective capacitance of C_{OUT} \geq 6 µF.

^{4.} Guaranteed by design and characterization; not tested in production.

FAN48611 ---

Typical Characteristics

Unless otherwise specified; V_{IN}=3.6 V, V_{OUT}=5.25 V, T_A=25°C, and circuit and components according to Figure 1

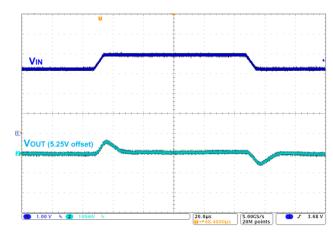


Figure 17. Line Transient, 3.2 <--> 3.9 V_{IN}, 7 μ s Edge, 120 mA Load

Functional Description

FAN48611 is a synchronous boost regulator, typically operating at 2.5 MHz in Continuous Conduction Mode (CCM), which occurs at moderate to heavy load current and low $V_{\rm IN}$ voltage.

Mode	Description	Invoked When:
LIN	Linear Startup	$V_{IN} > V_{OUT}$
SS	Boost Soft-Start	Vin < Vout < Vout(target)
BST	Boost Mode	$V_{OUT} = V_{OUT(TARGET)}$

Table 2. Operating Modes

Boost Mode Regulation

The current-mode modulator achieves excellent transient response and smooth transitions between CCM and DCM operation. During CCM operation, the device maintains a switching frequency of about 2.5 MHz. In light-load operation (DCM), frequency is naturally reduced to maintain high efficiency.

Startup and Shutdown

When EN is LOW, all bias circuits are off and the regulator enters Shutdown Mode. During shutdown, current flow is prevented from VIN to VOUT, as well as reverse flow from VOUT to VIN. It is recommended to keep load current draw below 50 mA until the device successfully executes startup. Table 3 describes the startup sequence.

Table 3.	Boost	Startup	Sec	uence
----------	-------	---------	-----	-------

Start Mode	Entry	Exit	End Mode	Timeout (µs)
LIN1	$V_{IN} > V_{UVLO},$ EN=1	V _{OUT} > V _{IN} - 300 mV	SS	
		TIMEOUT	LIN2	512
LIN2	LIN1 Exit	V _{OUT} > V _{IN} - 300 mV	SS	
		TIMEOUT	FAULT	1024
SS	LIN1 or	Vout = Vout(target)	BST	
33	LIN2 Exit	OVERLOAD TIMEOUT	FAULT	64

LIN Mode

When EN is HIGH and $V_{IN} > V_{UVLO}$, the regulator attempts to bring V_{OUT} within 300 mV of V_{IN} using the internal fixed-current source from VIN (Q2). The current is limited to the I_{ss} set point, which is typically 90 mA. The linear charging current is limited to a maximum of 200 mA to prevent any "brownout" situations where the system voltage drops too low.

During LIN1 Mode, if V_{OUT} reaches V_{IN} -300 mV, SS Mode is initiated. Otherwise, LIN1 Mode expires after 512 μ s and LIN2 Mode is entered.

In LIN2 Mode, the current source is equal to LIN1 current source I_{ss}, typically 90 mA. If V_{OUT} fails to reach V_{IN}-300 mV after 1024 μ s, a fault condition is declared and the device waits 20 ms (t_{RST}) to attempt an automatic restart.

Soft-Start (SS) Mode

Upon the successful completion of LIN Mode ($V_{OUT} \ge V_{IN}$ -300 mV), the regulator begins switching with boost pulses current limited to 50% of nominal level.

During SS Mode, if V_{OUT} fails to reach regulation during the SS ramp sequence for more than 64 µs, a fault is declared. If a large C_{OUT} is used, the reference is automatically stepped slower to avoid excessive input current draw.

Boost (BST) Mode

This is a normal operating mode of the regulator.

Fault State

The regulator enters Fault State under any of the following conditions:

- V_{OUT} fails to achieve the voltage required to advance from LIN Mode to SS Mode.
- V_{OUT} fails to achieve the voltage required to advance from SS Mode to BST Mode.
- Boost current limit triggers for 2 ms during BST Mode.
- V_{IN} V_{OUT} > 300 mV; this fault can occur only after successful completion of the soft-start sequence.
- VIN < VUVLO.

Once a fault is triggered, the regulator stops switching and presents a high-impedance path between VIN and VOUT. After 20 ms, automatic restart is attempted.

Over-Temperature

The regulator shuts down if the die temperature exceeds 150°C. Restart occurs when the IC has cooled by approximately 20°C.

Application Information

Output Capacitance (COUT)

The effective capacitance ($C_{EFF}^{(5)}$) of small, high-value ceramic capacitors decreases as the bias voltage increases, as illustrated in Figure 18.

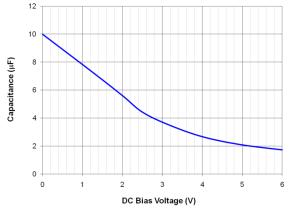


Figure 18. C_{EFF} for 10 μF, 0402, X5R, 6.3 V-Rated Capacitor (TDK C1005X5R0J106M050BC)

FAN48611 is guaranteed for stable operation with the minimum value of C_{EFF} (C_{EFF(MIN)}) outlined in Table 4

Table 4. Minimum CEFF Required for Stability

Ope			
V _{оυт} (V)	V _{IN} (V)	I _{LOAD} (mA)	(μF)
5.25	2.7 to 4.8	0 to 350	6.0

Note:

5. C_{EFF} varies by manufacturer, capacitor material, and case size.

Inductor Selection

Recommended nominal inductance value is 1 μ H.

The FAN48611 employs valley-current limiting, so peak inductor current can reach 1.2 A for a short duration during overload conditions. Saturation causes the inductor current ripple to increase under high loading, as only the valley of the inductor current ripple is controlled.

Startup

Input current limiting is active during soft-start, which limits the current available to charge C_{OUT} and any additional capacitance on the V_{OUT} line. If the output fails to achieve regulation within the limits described in the Soft-Start section above, a fault occurs, causing the circuit to shut down. It waits about 20 ms before attempting a restart. If the total combined output capacitance is very high, the circuit may not start on the first attempt, but eventually achieves regulation if no load is present. If a high current load and high capacitance are both present during soft-start, the circuit may fail to achieve regulation and continually attempt

soft-start, only to have the output capacitance discharged by the load when in Fault State.

Output Voltage Ripple

Output voltage ripple is inversely proportional to C_{OUT} . During ton, when the boost switch is on, all load current is supplied by C_{OUT} .

$$V_{RIPPLE(P-P)} = t_{ON} \bullet \frac{I_{LOAD}}{C_{OUT}}$$
(1)

and

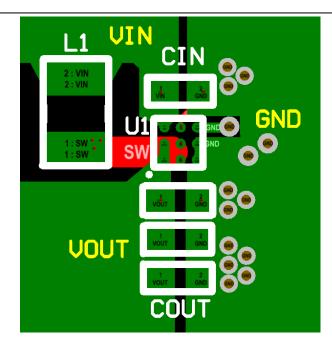
$$t_{ON} = t_{SW} \bullet D = t_{SW} \bullet \left(1 - \frac{V_{IN}}{V_{OUT}}\right)$$
(2)

therefore:

$$V_{RIPPLE(P-P)} = t_{SW} \bullet \left(1 - \frac{V_{IN}}{V_{OUT}}\right) \bullet \frac{I_{LOAD}}{C_{OUT}}$$
(3)

$$t_{SW} = \frac{1}{f_{SW}} \tag{4}$$

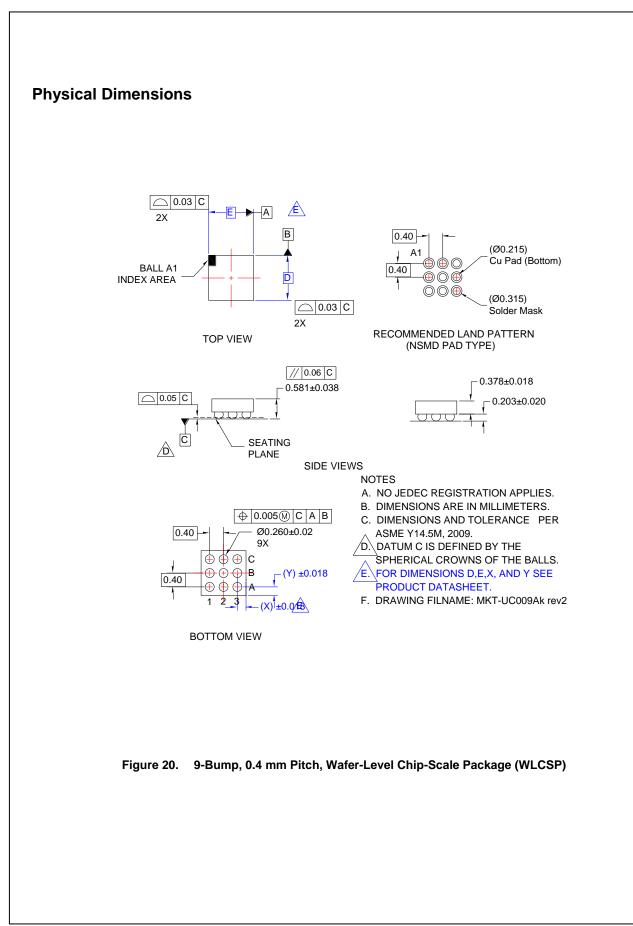
The maximum V_{RIPPLE} occurs when V_{IN} is minimum and I_{LOAD} is maximum. For better ripple performance, more output capacitance can be added.


Layout Recommendations

The layout recommendations below highlight various top-copper pours by using different colors.

To minimize spikes at VOUT, C_{OUT} must be placed as close as possible to PGND and VOUT, as shown below.

For best thermal performance, maximize the pour area for all planes other than SW. The ground pour, especially, should fill all available PCB surface area and be tied to internal layers with a cluster of thermal vias.


Figure 19. Layout Recommendation

The table below pertains to the Package information on the following page.

Table 5. Product-Specific Dimensions

D	E	X	Y
1.215 ±0.030 mm	1.215 ±0.030 mm	0.2075 mm	0.2075 mm

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor for provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products for any such unintended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized uplications, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81-3-5817-1050

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FAN48611UC53X

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;

- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);

- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;

- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком):

- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«FORSTAR» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный) Факс: 8 (812) 320-03-32 Электронная почта: ocean@oceanchips.ru Web: http://oceanchips.ru/ Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А