

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PMPB15XP

12 V, single P-channel Trench MOSFET

22 November 2012

Product data sheet

1. Product profile

1.1 General description

P-channel enhancement mode Field-Effect Transistor (FET) in a leadless medium power DFN2020MD-6 (SOT1220) Surface-Mounted Device (SMD) plastic package using Trench MOSFET technology.

1.2 Features and benefits

- 1.5 kV ESD protection (human body model)
- Trench MOSFET technology
- Small and leadless ultra thin SMD plastic package: 2 x 2 x 0.65 mm
- Exposed drain pad for excellent thermal conduction
- Tin-plated 100 % solderable side pads for optical solder inspection

1.3 Applications

- · Charging switch for portable devices
- DC-to-DC converters
- Power management in battery-driven portable devices
- Hard disk and computing power management

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	-12	V
V_{GS}	gate-source voltage			-12	-	12	V
I _D	drain current	V _{GS} = -4.5 V; T _{amb} = 25 °C; t ≤ 5 s	[1]	-	-	-11.8	Α
Static characteristics							
R _{DSon}	drain-source on-state resistance	V_{GS} = -4.5 V; I_D = -8.2 A; T_j = 25 °C		-	15	19	mΩ

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for drain 6 cm².

12 V, single P-channel Trench MOSFET

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	D	drain	1 6	D
2	D	drain	7 5	
3	G	gate		G TF
4	S	source	3 8 4	\$ 017aaa257
5	D	drain	Transparent top view	
6	D	drain	DFN2020MD-6 (SOT1220)	
7	D	drain		
8	S	source		

3. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
PMPB15XP	DFN2020MD-6	plastic thermal enhanced ultra thin small outline package; no leads; 6 terminals	SOT1220			

4. Marking

Table 4. Marking codes

Type number	Marking code
PMPB15XP	1A

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j = 25 °C		-	-12	V
V_{GS}	gate-source voltage			-12	12	V
I _D	drain current	$V_{GS} = -4.5 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}; t \le 5 \text{ s}$	[1]	-	-11.8	Α
		V_{GS} = -4.5 V; T_{amb} = 25 °C	[1]	-	-8.2	Α
		V _{GS} = -4.5 V; T _{amb} = 100 °C	[1]	-	-5.2	Α
I _{DM}	peak drain current	T_{amb} = 25 °C; single pulse; $t_p \le 10 \mu s$		-	-33	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C	[1]	-	1.7	W
PMPR15YP	All info	ormation provided in this document is subject to legal disclaimers		@ N	XP R V 2012 ΔΙ	I rights reserver

12 V, single P-channel Trench MOSFET

Symbol	Parameter	Conditions		Min	Max	Unit
		T _{amb} = 25 °C; t ≤ 5 s	[1]	-	3.5	W
		T _{sp} = 25 °C		-	12.5	W
Tj	junction temperature			-55	150	°C
T _{amb}	ambient temperature			-55	150	°C
T _{stg}	storage temperature			-65	150	°C
Source-dra	in diode					
I _S	source current	T _{amb} = 25 °C	[1]	-	-1.9	Α

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated, mounting pad for drain 6 cm².

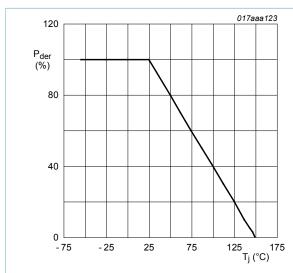


Fig. 1. Normalized total power dissipation as a function of junction temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

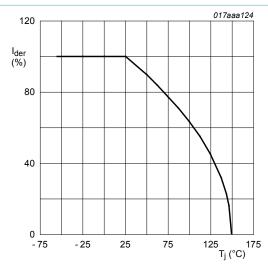


Fig. 2. Normalized continuous drain current as a function of junction temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}\text{C})}} \times 100 \%$$

12 V, single P-channel Trench MOSFET

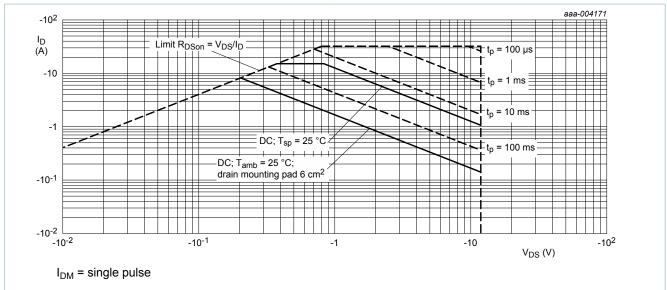


Fig. 3. Safe operating area; junction to ambient; continuous and peak drain currents as a function of drain-source voltage

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)} thermal resistance from junction to ambient			[1]	-	235	270	K/W
	-		[2]	-	67	74	K/W
	amplent	in free air; t ≤ 5 s	[2]	-	33	36	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point			-	5	10	K/W

- $\begin{tabular}{ll} [1] & Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. \end{tabular}$
- [2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for drain 6 cm².

12 V, single P-channel Trench MOSFET

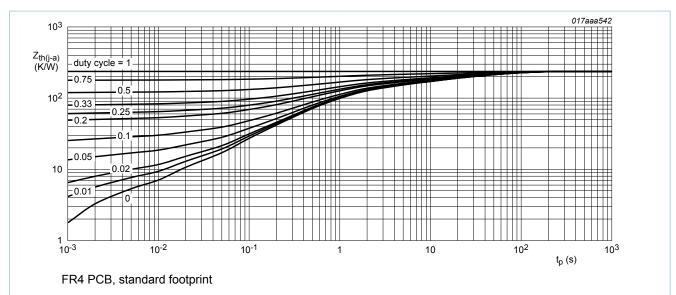


Fig. 4. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

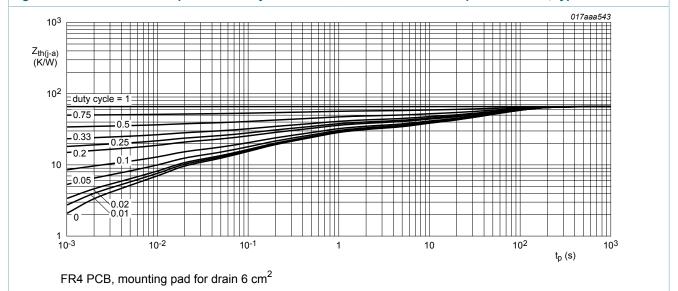


Fig. 5. Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

7. Characteristics

Table 7. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	acteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = -250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}C$	-12	-	-	V
V_{GSth}	gate-source threshold voltage	$I_D = -250 \ \mu A; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^{\circ}C$	-0.47	-0.68	-0.9	V
I _{DSS}	drain leakage current	V_{DS} = -12 V; V_{GS} = 0 V; T_j = 25 °C	-	-	-1	μA
		V _{DS} = -12 V; V _{GS} = 0 V; T _j = 150 °C	-	-	-100	μΑ
PMPB15XP	1	All information provided in this document is subject to legal disclaimers.	l	© NXI	P B.V. 2012. A	II rights rese

12 V, single P-channel Trench MOSFET

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{GSS}	gate leakage current	V _{GS} = -12 V; V _{DS} = 0 V; T _j = 25 °C	-	-	-100	nA
		V _{GS} = 12 V; V _{DS} = 0 V; T _j = 25 °C	-	-	-100	nA
R _{DSon}	drain-source on-state	V_{GS} = -4.5 V; I_{D} = -8.2 A; T_{j} = 25 °C	-	15	19	mΩ
	resistance	V_{GS} = -4.5 V; I_{D} = -8.2 A; T_{j} = 150 °C	-	20	25	mΩ
		V_{GS} = -2.5 V; I_D = -3.9 A; T_j = 25 °C	-	17	20	mΩ
		V_{GS} = -1.8 V; I_D = -3.9 A; T_j = 25 °C	-	21	33	mΩ
9fs	forward transconductance	V_{DS} = -10 V; I_{D} = -8.2 A; T_{j} = 25 °C	-	40	-	S
Dynamic c	haracteristics		1			
Q _{G(tot)}	total gate charge	V_{DS} = -6 V; I_{D} = -8.2 A; V_{GS} = -4.5 V; T_{j} = 25 °C	-	67	100	nC
Q _{GS}	gate-source charge		-	5.5	-	nC
Q_{GD}	gate-drain charge		-	7.3	-	nC
C _{iss}	input capacitance	$V_{DS} = -6 \text{ V}; f = 1 \text{ MHz}; V_{GS} = 0 \text{ V};$	-	2875	-	pF
C _{oss}	output capacitance	T _j = 25 °C	-	570	-	pF
C _{rss}	reverse transfer capacitance		-	530	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = -6 V; I_{D} = -8.2 A; V_{GS} = -4.5 V;	-	18	-	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega; T_j = 25 ^{\circ}C$	-	90	-	ns
t _{d(off)}	turn-off delay time		-	85	-	ns
t _f	fall time		-	57	-	ns
Source-dra	in diode		1	1	1	
V _{SD}	source-drain voltage	I _S = -1.9 A; V _{GS} = 0 V; T _j = 25 °C	-	-0.6	-1.2	V

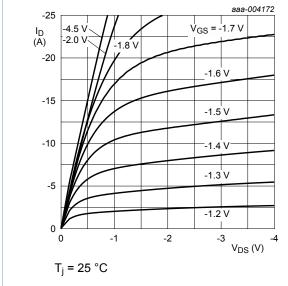


Fig. 6. Output characteristics: drain current as a function of drain-source voltage; typical values

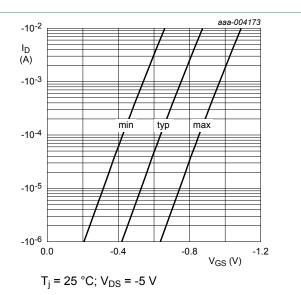


Fig. 7. Subthreshold drain current as a function of gate-source voltage

PMPB15XP

All information provided in this document is subject to legal disclaimers.

12 V, single P-channel Trench MOSFET

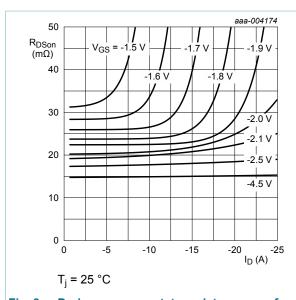


Fig. 8. Drain-source on-state resistance as a function of drain current; typical values

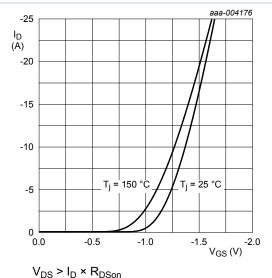


Fig. 10. Transfer characteristics: drain current as a function of gate-source voltage; typical values

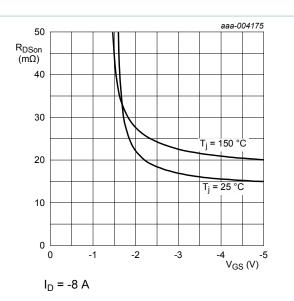


Fig. 9. Drain-source on-state resistance as a function of gate-source voltage; typical values

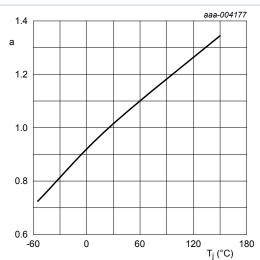


Fig. 11. Normalized drain-source on-state resistance as a function of junction temperature; typical values

$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$

12 V, single P-channel Trench MOSFET

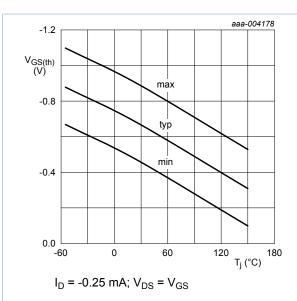


Fig. 12. Gate-source threshold voltage as a function of junction temperature

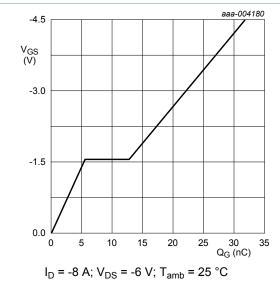


Fig. 14. Gate-source voltage as a function of gate charge; typical values

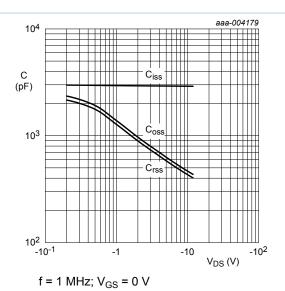


Fig. 13. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

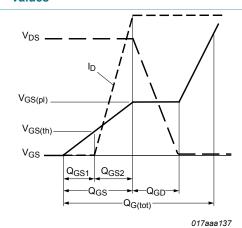
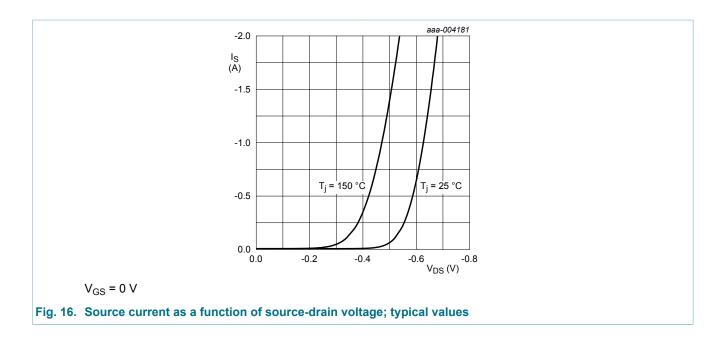
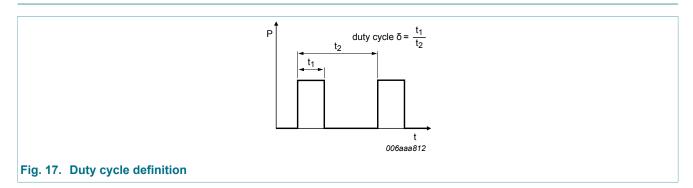
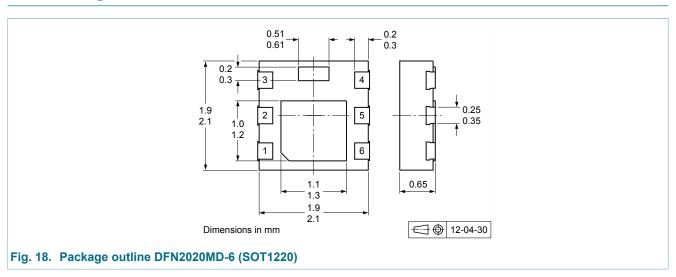
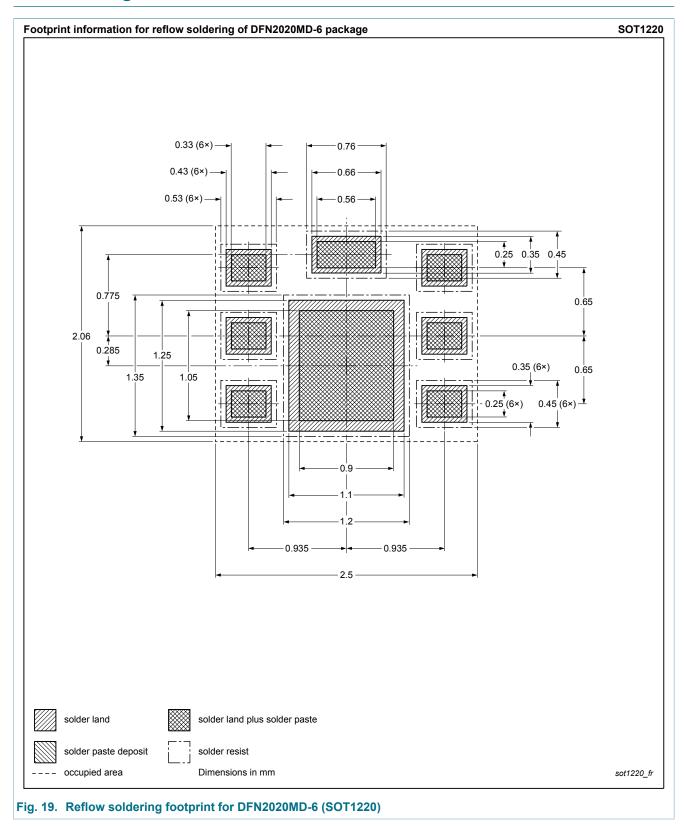




Fig. 15. Gate charge waveform definitions


12 V, single P-channel Trench MOSFET

8. Test information

9. Package outline



PMPB15XP

All information provided in this document is subject to legal disclaimers.

12 V, single P-channel Trench MOSFET

10. Soldering

PMPB15XP

All information provided in this document is subject to legal disclaimers.

12 V, single P-channel Trench MOSFET

11. Revision history

Table 8. Revision history

Data sheet ID	Release date	Data sheet status	Change notice	Supersedes
PMPB15XP v.3	20121122	Product data sheet	-	PMPB15XP v.2
Modifications:	Table 7 "Character	istics": R _{DSon} at V _{GS} = -1.8	3 V corrected.	
PMPB15XP v.2	20120719	Product data sheet	-	PMPB15XP v.1
PMPB15XP v.1	20120706	Preliminary data sheet	-	-

12 V, single P-channel Trench MOSFET

12. Legal information

12.1 Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the

PMPB15XP

All information provided in this document is subject to legal disclaimers.

12 V, single P-channel Trench MOSFET

grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TOPTriac, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

13 / 14

12 V, single P-channel Trench MOSFET

13. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	1
1.3	Applications	1
1.4	Quick reference data	
2	Pinning information	2
3	Ordering information	2
4	Marking	2
5	Limiting values	2
6	Thermal characteristics	4
7	Characteristics	5
8	Test information	9
9	Package outline	
10	Soldering	
11	Revision history	11
12	Legal information	
12.1	Data sheet status	12
12.2	Definitions	12
12.3	Disclaimers	12
12.4	Trademarks	13

© NXP B.V. 2012. All rights reserved

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 22 November 2012

Компания «Океан Электроники» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Поставка оригинальных импортных электронных компонентов напрямую с производств Америки, Европы и Азии, а так же с крупнейших складов мира;
- Широкая линейка поставок активных и пассивных импортных электронных компонентов (более 30 млн. наименований);
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Помощь Конструкторского Отдела и консультации квалифицированных инженеров;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Поставка электронных компонентов под контролем ВП;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- При необходимости вся продукция военного и аэрокосмического назначения проходит испытания и сертификацию в лаборатории (по согласованию с заказчиком);
- Поставка специализированных компонентов военного и аэрокосмического уровня качества (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Actel, Aeroflex, Peregrine, VPT, Syfer, Eurofarad, Texas Instruments, MS Kennedy, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Компания «Океан Электроники» является официальным дистрибьютором и эксклюзивным представителем в России одного из крупнейших производителей разъемов военного и аэрокосмического назначения «JONHON», а так же официальным дистрибьютором и эксклюзивным представителем в России производителя высокотехнологичных и надежных решений для передачи СВЧ сигналов «FORSTAR».

«JONHON» (основан в 1970 г.)

Разъемы специального, военного и аэрокосмического назначения:

(Применяются в военной, авиационной, аэрокосмической, морской, железнодорожной, горно- и нефтедобывающей отраслях промышленности)

«**FORSTAR**» (основан в 1998 г.)

ВЧ соединители, коаксиальные кабели, кабельные сборки и микроволновые компоненты:

(Применяются в телекоммуникациях гражданского и специального назначения, в средствах связи, РЛС, а так же военной, авиационной и аэрокосмической отраслях промышленности).

Телефон: 8 (812) 309-75-97 (многоканальный)

Факс: 8 (812) 320-03-32

Электронная почта: ocean@oceanchips.ru

Web: http://oceanchips.ru/

Адрес: 198099, г. Санкт-Петербург, ул. Калинина, д. 2, корп. 4, лит. А